®

Check for
updates

A History of GREED: Practical Symbolic
Execution for Ethereum Smart Contracts

Nicola Ruaro®™ Fabio Gritti, Robert McLaughlin, Dongyu Meng,
Ilya Grishchenko, Christopher Kruegel, and Giovanni Vigna

University of California, Santa Barbara, Santa Barbara, CA, USA
{ruaronicola,degrigis,robert349,dmeng,grishchenko,chris,vigna}@ucsb.edu

Abstract. Smart contracts have transformed blockchain applications,
enabling decentralized computation and automated asset management
without intermediaries. However, with the growth of decentralized
finance, the high financial stakes make smart contract vulnerabilities
particularly critical. Because vulnerabilities often go undetected, they
lead to substantial losses and diminished trust in blockchain systems.

Symbolic execution has emerged as a powerful technique to uncover
subtle vulnerabilities by systematically exploring feasible execution paths.
However, most existing symbolic execution tools for smart contracts are
tailored to specific vulnerability patterns, making them unsuitable for
detecting new types of vulnerabilities. In this paper, we introduce GREED,
a highly versatile symbolic execution framework for Ethereum (or EVM-
based) smart contracts. GREED features a state-of-the-art symbolic exe-
cution engine coupled with a suite of supporting analyses and a modular
design that allows security researchers to prototype new analyses rapidly.

To evaluate the effectiveness and extensibility of GREED, we compare
it with the state-of-the-art. We first show that GREED can explore sig-
nificantly more code paths — reaching 84% of all CALL statements, as
opposed to 9% on average across existing tools. To demonstrate the ease
of use (and extensibility) of GREED, we then implement a novel analy-
sis to detect controllable JUMPI instructions and evaluate it against all
deployed contracts on Ethereum and Binance Smart Chain (BSC), iden-
tifying 390 previously unknown vulnerable contracts.

By releasing GREED to the community, we aim to lower the barrier to
developing advanced security analyses for smart contracts, empowering
security researchers to rapidly prototype new analyses and contribute to
a more secure and resilient blockchain ecosystem.

Keywords: Ethereum + Smart Contract - Symbolic Execution

1 Introduction

Ethereum [15] is a global, decentralized blockchain that enables the deployment
and execution of decentralized programs (smart contracts). Smart contracts are
immutable programs that run on the Ethereum Virtual Machine (EVM) and
are executed on demand by blockchain users. Smart contracts have transformed
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

M. Egele et al. (Eds.): DIMVA 2025, LNCS 15748, pp. 275-296, 2025.
https://doi.org/10.1007/978-3-031-97623-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97623-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-97623-0_17

276 N. Ruaro et al.

the way transactions are executed, enabling decentralized applications and auto-
mated asset management without intermediaries.

Ethereum (and other blockchains) have witnessed the explosive growth of
a new form of blockchain-based finance that is known as decentralized finance
(DeF1i) — a rich ecosystem of digital currencies, financial tools, and financial ser-
vices. Because of the exceptionally high stakes involved [12], identifying and fix-
ing vulnerabilities in smart contracts has become critical. Once deployed, smart
contracts cannot be easily patched, and exploits can lead to substantial financial
damage and loss of trust in blockchain systems [13]. Therefore, rigorous analysis
of smart contracts is necessary to ensure their security.

Symbolic execution [1] (SE) has emerged as a powerful technique for smart
contract analysis. SE systematically explores a contract in an emulated environ-
ment with symbolic variables representing possible (but unknown) inputs. As
the execution progresses, the SE system (or engine) tracks the state of the EVM
— e.g., program counter, stack, and memory. At specific points in the execu-
tion, the engine queries a constraint solver to determine whether a given state is
satisfiable — that is, whether each symbolic variable has a feasible concrete solu-
tion. When the execution reaches a conditional branch, and both the condition
and its negation are satisfiable, the execution path forks, and both branches are
explored separately. This enables the generation of concrete inputs that repro-
duce specific program behaviors, allowing one to uncover subtle bugs that might
evade traditional testing methods (e.g., fuzz testing).

