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Abstract. Explainability and attribution for deep neural networks re-
mains an open area of study due to the importance of adequately in-
terpreting the behavior of such ubiquitous learning models. The method
of expected gradients [10] reduced the baseline dependence of integrated
gradients [27] and allowed for improved interpretability of attributions as
representative of the broader gradient landscape, however both methods
are visualized using an ambiguous transformation which obscures attri-
bution information and neglects to distinguish between color channels.
While expected gradients takes an expectation over the entire dataset,
this is only one possible domain in which an explanation can be con-
textualized. In order to generalize the larger family of attribution meth-
ods containing integrated gradients and expected gradients, we instead
frame each attribution as a volume integral over a set of interest within
the input space, allowing for new levels of specificity and revealing novel
sources of attribution information. Additionally, we demonstrate these
new unique sources of feature attribution information using a refined
visualization method which allows for both signed and unsigned attribu-
tions to be visually salient for each color channel. This new formulation
provides a framework for developing and explaining a much broader fam-
ily of attribution measures, and for computing attributions relevant to
diverse contexts such as local and non-local neighborhoods. We evaluate
our novel family of attribution measures and our improved visualization
method using qualitative and quantitative approaches with the CIFAR10
and ImageNet datasets and the Quantus XAI library.
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1 Introduction

While gradient-based approaches to feature attribution for deep neural networks
are both intuitive and relatively easy to implement, established methods such as
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integrated gradients [27] which rely on paths to fixed external reference inputs
often lack a compelling justification for why certain baselines should be chosen
over others. There may be situations and applications which may support obvious
baselines, but as noted by Erion et al. [10], this is often not the case. Many
of the shortcomings of integrated gradients were alleviated by computing the
expected gradients as a Monte Carlo integral over the training dataset, however
this approach does not succeed in completely generalizing the original intuition
of integrated gradients to a comprehensive family of attribution measures.

We present a generalization of integrated gradients [27] and expected gradi-
ents [10] which also encompasses a diverse family of other attribution measures.
By formulating the expected gradients in terms of a volume integral rather than
a path integral, we obtain an attribution method which is immediately gen-
eralizable to any deep learning application, and which can be easily iterated
upon. We note that our formulation has similar implementation requirements as
expected gradients while allowing us to access several unique sources of attribu-
tion information which were previously not utilized. Using our new formulation
of generalized integrated gradients, we are able to identify distinct paradigms of
attribution information corresponding to input locality.

Additionally, leverage our new formulation to develop three new measures
of gradient variance, stability, and consistency, which each quantify a unique
aspect of model behavior. Gradient variance quantifies the dispersion of model
gradients, and results in attributions which provide improved visual salience
over expected gradients. Our stability and consistency measures incorporate an-
gular information to characterize the behavior of model gradients, with stability
quantifying whether the input is a local optimum, and consistency quantifying
disagreement between gradients at different locations in the space.

Finally, considering that the interpretation of image attributions depends
heavily on their semantic interpretation, we propose a new procedure for vi-
sualizing attributions which addresses several concerns associated with the vi-
sualization methods commonly employed in the past. Notably, we address the
problems of artificial introduction of information from reference inputs, loss of
color channel-specific information, and loss of attribution sign.

Using our new visualization procedure, we present our proposed measures
qualitatively evaluated on ImageNet [8] using gradients from a pre-trained ResNet-
34 model, as illustrated in Figure [1| with evaluation examples shown in Figure
In summary, our contributions include:

— A method of more accurately and faithfully visualizing attributions

— A mathematical formulation to describe and develop a generalized family of
novel integrated attribution measures

— Several specific useful measures of interest constructed from descriptive statis-
tics using our formulation
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Fig. 1: Illustration of our method as compared with Expected Gradients
[10]. We notably include a locality parameter as well as the ability to compute
additional descriptive statistics beyond a simple sample mean.

