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Abstract—Multiple antenna array panels overcome chal-
lenges related to hand and body blockage for millimeter wave
(mmWave) communication systems. Power consumption, though,
increases with the size of the antenna arrays and the number
of panels. In this paper, we propose an energy-efficient multi-
panel dynamic metasurface antenna (DMA) structure that is
not only useful for handsets but also for other applications
such as vehicular communications. We propose a location-based
ML.-aided joint panel and beam management algorithm for the
user equipments (UEs) equipped with a multi-panel DMA. This
provides a method to select beams and panels with low overhead.
The results in vehicular communication settings showed that the
proposed beam selection solution for multi-panel DMA performs
well and generalizes over different codebooks, antenna sizes, and
even orientations and antenna types with the same polarization.

I. INTRODUCTION

In millimeter wave multiple input-multiple output (mmWave
MIMO) communication systems, UEs equipped with multi-
panel antennas not only provide a way to overcome blockage
but also increase the angular coverage. Efficient panel and
beam management is vital to avoid the idle power consumption
of an active panel [1]. DMAs are slotted antennas with recon-
figurable elements, which serve as a low power alternative to a
phased array [2], [3]. A multi-panel DMA could provide low-
powered beamforming with wide angular coverage. The over-
head of selecting an active panel and beamforming weights,
however, grows with the number of antenna panels and panel
sizes. Therefore, an efficient panel and beam selection for UEs
equipped with multi-panel DMAs is required.

Exploiting the UE location to infer beam weights is useful
to decrease the overhead of antenna configuration. The prior
work involving beam and panel selection mainly focuses on
approaches that recommend a subset of beam pairs based on
the location [4]-[6]. There is, however, little prior work on
beam selection when multiple panels are activated [4]—[6]. In
[4], the panel and beam selection was based on the signal
power prediction for all beams in all panels, and the predictor
was trained using the UE antenna location and orientation. The
best UE beam of a single antenna panel was predicted using
prior beam power measurements and antenna orientation in
[5]. Lastly, the best beam of a UE with a single antenna panel
was selected via beam power predictions based on antenna
orientation and previous beam measurements, and the method
was trained on a large dataset in [6]. The common limitation of
[4]-[6] is that the methods are closely tied to specific antenna
sizes and codebooks, and do not consider DMAs.

We propose a position-based ML-aided multi-panel UE
beam selection method that is agnostic to variations in code-
books, antenna size, antenna orientation, and antenna type
between UEs. We call this robustness to the antenna hetero-
geneity. Our method is trained to predict the incoming signal
power over spherical angle grids based on the UE location.
The panel and corresponding beam selection are then made
based on the angular power prediction given the UE antenna
specifics. Our algorithm works for UEs equipped with multiple
panels, and is flexible to support the antenna heterogeneity as
opposed to [4]-[6]. Moreover, our approach extracts angular
power information that is applicable to various antenna con-
figurations. It eliminates the need for data collection for each
antenna configuration, ensuring data efficiency. The simulation
results for vehicular communication show that our approach
effectively configures the beam and panel of a multi-panel
DMA, with strong generalization performance.

II. SYSTEM MODEL

We explain the received signal model with the multi-panel
DMA architecture. We then introduce the DMA channel and
3D beamforming solution for a DMA panel.

A. Received signal model

The system consists of a base station (BS) equipped with a
uniform planar array (UPA) and a single UE equipped with a
multi-panel DMA. We assume a single-stream communication
link between the BS and the UE. The UPA at the BS has
N, = Ny x Ny antenna elements controlled by analog
phase shifters. The UE has a multi-panel DMA structure with
multiple DMA panels, each oriented differently, as shown in
Fig. 1. Each panel contains NNy, waveguides and NNy, radiating
slots, yielding a total of N; = Ny X N, elements. Let p
denote the antenna panel index, F denote the BS codebok,
W, denote the codebook of p-th DMA panel, k£ denote the
subcarrier index. We assume an orthogonal frequency-division
multiplexing (OFDM) channel H,[k] € CV M between the
p-th panel and the BS at the k-th subcarrier. Let n,[k] denote
the additive noise, s[k| denote the transmitted symbol at the
k-th subcarrier, w,,, € W, denote the n-th beam of p-th
panel, f € F denote a beamformer of the BS. After time
and frequency synchronization, the received signal at the p-th
panel and k-th subcarrier is expressed as

Ypnlk] = W;,an[k‘]fS[k] + w;np[k;]. (1
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Fig. 1. Multi-panel DMA structure at the UE with panel switching. Each
panel has an orientation vector (c,3,+). The panel II is in the yz-plane,
pointing towards +x, and has an orientation of (0°,0°,0°) for a reference.

