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Abstract—Pain assessment is of major significance in clinical
environments. The current gold standard is self-reporting of pain
based on the patient’s subjective willingness. However, pain as-
sessment based on physiological signals is developing rapidly due
to the objectivity and real-time nature of physiological signals.
This study aims to systematically compare the performance of
convolutional neural networks (CNN) combined with long short-
term memory networks (LSTM), bidirectional long short-term
memory networks (BiLSTM), transformers, and gated recurrent
units (GRU) models in pain classification tasks. We assessed these
hybrid models’ performance experimentally using a variety of
metrics, such as accuracy, precision, recall, F1 score, training
time, and inference time. The experimental results show that
the CNN+Transformer model best performs in most evaluation
metrics with an accuracy of 0.795, while the CNN+GRU model
performs the worst with an accuracy of only 0.559. In addition,
we also analyze the computational efficiency of each model
in terms of training and inference time. Overall, this paper
provides important direction for future research and real-world
applications by thoroughly evaluating the effectiveness of various
deep learning models in pain classification tasks.

Index Terms—Physiological signals, pain assessment, and deep
learning.

I. INTRODUCTION

Chronic pain is persistent or recurring and has a serious
impact on the patient’s physical health and quality of life
[1], [2]. It is crucial to develop a personalized treatment plan
based on the patient’s pain level. Pain assessment typically
categorizes pain into three levels: no pain, mild pain, and
severe pain [3]. Depending on the pain level, different pain
management strategies are required. Accurate pain assessment
can help clinicians develop more effective and personalized
treatment plans [4]. Accurately assessing pain has become
a major challenge in the clinical environment. Patients self-
report using the verbal rating scale (VRS), visual analog
scale (VAS), and numerical rating scale (NRS) as part of
the traditional method for assessing pain. [5]–[7]. These pain
assessment methods based on patient self-report have many
limitations, mainly due to their strong subjectivity, inability
to obtain real-time data, and difficulty in standardization [8].
Pain is not only a subjective feeling but also causes a variety
of physiological reactions [9]. Because of the objectivity and
real-time nature of physiological signals, it has become a

new method for pain assessment [10]. Many researchers use
physiological signals such as blood volume pulse (BVP), skin
conductance (SC), electromyography (EMG), electrocardio-
graphy (ECG), electroencephalography (EEG), temperature,
and respiration rate to assess pain [11]–[13]. Some researchers
also use facial expressions and pupillary responses to assess
pain [14], [15].

A significant challenge in pain level classification tasks is
how to achieve high accuracy while maintaining computa-
tional efficiency. Convolutional neural networks (CNN) are
frequently used for feature extraction because of their capacity
to extract spatial hierarchies from data. [16]. But CNN can
make the model work better when it is mixed with other
architectures like long short-term memory networks (LSTM),
bidirectional long short-term memory networks (BiLSTM),
gated recurrent units (GRU), and transformers [17]–[21]. This
is because they can use the best features of each architecture.

In this paper, we assessed the performance of CNN com-
bined with LSTM, BiLSTM, Transformer, and GRU archi-
tectures in the pain level classification task based on multiple
performance metrics. We show which model is the most effec-
tive and efficient by comparing these combined architectures in
great detail. This helps us figure out which model does the best
overall job of classifying pain levels. The rest of this paper is
organized as follows: Section 2 shows the research methods,
including the dataset (subject information and experimental
procedure), data preprocessing, feature extraction, deep learn-
ing model architecture, and model performance evaluation.
Section 3 shows the experimental results of the model. Section
4 shows the research findings and discussion. Section 5 shows
the conclusion of this paper and proposes directions for future
research.

II. METHODOLOGY

A. Dataset

1) Participants:
This experiment recruited 29 healthy subjects. Our inclu-

sion criterion is no history of neurological, psychiatric, and
cardiovascular problems, and no experiencing pain before the
experiment. Before the experiment, the researcher provided the
subjects with detailed experimental procedures in the written
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consent form, and the researcher will explain and confirm that
the subjects understand all of the experiment’s details through
verbal explanations. Northeastern University’s Institutional
Review Board (IRB#19-12-15) set forth the guidelines and
regulations that the experiment followed.

2) Experiment Procedure:
The subjects signed a consent form about the experiment.