2 Related Work

Early methods in explainability, such as layer-wise relevance propagation (LRP)
[3], decompose the predictions of nonlinear classifiers to obtain attributions for
individual pixels. Many current methods utilize various forms of gradient infor-
mation in order to generate attributions [2I1]. In an effort to increase the robust-
ness of these feature attributions, Sundararajan et al. [27] selected a set of axioms
to guide the development of a more robust attribution measure which they call
integrated gradients. Integrated gradients are computed by taking a linear path
from an input of interest to a baseline input, and integrating the gradients of the
model with respect to the input over this path, as is discussed in greater detail
below in Section [3.1} To allow for efficient computation of integrated gradients,
Hesse et al. [14] consider a special class of nonnegatively homogenous deep neural
networks, and to remove the arbitrary baseline selection issues associated with
integrated gradients. With their ’iterated integrated attributions [5], Barken et
al. utilize linear interpolations of the input as well as intermediate representa-
tions from within the model. Erion et al. [10] use examples from the training
dataset as baselines, which re-contextualizes the resulting attribution values as
the expectation of model gradients over the data, with similar approach being
taken by Lundberg et al. [19] to approximate Aumann-Shapley (SHAP) values.
Merrill et al. define a “generalized integrated gradients" [21] from an axiomatic,
algebraic perspective in the context of Aumann-Shapley values in order to ex-
tend the concept of path-integrated credit assignment to more diverse function
spaces such as those relevant to applications in finance. While we also define a
“generalized integrated gradients" in this work, ours is instead framed in the con-
text of developing a broader family of integrated attribution measures of which
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Fig.2: Summary of our newly proposed family of attribution measures and vi-
sualization methods [best viewed in color|. Each measure is computed using the
locality method of Equation [4] and the sampling method of expected gradi-
ents [10] using 500 sample points (see Figure [4] for additional sampling details).
From top to bottom: ¢ = 1, = 500, = 2000. From left to right: input, lo-
cal integrated gradients (unsigned), local integrated gradients (signed), gradient
variance (unsigned only), stability (unsigned), stability (signed), consistency (un-
signed), consistency (signed).

the path-integrated gradients is a special case. Extending prior work in attri-
bution to include hidden units within a neural network, Dhamdhere et al. [9]
introduce the notion of conductance. This neuron attribution builds on the inte-
grated gradients attribution method, with conductance being formulated as the
flow of integrated gradients via a given hidden unit. This work on neuron conduc-
tance is refined by Shrikumar et al. [26], who develop a scalable implementation
they call neuron integrated gradients. In another instance of attribution meth-
ods being applied towards other deep learning tasks, Jha et al. [15] construct
an attribution-based confidence (ABC) metric for measuring whether an output
can be trusted. Variants of the metric utilize different attribution methods, one
being integrated gradients. Hase et al. [12] also compare several salience-based
explanation methods (such as integrated gradients) and several search-based
methods such as their parallel local search. In particular, they posit that the
use of out-of-distribution counterfactual inputs like the baselines required for
integrated gradients is problematic. Our proposed generalized method builds on
the success of expected gradients [10] in addressing the above concerns regarding
the out-of-distribution counterfactual inputs which are often used in attribution
methods, and enables further development of nuanced attribution measures.

3 Generalized Integrated Attributions

Visualization of Pixel Attributions We first discuss the approach we have
taken for visualizing pixel attributions for computer vision tasks, as this has
been an area of significant recent interest and is essential for the accurate
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interpretation of computed attributions. Any transformation of attribution val-
ues which is not invertible will result in loss of information by compression, as
will any transformation which introduces information from an outside source in
the form of noise. Previous methods, such as integrated gradients [27] and ex-
pected gradients [10], chose to visualize computed attribution values by taking
the absolute value (compression), aggregating values for each color channel to
a single per-pixel attribution (compression), clipping extreme values (compres-
sion), scaling to the range [0, 1], and then multiplying the resulting values by the
original input image (noise). Perhaps most importantly, multiplication by the
input results in an extremely misleading attribution visualization which artifi-
cially resembles the original input image (see Figure |3). Furthermore, the choice
of aggregating color channels needlessly obscures channel-dependent informa-
tion, which demonstrate to be highly informative. While clipping to quantiles
and rescaling to a given range may often be necessary to produce visualizations
perceptible to human users, we should always make careful note of these trans-
formations and remind ourselves that each of these transformations may reveal
or obfuscate unique sources of information.

Input

Unsigned Signed

INFORMATION
|
e —

ATTRIBUTION

Unmultiplied

Multiplied

Fig. 3: Comparison of visualization methods [best viewed in color]. We consider
a hypothetical input (column 1) and a hypothetical attribution consisting of a
test pattern with both positive and negative values to illustrate the difference
between signed and unsigned approaches. We can observe that multiplying by
the input results in a significant loss of information and bias towards the input.
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Unsigned Visualization When we are interested in the magnitude of attri-
bution values and not whether they are positive or negative, we can take the
absolute value of the attributions and scale them to [0, 1] after first clipping
extreme values. This preserves color channel information and introduces no arti-
ficial information from the original input. Using this method, attributions with
small magnitude are dark while attributions with large magnitude are bright
(see row 1, column 2 in Figure [3)).