We assume a single DMA panel of the UE is operational at a
time through panel switching to receive the signal.

B. DMA channel model and 3D beamforming

We now describe the MIMO channel for p-th DMA panel.
It has been shown in [3] that the reconfigurable slots on the
DMA can be modeled as magnetic dipoles. The excitation to
these dipoles depend on the EM field propagation inside the
waveguide. Let Hy[k] € CN-*Mt denote the multipath wireless
propagation channel with the dipole approximation. The cor-
responding channel of the z-th waveguide and ¢-th transmit
antenna is hg . [k] = [Halk]]n, (z—1)41:8,20 € CV*! for
z = 1,...,Ny. The intrinsic DMA waveguide channel is
hyma[k] € CMo*1. Let n, denote the refractive index of the
waveguide material, dy and d, denote horizontal and vertical
spacing in the Fig. 1, ¢ denote the speed of light, ©® denote
the element-wise product, and f denote the frequency at the
k-th subcarrier. Assuming that the intrinsic channel is the
same for all waveguides and there is no amplitude attenuation,
we express it as hyma[k] = e 7 “F & 0:Ns =11 The effective
channel is denoted as H, [k] € CN-*™ and obtained as

Hp [K]] N,y (2= 1)+ 1: Ny 2.t = D 2t [K] © Damalk],
fort=1,...,Ny, and z=1,..., Ny. 2)

This effective channel definition captures the wireless propa-
gation and the intrinsic waveguide phase advance.

We derive a closed-form expression for 3D DMA beam-
forming weights as an extension to our previous work [7]. The
beamforming weights of a DMA antenna follow the Lorentzian
constraint as opposed to the unit-modulus constraint that of
the phased arrays [3], [7]. In [7], we derive a closed-form
solution of the beamforming weights to maximize the line-of-
sight beamforming gain for a specific angle and frequency with
a single waveguide. Let 6 and ¢ denote elevation and azimuth
angles. We extend our previous solution to a DMA panel
consisting of N;, waveguides by maximizing the beamforming
gain |wiya [Hp[k]]. ¢|>, where the combiner wpya is subject
to the DMA Lorentzian constraint [7]. Before introducing
the beamforming solution, we define functions for the weight
expression. Let

sin (ﬂNry%dy(ng + sin ¢ sin 0))
Sl(¢7 0, f) =

)
sin (W{dy(ng + sin ¢ sin 0))

and,
sin (Wer {dz cos 9)
52(¢7 67 f) =

sin (ﬂ%dz Cos 9) @

Let sgn(-) denote the signum function. We define the recon-
figurable phase V, , (¢, 0, f) for the DMA beamforming as

Vz,y(¢767 f) = _g + Sgn(Sl((;ba 9) f)52(¢797 f))
Ny —1

+W[dy(ng+sin9sin¢)(y—1_ 2_) ®
—i—dzcose(z_l_NrZQ_lﬂl

c
Let [wpma], , denote the beamforming weight for y-th radi-
ating slot on the z-th waveguide. The beamforming weight,
maximizing the beamforming gain at the target (6, ¢, f), is

i eV (@:0.0)
——— ©)

which satisfies the Lorentzian constraint [3]. This beamform-
ing design is optimal only for directive beams whereas the
optimal codebook design for arbitrary beam shaping is a future
research direction.
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III. JOINT MULTI-PANEL BEAM MANAGEMENT

We first define the multi-panel beam management problem.
We next introduce the proposed solution for the problem.

