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Abstract. Smart contracts have transformed blockchain applications, 
enabling decentralized computation and automated asset management 
without intermediaries. However, with the growth of decentralized 
finance, the high financial stakes make smart contract vulnerabilities 
particularly critical. Because vulnerabilities often go undetected, they 
lead to substantial losses and diminished trust in blockchain systems. 

Symbolic execution has emerged as a powerful technique to uncover 
subtle vulnerabilities by systematically exploring feasible execution paths. 
However, most existing symbolic execution tools for smart contracts are 
tailored to specific vulnerability patterns, making them unsuitable for 
detecting new types of vulnerabilities. In this paper, we introduce Greed, 
a highly versatile symbolic execution framework for Ethereum (or EVM-
based) smart contracts. Greed features a state-of-the-art symbolic exe-
cution engine coupled with a suite of supporting analyses and a modular 
design that allows security researchers to prototype new analyses rapidly. 

To evaluate the effectiveness and extensibility of Greed, we compare  
it with the state-of-the-art. We first show that Greed can explore sig-
nificantly more code paths – reaching 84% of all CALL statements, as 
opposed to 9% on average across existing tools. To demonstrate the ease 
of use (and extensibility) of Greed, we then implement a novel analy-
sis to detect controllable JUMPI instructions and evaluate it against all 
deployed contracts on Ethereum and Binance Smart Chain (BSC), iden-
tifying 390 previously unknown vulnerable contracts. 

By releasing Greed to the community, we aim to lower the barrier to 
developing advanced security analyses for smart contracts, empowering 
security researchers to rapidly prototype new analyses and contribute to 
a more secure and resilient blockchain ecosystem. 

Keywords: Ethereum · Smart Contract · Symbolic Execution 

1 Introduction 

Ethereum [ 15] is a global, decentralized blockchain that enables the deployment 
and execution of decentralized programs (smart contracts). Smart contracts are 
immutable programs that run on the Ethereum Virtual Machine (EVM) and 
are executed on demand by blockchain users. Smart contracts have transformed 
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the way transactions are executed, enabling decentralized applications and auto-
mated asset management without intermediaries. 

Ethereum (and other blockchains) have witnessed the explosive growth of 
a new form of blockchain-based finance that is known as decentralized finance 
(DeFi) – a rich ecosystem of digital currencies, financial tools, and financial ser-
vices. Because of the exceptionally high stakes involved [ 12], identifying and fix-
ing vulnerabilities in smart contracts has become critical. Once deployed, smart 
contracts cannot be easily patched, and exploits can lead to substantial financial 
damage and loss of trust in blockchain systems [ 13]. Therefore, rigorous analysis 
of smart contracts is necessary to ensure their security. 

Symbolic execution [ 1] (SE) has emerged as a powerful technique for smart 
contract analysis. SE systematically explores a contract in an emulated environ-
ment with symbolic variables representing possible (but unknown) inputs. As 
the execution progresses, the SE system (or engine) tracks the state of the EVM 
– e.g., program counter, stack, and memory. At specific points in the execu-
tion, the engine queries a constraint solver to determine whether a given state is 
satisfiable – that is, whether each symbolic variable has a feasible concrete solu-
tion. When the execution reaches a conditional branch, and both the condition 
and its negation are satisfiable, the execution path forks, and both branches are 
explored separately. This enables the generation of concrete inputs that repro-
duce specific program behaviors, allowing one to uncover subtle bugs that might 
evade traditional testing methods (e.g., fuzz testing). 

Related Work. Over the years, many SE tools have been developed to detect 
vulnerabilities in smart contracts. Some focus on the formal verification of spe-
cific properties [ 27, 29, 32, 33, 36]. For example, VerX [ 27] uses SE and induc-
tion proofs to study safety properties. Others identify known vulnerability pat-
terns [ 4, 10, 18, 22– 24, 26, 28, 31]. For example, teEther [ 23] identifies contracts 
that leak funds to arbitrary users. While existing tools have shown some suc-
cess in their respective domains, they suffer from two key limitations: First, the 
symbolic execution engines of existing tools lack critical analysis features – for 
instance, a precise memory model – that limit their effectiveness. Second, the 
architecture of existing tools is typically designed around specific vulnerability 
patterns, making it challenging to adapt them to new vulnerabilities and extend 
their capabilities beyond the original scope. 

Our Approach. In this paper, we introduce Greed, a highly versatile SE 
framework designed for the analysis of EVM-based smart contracts. Greed 
addresses the limitations of existing tools by providing a novel combination of 
analysis techniques, including both a state-of-the-art SE engine and a suite of 
supporting analyses. Unlike traditional tools (with a fixed set of predefined anal-
yses), Greed enables security experts to build new analyses tailored to their 
needs. Our experiments show that Greed’s architecture allows for more effi-
cient path exploration – and superior flexibility – without compromising analysis 
accuracy.
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We implemented Greed in approximately 10,000 lines of Python code and 
released it as an open-source project 1. Greed has been met with enthusiasm by 
the community. After the open-source release, the project attracted hundreds 
of new users (in terms of distinct project downloads, GitHub “stars”, and com-
munity contributions). We are also aware of several academic institutions and 
corporations that are either actively using Greed or evaluating it for potential 
use in their systems. 

This paper makes the following contributions: 

– We describe Greed, a highly versatile symbolic execution framework 
designed for EVM-based smart contracts. Greed features a state-of-the-art 
symbolic execution engine and a novel combination of analysis techniques 
within a modular and extensible architecture, enabling security experts to 
tackle complex security challenges. 

