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Abstract—The growing demand for advanced beyond 5G
connectivity solutions explores the deployment of end-to-end 5G
Non-Terrestrial Networks (NTNs) in cloud-native environments.
With the increasing reliance on mobile communications, lever-
aging next-generation radio access network (NG-RAN) architec-
tures with functional splits has become essential. In the 5G NTN
network, some split NG-RAN components can be moved to the
satellite node to improve connectivity and resilience. This paper
investigates advanced beyond 5G connectivity by deploying end-
to-end 5G Non-Terrestrial Networks (NTNs) in cloud-native
environments, focusing on Low Earth Orbit (LEQ) satellites
operating in regenerative mode. Specifically, it explores the
implementation of F1 and E1 interface splits within such net-
works. The first architecture extends the F1 interface over the
satellite radio interface (F1 over SRI), linking terrestrial central
units (gNB-CU) with satellite-based distributed units (gNB-DU).
The second architecture incorporates both F1 and E1 splits,
facilitating connections between terrestrial control plane units
(gNB-CUCP) and user plane units (gNB-CUUP) on the satellite
via the E1 interface over SRI (F1-E1 over SRI). The study’s
primary goal is to predict the resource utilization—specifically
CPU, memory, and bandwidth—of gNB-DU and gNB-CUUP
functioning as satellite payloads. Employing Long-Short-Term
Memory (LSTM) neural networks, this research aims to en-
hance network resilience by enabling proactive monitoring
and resource allocation decisions, addressing the significant
computational and bandwidth demands of payloading gNB-
CUUP compared to gNB-DU.

Index Terms—S5G, NTN, LSTM, Disaggregated NG-RAN.

I. INTRODUCTION

The rapid advancement and deployment of 5G networks
have revolutionized the telecommunications landscape, ush-
ering in an era of ultra-reliable, high-speed, and low-latency
communications. This evolution is driven by the increasing
demand for high-bandwidth applications such as autonomous
driving, smart cities, and the Internet of Things (IoT), which
require robust and efficient network infrastructure to handle
heterogeneous and dynamic traffic loads [1].

Non-terrestrial networks (NTNs), including satellite com-
munications, complement terrestrial 5G networks by provid-
ing extensive coverage, particularly in remote and under-
served areas [2]. Integrating NTNs with terrestrial networks
promises to enhance global connectivity, enabling seamless
communication across diverse environments [3].

In this context, disaggregated radio access networks
(RANS) have emerged as a pivotal innovation. Disaggregated
RANSs separate the traditional monolithic base station archi-
tecture into distinct components such as the Central Unit
(CU), Distributed Unit (DU), and Radio Unit (RU) [4]. This
separation facilitates flexible deployment and efficient man-
agement of network resources, thereby enhancing network
performance and scalability [5].

One of the primary challenges in managing 5G NTNs with
disaggregated RAN architectures is predicting and optimizing
resource consumption to maintain Quality of Service (QoS)
and minimize Service Level Agreement (SLA) violations.
Accurate prediction of network traffic and resource usage
is essential for dynamic network slicing, efficient traffic
steering, and proactive failure management [6]. In such a
framework, Machine Learning can offer valuable solutions.
In particular, LSTM networks - a specific typology of recur-
rent neural network (RNN) - have demonstrated remarkable
success in time-series prediction due to their ability to capture
long-term dependencies in data [7]-[9]. LSTM models are
particularly well-suited for predicting network traffic and
resource consumption in 5G networks, where traffic patterns
are dynamic and complex [10] [11].

This paper focuses on developing an LSTM-based resource
prediction model for disaggregated RAN in 5G NTNs. We
propose two architectures: the first involves splitting the
gNB into gNB-CU and gNB-DU across the satellite network,
extending the F1 interface over the satellite radio interface
(SRI). The second architecture implements the F1 and El
splits, with the gNB-CUUP as a satellite payload. These
architectures are evaluated for their resource consumption
(CPU, memory, and bandwidth) and prediction accuracy
using the LSTM model.