Related Work. Over the years, many SE tools have been developed to detect
vulnerabilities in smart contracts. Some focus on the formal verification of spe-
cific properties [27,29,32,33,36]. For example, VERX [27] uses SE and induc-
tion proofs to study safety properties. Others identify known vulnerability pat-
terns [4,10,18,22-24,26,28,31]. For example, TEETHER [23] identifies contracts
that leak funds to arbitrary users. While existing tools have shown some suc-
cess in their respective domains, they suffer from two key limitations: First, the
symbolic execution engines of existing tools lack critical analysis features — for
instance, a precise memory model — that limit their effectiveness. Second, the
architecture of existing tools is typically designed around specific vulnerability
patterns, making it challenging to adapt them to new vulnerabilities and extend
their capabilities beyond the original scope.

Our Approach. In this paper, we introduce GREED, a highly versatile SE
framework designed for the analysis of EVM-based smart contracts. GREED
addresses the limitations of existing tools by providing a novel combination of
analysis techniques, including both a state-of-the-art SE engine and a suite of
supporting analyses. Unlike traditional tools (with a fixed set of predefined anal-
yses), GREED enables security experts to build new analyses tailored to their
needs. Our experiments show that GREED’s architecture allows for more effi-
cient path exploration — and superior flexibility — without compromising analysis
accuracy.

Practical Symbolic Execution for Ethereum Smart Contracts 277

We implemented GREED in approximately 10,000 lines of Python code and
released it as an open-source project!. GREED has been met with enthusiasm by
the community. After the open-source release, the project attracted hundreds
of new users (in terms of distinct project downloads, GitHub “stars”, and com-
munity contributions). We are also aware of several academic institutions and
corporations that are either actively using GREED or evaluating it for potential
use in their systems.

This paper makes the following contributions:

— We describe GREED, a highly versatile symbolic execution framework
designed for EVM-based smart contracts. GREED features a state-of-the-art
symbolic execution engine and a novel combination of analysis techniques
within a modular and extensible architecture, enabling security experts to
tackle complex security challenges.

— We compare GREED against the state-of-the-art and show that it can explore
significantly more code paths. GREED outperforms all existing tools, reaching
84% of all CALL statements, compared to 9% across alternatives (on average).

— To demonstrate the ease of adding additional security analysis, we imple-
ment a novel checker to detect controllable JUMPI instructions and evaluate
it against all contracts in Ethereum and BSC [3], identifying 390 previously
unknown vulnerable contracts.

2 Motivation

Existing symbolic execution systems focus on detecting known classes of vulner-
abilities. This specialization has led to two main limitations. First, existing sys-
tems often forego implementing comprehensive, robust analyses, opting instead
for a subset of features tailored to the targeted vulnerabilities. A precise imple-
mentation of all analysis features is sometimes unnecessary for individual security
analyses. For example, ERC20 tokens rarely interact with external contracts.
Thus, a full-fledged cross-contract analysis may be unnecessary for analyzing
ERC20 token contracts [19]. Second, in addition to the lack of analysis features,
many existing systems lack any underlying static analysis, such as control-flow
graph (CFQG) recovery. Yet, a balanced integration of static and dynamic analysis
is crucial for building sophisticated security tools. The absence of static analy-
ses makes extending and scaling existing systems (for instance, with exploration
strategies) inherently challenging. This underscores the necessity for a versatile
unified analysis framework that can be repurposed for complex, evolving security
analyses.