– We compare Greed against the state-of-the-art and show that it can explore 
significantly more code paths. Greed outperforms all existing tools, reaching 
84% of all CALL statements, compared to 9% across alternatives (on average). 

– To demonstrate the ease of adding additional security analysis, we imple-
ment a novel checker to detect controllable JUMPI instructions and evaluate 
it against all contracts in Ethereum and BSC [ 3], identifying 390 previously 
unknown vulnerable contracts. 

2 Motivation 

Existing symbolic execution systems focus on detecting known classes of vulner-
abilities. This specialization has led to two main limitations. First, existing sys-
tems often forego implementing comprehensive, robust analyses, opting instead 
for a subset of features tailored to the targeted vulnerabilities. A precise imple-
mentation of all analysis features is sometimes unnecessary for individual security 
analyses. For example, ERC20 tokens rarely interact with external contracts. 
Thus, a full-fledged cross-contract analysis may be unnecessary for analyzing 
ERC20 token contracts [ 19]. Second, in addition to the lack of analysis features, 
many existing systems lack any underlying static analysis, such as control-flow 
graph (CFG) recovery. Yet, a balanced integration of static and dynamic analysis 
is crucial for building sophisticated security tools. The absence of static analy-
ses makes extending and scaling existing systems (for instance, with exploration 
strategies) inherently challenging. This underscores the necessity for a versatile 
unified analysis framework that can be repurposed for complex, evolving security 
analyses. 

2.1 Basic Analysis Features 

Modern smart contracts frequently use cross-contract interactions, memory oper-
ations, and hash functions. Not properly supporting these three features leads to
1 https://github.com/ucsb-seclab/greed. 

https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed


278 N. Ruaro et al.

Fig. 1. Simplified Solidity code of the Executor contract. The contract parses a list 
of provided actions (calldata), interacts with the Dispatcher contract to fetch the 
router address, then interacts with the router and updates the respective interaction 
counter. . RED : requires a precise memory model. . YELLOW : requires cross-contract 
analysis. . GREEN : requires a precise SHA model. 

significant limitations in the engines’ analysis capabilities. For instance, in Fig. 1, 
we present a contract that – although seemingly simple – cannot be precisely 
analyzed without implementing the aforementioned analysis features. 

Cross-Contract Interactions. Ethereum allows smart contracts to CALL func-
tions of other contracts (Fig. 1: Line 27, Line 30), enhancing modularity and 
code reuse. However, interactions inherently increase the complexity of smart 
contracts and can introduce unexpected bugs. For instance, the external con-
tract might operate maliciously and inadvertently change its behavior. Without 
precise cross-contract analysis, it is impossible to detect vulnerabilities arising 
from such interactions. 

Memory Model. In the EVM, memory is a volatile, mutable storage area that 
exists only during the execution of a contract function. Any data stored in mem-
ory is freed once the execution terminates. Memory is efficient because it avoids
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the overhead of writing to persistent blockchain storage. This makes it suit-
able for intermediate calculations, temporary variables, and data manipulation 
within a function call. Nonetheless, modeling symbolic memory operations is 
challenging, and existing systems resort to approximations – such as the strate-
gic concretization of symbolic offsets and lengths. When a symbolic memory 
buffer (for example, the actions array on Line 23) is accessed (Line 25), it is 
undeniably convenient to concretize its length. However, this prevents the sys-
tem from detecting vulnerabilities that arise from different configurations. For 
example, the Executor contract reverts unless we provide an array with at least 
two actions – since the variable routerCallCounts is incremented at most once 
per array element. 

Hash Functions. Handling cryptographic hash functions (SHA) is crucial due 
to their pervasive use by dynamic data types – such as arrays and mappings. In 
Solidity, fixed-size data types have predetermined slots in persistent storage, but 
dynamic data types grow during execution. To manage this, Solidity computes 
storage slot offsets dynamically using hash computations: First, all array and 
mapping variables are assigned a “base slot”. Then, the storage slot for an array 
element with index i is calculated as SHA(base_slot) + i. Similarly, the storage 
slot for a mapping element with key key is calculated as SHA(key, base_slot). 
Accurately modeling these hash computations is essential for recognizing data 
storage patterns (e.g., Line 32 and Line 35) and detecting vulnerabilities related 
to data access and manipulation. 

2.2 Beyond the State-of-the-Art 

Robust basic analysis features provide a necessary foundation for smart contract 
analysis. However, these capabilities alone are insufficient for thoroughly analyz-
ing modern, complex blockchain applications with evolving attack vectors. We 
argue that it is essential to complement basic analysis features with support-
ing techniques such as static analysis and exploration strategies. Static analysis 
techniques – such as control-flow graph recovery and dependency tracking – 
can isolate critical code regions where vulnerabilities are most likely to reside. 
Exploration strategies – such as directed search – allow directing the symbolic 
execution engine toward (previously identified) critical code regions to verify 
the presence (or absence) of vulnerabilities. Rather than exhaustively explor-
ing all paths, exploration strategies allocate resources to areas with a higher 
likelihood of revealing subtle bugs, thus addressing long-standing challenges like 
state explosion. In the following sections, we present our approach to integrating 
advanced analysis features in our symbolic execution framework. 

