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Abstract—The growing demand for advanced beyond 5G
connectivity solutions explores the deployment of end-to-end 5G
Non-Terrestrial Networks (NTNs) in cloud-native environments.
With the increasing reliance on mobile communications, lever-
aging next-generation radio access network (NG-RAN) architec-
tures with functional splits has become essential. In the 5G NTN
network, some split NG-RAN components can be moved to the
satellite node to improve connectivity and resilience. This paper
investigates advanced beyond 5G connectivity by deploying end-
to-end 5G Non-Terrestrial Networks (NTNs) in cloud-native
environments, focusing on Low Earth Orbit (LEO) satellites
operating in regenerative mode. Specifically, it explores the
implementation of F1 and E1 interface splits within such net-
works. The first architecture extends the F1 interface over the
satellite radio interface (F1 over SRI), linking terrestrial central
units (gNB-CU) with satellite-based distributed units (gNB-DU).
The second architecture incorporates both F1 and E1 splits,
facilitating connections between terrestrial control plane units
(gNB-CUCP) and user plane units (gNB-CUUP) on the satellite
via the E1 interface over SRI (F1-E1 over SRI). The study’s
primary goal is to predict the resource utilization—specifically
CPU, memory, and bandwidth—of gNB-DU and gNB-CUUP
functioning as satellite payloads. Employing Long-Short-Term
Memory (LSTM) neural networks, this research aims to en-
hance network resilience by enabling proactive monitoring
and resource allocation decisions, addressing the significant
computational and bandwidth demands of payloading gNB-
CUUP compared to gNB-DU.

Index Terms—5G, NTN, LSTM, Disaggregated NG-RAN.

I. INTRODUCTION

The rapid advancement and deployment of 5G networks

have revolutionized the telecommunications landscape, ush-

ering in an era of ultra-reliable, high-speed, and low-latency

communications. This evolution is driven by the increasing

demand for high-bandwidth applications such as autonomous

driving, smart cities, and the Internet of Things (IoT), which

require robust and efficient network infrastructure to handle

heterogeneous and dynamic traffic loads [1].

Non-terrestrial networks (NTNs), including satellite com-

munications, complement terrestrial 5G networks by provid-

ing extensive coverage, particularly in remote and under-

served areas [2]. Integrating NTNs with terrestrial networks

promises to enhance global connectivity, enabling seamless

communication across diverse environments [3].

In this context, disaggregated radio access networks

(RANs) have emerged as a pivotal innovation. Disaggregated

RANs separate the traditional monolithic base station archi-

tecture into distinct components such as the Central Unit

(CU), Distributed Unit (DU), and Radio Unit (RU) [4]. This

separation facilitates flexible deployment and efficient man-

agement of network resources, thereby enhancing network

performance and scalability [5].

One of the primary challenges in managing 5G NTNs with

disaggregated RAN architectures is predicting and optimizing

resource consumption to maintain Quality of Service (QoS)

and minimize Service Level Agreement (SLA) violations.

Accurate prediction of network traffic and resource usage

is essential for dynamic network slicing, efficient traffic

steering, and proactive failure management [6]. In such a

framework, Machine Learning can offer valuable solutions.

In particular, LSTM networks - a specific typology of recur-

rent neural network (RNN) - have demonstrated remarkable

success in time-series prediction due to their ability to capture

long-term dependencies in data [7]–[9]. LSTM models are

particularly well-suited for predicting network traffic and

resource consumption in 5G networks, where traffic patterns

are dynamic and complex [10] [11].

This paper focuses on developing an LSTM-based resource

prediction model for disaggregated RAN in 5G NTNs. We

propose two architectures: the first involves splitting the

gNB into gNB-CU and gNB-DU across the satellite network,

extending the F1 interface over the satellite radio interface

(SRI). The second architecture implements the F1 and E1

splits, with the gNB-CUUP as a satellite payload. These

architectures are evaluated for their resource consumption

(CPU, memory, and bandwidth) and prediction accuracy

using the LSTM model.

By leveraging LSTM-based predictions, our approach aims

to enhance network management by providing insights into

future resource requirements, facilitating proactive resource

allocation, and improving overall network performance. This

research contributes to the broader goal of developing re-

silient and efficient 5G NTNs capable of meeting the strin-

gent demands of modern communication applications.
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The paper is structured as follows: Section II will con-

sider the state-of-the-art background and highlight the novel

contribution. Section III will introduce the main concepts of

disaggregated RAN networks. Section IV will discuss the

proposed network architecture and methodology. Section V

will focus on dataset preparation and training. Section VI

will show simulation results and related discussion. Finally,

Section VII will draw a paper conclusion.