A. Problem formulation

In this paper, we consider the problem of jointly selecting
the panel index p and the combiner w, ,, over all combiners
across all panels. Let P denote the number of ganels at
the UE. The total number of UE combiners is >  _, [W,|.
The BS has |F| beamformers, and then the total number of
beam pairs is |F]| 211;1 |[W,|. Without any beam selection,
the search space is too large to configure the BS beamformer,
UE panel and combiner. In our prior work [8], we showed
that it is possible to configure the analog BS beamformer
independently from the analog UE combiner. In this paper, we
assume that the optimal analog BS beamformer f* maximizing
the downlink received signal power is known. The joint panel
index and combiner selection is over the smaller set of panel
and combiner pairs {(n,p) : Vw,, € W, and Vp € {1,.., P}}.
We consider the subset selection over this set instead of a
single panel and combiner selection since a single selection
might not achieve high signal power in a highly dynamic
environment. The selected subset S decreases the search space
further for beam sweeping. Let K denote the subset size
S|, Ppn = >4 [Up.n[k]|* denote the received signal power
for (n,p)-th panel combiner pairs. The subset selection is
formulated as

S = argsort ({Pp, : Vp, w,, € W, }, desc) [1: K].  (7)

Based on (7), the main problem is to develop a method that
predicts the received signal power for all panel-combiner pairs
based on the UE location and antenna heterogeneity.
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Fig. 2. Proposed antenna heterogeneity-agnostic multi-panel DMA beam management.

B. Heterogeneity-agnostic panel and beam selection

We propose a panel and beam selection method designed
to accommodate heterogeneous UE antenna configurations,
including differences in codebook type, antenna size, orienta-
tion, and element pattern. Using (7), the goal is to predict the
received signal power for all panel-combiner pairs while per-
forming across diverse structures. To achieve this, we leverage
the notion of power angular spectrum (PAS), which expresses
the received power as a function of azimuth and elevation
angles from the receiver’s perspective [9]. The PAS of a
receiver at particular location is independent of the receiver’s
antenna structure or beam configuration but depends only on
the environment. The received signal power for a particular
beam can be approximated through integration of the product
of the beam gain and the PAS over the angular range [9]. Based
on this, we approximate PAS on a discrete angular grid, which
we define as angular power grid, to predict received powers
for any combiner of any antenna configuration.

We formally introduce the angular power grid and how to
obtain the signal power for a specific panel combiner. Let
[—7, 7] and [0, 7] denote the ranges of azimuth and elevation
angles, My, My denote the number of azimuth and elevation
grids, A¢ and Af denote the uniform angular range in azimuth
and elevation of each angular grid. We denote the angular
signal power matrix, named as angular power matrix, for the
u-th UE location £, = [x,y,z] as X,, € R M¢, it is non-
negative and each entry represents the average signal power
within a grid. Let (v, 8p,7p) denote the orientation of the p-
th DMA panel, where (o, 5p,7p) are rotations around (z, y, X)
axis as in the Fig. 1. We introduce the concept of beam mask,
that is the total beam gain in each angular grid. Let AF,, ,, (0, ¢)
denote the beam pattern of n-th beam of p-th panel (refer
to [10] for details), where 6 € [0,7], ¢ € [—7/2,7/2] for
(ap, Bpyvp) = (0°,0°,0°). AF, ,,(0,¢) is set to zero for
¢ € [-m,—7/2] U [r/2,7] so that AF, (6, $) covers entire
spherical angles. Let R, 5~(6,¢) denote the spherical angle
transformation function over the unit sphere for the antenna
orientation («, 3,7y) with respect to («, 3,7) = (0°,0°,0°)
as described in [11]. R, (0, ¢) generates the transformed
spherical angles over the unit sphere. Let (mg,m,) denote
the indices of angular grid, A, denote the beam mask of

the p-th panel and n-th beam, (mg,m,) denote the grid
indices, C' denotes the angular region of the grid {(0,¢) :
0 € [(mg —1)A0, mgAb], ¢ € [(my — 1)Ap, myA¢]}. The
total beam gain over the grid region C' is calculated as

[Ap’n](me,nup) - / C |AFp’n(R71aP’ﬁp”Yp (97 ¢)) |2 sin ¢ d¢d9’
()

where the integral is taken over the surface of a unit sphere.
The signal power for p-th panel and n-th beam at the location
£, is obtained as

Pp.n = (vec(Xy,), vec(Ay 1))-

Given an angular power matrix X,,, the received signal power
for any combiner can be calculated through (9).