2.1 Basic Analysis Features

Modern smart contracts frequently use cross-contract interactions, memory oper-
ations, and hash functions. Not properly supporting these three features leads to

! https://github.com /ucsb-seclab/greed.

https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed

278 N. Ruaro et al.

pragma solidity ~0.8.0;

(S

struct Action {
address router;

5 bytes data;

6 }

8 contract Dispatcher {
9 address router = OxROUTER;

1 function set_router (Action action) public returns (Action) {
2 if (action.router == address(0)) {

3 action.router = router;

4 }

15 return action;

16 ¥

17}

18

19 contract Executor {

20 Dispatcher dispatcher = Dispatcher (0xDISPATCHER) ;
21 mapping (address => uint256) routerCallCounts;

22

23 function execute(Action[] memory actions) public {
24

25 for (uint256 i = 0; i < actions.length; i++) {

26

27 Action memory action = dispatcher‘set_router(actions[i]);
28

29

30 action.router.call(action.data);
31

32 routerCallCounts[action.router] += 1;
33 }
34

35 require (routerCallCounts[dispatcher.router] > 1);

36 }

57}

Fig. 1. Simplified Solidity code of the Executor contract. The contract parses a list
of provided actions (CALLDATA), interacts with the Dispatcher contract to fetch the
router address, then interacts with the router and updates the respective interaction
counter. |/ RED : requires a precise memory model. YELLOW : requires cross-contract

analysis. GREEN : requires a precise SHA model.

significant limitations in the engines’ analysis capabilities. For instance, in Fig. 1,
we present a contract that — although seemingly simple — cannot be precisely
analyzed without implementing the aforementioned analysis features.

Cross-Contract Interactions. Ethereum allows smart contracts to CALL func-
tions of other contracts (Fig.1: Line 27, Line 30), enhancing modularity and
code reuse. However, interactions inherently increase the complexity of smart
contracts and can introduce unexpected bugs. For instance, the external con-
tract might operate maliciously and inadvertently change its behavior. Without
precise cross-contract analysis, it is impossible to detect vulnerabilities arising
from such interactions.

Memory Model. In the EVM, memory is a volatile, mutable storage area that
exists only during the execution of a contract function. Any data stored in mem-
ory is freed once the execution terminates. Memory is efficient because it avoids

Practical Symbolic Execution for Ethereum Smart Contracts 279

the overhead of writing to persistent blockchain storage. This makes it suit-
able for intermediate calculations, temporary variables, and data manipulation
within a function call. Nonetheless, modeling symbolic memory operations is
challenging, and existing systems resort to approximations — such as the strate-
gic concretization of symbolic offsets and lengths. When a symbolic memory
buffer (for example, the actions array on Line 23) is accessed (Line 25), it is
undeniably convenient to concretize its length. However, this prevents the sys-
tem from detecting vulnerabilities that arise from different configurations. For
example, the Executor contract reverts unless we provide an array with at least
two actions — since the variable routerCallCounts is incremented at most once
per array element.

Hash Functions. Handling cryptographic hash functions (SHA) is crucial due
to their pervasive use by dynamic data types — such as arrays and mappings. In
Solidity, fixed-size data types have predetermined slots in persistent storage, but
dynamic data types grow during execution. To manage this, Solidity computes
storage slot offsets dynamically using hash computations: First, all array and
mapping variables are assigned a “base slot”. Then, the storage slot for an array
element with index i is calculated as SHA (base_slot) + i.Similarly, the storage
slot for a mapping element with key key is calculated as SHA (key, base_slot).
Accurately modeling these hash computations is essential for recognizing data
storage patterns (e.g., Line 32 and Line 35) and detecting vulnerabilities related
to data access and manipulation.