II. RELATED WORK

A. State-of-the-art background

Several studies have explored the use of LSTM NNs

for traffic prediction in NTNs, demonstrating its potential

for improving resource allocation and network management.

[3] provides a comprehensive survey on machine learning

techniques for NTNs, emphasizing the application of LSTM

models for traffic prediction. This work lays the foundation

for employing LSTM in non-terrestrial contexts, showing

significant promise in enhancing network efficiency and

performance. Similarly, [10] proposes a smoothed LSTM

(SLSTM) model for 5G traffic prediction, improving pre-

diction accuracy through adaptive mechanisms and seasonal

time difference methods.

An intelligent traffic steering scheme in a disaggregated

O-RAN architecture is presented in [5], integrating LSTM-

based traffic prediction, flow-split distribution, dynamic user

association, and radio resource management. This method

enhances resource utilization by predicting dynamic traffic

demands, demonstrating the effectiveness of LSTM models

in complex RAN architectures. Furthermore, [6] employs

LSTM-based traffic prediction within the O-RAN archi-

tecture, featuring an LSTM-based prediction rApp at the

non-real-time RIC module to enhance decision-making with

distributed deep reinforcement learning for network slicing

management. This study also illustrates the integration of

LSTM and reinforcement learning for adaptive network man-

agement, showcasing their combined potential in optimizing

network resources and improving performance. [12] explores

traffic prediction in 5G using deep learning, underlining the

importance of accurate predictions for managing dynamic

traffic loads.

The work in [11] proposes an LSTM-autoencoder scheme

to predict communication link failures in 5G RAN, account-

ing for spatial-temporal correlations between radio commu-

nication and weather changes. This approach demonstrates

LSTM’s potential to enhance network reliability by predict-

ing and mitigating failures. Similarly, [13] presents a hybrid

model combining LSTM with machine learning to predict

and prevent link failures in 5G networks. Additionally, [13]

introduces an X-LSTM model for predicting RAN resource

usage in 5G, showing the effectiveness of LSTM in re-

source prediction. Although focused on terrestrial networks,

these techniques are also relevant to non-terrestrial networks.

Lastly, [14] explores LSTM models for resource prediction

in intelligent O-RAN systems, highlighting their potential for

optimizing resource allocation.

B. Paper contribution

This work uniquely addresses the prediction of resource

consumption for split NGRAN components across 5G NTN

networks so that the prediction output will be used by the net-

work management section to decide which network function

of the disaggregated NG-RAN component can be considered

as a satellite payload based on their previous resource con-

sumption. By considering both F1 and E1 splits and deploy-

ing gNB-DU and gNB-CUUP as satellite payloads, our work

aims to improve network resilience and readiness for future

network management decisions. This approach extends the

existing LSTM-based prediction methodologies to NTNs and

provides a comprehensive solution for managing the complex

resource requirements of disaggregated RAN architectures in

5G NTN environments.

III. DISSAGREGATED NG-RAN NETWORKS

In the evolving landscape of 5G networks, the Next

Generation Radio Access Network (NGRAN) disaggregation

has emerged as a key architectural innovation to modularize

and simplify network complexity and convert the centralized

NGRAN functionality into a disaggregated function. This

will benefit network service providers and operators by sim-

plifying network monitoring tasks to maintain the required

Quality of Service (QoS). The 3GPP TS 38.401 specification

[15] discusses how the NGRAN can be functionally split into

distinct units, namely the Central Unit (CU) and Distributed

Unit (DU), which can be further divided into the CU-Control

Plane (CU-CP) and CU-User Plane (CU-UP).