Signed Visualization In contrast to unsigned visualization, if we wish to vi-
sualize the difference between positive and negative attribution values, we in-
stead scale the attributions to [—1,1] after clipping extreme values. Then, we
selectively brighten or darken a blank slate image starting from 50% uniform
brightness to obtain the final attribution map. This method preserves both the
sign of the attributions and all color-dependent information while introducing no
artificial bias from the original input. Using this method, negative attributions
are dark while positive attributions are bright (see row 1, column 3 in Figure [3)).

As demonstrated in Figure[3] there are unique advantages and disadvantages
to both signed and unsigned attribution visualization, and ideally both should
be used in concert when interpreting attribution results. Importantly, any vi-
sualization of attribution measures should not be obscured by any information
from a particular reference input unless absolutely necessary, in the interest of
introducing as little bias as possible into the final interpretation of a given at-
tribution result. In cases where an unambiguous mask can be constructed from
prediction attributions, such a mask might be used to highlight regions of a par-
ticular reference input, but this masking should be performed with caution and
careful consideration in order to avoid the misinterpretation of input features as
attribution results.

3.1 Extending Expected Gradients

The reformulation of integrated gradients as an expected value developed by
Erion et al. [10] allows the original path integrals of Sundararajan et al. [27] to be
completely discarded in favor of volume integrals over the input space. However,
this simplification was not thoroughly realized in the presentation of expected
gradients. We now reformulate integrated gradients as a generalized integral over
a volume in the input space. Sundararajan et al. [27] defines the path integrated
gradients (Equation (1) for a model F' and path function v(«), « € [0,1] from
the input xy to a baseline which we recall below:

b OF(4(@) 8vila)
/04:0 Ovi(a)  Oda da (1)

PathIntegratedGrads,, (zo) ::=

Erion et al. [10] extends this with the method of expected gradients, which
aggregates the path integrated gradients for a distribution of many paths =,
and specifically considers a collection of paths using a uniform distribution over
examples from the training set as baseline path endpoints. We now define the
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generalized integrated gradients (Equation [2]) over a set S and a probability den-
sity function ps:

GeneralizedIntegratedGrads(S) :: = Eg [V F]
(2)
VF pS

If we follow the method of expected gradlents [10] and assume a uniform
distribution over S with [S| the volume (or even more generally the Lebesgue
measure) of S, we obtain Equation

GeneralizedIntegratedGrads(S) : | S / VF(z (3)

The generalized formulation of Equation [2] includes the expected gradients
[10] as a special case, which in turn includes the path-based integrated gradi-
ents [27] as a special case. To illustrate an immediate advantage over expected
gradients, we define below the local integrated gradients (Equation for a neigh-
borhood B (zg), i.e. the n-dimensional ball of radius € centered on an input x,
where n is the number of dimensions of the input, and V;,(¢) is the volume of the
n-dimensional ball of radius . Notice that for ¢ = oo, this method is equivalent
to expected gradients when the space is sampled along paths v between the input
x and examples from the training dataset, but other volume sampling methods
are now available for exploration. Importantly, by controlling the radius e, we
are now also able to collect the integrated gradients corresponding to a specific
locality (Figures |4} and , and we can do the same for the other descriptive

statistics which we develop below (Figures @, @, .

LocallntegratedGrads(zo, €) ::= Vl()/ VF(z)dz (4)
n\&) JB. (o)

We then to compute a numerical approximation of the desired integral over
the desired set. We can again follow the example of expected gradients [10] and
collect sample points S within the set S to approximate with a Monte Carlo
integral as follows in Equation |5, where |S]| is the volume of the set S, and |S| is
the number of points in the sample S.