By leveraging LSTM-based predictions, our approach aims
to enhance network management by providing insights into
future resource requirements, facilitating proactive resource
allocation, and improving overall network performance. This
research contributes to the broader goal of developing re-
silient and efficient 5G NTNs capable of meeting the strin-
gent demands of modern communication applications.
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The paper is structured as follows: Section II will con-
sider the state-of-the-art background and highlight the novel
contribution. Section III will introduce the main concepts of
disaggregated RAN networks. Section IV will discuss the
proposed network architecture and methodology. Section V
will focus on dataset preparation and training. Section VI
will show simulation results and related discussion. Finally,
Section VII will draw a paper conclusion.

II. RELATED WORK

A. State-of-the-art background

Several studies have explored the use of LSTM NNs
for traffic prediction in NTNs, demonstrating its potential
for improving resource allocation and network management.
[3] provides a comprehensive survey on machine learning
techniques for NTNs, emphasizing the application of LSTM
models for traffic prediction. This work lays the foundation
for employing LSTM in non-terrestrial contexts, showing
significant promise in enhancing network efficiency and
performance. Similarly, [10] proposes a smoothed LSTM
(SLSTM) model for 5G traffic prediction, improving pre-
diction accuracy through adaptive mechanisms and seasonal
time difference methods.

An intelligent traffic steering scheme in a disaggregated
O-RAN architecture is presented in [5], integrating LSTM-
based traffic prediction, flow-split distribution, dynamic user
association, and radio resource management. This method
enhances resource utilization by predicting dynamic traffic
demands, demonstrating the effectiveness of LSTM models
in complex RAN architectures. Furthermore, [6] employs
LSTM-based traffic prediction within the O-RAN archi-
tecture, featuring an LSTM-based prediction rApp at the
non-real-time RIC module to enhance decision-making with
distributed deep reinforcement learning for network slicing
management. This study also illustrates the integration of
LSTM and reinforcement learning for adaptive network man-
agement, showcasing their combined potential in optimizing
network resources and improving performance. [12] explores
traffic prediction in 5G using deep learning, underlining the
importance of accurate predictions for managing dynamic
traffic loads.

The work in [11] proposes an LSTM-autoencoder scheme
to predict communication link failures in 5G RAN, account-
ing for spatial-temporal correlations between radio commu-
nication and weather changes. This approach demonstrates
LSTM’s potential to enhance network reliability by predict-
ing and mitigating failures. Similarly, [13] presents a hybrid
model combining LSTM with machine learning to predict
and prevent link failures in 5G networks. Additionally, [13]
introduces an X-LSTM model for predicting RAN resource
usage in 5G, showing the effectiveness of LSTM in re-
source prediction. Although focused on terrestrial networks,
these techniques are also relevant to non-terrestrial networks.
Lastly, [14] explores LSTM models for resource prediction
in intelligent O-RAN systems, highlighting their potential for
optimizing resource allocation.

B. Paper contribution

This work uniquely addresses the prediction of resource
consumption for split NGRAN components across 5G NTN
networks so that the prediction output will be used by the net-
work management section to decide which network function
of the disaggregated NG-RAN component can be considered
as a satellite payload based on their previous resource con-
sumption. By considering both F1 and E1 splits and deploy-
ing gNB-DU and gNB-CUUP as satellite payloads, our work
aims to improve network resilience and readiness for future
network management decisions. This approach extends the
existing LSTM-based prediction methodologies to NTNs and
provides a comprehensive solution for managing the complex
resource requirements of disaggregated RAN architectures in
5G NTN environments.