5G core 5G core

RRC PDCP

SDAP

RLC MAC

PHY

NR-UE

gNB-CU

gNB-DU

RRC PDCP-C

gNB-CUCP

PDCP-U SDAP

gNB-CUUP

RLC MAC

PHY

gNB-DU

NR-UE

NG
NG NG

E1

F1
F1-C F1-U

NR-Uu NR-Uu

Fig. 1: NGRAN Functional splitting architecture

This disaggregated approach enables operators to deploy

network functions in a cloud-native environment, optimizing

resource allocation and reducing latency by strategically po-

sitioning these components in the network. The disaggregated

RAN supports more efficient network traffic management by

separating control and user plane functions. It facilitates the

integration of new technologies and services, making it a

cornerstone of next-generation 5G NTN networks.
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As referenced in [15], [16], and [17], the gNB-CU and

gNB-DU are connected via the F1 interface. The gNB-CU

consists of three layers: the packet data convergence protocol

(PDCP), radio resource control (RRC), and service data

adaptation protocol (SDAP). The RRC manages connection,

mobility, security, and QoS between user equipment (UE)

and the network. PDCP handles data compression, security,

sequencing, and reliable transfer, while SDAP maps QoS

flows to data radio bearers (DRBs) to prioritize traffic based

on QoS requirements. The gNB-DU hosts the radio link

control (RLC), medium access control (MAC), and physical

layers. The RLC manages data segmentation, reassembly,

and retransmission; the MAC layer handles scheduling, error

correction, and multiplexing; and the physical layer is re-

sponsible for transmitting and receiving data over the radio

interface.

Figure 1 also shows a further split of the gNB-CU into

gNB-CUCP and gNB-CUUP, where the gNB-CUCP handles

the RRC and the control plane tasks of PDCP (PDCP-C) and

the gNB-CUUP handles the SDAP and PDCP user plane

(PDCP-U) tasks [18], [19]. The PDCP-C handles control

plane tasks such as managing signaling messages, while

the PDCP-U is responsible for user plane data functions

like header compression, encryption, and integrity protection.

This split allows for flexible network deployment and effi-

cient resource management to maintain QOS and efficient

service level agreements (SLAs).

IV. PROPOSED NETWORK ARCHITECTURE AND

METHODOLOGY

The payload capability of a typical LEO satellite in terms

of available CPU and memory capacity varies significantly

based on the specific design and the intended application.

This work considers a typical LEO satellite working in a 5G

NTN environment. Two network architectures are considered

in this work. The first architecture in Figure 2 shows the

5G NTN network with gNB F1 interface over satellite radio

interface (F1 over SRI) where the gNB-DU is moved to the

satellite payload.

Network
Orchestrator

5G Core Network

Leo Satellite
Network

gNB-DU

gNB-CU

NR-UE

ML(LSTM)

CAdvisorPrometheusGrafana

Data Collection and preparation

Network Managemet

N1/N2/N3

F1 over S
RI

NR-Uu
overSRI

Fig. 2: 5G NTN with F1 split

Figure 3 shows the second 5G NTN network architecture

with gNB F1-E1 over SRI (F1-E1 over SRI), where both the

F1 and E1 splitting of gNB are deployed across the satellite

network. In this scenario, the gNB-CUUP will embark on

the payload of the LEO satellite, and the other network

components will be placed in the terrestrial network.

Network
Orchestrator

5G Core Network

Leo Satellite
Network

gNB-CUUP

gNB-CUCP

NR-UE

ML(LSTM)

CAdvisorPrometheusGrafana

Data Collection and preparation

Network Managemet

N1/N2/N3

F1_E1 over

SRI

NR-Uu

gNB-DU

F1_E1 
over SRI

Fig. 3: 5G NTN with F1_E1 split

The network management section in both scenarios above

relies on components like data collection and preparation,

LSTM-based prediction model, and network orchestrator.

The data collection section consists of open-source tools

that can be used together to monitor docker container-based

networks. These components are used to collect and visualize

the resource consumption of the target network function.

The first component of this section is CAdvisor [20], which

is used to collect, aggregate, and export information about

containers running on a host computer. It can collect metrics

like CPU usage, memory usage, and bandwidth utilization.

The second component is Prometheus [21], which collects

and stores metrics as time series data that can be used for

visualization. The third component is Grafana [22], which

queries and visualizes metrics from Prometheus.

The management section’s network orchestrator is as-

sumed to decide on the network functions based on the

related historical resource utilization outputs provided by

the LSTM prediction model. A real orchestrator has not

been implemented in our emulations. We assumed an ideal

orchestrator making ideal decisions driven by the prediction

outcomes.

N2

N3

gNB-CU

N1/N2/N3

AMF

UPF

N6

N4

SMF

SBI

NR UENR-Uu over SRIF1 over SRI

gNB-DU

F1 over SRI

Data Network

Gateway Terminal

Fig. 4: Emulated 5G NTN with F1 split

The emulated network as shown in Figure 4 and Figure 5

depicts the two architectures with only F1 split considering

gNB-DU as the satellite payload and with both F1 and E1

split considering gNB-CUUP as the satellite payload.