2.2 Beyond the State-of-the-Art

Robust basic analysis features provide a necessary foundation for smart contract
analysis. However, these capabilities alone are insufficient for thoroughly analyz-
ing modern, complex blockchain applications with evolving attack vectors. We
argue that it is essential to complement basic analysis features with support-
ing techniques such as static analysis and exploration strategies. Static analysis
techniques — such as control-flow graph recovery and dependency tracking —
can isolate critical code regions where vulnerabilities are most likely to reside.
Exploration strategies — such as directed search — allow directing the symbolic
execution engine toward (previously identified) critical code regions to verify
the presence (or absence) of vulnerabilities. Rather than exhaustively explor-
ing all paths, exploration strategies allocate resources to areas with a higher
likelihood of revealing subtle bugs, thus addressing long-standing challenges like
state explosion. In the following sections, we present our approach to integrating
advanced analysis features in our symbolic execution framework.

3 Practical Symbolic Execution with GREED

Figure2 shows an overview of GREED’s architecture. GREED exposes several
interfaces that enable both static and dynamic analysis. Initially, the contract

280 N. Ruaro et al.

Function CFG / DFG
Project Gigahorse Block Static Reachability
IR Analyses
Statement Program Slicing
Simulation Manager
Directed Search
Pruned Active Suspended Exploration
St . Loop Limiting
rateg
State State | BC State Selective Concretization
Globals
| Program Counter | Memory |
State
State Plugins SHA
| Registers | | Storage | 8
Solver Constraints

Fig.2. Overview of GREED. The project object exposes static information. The
simulation manager tracks all execution states and allows one to manipulate them.
The states store the execution environment and additional context.

is pre-processed using the Gigahorse static analysis framework [20,21]. The con-
tract’s intermediate representation (organized in functions, blocks, and state-
ments) is stored in a project object. The project exposes an interface to all
available static analyses (e.g., CFG, Slicing). During execution, the simulation
manager orchestrates all the execution states, which are organized in “stashes”
that indicate whether they are active, pruned, suspended, etc. The simulation
manager also accepts various exploration strategies. At a high level, explo-
ration strategies allow one to programmatically manipulate the execution states
and determine which state should be executed next — or which states are uninter-
esting to explore. Each state represents a snapshot of the execution at a specific
program location, which stores both the execution environment and additional
context. This is where the basic analysis features live (see Sect.2.1). Finally,
state plugins track additional context (e.g., SHA operations and constraints)
that allows for checking the satisfiability of an execution state. The modularity
of GREED allows one to easily write new static analyses, exploration strategies,
and state plugins — or experiment with different memory models and solvers.

3.1 Static Analysis

GREED operates on the Gigahorse IR, which provides its foundational static
analysis capabilities: decompilation, IR lifting, constant folding, basic control-
flow and data-flow modeling, and loop analysis. This allows GREED to instead
focus on advanced static analyses (e.g., backward and forward program slic-
ing, reachability analysis) and symbolic execution, which are highly valuable
for building complex security tools. Below, we discuss some examples of static
analyses available in GREED.

Practical Symbolic Execution for Ethereum Smart Contracts 281

Control-Flow Graph (CFG). Gigahorse provides state-of-the-art CFG and
call-graph reconstruction for EVM bytecode. This is automatically available in
GREED. The CFG encodes control-flow relationships, enabling reasoning about
reachability between statements. For instance, this is essential for directing the
execution toward a desired statement.

Data-Flow Graph (DFG). Similarly, Gigahorse also provides state-of-the-art
DFG reconstruction. The DFG captures data dependencies, allowing one to track
how variables are assigned and manipulated throughout the contract.

Reachability. GREED’s reachability analysis allows one to automatically deter-
mine whether an execution path might exist between two program points. For
blocks within the same function, GREED directly analyzes their relationships in
the CFG. For blocks in different functions, GREED identifies possible sequences
of function calls that connect them. When available, GREED also examines the
call stack to identify additional paths that connect the two program points.

Program Slicing. Leveraging the CFG and DFG, GREED can calculate a “slice”
of statements that affect (backward) or are affected by (forward) a given vari-
able. For instance, this is essential for implementing under-constrained execution,
which enables an approximate but lightweight analysis of local properties.