Then the researcher placed biosensor devices on the subjects’
hands, head, arms, and chest. These biosensor devices mea-
sured brain activity through electroencephalography (EEG),
sweating through galvanic skin response (GSR), heart rate with
electrocardiography (ECG), muscle tension with electromyo-
graphy (EMG), skin temperature (ST), respiration rate, and
eye movement. The maximum period for the experiment is
200 seconds. After recording the first period of physiological
signal data for baseline purposes, the researcher will apply
controlled stimuli. The subjects reported their level of pain
every 30 seconds. The subject could terminate the experiment
at any time when they could not tolerate the pain. After the
experiment, the subject was reimbursed.

B. Data Preprocessing

The physiological signals selected as model inputs are blood
volume pulse (BVP), galvanic skin response (GSR), elec-
tromyography (EMG), skin temperature (ST), and respiration
rate (RR) [22]. We resampled these data to 50 Hz. The blood
volume pulse (BVP) is filtered using a fifth-order Butterworth
bandpass filter with a cutoff frequency of [0.5, 12] Hz. The
galvanic skin response (GSR) is filtered out using a fifth-order
1 Hz low-pass Butterworth filter. The respiration rate (RR)
is filtered by a fifth-order Butterworth bandpass filter with a
cutoff frequency of [0.1, 1] Hz. Next, we split the data into
groups of 2 seconds and removed all NaN values. Then, we
classify the data based on the label value: we classify the group
with a label value of 0 as no pain, the group with a label value
between 0 and 5 as mild pain, and the group with a label value
between 5 and 10 as severe pain. We pad the data to make sure
that each group is the same size before splitting the dataset
into 80% for training data and 20% for testing data.

C. Automatic Feature Extraction

Convolution layers and pooling layers work together to
automatically extract features from a convolutional neural
network (CNN). [23]. The convolution layer extracts local
spatial features by sliding convolution kernels over the input
data and doing dot product calculations. Downsampling is
done by the pooling layer (max polling) in order to minimize
the feature map’s size and overfitting risk. CNN is able to
learn complex and abstract feature representations by stacking
multiple layers of convolution and pooling.

Fig. 1. CNN Structures for Automatic Feature Extraction

D. Deep Learning Models

1) Convolutional Neural Network (CNN) and Long Short-
Term Memory Networks (LSTM) Model:

We use a hybrid of a convolutional neural network and
long short-term memory networks. The LSTM is used for
classification, and the CNN is used for feature extraction. The
goal of this combined strategy is to extract temporal and spatial
dependencies from the input data.

2) Convolutional Neural Network (CNN) and Bidirectional
Long Short-Term Memory Networks (BiLSTM) Model:

We combine the capabilities of a bidirectional long short-
term memory and a convolutional neural network. The BiL-
STM is used for classification, and the CNN is used for feature
extraction. The combined method seeks to extract from the
input data both bidirectional temporal dependencies and spatial
dependencies.

3) Convolutional Neural Network (CNN) and Transformer
Model:

We employ the CNN+Transformer model, which combines
a transformer with a convolutional neural network. The trans-
former is used for classification, and the CNN is used for
feature extraction. Through the transformer’s self-attention
mechanism, this combined approach seeks to capture both
spatial features and intricate temporal dependencies in the
input data.

4) Convolutional Neural Network (CNN) and Gated Recur-
rent Unit (GRU) Model:

We employ the CNN+GRU model, which combines GRU
with a convolutional neural network. The CNN is used for
feature extraction, and the GRU is used for classification.
This combined approach aims to leverage GRU’s ability to
handle temporal dependencies efficiently and enhance overall
classification performance by integrating both spatial and
temporal information.
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Fig. 2. Four Deep Learning Models Perform Classification Tasks on The Fea-
tures Extracted by CNN: LSTM, BiLSTM, Transformer, and GRU Structures.

E. Performance Evaluation

The evaluation of deep learning models will start with
multiple indicators. We will use the information obtained from
the model’s confusion matrix to calculate the true positives,
true negatives, false positives, and false negatives. Next, we
will use these values to determine the model’s accuracy.
To comprehensively evaluate the model’s performance, we
will measure precision, recall, and F1 score through macro-
averaging, micro-averaging, and weighted-averaging. Finally,
we will compute the training and inference times of the
models.

1) Confusion Matrix:
The confusion matrix provides an intuitive way to visualize

the performance of the deep learning model. We can use the
confusion matrix to observe the model’s prediction results in
each category, including the number of correct and incorrect
classifications. The confusion matrix of deep learning model
can be used to compute accuracy, precision, recall, and F1
score, among other performance metrics. These indicators
can evaluate the deep learning model more comprehensively,
especially in the case of imbalanced categories. We can also
analyze the confusion matrix to optimize the deep learning
model.