Algorithm 1 below describes the resource utilization pre-

diction of the LSTM model used in this work.

V. DATASET PREPARATION AND TRAINING

Data on CPU usage, memory usage, and bandwidth uti-

lization for the gNB-DU and gNB-CUUP components were
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Fig. 5: Emulated 5G NTN with F1_E1 split

Algorithm 1 LSTM for Resource Consumption Prediction

1: Input: Data (CPU, Mem), seq_length, epochs

2: for each epoch do

3: Load data

4: data.columns ← strip names

5: data(Bandwidth) ←
data[CPU ]·data[Mem]

106

6: Initialize: MinMaxScaler

7: scaled_data ← scaler.fit(data)

8: x, y ← create_sequences(seq_length)

9: x_train, x_test, y_train, y_test ← split(scaled_data,

0.2)
10: Initialize: Sequential(LSTM, Dropout, Dense)
11: Initialize Adam
12: model.compile(loss=’mse’, optimizer=Adam)
13: early_stopping, reduce_lr ← set callbacks
14: model.fit(x_train, y_train, callbacks=[early_stopping, re-

duce_lr])
15: test_loss, test_mae ← model.evaluate(x_test, y_test)
16: Predictions ← model.predict(x_test)
17: y_test_original ← inverse_transform(y_test)
18: end for
19: Output: Trained model with metrics (test_loss, test_mae) and

reconstructed labels (y_test_original)

collected over 10 hours of simulation from Figures 2 and 3

using Prometheus and Cadvisor. This data was normalized

with a MinMaxScaler to scale features between 0 and 1,

essential for LSTM model performance. The normalized

data was transformed into sequences of 10 consecutive time

steps, facilitating the learning of temporal dependencies. The

dataset was split 80-20 into training and testing sets, with the

training set further divided to include a validation subset to

prevent overfitting.

An enhanced LSTM model, incorporating layers such

as LSTM, BatchNormalization, Dropout, and Dense, was

trained for 300 epochs, employing early stopping and learn-

ing rate reduction for optimization. Model performance was

assessed on the test set using metrics like Mean Absolute

Error (MAE), Mean Squared Error (MSE), and R-squared

(R2).

VI. RESULT AND DISCUSSION

This section presents simulation results, focusing on the

resource utilization of the LEO satellite payload components

gNB-CUUP and gNB-DU within the disaggregated NG-RAN

5G NTN network. The network simulation uses OpenAir-

Interface for the disaggregated NG-RAN and free5GC as

the 5G core, while OpenSAND emulates the satellite net-

work’s gateway, satellite, and terminal components. The en-

tire network is emulated in a Docker Compose environment,

equipped with data collection and visualization monitoring

tools, which are integral to the LSTM model. The experi-

ment is conducted on a Linux OS laptop with an Intel(R)

Core(TM) i7-7500U CPU @ 2.70GHz, 4 allocated CPUs,

and 16 GB of RAM. The complete code for the experiment

is available at https://github.com/HenokBerhanu/disag_vcc.

A. Analysis on the resource consumption of gNB-DU on F1

split

This subsection considers the architecture shown in Figure

4 where the gNB-DU is the payload of the LEO satellite and

its resource consumption will be analyzed. Video traffic of

4 Mbits/s is generated across the network using iperf3 to

collect data.

Figure 6 compares the actual and predicted CPU usage

of the gNB-DU component over a specific time window.

This plot demonstrates how the LSTM model can effectively

capture the temporal patterns in CPU usage, with a mean

absolute percentage error (MAPE) of 12.24% showing ac-

ceptable prediction accuracy. An average predicted value of

0.5% CPU utilization is recorded.

Fig. 6: CPU Usage for gNB-DU F1 split

Figure 7 illustrates the memory usage of the gNB-DU,

following the same format as the CPU usage plot. It compares

the actual memory usage to the related predicted values,

with a MAPE of 0.72% with a highly reliable prediction

performance. The average predicted memory usage by the

LSTM model is around 20 MiB.

Fig. 7: Memory Usage in byte for gNB-DU F1 split

2024 IEEE Virtual Conference on Communications (VCC)

Authorized licensed use limited to: New Mexico State University. Downloaded on July 18,2025 at 00:22:28 UTC from IEEE Xplore.  Restrictions apply. 