3.2 Exploration Strategies

Exploration strategies allow for the orchestration of execution states and typi-
cally employ a combination of state pruning, prioritization, and manipulation.
Pruning allows one to discard states that are unfit for the desired analysis goals.
Prioritization allows one to prioritize the exploration of certain states. Manipu-
lation allows one to alter (the execution environment of) certain states. Below,
we discuss some examples of exploration strategies available in GREED.

Directed Search. Directed search is an example of an exploration strategy
that can leverage both state pruning and prioritization to direct the symbolic
execution toward a desired (target) statement. This strategy is supported by
a CFG-driven reachability analysis. States closest to the target statement are
prioritized. States unfit to reach the target statement are (optionally) discarded.
This allows one to focus the analysis on specific execution paths that are relevant
to a desired property.

Under-Constrained Search. Under-constrained search allows executing arbi-
trary program slices by first creating a symbolic state at a specific program loca-
tion and then manipulating the execution states to manage undefined behavior.
First, GREED creates a symbolic execution state at the first program location in
the slice. Then, the under-constrained search rewrites all undefined variables to
assign them fresh 256-bit symbolic variables. Optionally, the under-constrained
search can guide (force) the execution along a predetermined, statically observed
path — even if that path is unfeasible in a fully constrained context. This allows
one to effectively study the (security) properties of arbitrary program slices with-
out incurring the overhead of fully-constrained symbolic execution.

282 N. Ruaro et al.

Loop Limiting. Loop limiting is an essential technique for mitigating state
explosion during symbolic execution. In GREED, a counter-based strategy mon-
itors the number of times a given program point is reached. Once a predefined
threshold is exceeded, we prune the corresponding execution state. This approach
effectively controls redundant loop iterations, ensuring that excessive unrolling
does not overwhelm the analysis.

State Monitoring and Rewriting. State rewriting enables the dynamic mod-
ification of execution states to incorporate external information — such as con-
crete execution data, observed blockchain states, or freshly generated symbolic
variables. Through this process, one can refine the analysis context to reflect
relevant properties or to simulate any desired execution state. For example, a
symbolic variable representing an asset’s price can be replaced with its actual
value retrieved from a live oracle, thereby allowing the analysis to mirror realistic
market conditions. Additionally, by coupling state rewriting with state monitor-
ing, GREED can collect valuable metrics (e.g., constraint-solving time) that can
be used to identify or prune paths with a desired property — for example, com-
putationally expensive paths.

Selective Concretization. Selective concretization is an example of state
manipulation, where a heuristic determines whether any environment variable
should be concretized. This is helpful to enforce a specific property (“the value
of variable X must be exactly 42 to trigger the vulnerability”) or to simplify
the analysis when the constraints are too complex (at the cost of possible false
negatives).

Classic Prioritization. Depth-first search (DFS) and breadth-first search
(BFS) are classic examples of state prioritization. Execution states are never
pruned. Instead, a heuristic determines which states should be explored first. In
DFS, deep execution states are explored first. In BFS, shallow execution states
are explored first. Exhaustive strategies such as BFS or DFS are often imprac-
tical for large contracts. In fact, even simple loops or repeated subroutine calls
can rapidly inflate the state space. For this reason, exhaustive search strategies
are often paired with additional strategies for state pruning.

3.3 Additional Analysis Features and Implementation Details

In the following paragraphs, we discuss important implementation details beyond
the analysis features detailed above.

— Cross-contract interactions: To handle cross-contract interactions,
GREED defaults to concretizing both the target address and the parame-
ters of the CALL instruction. This allows approximating the execution state
without incurring the overhead of symbolically executing an external (pos-
sibly undetermined) contract. Nonetheless, GREED can be easily configured
to support fully symbolic CALL parameters — in fact, this feature (symbolic
cross-contract interactions) has been used in the context of other academic
works.