GeneralizedIntegratedGrads(S) :: |S| / VF(z
sl (5)
VF(s) VF(s) =Eg[VF)]
|S| [S] ; El ;

3.2 Novel Attribution Measures

Using the above framework developed for generalizing integrated gradients (Equa-
tion , we now propose three new feature attribution measures as descriptive
statistics which account for different aspects of model behavior. Again assuming
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Fig.4: Local integrated gradients of Equation 4] [best viewed in color]. We can
observe how the choice of ¢ results in noticeably different attributions, and how
the unsigned and signed visualizations reveal different patterns especially with
respect to color channels. We compute this measure for ¢ = 1, = 500, = 2000
(top, middle, bottom row respectively). Immediately to the right of the input
are the attributions visualized using our unsigned method. We sample B (z()
using a reference dataset as in the method of expected gradients [10], using 100
reference elements and 5 uniform random sample points on each of these vectors
within the ball B.(x¢), for a total of 500 sample points, yielding a local expected
gradients.

a uniform distribution over S, Monte Carlo approximation with a sample set S
can be applied for each of these measures as easily as for generalized integrated
gradients by following the example of Equation |5l If we follow the method of
selecting S used for local integrated gradients [4 we can also again compute all
of the following measures according to a desired locality radius e.

Gradient Variance Building on the formulation of integrated gradients as a
sample mean by Erion et al. [10], we now construct a sample variance (Equation
@ to quantify the dispersion of model gradients over the set S. Note that we
again are able to preserve color channel information, but since variances are
strictly positive measures, we do not need to consider visualizing negative values

(Figures [5] and [8b).

GradientVariance(S)
-5 / (VF(x) - Bs [VF(x)])*da (6)
=Es [VF () ] Es [VF(2)]?

Stability We propose a measure of local stability as follows (Equation E[) For
each sample point s within the set S, we compute the vector s — xy defining
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e =5000

Fig. 5: Gradient variance of Equation |§| [best viewed in color]. We can again
observe the effect of the locality radius ¢ and the presence of color-dependent
patterns. We also obtain visualization which are significantly more salient than
those we obtained for local expected gradients (Figure [4). We use use the same
sample scheme and choices of € as in Figure [4l Since variances are strictly posi-
tive, we only use our unsigned visualization method (Section .

the offset of this sample point from the original input. We then compute the
cosine similarity of between the offset vector and the gradients at the sample
point VF(s). The intuition of this measure is that if the gradients at a sample
location point back toward the input, then that input can be considered ‘stable’,
in that the input is a local optimum. The total stability measure is taken as the
expectation of these angles over the set S as:

:i (x — ) - VF(x)

ISI' Js (@ = zo)I[IIVE ()]
~ Bs feos(0)]. ™
0 the angle between VF(x) and (x — x¢)

Stability (S, zg) :: dx

To avoid losing channel-dependent information, we compute three angles
(Org,Ogb, Obr) using pairs of pixels as 2-dimensional vectors. We map the val-
ues 0,4 to the blue channel, 4, to the red channel, and 6, to the green channel
for Figure [6]

Consistency Finally, we propose a measure which we call ‘consistency’ (Equa-
tion. For each sample point s within the set S, we compute the cosine similarity
of the gradients of the model at the sample point VF(s) and the gradients at
the input VF(z¢). The intuition of this measure is that if the gradients at a
sample location point in the same direction as the gradients at the input, then
the model gradients are locally consistent with each other. The total consistency
measure is taken as the expectation of these angles over the set S as:
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Fig. 6: Stability measure of Equation [7| [best viewed in color]. We only observe
salient images for small €, as for larger ¢ the input z is likely no longer a local
optimum. We use use the same sample scheme and choices of € as Figure E}

_ 1 VF(x) - VF(xp)
SI s IVE@)[IVE (o) @®
= Es [cos(0)],

6 the angle between VF(z) and VF(xzq)

dr

Consistency (S, zo) ::

Again, we preserve the color-dependent information by computing three an-
gles (671, 0rg, 0pg) using pairs of pixels as 2-dimensional vectors, and mapping the
similarity value representing a given pair of channels to the remaining channel
for the final visualization (Figure [7).

e =500

Fig. 7: Consistency measure of Equation [§] [best viewed in color|. This measure
allows for determining which pixels the gradients at nearby images x € B.(zo)
either agree or disagree with the gradients at the image zy. The same sample
scheme and choices of € are the same as in Figure