III. DISSAGREGATED NG-RAN NETWORKS

In the evolving landscape of 5G networks, the Next
Generation Radio Access Network (NGRAN) disaggregation
has emerged as a key architectural innovation to modularize
and simplify network complexity and convert the centralized
NGRAN functionality into a disaggregated function. This
will benefit network service providers and operators by sim-
plifying network monitoring tasks to maintain the required
Quality of Service (QoS). The 3GPP TS 38.401 specification
[15] discusses how the NGRAN can be functionally split into
distinct units, namely the Central Unit (CU) and Distributed
Unit (DU), which can be further divided into the CU-Control
Plane (CU-CP) and CU-User Plane (CU-UP).

5G core

i
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| RRC | PDCP-C |

| —

F1-C F1-U
F1
gNB-DU
gNB-DU
RLC | MAC
PHY
NR-Uu NR-Uu

Fig. 1: NGRAN Functional splitting architecture

This disaggregated approach enables operators to deploy
network functions in a cloud-native environment, optimizing
resource allocation and reducing latency by strategically po-
sitioning these components in the network. The disaggregated
RAN supports more efficient network traffic management by
separating control and user plane functions. It facilitates the
integration of new technologies and services, making it a
cornerstone of next-generation 5G NTN networks.
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As referenced in [15], [16], and [17], the gNB-CU and
gNB-DU are connected via the F1 interface. The gNB-CU
consists of three layers: the packet data convergence protocol
(PDCP), radio resource control (RRC), and service data
adaptation protocol (SDAP). The RRC manages connection,
mobility, security, and QoS between user equipment (UE)
and the network. PDCP handles data compression, security,
sequencing, and reliable transfer, while SDAP maps QoS
flows to data radio bearers (DRBs) to prioritize traffic based
on QoS requirements. The gNB-DU hosts the radio link
control (RLC), medium access control (MAC), and physical
layers. The RLC manages data segmentation, reassembly,
and retransmission; the MAC layer handles scheduling, error
correction, and multiplexing; and the physical layer is re-
sponsible for transmitting and receiving data over the radio
interface.

Figure 1 also shows a further split of the gNB-CU into
gNB-CUCP and gNB-CUUP, where the gNB-CUCP handles
the RRC and the control plane tasks of PDCP (PDCP-C) and
the gNB-CUUP handles the SDAP and PDCP user plane
(PDCP-U) tasks [18], [19]. The PDCP-C handles control
plane tasks such as managing signaling messages, while
the PDCP-U is responsible for user plane data functions
like header compression, encryption, and integrity protection.
This split allows for flexible network deployment and effi-
cient resource management to maintain QOS and efficient
service level agreements (SLAS).

IV. PROPOSED NETWORK ARCHITECTURE AND
METHODOLOGY

The payload capability of a typical LEO satellite in terms
of available CPU and memory capacity varies significantly
based on the specific design and the intended application.
This work considers a typical LEO satellite working in a 5G
NTN environment. Two network architectures are considered
in this work. The first architecture in Figure 2 shows the
5G NTN network with gNB F1 interface over satellite radio
interface (F1 over SRI) where the gNB-DU is moved to the
satellite payload.
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Fig. 2: 5G NTN with F1 split
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Figure 3 shows the second SG NTN network architecture
with gNB F1-El over SRI (F1-E1 over SRI), where both the
F1 and E1 splitting of gNB are deployed across the satellite
network. In this scenario, the gNB-CUUP will embark on
the payload of the LEO satellite, and the other network
components will be placed in the terrestrial network.
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Fig. 3: 5G NTN with F1_EI split

The network management section in both scenarios above
relies on components like data collection and preparation,
LSTM-based prediction model, and network orchestrator.
The data collection section consists of open-source tools
that can be used together to monitor docker container-based
networks. These components are used to collect and visualize
the resource consumption of the target network function.
The first component of this section is CAdvisor [20], which
is used to collect, aggregate, and export information about
containers running on a host computer. It can collect metrics
like CPU usage, memory usage, and bandwidth utilization.
The second component is Prometheus [21], which collects
and stores metrics as time series data that can be used for
visualization. The third component is Grafana [22], which
queries and visualizes metrics from Prometheus.