We formulate an optimization problem to obtain the angular
powers over the locations. We assume that the BS has a
collection of measured received powers for beams in the
codebooks of all UE DMA panels over different UE loca-
tions. Let p, denote the received power measurement vector
P11, Pp,‘wp‘]T, A denote the collection of beam masks
corresponding to all beams [vec(Aq),...,vec(A, w,)].
The constrained convex optimization problem to find angular
power matrix for the UE location £, is constructed as

)'A —p, |3

(©))

X.*

u

argmin ||vec(X, (10)

X, ,V[X]i,;>0
We use the CVX solver to obtain the angular power matrix X7,
minimizing the squared error of reconstructing the measured
signal power through proposed methodology [12].

We formulate the angular power prediction as a multi-
output regression over UE location, as each angular grid is
continuous. The angular powers corresponding to each UE
location are obtained by (10), resulting in a labeled training
dataset of (€,,X}) pairs. While a UE could use this dataset
to predict the received power for its combiners, which is not
practical, the UE only needs data near its location. To address
this, we train a multi-output regression model that predicts
angular power for a given location £,, allowing the model to
leverage information from all locations while minimizing the
data size offloaded to the UE via a sidelink connection.



The proposed method works as shown in Fig. 2. Initially, the
UE precomputes beam gains at high resolution over spherical
angles for the codebooks of each DMA panel with («, 8,7) =
(0°,0°,0°). This offline calculation avoids regenerating beam
masks via (8) in real time for frequent orientation changes.
During online operation, the UE obtains its location £,, from
localization sensors and uses the angular gain predictor to
generate the angular power matrix X,,. The UE also mea-
sures the orientation (c, 3,7) of each panel via sensors such
as a gyroscope and applies the orientation transformation
R, ,~(0,¢) in [11] to precomputed beam gains. The beam
gains in (8) within each angular grid are approximated by a
double summation. Finally, the predicted received power P, ,,
for each panel-combiner pair is obtained using (9), and panel
and combiner subset selection is performed using (7).

IV. PERFORMANCE EVALUATION

We introduce the performance evaluation of the proposed
UE panel and beam management. We first describe the sim-
ulation environment. We then introduce performance metrics
and the benchmark. We finally show the simulation results.

A. Realistic channel generation and offline training

Realistic channel generation is essential for evaluating the
performance of data-driven wireless solutions. To achieve this,
we rely on spatially consistent ray-traced channel data in
Sionna [13] for dynamic vehicular scenarios. The evaluation
considers a vehicular communication system in a 300 m x
200 m urban canyon with 8 roads, using cars as UEs and
buses as dynamic blockers, created based on the methodology
in [8]. The BS, equipped with an 8 x 8 UPA with horizontally
placed dipole elements using DFT codebooks, is mounted on
a building wall at 15 meters height, while the UE multi-
panel DMAs are placed on car roofs at 1.5 meters height.
Each UE has 3 DMA panels with orientations (o, 8,,7p) =
(0,0,30° + (p — 1)120°), ensuring no polarization angle
changes across panels. The carrier frequency is 15 GHz, and
the system bandwidth of 1.8 GHz is treated as frequency-flat
for the DMA beamformers. The average speed of the UEs
is 9 m/s. Channels are generated under these settings for a
comprehensive analysis of the proposed method.

Channels are used to create an angular gain matrix dataset,
beam masks, and to train the angular power predictor. We
generate channels for 9 episodes, each featuring varied car
and bus initializations. Sampling occurs every 100 ms over 10
s per episode, resulting in 18000 diverse channel samples. The
angular grid and beam mask resolutions are set to Af and A¢
of 10°. For the learning model, we use XGBoost Regressor,
which excels in multi-output regression tasks as in [8], [14].
We allocate 80% and 20% of the samples for training and
testing, maintaining a total parameter count under 200K at
64-bit precision.