TABLE I
CONFUSION MATRIX FOR DEEP LEARNING MODEL

Predicted N Predicted M Predicted S

Actual N ENN ENM ENS

Actual M EMN EMM EMS

Actual S ESN ESM ESS

where:
• The category N denotes the level of no pain.
• The category M denotes the level of mild pain.
• The category S denotes the level of severe pain.
• Eij denotes that the actual category is i and the predicted

category is j.
TPi (true positives) are the number of samples with the

same actual and predicted categories.

TPi = Eii (1)

FPi (false positives) are the number of samples whose
actual category is not i but are mistakenly predicted to be
i.

FPi =
∑
j ̸=i

Eji (2)

FNi (false negatives) are the number of samples whose
actual category is i but are mistakenly predicted to be other
categories.

FNi =
∑
j ̸=i

Eij (3)

TNi (true negatives) are the number of samples whose
actual category is not i and is not predicted to be i.

TNi =
∑
k ̸=i

∑
j ̸=i

Ekj (4)

2) Accuracy:
Accuracy is defined as the percentage of true predictions

(true positives and true negatives) among all predictions. It is a
broad indicator of the frequency with which the deep learning
model is accurate. When a model has a high accuracy rate,
it typically means that most samples are classified correctly
overall.

Accuracy =

∑3
i=1 TPi +

∑3
i=1 TNi∑3

i=1(TPi + FPi + FNi + TNi)
(5)

3) Precision:
Precision is defined as the proportion of samples that are

true positive among samples predicted as positive by the deep
learning model, that is, how many of the positive samples
predicted by the model are accurate. High precision usually
means that the model is very accurate in predicting the positive
class, which means that the number of false positives is small.

Macro Precision =
1

3

3∑
i=1

TPi

TPi + FPi
(6)
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Micro Precision =

∑3
i=1 TPi∑3

i=1(TPi + FPi)
(7)

Weighted Precision =

∑3
i=1(Precisioni × (TPi + FNi))∑3

i=1(TPi + FNi)
(8)

4) Recall:
Recall quantifies the percentage of correctly predicted pos-

itive samples. A high recall means that there are fewer false
negatives, and the deep learning model can identify most of the
samples that are actually positive. High recall is very important
for applications where the cost of false negatives is high.

Macro Recall =
1

3

3∑
i=1

TPi

TPi + FNi
(9)

Micro Recall =
∑3

i=1 TPi∑3
i=1(TPi + FNi)

(10)

Weighted Recall =
∑3

i=1(Recalli × (TPi + FNi))∑3
i=1(TPi + FNi)

(11)

5) F1 Score:
The performance of precision and recall is combined to cre-

ate the F1 score, which is the harmonic mean of precision and
recall. It works especially well with the unequal distribution of
classes. Recall and precision are satisfactorily balanced when
the F1 score is high.

Macro F1 Score =
1

3

3∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

(12)

Micro F1 Score =
2 · Micro Precision · Micro Recall
Micro Precision + Micro Recall

(13)

Weighted F1 Score =

∑3
i=1(F1 Scorei × (TPi + FNi))∑3

i=1(TPi + FNi)
(14)

6) Training Time:
Training time is the total time required for a model from

the start of training to the end of training. It can measure the
model training process’s efficiency. For models that require
frequent training, a shorter training time indicates increased
development efficiency and reduced computing costs.

Training Time =

N∑
i=1

ttraini (15)

where:

• ttraini represents the time required for the i-th training
iteration.

• N is the total number of training iterations.

7) Inference Time:
Inference time is the time it takes for a model to receive

input data and output a prediction result. It is used to measure
the response speed of the model in real-world applications.
Short inference time is crucial for real-time systems and
application scenarios with high response speed.

Inference Time =

∑M
j=1 tinferj

M
(16)

where:
• tinferj represents the time required for the j-th inference.
• M is the total number of inferences.

III. EXPERIMENTS AND RESULTS

A. Confusion Matrix

In this section, we present the confusion matrices for
each of the deep learning models we have evaluated. These
confusion matrices show how well each model separates into
various classes and give a thorough analysis of each model’s
performance on the classification task. We can discover more
about the benefits and drawbacks of each model and pinpoint
particular classes that are commonly misclassified by looking
at the confusion matrices. This analysis is crucial for refining
our models and improving their accuracy and robustness in
real-world applications.