The management section’s network orchestrator is as-
sumed to decide on the network functions based on the
related historical resource utilization outputs provided by
the LSTM prediction model. A real orchestrator has not
been implemented in our emulations. We assumed an ideal
orchestrator making ideal decisions driven by the prediction
outcomes.
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Fig. 4: Emulated 5G NTN with F1 split
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The emulated network as shown in Figure 4 and Figure 5
depicts the two architectures with only F1 split considering
gNB-DU as the satellite payload and with both F1 and El
split considering gNB-CUUP as the satellite payload.

Algorithm 1 below describes the resource utilization pre-
diction of the LSTM model used in this work.

V. DATASET PREPARATION AND TRAINING

Data on CPU usage, memory usage, and bandwidth uti-
lization for the gNB-DU and gNB-CUUP components were

Authorized licensed use limited to: New Mexico State University. Downloaded on July 18,2025 at 00:22:28 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE Virtual Conference on Communications (VCC)

. ONB-CUCP  Gooay

BI
SMF = NG,
------- NN
! NLN2IN3 .
. )
6

Terminal  gNB-DU

over SRI

over SRI over SRI

Fig. 5: Emulated 5G NTN with F1_E1 split

Algorithm 1 LSTM for Resource Consumption Prediction

1: Input: Data (CPU, Mem), seq_length, epochs
2: for each epoch do

3 Load data

4 data.columns < strip names

5. data(Bandwidth) < ZatelCPU]-data[Mem]
6

7

8

9

6
Initialize: MinMaxScaler v
scaled_data < scaler.fit(data)
X, ¥ < create_sequences(seq_length)
: X_train, x_test, y_train, y_test < split(scaled_data,
0.2)
10: Initialize: Sequential(LSTM, Dropout, Dense)
11: Initialize Adam

12: model.compile(loss="mse’, optimizer=Adam)

13: early_stopping, reduce_Ir <— set callbacks

14: model fit(x_train, y_train, callbacks=[early_stopping, re-
duce_Ir])

15: test_loss, test_mae <— model.evaluate(x_test, y_test)

16: Predictions <— model.predict(x_test)

17: y_test_original <— inverse_transform(y_test)

18: end for

19: Output: Trained model with metrics (test_loss, test_mae) and
reconstructed labels (y_test_original)

collected over 10 hours of simulation from Figures 2 and 3
using Prometheus and Cadvisor. This data was normalized
with a MinMaxScaler to scale features between 0 and 1,
essential for LSTM model performance. The normalized
data was transformed into sequences of 10 consecutive time
steps, facilitating the learning of temporal dependencies. The
dataset was split 80-20 into training and testing sets, with the
training set further divided to include a validation subset to
prevent overfitting.

An enhanced LSTM model, incorporating layers such
as LSTM, BatchNormalization, Dropout, and Dense, was
trained for 300 epochs, employing early stopping and learn-
ing rate reduction for optimization. Model performance was
assessed on the test set using metrics like Mean Absolute
Error (MAE), Mean Squared Error (MSE), and R-squared
(R?).

VI. RESULT AND DISCUSSION

This section presents simulation results, focusing on the
resource utilization of the LEO satellite payload components
gNB-CUUP and gNB-DU within the disaggregated NG-RAN
5G NTN network. The network simulation uses OpenAir-
Interface for the disaggregated NG-RAN and free5SGC as

the 5G core, while OpenSAND emulates the satellite net-
work’s gateway, satellite, and terminal components. The en-
tire network is emulated in a Docker Compose environment,
equipped with data collection and visualization monitoring
tools, which are integral to the LSTM model. The experi-
ment is conducted on a Linux OS laptop with an Intel(R)
Core(TM) 17-7500U CPU @ 2.70GHz, 4 allocated CPUs,
and 16 GB of RAM. The complete code for the experiment
is available at https://github.com/HenokBerhanu/disag_vcc.