B. Received power loss, misalignment, and benchmark

Extensive simulation and relevant comparison are necessary
to assess the performance of the proposed method. There is

no direct comparison benchmark to our proposed method that
generalizes to multi-panels with different orientations, differ-
ent codebooks, and antenna sizes. We, therefore, compare our
method to a closely related benchmark in terms of orientation
and multi-panel proposed for indoor beam selection in [4].
The benchmark consists of a beam power predictor whose
inputs are location and orientation vectors and the outputs are
predicted power for beams. Therefore, the model is specifically
tied to an antenna size and codebooks.

We use two performance metrics: power ratio and misalign-
ment probability. The power ratio compares the maximum
signal power obtained by the chosen panel and beam subset S,
for the uth test point with the maximum signal power across
all panel and beam pairs. Let M denote the number of test
samples, then power ratio R, is given as

| XM ( m)axs Pp.n
R — L P,n)ES, .
PM uz::l max Py

The power ratio is plotted in dB scale and can be interpreted
as the power loss of not choosing the best panel and beam
pair in dB. The second metric is misalignment probability. The
misalignment probability is the probability of not selecting the
best panel and beam pair (refer to [8] for details).

(1)

C. Achieving heterogeneity-agnostic panel and beam selection

The main advantage of our work is to have a multi-panel
beam management method that can work with various antenna
panels, antenna sizes, codebooks, and even antenna types,
provided the polarization mismatch remains consistent. Fig. 3
illustrates the power loss in red curves and misalignment
probability in blue curves across increasing percentages of
selected subset size to all panel and beam pairs, calculated
as K/ (Z£:1 [Wy|) x 100. A UPA has dipole elements with
horizontal polarization. UPA codebooks are DFT codebooks,
and DMA codebooks are calculated via (6) over uniform
azimuth and elevation angles in [—120°, 120°] and [30°, 150°].
The proposed method is trained on 5 x 5 multi-panel DMA
and tested on 3 x 3, 4 x 4, 5 x 5 multi-panel DMAs and UPAs.
The baseline is also trained and tested for 5 x 5 multi-panel
DMAs. Fig. 3 shows that our approach performs better than the
baseline in selecting 10% of all panel and beams in terms of
misalignment and power loss and the same in selecting more.
Proposed method generalizes for all other antenna sizes, types
and codebooks and achieves less than 2 dB power loss at least
selecting 13% of all panel and beam pairs. Misalignment ex-
hibits greater variability across DMA test cases because DMA
beams have stronger side lobes in addition to the main lobe.
This makes minimizing misalignment more challenging for
DMA beams. The proposed solution, however, achieves strong
generalization performance in handling antenna-heterogeneity
under power loss as well as misalignment probability.

Fig. 4 represents the empirical CDF of power loss in dB
of the proposed method trained on 5 x 5 DMA. The CDF is
calculated for selecting 10% of all panel and beam pairs for
3600 UEs. Fig. 4 shows user-for-user power loss performance
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of the proposed system. Our method is able to achieve at most
2 dB power loss for at least 80% of all possible UEs for all
test cases with different antenna sizes, codebooks and antenna
types. The proposed method specifically performs the same
when tested on the same configuration, however, it introduces
the possibility of 2 dB power loss in antenna-heterogeneity. In
short, the generalization of the proposed method without any
further training for antenna heterogeneity seems promising.

V. CONCLUSION

We proposed a location-based ML-aided beam manage-
ment system for UEs with multi-panel DMAs. The proposed
management approach is agnostic to antenna heterogeneity,
including panel size, codebook, orientation, and antenna type
with fixed polarization mismatch. We evaluated our approach
through extensive, realistic simulations in a high-mobility

vehicular communication scenario with high blockage prob-
ability. The simulation results showed out that the proposed
solution performs comparably to the baseline while general-
izing across antenna sizes, codebooks, and types with a small
error margin. Our approach holds promise for beam man-
agement in UEs with multi-panel DMAs, offering low-power
beamforming solutions. Future work will focus on optimizing
DMA codebooks and extending the model to account for
polarization effects that change with orientation and antenna
patterns, applicable to handsets with rapid orientation changes.
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