Visualizing and Generalizing Integrated Attributions 11

Image: Goose, ¢ = 1.00, Samples = 500 image: Goose, € = 500.00, Samples = 500
5 ity e 2 iy ke Ay vt e i Image: Goose, € = 100, Samples = 500 Image: Goose, ¢ = 300.00, Samples = 500

o o s
Fuoo £ £
%000 | 10000 3000
IntegratedGradients IntegratedGradients GradientVariance Gradientvariance
age: o ¢ = 1.00, Samples = 500 map: g, £ = 500,00, Samles = 500 " [ ———
S s S vy i s T ey — e ! e
Fre i
. . o -
75 050 -025 o 025 050 075 100 004 -003 -002 -001 O 001 002 003 004 o0 o0z oot o008 ooos oo - geos oo 001 0o 00 oo
IntegratedGradients IntegratedGradients GradientVariance Gradientvariance

(a) Integrated Gradients (b) Gradient Variance

Image: Goose, € = 500.00, Samples = 500 image: Goose, € = 500.00, Samples = 500
Futy Taned Randomy it

€ ruty ained Randomly ntisized

Goose, ¢ = 1.00, Samples =

j: Goose, ¢ = 1.00, Samples

- a0
H H L H
. o o
w0 oo 00
w00
00 Sy 1000
‘Stabilit Stability Consistency Consistency
image: Do € = 1.00, Samples = 501 image: Dog, ¢ = 500.00, Samples = 500 image: Dog. £ = 1.00, Samples = 500 mage: Dog. ¢ = 500.00, Samples = 500
5 s ans Sy ] 5ty vames Nandoy wiized S e 5y o Randomly iiized
ooco
oo | w000
aono | w0 o
e so00 " &0
Faom z g s 5000
Ereo € oo £ wn £
i £ L
Yoo wm <% wm_om ah ok an 1w T e R ] DO R N ) % e 0
Stability Stability Consistency Consistency

(c) Stability (d) Consistency

Fig. 8: Histograms of each of our novel measures corresponding to gradients from
both a randomly initialized and fully-trained ResNet-34 (Row 1: goose, Row
2: dog). We can observe some recognizable parametric families and different
paradigms for small and large e, with a clear distinction between the trained
(blue) and untrained (red) models. If attribution values converge in distribution
during model training, this may reveal valuable insight regarding future training
optimizations, heuristics, and diagnostics.

Generalized Integrated Attributions In the interest of describing all of the
above measures as well as any similarly constructed descriptive statistic using
a single unified formulation, we provide the following definition of a generalized
integrated attribution (Equation E[) By selecting an attribution function A, a
model F', a set of interest S, and a probability density function ps, we can access
a limitless number of unique statistics to describe high-dimensional gradient
landscapes.
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GeneralizedIntegrated Attribution(A4, F, S, ps)
o 0
r)ps(x

Note that we do not necessarily include a particular input x¢ as a required
argument, as we can in theory compute attributions over entire sets S without
referring directly to any single input. For the case of local integrated gradients,
the set of interest S is the e-ball centered at an input xg, but this is a justification
for the choice of S. Note that our stability and consistency measures appear to
require an input xg, but these can be framed instead as particular choices of
attribution function A.

While many interesting attribution measures such as the several new mea-
sures we have introduced above are described by the family of generalized inte-
grated attributions, there are likely many more complex attributions of interest
which cannot be formulated concisely as a single integral or expected value.
Nevertheless, this new formulation can assist in the classification and analysis of
newly-developed attribution measures.

4 Evaluation Using Quantus [13]

In addition to providing the above qualitative attribution outputs, we also con-
sider a quantitative evaluation of our approach, although there is still no broad
consensus regarding reliable metrics for attribution [1J2416]. We provide some
quantitative results in Table [1| using the Quantus XAI library, which provides
a toolkit of various attribution methods and evaluation. Metrics in this library
are organized into several broad categories such as Faithfulness, Robustness, and
Complexity. Given that each metric is unique and sensitive to its own hyperpa-
rameters, detailed descriptions defining each method are provided by Hedstrom
et al. [13]. We evaluated each attribution method on the full CIFAR-10 [18] test
set, using a pre-trained ResNet-18 model.