Figure 8 shows the bandwidth utilization, comparing actual

versus predicted values with a MAPE of 11.96%, an MSE of

0.0002, MAE of 0.0111, and an R-squared value of 0.3743

showing acceptable prediction accuracy of satellite gNB-DU.

Fig. 8: Bandwidth utilization for gNB-DU F1 split

The training vs. validation Mean Absolute Error (MAE)

plot in Figure 9 compares the model performance on the

training and validation sets across different epochs. The

training MAE indicates how the model error decreases on

the training data as it learns over epochs.

Fig. 9: Training vs Validation Accuracy for gNB-DU F1 split

B. Analysis on the resource consumption of gNB-CUUP on

F1-E1 split

Figure 10 compares the actual and predicted CPU usage of

the gNB-CUUP component over a specific time window. The

model has moderate predictive accuracy with an ideal MSE

of 0, MSE of 0.0004, and an R-squared value of 0.0126,

indicating that the model has efficiently learned the provided

data pattern.

As can be seen from Figure 6 and Figure 10, there is

a higher CPU demand for the gNB-DU, as compared to

the CPU demand of gNB-CUUP of the F1-E1 split. This

indicates that it is technically better to consider the gNB-

CUUP of the disaggregated NG-RAN as moved to the LEO

satellite payload.

Figure 11 shows the memory usage of the gNB-CUUP

of the LEO satellite payload. With a MAPE of 0.9% and

an R-squared value of 0.9985, the prediction accuracy of

the proposed model exhibits better performance in memory

prediction.

Fig. 10: CPU Usage of gNB-CUUP for F1-E1 split

Fig. 11: Memory Usage for gNB-CUUP F1-E1 split

Figure 12 shows bandwidth utilization, comparing actual

versus predicted values. The MAPE is 13% which shows

acceptable prediction accuracy with an MSE of 0.0007, MAE

of 0.0214, and R-squared error of 0.5428.

Fig. 12: Bandwidth utilization for gNB-CUUP F1-E1 split

VII. CONCLUSION AND FUTURE WORKS

This study presents an LSTM-based approach for predict-

ing resource utilization in disaggregated RAN architectures

within 5G Non-Terrestrial Networks (NTNs). By comparing

two configurations—one with a gNB-CU and gNB-DU split

over the F1 interface and another adding F1 and E1 splits

with gNB-CUUP as a satellite payload—we demonstrate

LSTM’s effectiveness in predicting CPU, memory, and band-

width usage. These predictions enable proactive resource

management, ensuring efficient network utilization and high

QoS. The combined F1 and E1 split configuration offers
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greater flexibility and resource efficiency while integrating

critical network functions into satellite payloads, which en-

hances network resilience, particularly in remote areas.

This work underscores LSTM’s potential in improving 5G

NTN management, especially in handling dynamic traffic

patterns. Future work will scale these models for larger

networks and incorporate additional ML techniques for fault

detection and energy efficiency.

ACKNOWLEDGMENT

The research activities presented in this paper fall within

the field of interest of the IEEE AESS technical panel on

Glue Technologies for Space Systems and IoT Lab of The

University of New Mexico, Department of Electrical and

Computer Engineering. This work was also supported by

the European Union under the Italian National Recovery and

Resilience Plan (NRRP) of NextGenerationEU partnership

on “Telecommunications of the Future” (PE00000001 –

program “RESTART”).

REFERENCES

[1] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5g evolution: A
view on 5g cellular technology beyond 3gpp release 15,” IEEE Access,
vol. 7, pp. 127 639–127 651, 2019.

[2] H. B. Tsegaye and C. Sacchi, “Mec-based experimental framework
for service availability in 3d non-terrestrial networks,” in 2024 IEEE
Aerospace Conference, 2024, pp. 1–10.

[3] R. Giuliano and E. Innocenti, “Machine learning techniques for
non-terrestrial networks,” Electronics, vol. 12, no. 3, 2023. [Online].
Available: https://www.mdpi.com/2079-9292/12/3/652

[4] H. B. Tsegaye and C. Sacchi, “Graph neural network-based c-ran mon-
itoring for beyond 5g non-terrestrial networks,” in 2024 11th Interna-
tional Workshop on Metrology for AeroSpace (MetroAeroSpace), 2024,
pp. 338–343.

[5] F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “In-
telligent traffic steering in beyond 5g open ran based on lstm traffic
prediction,” IEEE Transactions on Wireless Communications, vol. 22,
no. 11, pp. 7727–7742, 2023.