A. Analysis on the resource consumption of gNB-DU on FI
split

This subsection considers the architecture shown in Figure
4 where the gNB-DU is the payload of the LEO satellite and
its resource consumption will be analyzed. Video traffic of
4 Mbits/s is generated across the network using iperf3 to
collect data.

Figure 6 compares the actual and predicted CPU usage
of the gNB-DU component over a specific time window.
This plot demonstrates how the LSTM model can effectively
capture the temporal patterns in CPU usage, with a mean
absolute percentage error (MAPE) of 12.24% showing ac-
ceptable prediction accuracy. An average predicted value of
0.5% CPU utilization is recorded.
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Fig. 6: CPU Usage for gNB-DU F1 split
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Figure 7 illustrates the memory usage of the gNB-DU,
following the same format as the CPU usage plot. It compares
the actual memory usage to the related predicted values,
with a MAPE of 0.72% with a highly reliable prediction
performance. The average predicted memory usage by the
LSTM model is around 20 MiB.

167 Prediction for Memory Usage of gNB-DU
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I
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Time Steps

Fig. 7: Memory Usage in byte for gNB-DU F1 split
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Figure 8 shows the bandwidth utilization, comparing actual
versus predicted values with a MAPE of 11.96%, an MSE of
0.0002, MAE of 0.0111, and an R-squared value of 0.3743
showing acceptable prediction accuracy of satellite gNB-DU.
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Fig. 8: Bandwidth utilization for gNB-DU F1 split

The training vs. validation Mean Absolute Error (MAE)
plot in Figure 9 compares the model performance on the
training and validation sets across different epochs. The
training MAE indicates how the model error decreases on
the training data as it learns over epochs.
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Fig. 9: Training vs Validation Accuracy for gNB-DU F1 split

B. Analysis on the resource consumption of gNB-CUUP on
FI-E1 split

Figure 10 compares the actual and predicted CPU usage of
the gNB-CUUP component over a specific time window. The
model has moderate predictive accuracy with an ideal MSE
of 0, MSE of 0.0004, and an R-squared value of 0.0126,
indicating that the model has efficiently learned the provided
data pattern.

As can be seen from Figure 6 and Figure 10, there is
a higher CPU demand for the gNB-DU, as compared to
the CPU demand of gNB-CUUP of the F1-El split. This
indicates that it is technically better to consider the gNB-
CUUP of the disaggregated NG-RAN as moved to the LEO
satellite payload.

Figure 11 shows the memory usage of the gNB-CUUP
of the LEO satellite payload. With a MAPE of 0.9% and
an R-squared value of 0.9985, the prediction accuracy of
the proposed model exhibits better performance in memory
prediction.
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Fig. 10: CPU Usage of gNB-CUUP for F1-El split
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Fig. 11: Memory Usage for gNB-CUUP F1-E1 split

Figure 12 shows bandwidth utilization, comparing actual
versus predicted values. The MAPE is 13% which shows
acceptable prediction accuracy with an MSE of 0.0007, MAE
of 0.0214, and R-squared error of 0.5428.
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Fig. 12: Bandwidth utilization for gNB-CUUP F1-El split

VII. CONCLUSION AND FUTURE WORKS

This study presents an LSTM-based approach for predict-
ing resource utilization in disaggregated RAN architectures
within 5G Non-Terrestrial Networks (NTNs). By comparing
two configurations—one with a gNB-CU and gNB-DU split
over the F1 interface and another adding F1 and El splits
with gNB-CUUP as a satellite payload—we demonstrate
LSTM’s effectiveness in predicting CPU, memory, and band-
width usage. These predictions enable proactive resource
management, ensuring efficient network utilization and high
QoS. The combined F1 and E1 split configuration offers
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greater flexibility and resource efficiency while integrating
critical network functions into satellite payloads, which en-
hances network resilience, particularly in remote areas.

This work underscores LSTM’s potential in improving 5G
NTN management, especially in handling dynamic traffic
patterns. Future work will scale these models for larger
networks and incorporate additional ML techniques for fault
detection and energy efficiency.
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