Practical Symbolic Execution for Ethereum Smart Contracts 283

— Memory and storage modeling: GREED implements a precise memory
model [16] that tracks EVM memory as a byte-addressable array supporting
symbolic reads, writes, and memcopy-style operations. Our design employs an
instantiation-based approach, where memory updates are lazily instantiated
(on demand) during reads. To avoid redundant constraint instantiation, we
also integrate a caching mechanism such that when a read is performed at a
concrete address, the corresponding value (indexed by both the address and
read width) is cached. For storage, GREED uses a hybrid model based on array
theory, treating storage as an array of 256-bit words keyed by either concrete
or symbolic values. Optionally, concrete storage reads (SLOADs) can retrieve
actual on-chain data at a specified block number, and our design allows the
use of these concrete values in symbolic operations.

— Hash functions: We employ a two-phase strategy for handling symbolic
hash operations such as SHA. During symbolic execution, SHA instructions
are captured as symbolic expressions that record the input parameters (off-
set, size, and memory contents) in order. When operating in “greedy” mode,
GREED first attempts to concretize these parameters. If a unique solution is
found, GREED computes its SHA hash value [2] and adds constraints that link
the symbolic expression to this concrete value. Otherwise, it instantiates Ack-
ermann constraints [5] to link multiple SHA operations as non-interpretable
functions. After execution, a dedicated resolver plugin steps through the
observed SHA operations in chronological order and fixes their outcomes by
re-evaluating the memory and enforcing the appropriate constraints.

— Solver integration: GREED interfaces with an SMT solver — by default,
Yices [14] — to query the satisfiability of path constraints. As with most
components in our architecture, alternative SMT solvers can be substituted.
During development, we evaluated various solvers, such as Z3 [11] and Boolec-
tor [8] — and found that Yices consistently offered the best performance.

Finally, as briefly mentioned above, GREED also offers high-level APIs for
implementing custom vulnerability checks, exploration strategies (for state prun-
ing, prioritization, and manipulation), and domain-specific analyses, simplifying
the development of new smart contract security tools.

4 FEvaluation

We evaluate the performance, analysis features, and versatility of GREED
through a series of experiments. First, we qualitatively compare its analysis capa-
bilities against existing systems (see Table 1), highlighting comprehensive sup-
port for basic analysis features, static analysis, and advanced exploration strate-
gies. Second, we quantitatively compare GREED’s targeted exploration capabili-
ties against other state-of-the-art systems. Our results show that GREED reaches
significantly more (10x) CALL statements in a sample of (randomly chosen) smart
contracts. Third, we study the effect of different configuration settings on the
performance of GREED. Finally, to demonstrate the extensibility of GREED, we

284 N. Ruaro et al.

Table 1. Comparison of the features of existing systems. O Not implemented. @ Par-
tially implemented. @ Fully implemented.

Tool CROSSMEMHASH| STATIC API
OYENTE [24] O (D) O O O
Maan 26 O @ © © O O
TEETHER [23] |O O © O O
MANTICORE [25]/@© (D) © O O
MyTHRIL [10] |@© © ‘O O O
ETuBMC [18] @ o o O O
GREED © e o o ®

implement a novel analysis to detect controllable JUMPI instructions. GREED
identifies 390 previously unknown vulnerable contracts on Ethereum and BSC.

Experimental Setup. For all our experiments, we use a server equipped with
512GB of RAM and dual Intel Xeon Gold 6330 CPUs. We use GNU Paral-
lel [34] to parallelize our tasks, and always limit each task to 5GB of RAM and
60s of CPU time. We compare against the latest available version of all tools
at the time of writing: MAIAN [26] at commit 3965e30, TEETHER [23] at com-
mit 04adf56, MANTICORE [25] at commit 8861005, MYTHRIL [10] at commit
125914a, and ETHBMC [18] at commit e887£33. Notably, integrating MAIAN
in our evaluation environment required significant modifications — due to syn-
tax errors, broken dependencies, and missing implementations for several key
opcodes. Similarly, we were unable to run OYENTE [24] in our environment, and
thus, we have excluded it from our evaluation.