[6] F. Lotfi and F. Afghah, “Open ran lstm traffic prediction and slice
management using deep reinforcement learning,” in 2023 57th Asilomar
Conference on Signals, Systems, and Computers, 2023, pp. 646–650.

[7] S. T. Arzo, P. M. Tshakwanda, Y. M. Worku, H. Kumar, and M. De-
vetsikiotis, “Intelligent qos agent design for qos monitoring and provi-
sioning in 6g network,” in ICC 2023-IEEE International Conference on
Communications. IEEE, 2023, pp. 2364–2369.

[8] P. M. Tshakwanda, S. T. Arzo, and M. Devetsikiotis, “Advancing 6g
network performance: Ai/ml framework for proactive management and
dynamic optimal routing,” IEEE Open Journal of the Computer Society,
2024.

[9] P. M. Tshakwanda, H. Kumar, S. T. Arzo, and M. Devetsikiotis, “Unveil-
ing the future: A comparative analysis of lstm and sp-lstm for network
traffic prediction in 6g networks,” in ICC 2024-IEEE International
Conference on Communications. IEEE, 2024, pp. 2919–2924.

[10] Z. Gao, “5g traffic prediction based on deep learning,” Computational
Intelligence and Neuroscience, vol. 2022, no. 1, p. 3174530,
2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1155/2022/3174530

[11] M. A. Islam, H. Siddique, W. Zhang, and I. Haque, “A deep neural
network-based communication failure prediction scheme in 5g ran,”
IEEE Transactions on Network and Service Management, vol. 20, no. 2,
pp. 1140–1152, 2023.

[12] J. Su, H. Cai, Z. Sheng, A. Liu, and A. Baz, “Traffic prediction for
5g: A deep learning approach based on lightweight hybrid attention
networks,” Digital Signal Processing, vol. 146, p. 104359, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1051200423004542

[13] C. Gutterman, E. Grinshpun, S. Sharma, and G. Zussman, “Ran resource
usage prediction for a 5g slice broker,” in Proceedings of the Twentieth
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, ser. Mobihoc ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 231–240. [Online]. Available:
https://doi.org/10.1145/3323679.3326521

[14] S. Niknam, A. Roy, H. S. Dhillon, S. Singh, R. Banerji, J. H. Reed,
N. Saxena, and S. Yoon, “Intelligent o-ran for beyond 5g and 6g wireless
networks,” 2020. [Online]. Available: https://arxiv.org/abs/2005.08374

[15] 3GPP, “NG-RAN:Architecture description,” 3rd Generation Partnership
Project (3GPP), Technical Specification Group Radio Access Network
38.401, 06 2024, version 18.2.0. [Online]. Available: https://portal.3gpp.
org/ChangeRequests.aspx?q=1&versionId=88269&release=193

[16] N. Makris, C. Zarafetas, P. Basaras, T. Korakis, N. Nikaein, and
L. Tassiulas, “Cloud-based convergence of heterogeneous rans in 5g
disaggregated architectures,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[17] F. Arnhold, S. S. Anbazhagan, L. R. Prade, J. M. Nogueira, A. Klautau,
and C. B. Both, “Network slicing support by fronthaul interface in
disaggregated radio access networks: A survey,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2024.

[18] R. Khouli, L. Frank, and A. Hofmann, “Functional split evaluation in
ntn for leo satellites,” in 40th International Communications Satellite
Systems Conference (ICSSC 2023), vol. 2023, 2023, pp. 1–9.

[19] M. Rihan, T. Düe, M. Vakilifard, D. Wübben, and A. Dekorsy, “Ran
functional split options for integrated terrestrial and non-terrestrial 6g
networks,” in 2023 11th International Japan-Africa Conference on Elec-
tronics, Communications, and Computations (JAC-ECC), 2023, pp. 152–
158.

[20] Github, “Analyzes resource usage and performance characteristics of
running containers (cadvisor),” https://github.com/google/cadvisor, 03
2024, last version 0.49.1.

[21] dockerhub, “Prometheus,” https://hub.docker.com/r/prom/prometheus,
2024, docker image and installation guidelines.

[22] ——, “Grafana,” https://hub.docker.com/r/grafana/grafana, 2024, docker
image and installation guidelines.

2024 IEEE Virtual Conference on Communications (VCC)

Authorized licensed use limited to: New Mexico State University. Downloaded on July 18,2025 at 00:22:28 UTC from IEEE Xplore.  Restrictions apply. 