5 Conclusion

In this work, we present a generalized formulation of the feature attribution
methods integrated gradients and expected gradients by contextualizing ex-
pected values as general integrals over sets of interest. Furthermore, we demon-
strate how this approach makes available new sources of attribution information,
such as differences between local and nonlocal attribution paradigms, and novel
attribution measures. This framework also allows for new forms of parametric
control over attribution measures such as the choice of locality radius € and the
sampling distribution over the set S. Overall, this new formulation of integrated
attributions represents a significant transition towards a much broader family
of generalizable measures. Additionally, we introduce a novel method for visual-
izing attributions which addresses information loss in current approaches. Such
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Method Faithfulness (1) Robustness ({) Complexity
PixFlip [FaithCorr MaxSens[Angens Sparse(T)[Complex(i)
Integrated Gradients |27] 0.23133 | 0.04774 | 0.13018 | 0.11247|0.59017 | 6.29801
Saliency [2314] 0.28260 | 0.03239 | 0.13332 |0.11957| 0.43868 6.60204

GradientShap [20] 0.23266 | 0.04752 | 0.18278 | 0.14631 | 0.58966 6.29854
FeatureAblation [17] n/a 0.18525 | 0.13089 | 0.11974 |0.10510 | 0.58176 6.32653
FeaturePermutation [11] 0.16536 | 0.14338 | 0.19927 | 0.18554 | 0.55717 6.38713
Deconvolution [29] 0.30896 | -0.00627 | 1.9e-08 |1.8e-08| 0.51399 6.48971

1 1/ 0.24490 | 0.02238 | 1.13295 | 1.03500 | 0.50759 7.58803
102 ]| 0.23667 | 0.01751 | 1.33943 |1.07549 | 0.46421 7.66907
1 |/0.34443| 0.04312 | 0.78553 | 0.65590 | 0.56980 7.41242
10% | 0.27669 | 0.03585 | 1.12104 | 0.80185 | 0.46126 7.65275
1 || 0.28154 | 0.01003 | 1.42457 |1.25999 | 0.41586 7.74354
10% || 0.28020 | -0.00411 | 1.02010 | 0.99323 | 0.41840 7.74035
1 1/ 0.27990 | -0.00454 | 0.30972 | 0.29827 | 0.10239 7.99951
102 || 0.28233 | -0.00418 | 1.16962 |1.09159 | 0.39830 7.76662

Expected Gradients

Gradient Variance

Stability

Consistency

Table 1: Quantitative evaluation of novel attribution measure family using the
Quantus XAT library [13]. Metrics used are: PixelFlipping [3], FaithfulnessCor-
relation [6], MaxSensitivity [28], AvgSensitivity [28|, Sparseness [7], Complexity
[6]. Results are averaged over the CIFARI10 [18] test set. Our (local) Expected
Gradients, Gradient Variance, Stabiltiy, and Consistency measures were each
computed by Monte Carlo integration using 100 sample points within the ball
of radius e.

approaches to more explainable AI can have significant societal impact, enabling
better transparency and bias mitigation than treating learning models as black
boxes. Our work to reduce misinformation and bias in feature attributions di-
rectly addresses the growing need for transparency and fairness with respect to
machine learning.

Limitations Our method depends heavily on Monte Carlo integration, there-
fore the accuracy, computational efficiency, and robustness of our attribution
results likewise depend on the design and incorporation of effective numerical
integration schemes. Specifically, for large sets S, or equivalently large radius ¢,
the number of sample points required to obtain a good approximation of the true
integral increases exponentially. Similarly, any axiomatic properties of our family
of measures would also depend on a good approximation of the underlying inte-
gral, so this poses a computational challenge to scaling if we desire to measure
attributions over large sets. Note however, that other state-of-the-art methods
such as expected gradients methods have similar numerical scaling limitations.

Future Work Numerical techniques, such as those developed by Mitchell et
al. [22], Reeger et al. [25], and Hesse et al. [14], may serve to improve the ef-
ficiency and accuracy of integrated attributions. Additionally, we can conduct
convergence analyses for hyperparameters such as the sample size and the local-
ity radius e, and we can explore the metrics based on Aumann-Shapley values
developed by Lundberg et al. [19]. In addition, we should assess our new family
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of measures using an analytic or algebraic approach similar to the selection of
desirable axioms by Sundararajan et al. [27] and Merrill et al. [21]. Erion et al.
[10] made another significant contribution with their method of using attribution
prior for training regularization, so we should apply this technique to train mod-
els using our new measures for these attribution priors. To explore additional
sources of model attribution, and since integrated gradients forms the basis for
layer conductance [26], we should develop implementations of our new measures
which can be applied within the space of convolutional filters. Extending attri-
bution measures to applicability in the abstract feature space may also have the
benefit of revealing new sources of relevant attribution information.
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