3 Practical Symbolic Execution with GREED 

Figure 2 shows an overview of Greed’s architecture. Greed exposes several 
interfaces that enable both static and dynamic analysis. Initially, the contract



280 N. Ruaro et al.

Fig. 2. Overview of Greed. The  project object exposes static information. The 
simulation manager tracks all execution states and allows one to manipulate them. 
The states store the execution environment and additional context. 

is pre-processed using the Gigahorse static analysis framework [ 20, 21]. The con-
tract’s intermediate representation (organized in functions, blocks, and state-
ments) is stored in a project object. The project exposes an interface to all 
available static analyses (e.g., CFG, Slicing). During execution, the simulation 
manager orchestrates all the execution states, which are organized in “stashes” 
that indicate whether they are active, pruned, suspended, etc. The simulation 
manager also accepts various exploration strategies. At a high level, explo-
ration strategies allow one to programmatically manipulate the execution states 
and determine which state should be executed next – or which states are uninter-
esting to explore. Each state represents a snapshot of the execution at a specific 
program location, which stores both the execution environment and additional 
context. This is where the basic analysis features live (see Sect. 2.1). Finally, 
state plugins track additional context (e.g., SHA operations and constraints) 
that allows for checking the satisfiability of an execution state. The modularity 
of Greed allows one to easily write new static analyses, exploration strategies, 
and state plugins – or experiment with different memory models and solvers. 

3.1 Static Analysis 

Greed operates on the Gigahorse IR, which provides its foundational static 
analysis capabilities: decompilation, IR lifting, constant folding, basic control-
flow and data-flow modeling, and loop analysis. This allows Greed to instead 
focus on advanced static analyses (e.g., backward and forward program slic-
ing, reachability analysis) and symbolic execution, which are highly valuable 
for building complex security tools. Below, we discuss some examples of static 
analyses available in Greed.
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Control-Flow Graph (CFG). Gigahorse provides state-of-the-art CFG and 
call-graph reconstruction for EVM bytecode. This is automatically available in 
Greed. The CFG encodes control-flow relationships, enabling reasoning about 
reachability between statements. For instance, this is essential for directing the 
execution toward a desired statement. 
Data-Flow Graph (DFG). Similarly, Gigahorse also provides state-of-the-art 
DFG reconstruction. The DFG captures data dependencies, allowing one to track 
how variables are assigned and manipulated throughout the contract. 
Reachability. Greed’s reachability analysis allows one to automatically deter-
mine whether an execution path might exist between two program points. For 
blocks within the same function, Greed directly analyzes their relationships in 
the CFG. For blocks in different functions, Greed identifies possible sequences 
of function calls that connect them. When available, Greed also examines the 
call stack to identify additional paths that connect the two program points. 
Program Slicing. Leveraging the CFG and DFG, Greed can calculate a “slice” 
of statements that affect (backward) or are affected by (forward) a given vari-
able. For instance, this is essential for implementing under-constrained execution, 
which enables an approximate but lightweight analysis of local properties. 

3.2 Exploration Strategies 

Exploration strategies allow for the orchestration of execution states and typi-
cally employ a combination of state pruning, prioritization, and manipulation. 
Pruning allows one to discard states that are unfit for the desired analysis goals. 
Prioritization allows one to prioritize the exploration of certain states. Manipu-
lation allows one to alter (the execution environment of) certain states. Below, 
we discuss some examples of exploration strategies available in Greed. 
Directed Search. Directed search is an example of an exploration strategy 
that can leverage both state pruning and prioritization to direct the symbolic 
execution toward a desired (target) statement. This strategy is supported by 
a CFG-driven reachability analysis. States closest to the target statement are 
prioritized. States unfit to reach the target statement are (optionally) discarded. 
This allows one to focus the analysis on specific execution paths that are relevant 
to a desired property. 
Under-Constrained Search. Under-constrained search allows executing arbi-
trary program slices by first creating a symbolic state at a specific program loca-
tion and then manipulating the execution states to manage undefined behavior. 
First, Greed creates a symbolic execution state at the first program location in 
the slice. Then, the under-constrained search rewrites all undefined variables to 
assign them fresh 256-bit symbolic variables. Optionally, the under-constrained 
search can guide (force) the execution along a predetermined, statically observed 
path – even if that path is unfeasible in a fully constrained context. This allows 
one to effectively study the (security) properties of arbitrary program slices with-
out incurring the overhead of fully-constrained symbolic execution.
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Loop Limiting. Loop limiting is an essential technique for mitigating state 
explosion during symbolic execution. In Greed, a counter-based strategy mon-
itors the number of times a given program point is reached. Once a predefined 
threshold is exceeded, we prune the corresponding execution state. This approach 
effectively controls redundant loop iterations, ensuring that excessive unrolling 
does not overwhelm the analysis. 

State Monitoring and Rewriting. State rewriting enables the dynamic mod-
ification of execution states to incorporate external information – such as con-
crete execution data, observed blockchain states, or freshly generated symbolic 
variables. Through this process, one can refine the analysis context to reflect 
relevant properties or to simulate any desired execution state. For example, a 
symbolic variable representing an asset’s price can be replaced with its actual 
value retrieved from a live oracle, thereby allowing the analysis to mirror realistic 
market conditions. Additionally, by coupling state rewriting with state monitor-
ing, Greed can collect valuable metrics (e.g., constraint-solving time) that can 
be used to identify or prune paths with a desired property – for example, com-
putationally expensive paths. 

Selective Concretization. Selective concretization is an example of state 
manipulation, where a heuristic determines whether any environment variable 
should be concretized. This is helpful to enforce a specific property (“the value 
of variable X must be exactly 42 to trigger the vulnerability”) or to simplify 
the analysis when the constraints are too complex (at the cost of possible false 
negatives). 

Classic Prioritization. Depth-first search (DFS) and breadth-first search 
(BFS) are classic examples of state prioritization. Execution states are never 
pruned. Instead, a heuristic determines which states should be explored first. In 
DFS, deep execution states are explored first. In BFS, shallow execution states 
are explored first. Exhaustive strategies such as BFS or DFS are often imprac-
tical for large contracts. In fact, even simple loops or repeated subroutine calls 
can rapidly inflate the state space. For this reason, exhaustive search strategies 
are often paired with additional strategies for state pruning. 