Fig. 3. Confusion Matrix for Four Deep Learning Models: CNN+LSTM,
CNN+BiLSTM, CNN+Transformer, and CNN+GRU.

B. Model Performance

In this section, we summarize the performance metrics
of each deep learning model, including accuracy, macro-
average precision, micro-average precision, weighted preci-
sion, macro-average recall, micro-average recall, weighted
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F1 score, macro-average F1 score, micro-average F1 score,
weighted F1 score, training time, and inference time.

To compute the macro-average, the indicators of each cate-
gory are computed independently, and the average of these in-
dicators is subsequently determined. The performance of each
category is taken into account by the macro-average, which
does not take into account the quantity of samples within each
category. The micro-average is used to calculate all samples
with the same weight, which can reflect the performance of the
overall model. In order to fairly represent the performance of
each category, the weighted average computes the indicators
for each category based on the quantity of samples in each
category.

TABLE II
DEEP LEARNING MODELS PERFORMANCE

Model 1 Model 2 Model 3 Model 4
Accuracy 0.637 0.646 0.795 0.559

Macro precision 0.685 0.674 0.788 0.554
Micro precision 0.637 0.646 0.795 0.559

Weighted precision 0.700 0.686 0.805 0.573
Macro recall 0.628 0.670 0.801 0.557
Micro recall 0.637 0.646 0.795 0.559

Weighted recall 0.637 0.646 0.795 0.559
Macro F1 score 0.618 0.642 0.790 0.545
Micro F1 score 0.637 0.646 0.795 0.559

Weighted F1 score 0.623 0.634 0.796 0.554
Training time 40.01s 48.96s 29.13s 49.06s
Inference time 0.43s 0.66s 0.29s 0.46s

where:
• Model 1 is CNN+LSTM.
• Model 2 is CNN+BiLSTM.
• Model 3 is CNN+Transformer.
• Model 4 is CNN+GRU.

IV. DISCUSSION

The outcomes demonstrate that the four models’ perfor-
mances differ significantly from each other. The CNN+LSTM
model’s accuracy is 0.637, and its performance is comparable
to, but slightly inferior to, the CNN+BiLSTM model. Its
confusion matrix shows particular difficulty in distinguishing
the category of severe pain. The CNN+BiLSTM model’s
accuracy is 0.646, which is better than the CNN+LSTM model,
but not as good as the CNN+Transformer model. Despite
the demonstrated improvements, distinguishing between the
categories of no pain and mild pain still poses challenges.
With an accuracy of 0.795, the CNN+Transformer model
outperforms other models, and the macro-average and micro-
average metrics are also the highest. Its confusion matrix
shows that the model performs well in correctly identifying
all three categories, demonstrating the effectiveness of the

transformer architecture. Finally, the CNN+GRU model’s ac-
curacy is 0.559, and both macro-average and micro-average
indicators are lower than other models. The confusion matrix
shows that the model has considerable difficulty distinguishing
the three categories, particularly between the categories of no
pain and mild pain. It is important to note that the confusion
matrices reveal an underlying issue of dataset imbalance within
the dataset, which may exacerbate the difficulty in classifying
certain categories. Although this paper’s main objective is to
compare the performance of various deep learning models,
future research could place greater emphasis on addressing
the dataset imbalance issue. Overall, the CNN+Transformer
model performs best across all metrics and effectively reduces
misclassification, indicating that the Transformer architecture
and its attention mechanism are very effective for this classi-
fication task.

V. CONCLUSION

The primary research objective of this paper is to compare
the overall performance of four different deep learning mod-
els in the pain level classification task and comprehensively
explore the effectiveness and differences of these models in
handling classification tasks. Experimental results show that
the CNN+Transformer model performs best among all models,
with an accuracy of 0.795, and outperforms other models in
both macro-average and micro-average indicators. This shows
that the Transformer architecture and its attention mechanism
have significant advantages in handling classification tasks.

The results of this paper not only show the performance
differences between different deep learning models in classi-
fication tasks but also emphasize the importance of choosing
a suitable model architecture. In particular, the Transformer
model’s excellent performance provides strong support for
applying this architecture to similar tasks in the future.

In summary, this paper offers insightful information about
the application of deep learning models to classification tasks
and provides guidance for future research and practice. Future
research can further optimize the model architecture and
hyperparameter settings, as well as explore more innovative
deep learning methods to improve classification performance.
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