3.3 Additional Analysis Features and Implementation Details 

In the following paragraphs, we discuss important implementation details beyond 
the analysis features detailed above. 

– Cross-contract interactions: To handle cross-contract interactions, 
Greed defaults to concretizing both the target address and the parame-
ters of the CALL instruction. This allows approximating the execution state 
without incurring the overhead of symbolically executing an external (pos-
sibly undetermined) contract. Nonetheless, Greed can be easily configured 
to support fully symbolic CALL parameters – in fact, this feature (symbolic 
cross-contract interactions) has been used in the context of other academic 
works.
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– Memory and storage modeling: Greed implements a precise memory 
model [ 16] that tracks EVM memory as a byte-addressable array supporting 
symbolic reads, writes, and memcopy-style operations. Our design employs an 
instantiation-based approach, where memory updates are lazily instantiated 
(on demand) during reads. To avoid redundant constraint instantiation, we 
also integrate a caching mechanism such that when a read is performed at a 
concrete address, the corresponding value (indexed by both the address and 
read width) is cached. For storage, Greed uses a hybrid model based on array 
theory, treating storage as an array of 256-bit words keyed by either concrete 
or symbolic values. Optionally, concrete storage reads (SLOADs) can retrieve 
actual on-chain data at a specified block number, and our design allows the 
use of these concrete values in symbolic operations. 

– Hash functions: We employ a two-phase strategy for handling symbolic 
hash operations such as SHA. During symbolic execution, SHA instructions 
are captured as symbolic expressions that record the input parameters (off-
set, size, and memory contents) in order. When operating in “greedy” mode, 
Greed first attempts to concretize these parameters. If a unique solution is 
found, Greed computes its SHA hash value [ 2] and adds constraints that link 
the symbolic expression to this concrete value. Otherwise, it instantiates Ack-
ermann constraints [ 5] to link multiple SHA operations as non-interpretable 
functions. After execution, a dedicated resolver plugin steps through the 
observed SHA operations in chronological order and fixes their outcomes by 
re-evaluating the memory and enforcing the appropriate constraints. 

– Solver integration: Greed interfaces with an SMT solver – by default, 
Yices [ 14] – to query the satisfiability of path constraints. As with most 
components in our architecture, alternative SMT solvers can be substituted. 
During development, we evaluated various solvers, such as Z3 [ 11] and Boolec-
tor [ 8] – and found that Yices consistently offered the best performance. 

Finally, as briefly mentioned above, Greed also offers high-level APIs for 
implementing custom vulnerability checks, exploration strategies (for state prun-
ing, prioritization, and manipulation), and domain-specific analyses, simplifying 
the development of new smart contract security tools. 

4 Evaluation 

We evaluate the performance, analysis features, and versatility of Greed 
through a series of experiments. First, we qualitatively compare its analysis capa-
bilities against existing systems (see Table 1), highlighting comprehensive sup-
port for basic analysis features, static analysis, and advanced exploration strate-
gies. Second, we quantitatively compare Greed’s targeted exploration capabili-
ties against other state-of-the-art systems. Our results show that Greed reaches 
significantly more (10x) CALL statements in a sample of (randomly chosen) smart 
contracts. Third, we study the effect of different configuration settings on the 
performance of Greed. Finally, to demonstrate the extensibility of Greed, we
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Table 1. Comparison of the features of existing systems. Not implemented. Par-
tially implemented. Fully implemented. 

Tool CROSS MEM HASH STATIC API 

Oyente [ 24] 
Maian [ 26] 
teEther [ 23] 
Manticore [ 25] 
Mythril [ 10] 
EthBMC [ 18] 
Greed 

implement a novel analysis to detect controllable JUMPI instructions. Greed 
identifies 390 previously unknown vulnerable contracts on Ethereum and BSC. 

Experimental Setup. For all our experiments, we use a server equipped with 
512GB of RAM and dual Intel Xeon Gold 6330 CPUs. We use GNU Paral-
lel [ 34] to parallelize our tasks, and always limit each task to 5GB of RAM and 
60 s of CPU time. We compare against the latest available version of all tools 
at the time of writing: Maian [ 26] at commit 3965e30, teEther [ 23] at com-
mit 04adf56, Manticore [ 25] at commit 8861005, Mythril [ 10] at commit  
125914a, and  EthBMC [ 18] at commit e887f33. Notably, integrating Maian 
in our evaluation environment required significant modifications – due to syn-
tax errors, broken dependencies, and missing implementations for several key 
opcodes. Similarly, we were unable to run Oyente [ 24] in our environment, and 
thus, we have excluded it from our evaluation. 

4.1 Analysis Features 

In Table 1, we show a comparison between existing systems and Greed, with  
a focus on basic analysis features (similar to Frank et al. [ 18]), availability of 
static analyses, and availability of a high-level API to develop ad hoc static and 
dynamic analyses. In our comparison, we only include symbolic execution tools 
that are both publicly available and operate on EVM bytecode – even in the 
absence of source code. 

Cross-Contract Interactions. Greed, Manticore, Mythril, and  
EthBMC are the only systems that support some form of cross-contract anal-
ysis. Manticore and Mythril only support CALL instructions with concrete 
(or concretized) parameters. Greed also supports concrete CALL parameters 
and handles symbolic parameters through concretization. Nonetheless, Greed 
can be configured to handle fully symbolic parameters (see Sect. 3.3). EthBMC 
supports concrete or fully symbolic CALL parameters. 

Memory Model. Maian supports symbolic memory reads (not writes). 
teEther, Manticore, and  Mythril support simple symbolic memory 
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Table 2. Number (Percentage) of reached CALL instructions across different analysis 
tools. We run each system for 60 s (per contract) to assess its exploration capabilities, 
highlighting the coverage differences. 

Small Medium Large Total 

Maian a 127 (13%) 20 (2%) 4 (0%) 151 (5%) 
teEther 247 (25%) 58 (6%) 1 (0%) 306 (10%) 
Manticore 157 (16%) 14 (1%) 2 (0%) 173 (6%) 
Mythril 294 (29%) 118 (12%) 12 (1%) 424 (14%) 
EthBMC 224 (22%) 87 (9%) 31 (3%) 342 (11%) 
Greed 960 (96%) 821 (82%) 745 (75%) 2,526 (84%) 
a Integrating Maian in our evaluation environment 
required significant modifications. 

operations, but must concretize all symbolic memcopy-like operations (e.g., 
CALLDATACOPY). Oyente does not support any memcopy-like operation. Greed 
and EthBMC implement a precise memory model [ 16] and can handle symbolic 
memory reads, writes, and memcopy-style operations. As discussed in Sect. 3.3, 
Greed also implements a caching mechanism to avoid redundant constraint 
instantiation. 

Hash Functions. Maian, teEther, and  Mythril support the hashing of 
memory buffers with fully concrete offsets, lengths, and values. Oyente does not 
support symbolic hashing operations, and approximates the result of concrete 
hashing operations. Greed, Manticore, and  EthBMC support the hashing 
of arbitrary (symbolic or concrete) memory buffers. 

Static Analysis. To complement our robust basic analysis features, Greed 
integrates advanced static analyses that allow us to focus symbolic execution 
on critical code regions. Greed inherits a number of static analyses from Giga-
horse [ 20, 21] (e.g., CFG recovery) and implements additional static analyses 
(such as program slicing). Among the other tools, only teEther incorporates 
static analysis – specifically, CFG recovery and backward slicing. 

High-Level APIs. Finally, Greed is the only system that offers a high-level 
API to develop ad hoc static and dynamic analyses. Greed also offers a number 
of (built-in) exploration strategies such as directed search, loop limiting, state 
rewriting, and selective concretization. 

4.2 Exploration Capabilities 

While existing systems excel at detecting specific vulnerabilities, they prove lack-
ing when evaluated on slightly different tasks. We demonstrate the performance 
of Greed with a basic code reachability experiment. First, we select a target 
smart contract with a CALL statement . x. Then, we alter all existing systems to 
simply emit a report and terminate when successfully executing (reaching) the 
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chosen statement . x. To do this, we leverage the ability of Maian, teEther, 
and EthBMC to detect “prodigal” contracts – i.e., CALL statements with posi-
tive Ether value and controllable target address [ 26]. We (slightly) modified that 
analysis so that when a CALL statement is reached, instead of verifying the prodi-
gal property, we just check whether the instruction address matches that of the 
chosen statement . x. If so, the analysis simply terminates. Similarly, we modify 
the execution engine of Manticore and Mythril to terminate when executing 
the chosen statement . x. As mentioned above, we were unable to run Oyente 
in our environment, and thus, we excluded it from our qualitative evaluation. 
Finally, we run Greed in its default configuration (with directed search). 

We evaluate all tools on a sample of 3,000 (randomly chosen) Ethereum 
contracts 2 and report our findings in Table 2. In summary, we find  that  Greed 
outperforms all existing tools, reaching 84% of all CALLs – whereas others reach 
9% on average. We attribute the performance gap observed in related work 
to a combination of (1) limited basic analysis features and (2) lack of (robust) 
exploration strategies. In fact, existing systems perform reasonably well on small 
contracts but struggle to handle the complexity of larger contracts. For example, 
teEther is the only system with a (CFG-driven) exploration strategy, but its 
CFG recovery often fails on larger contracts. Moreover, we observe that all tools 
have several failures related to misimplemented instructions and mishandling of 
external or symbolic data. For example, teEther discards any execution path 
that includes instructions such as RETURNDATACOPY or RETURNDATASIZE, whereas  
Maian fails to model instructions such as SELFBALANCE. 

4.3 Ablation Study 

In the following paragraphs, we study the effect of different analysis configura-
tions on the performance of Greed. In its default configuration, Greed uses full 
support for symbolic memory operations (including read, write, and memcopy-
like operations), symbolic hash operations, and a directed search strategy that 
uses prioritization – without pruning. 

Directed Search. Table 3 shows the number of reached CALL instructions under 
different directed search configurations. Disabling pruning (while keeping prior-
itization active) results in a slight increase in reached targets across all contract 
sizes (from 958 to 960 for small contracts, from 780 to 821 for medium contracts, 
and from 708 to 745 for large contracts). We attribute this to imprecisions in 
the recovered control-flow graph that may incorrectly rule out reachable tar-
gets: When this happens, the lack of pruning allows Greed to explore these 
additional paths. However, this gain comes with an increased memory footprint 
(rising from an average of 180MB to 260MB per contract). In contrast, disabling 
prioritization leads to a notable drop in performance, as the execution engine 
wastes resources exploring paths that are farther from the target state. When 
2 We compute the size distribution of all deployed contracts and sample 1,000 small 

contracts (smallest 25%), 1,000 medium contracts, and 1,000 large contracts (largest 
25%) with distinct code. 
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Table 3. Number of reached CALL instructions under different directed search config-
urations. Disabling pruning yields a slight coverage increase but raises memory usage, 
whereas disabling prioritization leads to a notable drop in performance – more pro-
nounced in large contracts. 

Prioritization No Prioritization 
S | M | L S | M | L  

Pruning 958 | 780 | 708 953 | 745 | 646 
No Pruning 960 | 821 | 745 947 | 513 | 352 

Table 4. Comparison of the number of reached CALL instructions under different mem-
ory model configurations. Using a concrete memory model results in faster analysis 
times at the cost of decreased precision. Our caching layer allows for boosting perfor-
mance without compromising precision. 

Symbolic Memory Concrete Memory 
S | M | L S | M | L  

Memory Cache 960 | 821 | 745 937 | 866 | 757 
No Memory Cache 912 | 707 | 633 925 | 745 | 720 

both pruning and prioritization are disabled, the deterioration in performance is 
even more pronounced, especially for medium and large contracts. Importantly, 
even in this worst-case configuration, Greed still outperforms all other tools by 
a wide margin. 

Memory Model. We further investigate the impact of our precise symbolic 
memory model on Greed’s performance by replacing it with (gradually) sim-
plified variants – that is, disabling our caching layer and symbolic memory oper-
ations. We observe that disabling our caching layer results in a sharp drop in 
analysis performance across all contract sizes, although this is more evident in 
larger contracts. As detailed in Table 4, disabling our symbolic memory model 
(and instead using a concrete one) results in a modest overall boost in perfor-
mance. We observe that, although approximating symbolic memory operations 
with their concrete counterparts may result in faster analysis times, this comes 
at the cost of a much-decreased analysis accuracy. In fact, we argue that Greed 
achieves the best analysis results by combining our symbolic memory model with 
our caching layer: this configuration yields robust performance without compro-
mising analysis accuracy. 

Hash Functions. We find that disabling our precise handling of (symbolic) 
hash operations results in a slight boost in analysis performance (from 960 to 
962 for small contracts, from 821 to 824 for medium contracts, and from 745 to 
755 for large contracts). Similar to the observations above, while approximating 
hash operations might result in faster analysis times, this comes at the cost of a 
much-decreased analysis accuracy. 
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Fig. 3. Simplified Python code for the controllable JUMPI analysis. 

Cross-Contract Interactions. Finally, in the context of this experiment, our 
reachability analysis stops when it encounters an external interaction (CALL). 
Therefore, any configuration change in our handling of external interactions does 
not lead to any change in performance. 

Overall, our results underscore the importance of incorporating advanced 
analysis features – such as exploration strategies and a precise symbolic memory 
model – in Greed. We observe that while disabling pruning can reveal addi-
tional reachable targets, prioritization is essential to guide the search efficiently 
and keep the state space manageable. Similarly, our precise memory model and 
caching layer enable Greed’s accurate analysis of complex memory operations, 
thus contributing to its overall superior performance. 

4.4 Detecting Controllable JUMPIs 

In this section, we demonstrate that Greed can be easily tailored to novel secu-
rity analyses. To this end, we implement a novel analysis to detect controllable 
JUMPI instructions – i.e., conditional JUMP instructions. A controllable JUMPI 
allows an attacker to hijack the program counter, and thus take control of the 
program execution. This vulnerability has been recently reported [ 37] in a highly  
profitable MEV bot and could have resulted in hundreds of thousands of US dol-
lars of financial damage. We implement this analysis in 50 lines of Python code. 
Figure 3 presents the core of our analysis script. 

First, we (statically) inspect all contract statements to identify any JUMPI 
instructions with a non-constant destination (target) addresses. This lightweight 
analysis reduces the number of contracts in scope from 4.1M (all contracts with 
distinct bytecode across Ethereum and BSC) to 1,141. We symbolically execute 
these contracts and use directed search to reach the target statement. We add 
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additional constraints to enforce that (1) the guarding condition for the JUMPI 
instruction is satisfied, and (2) the JUMPI destination is controllable. If our engine 
reaches the JUMPI instruction and the two aforementioned constraints are satis-
fied, we synthesize a concrete attack and verify it against a private fork of the 
respective chain. We evaluate our analysis on all deployed contracts in Ethereum 
and BSC and identify 134 and 256 previously unknown vulnerabilities, respec-
tively, as well as one known vulnerability [ 37]. We manually confirmed that 130 
of the 134 Ethereum contracts are still vulnerable at the time of writing (block 
22,279,016). Three of the contracts were vulnerable in the past but have since 
been destructed and redeployed. One of the contracts contains an invalid JUMPI 
destination derived from a memory operation that does not appear to be con-
trollable. We confirmed that all 256 BSC contracts are still vulnerable at the 
time of writing (block 48,398,024). We reported all issues to the Cybersecurity 
and Infrastructure Security Agency [ 9]. 

5 Case Studies 

In this section, we illustrate how Greed has been successfully applied to build 
advanced program analysis systems for Ethereum smart contracts. We focus 
on two representative case studies: (a) detecting confused deputy vulnerabilities 
and (b) detecting storage collision vulnerabilities. Both studies leverage Greed’s 
symbolic execution capabilities – augmented with domain-specific rules – to ana-
lyze real-world contracts at scale and automatically generate proof-of-concept 
exploits. 

5.1 Detecting Confused Deputy Vulnerabilities 

Confused deputy vulnerabilities occur when an attacker hijacks a smart con-
tract’s privileged operations via an inter-contract call (e.g., CALL) that is not  
intended to handle untrusted input. This can lead to unauthorized actions such 
as transferring assets or modifying critical state variables. For example, the 
TradingBot contract in Fig. 4 exposes a public execute function that forwards 
untrusted input directly to any target contract. As a result, an attacker can craft 
a transaction that redirects this call to the Token contract’s transfer function, 
effectively leveraging the TradingBot’s identity (and privileges) to initiate unau-
thorized asset transfers. 

Implementation Overview. While we provide a high-level summary of the 
approach here, the complete system, Jackal, is detailed in a separate paper [ 22]. 
Jackal is built on top of Greed’s core symbolic execution engine and incorpo-
rates several analysis stages tailored to detecting confused deputy vulnerabilities: 

– Confused Contract Discovery. Jackal leverages directed symbolic exe-
cution to inspect inter-contract calls where untrusted input might influence 
(control) the target address or function selector. As a result, contracts with 
controllable CALL instructions are flagged as confused contract “candidates.” 
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Fig. 4. Simplified Solidity code of the TradingBot and Token contracts. The Trading-
Bot contract is vulnerable to a confused deputy attack. 

– Target Contract Discovery. For each confused contract candidate, Jackal 
examines historical blockchain transactions to identify interesting external 
interactions and determines whether such interactions could lead to state 
modifications (e.g., via SSTORE) that exploit the confused contract’s iden-
tity. When Jackal determines that an external interaction could lead to 
the exploitation of the confused contract’s identity, the respective external 
contract is flagged as a “target” contract. 

– Exploit Generation. For each target contract, Jackal leverages Greed 
to synthesize a transaction that forces the confused contract to invoke sensi-
tive functions in the target contract, thereby demonstrating the exploit. The 
synthesized transaction is then replayed in a local blockchain simulator to 
confirm that the attack does not unexpectedly revert. 

Through these stages, Jackal enables end-to-end detection and exploitation 
of confused deputy vulnerabilities. Jackal’s analysis of over 2.3 million smart 
contracts identified 529 vulnerable instances and synthesized 31 working end-
to-end exploits. All 31 exploits have been manually verified, demonstrating that 
attackers could potentially compromise digital assets valued at over one million 
US dollars. 

5.2 Detecting Storage Collision Vulnerabilities 

Storage collision vulnerabilities arise in proxy-based architectures, where 
a “proxy” contract delegates calls to separate “logic” contracts via the 
DELEGATECALL instruction. In this context, although the proxy and logic con-
tracts execute independently, they both share the same underlying persistent 
storage. As a result, when the two contracts have conflicting interpretations of 
their storage slots, they might inadvertently overwrite such slots with the wrong 
value. This allows an attacker to overwrite privileged variables, potentially lead-
ing to unauthorized access (privilege escalation) and loss of funds. For example, 
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Fig. 5. Simplified Solidity code of the Proxy and Logic contracts. The interaction of 
such contracts results in a storage collision. 

in Fig. 5, the  Proxy contract reserves storage slot zero for its implementation 
variable. Instead, the Implementation contract reserves the same storage slot 
for its owner variable. As a result, when the Proxy delegates a call (Line 6) 
to the Implementation’s setOwner function, the owner value overwrites the 
implementation variable in the Proxy contract, leading to a storage collision. 

Implementation Overview. While we provide a high-level summary of the 
approach here, the complete system, Crush, is presented in a separate paper [ 28]. 
Crush builds on Greed to automatically detect and exploit storage collision 
vulnerabilities through the following analysis stages: 

– Component Discovery. Crush analyzes on-chain transactions to identify 
clusters of contracts – namely, proxies and their corresponding logic contracts 
– that interact via  DELEGATECALL. 

– Collision Discovery. For each pair of proxy-logic contracts, Crush lever-
ages Greed to symbolically execute their bytecode and infer the type of 
their storage variables. More precisely, after identifying all SLOAD and SSTORE 
instructions, Crush leverages (1) Greed’s backward slice analysis to deter-
mine how each storage slot is computed and (2) Greed’s forward slice anal-
ysis to deduce the accessed byte ranges. Then, Crush compares the inferred 
types of the proxy and logic contracts to detect collisions. 

– Exploit Generation. Once a collision is detected, Crush verifies whether an 
attacker can exploit it by writing to a critical slot in one contract and reading 
it in another. To do this, Crush leverages Greed to synthesize concrete 
transactions that demonstrate the exploit. 

By leveraging Greed’s precise modeling of EVM instructions and storage 
access patterns, Crush uncovered critical storage collision vulnerabilities. These 
vulnerabilities could have led to serious incidents in practice: Crush’s analysis 
of over 14 million smart contracts identified 14,891 vulnerable instances and 
synthesized 956 working end-to-end exploits. All profitable exploits have been 
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manually verified, demonstrating that attackers could potentially compromise 
digital assets valued at over 6 million US dollars. 

6 Discussion and Limitations 

Greed inevitably inherits some limitations that arise from our design choices. 
First, we choose to build Greed directly on top of Gigahorse’s IR, rather than 
extending an existing binaryâĂŞanalysis framework – such as angr [ 30]. This 
decision significantly simplifies our modeling of blockchain-specific concepts – 
e.g., blockchain state, transactions, persistent storage, cross-contract interac-
tions. However, it also implies that sophisticated analyses that already exist 
in other frameworks, such as taint analysis, are not available out-of-the-box in 
Greed and must be re-implemented. While this creates unfortunate duplication 
of effort in the short term, it ultimately enables a more flexible, extensible, and 
research-friendly framework for smart contract security analysis. 

Second, Greed’s reliance on Gigahorse’s intermediate representation (IR), 
provides robust static analysis capabilities, but makes Greed’s effectiveness 
partly dependent on Gigahorse’s accuracy. For example, inaccuracies such as 
missing JUMP destinations can cause pruning of paths that are in fact reach-
able. In Sect. 4.3 we show that this occasionally happens in practice: For some 
contracts, disabling pruning yields marginal coverage gains at the cost of a sharp 
increase in memory usage. Although we limit this dependency to well-tested fea-
tures of Gigahorse (lifting, constant folding, and control-flow analysis), it remains 
a potential source of inaccuracies. 

Other Limitations. Beyond the limitations discussed above, Greed shares 
modeling limitations common to similar symbolic execution systems. First, our 
handling of gas costs is deliberately simplified and may potentially miss vul-
nerabilities that arise from gas-specific behaviors. Second, by default, Greed 
employs a simplified handling of CALL instructions, which may miss vulnerabil-
ities that require symbolic modeling of contract interactions. Additionally, the 
blockchain state (e.g., block number, timestamp, difficulty) remains symbolic by 
default, although one can optionally constraint such a state to actual (concrete) 
values when needed for more precise analysis. Addressing the aforementioned 
limitations, including the modeling of gas costs and cross-contract interactions, 
presents promising avenues for future research. 

7 Related Work 

Static Analysis. Early research in smart contract security focused on static 
analysis of the source code. Tools such as SmartCheck [ 35] and Slither [ 17] detect 
common vulnerabilities (e.g., re-entrancy, integer overflows) by scanning Solidity 
source code using rule-based approaches, offering quick insights to developers. 
Their availability and ease of use lowered the barrier for preliminary security 
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audits. For example, Slither converts Solidity code into an intermediate repre-
sentation for detailed data-flow and control-flow analysis, providing both vul-
nerability detection and potential code optimization insights. 

In parallel, other efforts focused on direct analysis of EVM bytecode. Brent 
et al. proposed Vandal [ 7] and Ethainter [ 6], two tools that perform control-
flow and data-flow analyses post-compilation, enabling insight even when source 
code is unavailable. In a similar vein, Grech et al. proposed Gigahorse [ 20] and  
Elipmoc [ 21] – a decompilation  framework for  EVM bytecode  that  also  provides  
several rule-based vulnerability analyses. However, these tools often rely on fixed 
heuristics – such as rigid slicing rules or pattern matching – which may be 
insufficient to fully capture complex state interactions during execution. 

Formal Verification. To provide stronger correctness guarantees, researchers 
have developed verification frameworks for smart contracts. For instance, Secu-
rify [ 36] operates on EVM bytecode and extracts predicates via a domain-specific 
language to capture compliance and violation patterns. Similarly, eThor [ 29] 
frames safety specifications in terms of reachability and uses an off-the-shelf 
SMT solver to reason about property violations. On the Solidity side, VerX [ 27] 
employs symbolic execution with induction and predicate abstraction to verify 
safety properties across multiple transactions, while VeriSmart [ 32] focuses  on  
arithmetic safety through counterexample-guided invariant refinement. Extend-
ing these approaches further, Stephens et al. [ 33] incorporate liveness specifi-
cations to broaden the range of verifiable properties. Although these methods 
promise high-assurance security, they often incur significant engineering over-
head, limiting their widespread adoption. 

Symbolic Execution. Symbolic execution has emerged as a powerful technique 
for systematically exploring a contract’s execution paths. One of the pioneer-
ing systems in this area, Oyente [ 24], demonstrated that symbolically execut-
ing EVM bytecode could effectively uncover vulnerabilities such as re-entrancy 
and transaction-ordering dependence. Mythril [ 10] is a symbolic execution-based 
tool that detects issues including integer overflows, unhandled exceptions, and 
unprotected self-destruct instructions. Similarly, Teether [ 23] and Maian [ 26] 
also leverage symbolic execution to identify vulnerable states. Manticore [ 25] 
and EthBMC [ 18] further advanced the state-of-the-art by integrating precise 
memory models and supporting cross-contract analysis. Nonetheless, Manticore 
does not integrate static analysis techniques – such as control-flow graph recov-
ery or program slicing – limiting its ability to dynamically target critical code 
regions. Similarly, although EthBMC supports fully symbolic handling of cross-
contract calls and a precise memory model, its monolithic design enforces rigid 
exploration strategies, making it difficult to extend to novel attack vectors. 

In contrast to approaches that rely exclusively on static or dynamic meth-
ods, our framework Greed integrates static analyses (such as control-flow graph 
recovery and program slicing) with a flexible suite of symbolic exploration strate-
gies – including directed search, loop limiting, state rewriting, and selective con-
cretization. This unified approach preserves the core advantages of existing sys-
tems while adapting more readily to novel attack vectors. 
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8 Conclusion 

We introduce Greed, a versatile open-source symbolic execution framework for 
EVM-based smart contracts. Greed addresses the limitations of existing tools 
by providing a novel combination of analysis techniques, including both a state-
of-the-art SE engine and a suite of supporting analyses. Our experiments show 
that Greed reaches significantly more (10x) CALL statements in a sample of (ran-
domly chosen) smart contracts. As a result, Greed enables more efficient path 
exploration – and superior flexibility – without compromising on the accuracy of 
the analysis. To demonstrate Greed’s flexibility and ease of use, we implement 
a novel analysis to detect controllable JUMP instructions and evaluate it against 
all contracts in Ethereum and BSC [ 3], identifying 390 previously unknown vul-
nerable contracts. By releasing Greed to the community, we aim to lower the 
barrier to developing advanced security analyses for smart contracts, empowering 
security researchers to contribute to a more secure blockchain ecosystem. 
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