4.1 Analysis Features

In Table 1, we show a comparison between existing systems and GREED, with
a focus on basic analysis features (similar to Frank et al. [18]), availability of
static analyses, and availability of a high-level API to develop ad hoc static and
dynamic analyses. In our comparison, we only include symbolic execution tools
that are both publicly available and operate on EVM bytecode — even in the
absence of source code.

Cross-Contract Interactions. GREED, MANTICORE, MYTHRIL, and
ETHBMC are the only systems that support some form of cross-contract anal-
ysis. MANTICORE and MYTHRIL only support CALL instructions with concrete
(or concretized) parameters. GREED also supports concrete CALL parameters
and handles symbolic parameters through concretization. Nonetheless, GREED
can be configured to handle fully symbolic parameters (see Sect. 3.3). ETHBMC
supports concrete or fully symbolic CALL parameters.

Memory Model. MAIAN supports symbolic memory reads (not writes).
TEETHER, MANTICORE, and MYTHRIL support simple symbolic memory

Practical Symbolic Execution for Ethereum Smart Contracts 285

Table 2. Number (Percentage) of reached CALL instructions across different analysis
tools. We run each system for 60s (per contract) to assess its exploration capabilities,
highlighting the coverage differences.

Small Medium Large Total
Maian ¢ 127 (13%)[20 (2%) 4 (0%) (151 (5%)
TEETHER 247 (25%)/58 (6%) |1 (0%) 306 (10%)
MANTICORE(157 (16%)14 (1%) |2 (0%) 1173 (6%)
)
)

MYTHRIL 294 (29%)(118 (12%)12 (1%) |424 (14%)
ETuBMC (224 (22%)87 (9%) 31 (3%) |342 (11%)
GREED |960 (96%) /821 (82%)/745 (75%)[2,526 (84%)

“ Integrating MAIAN in our evaluation environment
required significant modifications.

operations, but must concretize all symbolic memcopy-like operations (e.g.,
CALLDATACOPY). OYENTE does not support any memcopy-like operation. GREED
and ETHBMC implement a precise memory model [16] and can handle symbolic
memory reads, writes, and memcopy-style operations. As discussed in Sect. 3.3,
GREED also implements a caching mechanism to avoid redundant constraint
instantiation.

Hash Functions. MAIAN, TEETHER, and MYTHRIL support the hashing of
memory buffers with fully concrete offsets, lengths, and values. OYENTE does not
support symbolic hashing operations, and approximates the result of concrete
hashing operations. GREED, MANTICORE, and ETHBMC support the hashing
of arbitrary (symbolic or concrete) memory buffers.

Static Analysis. To complement our robust basic analysis features, GREED
integrates advanced static analyses that allow us to focus symbolic execution
on critical code regions. GREED inherits a number of static analyses from Giga-
horse [20,21] (e.g., CFG recovery) and implements additional static analyses
(such as program slicing). Among the other tools, only TEETHER incorporates
static analysis — specifically, CFG recovery and backward slicing.

High-Level APIs. Finally, GREED is the only system that offers a high-level
API to develop ad hoc static and dynamic analyses. GREED also offers a number
of (built-in) exploration strategies such as directed search, loop limiting, state
rewriting, and selective concretization.

4.2 Exploration Capabilities

While existing systems excel at detecting specific vulnerabilities, they prove lack-
ing when evaluated on slightly different tasks. We demonstrate the performance
of GREED with a basic code reachability experiment. First, we select a target
smart contract with a CALL statement x. Then, we alter all existing systems to
simply emit a report and terminate when successfully executing (reaching) the

286 N. Ruaro et al.

chosen statement x. To do this, we leverage the ability of MAIAN, TEETHER,
and ETHBMC to detect “prodigal” contracts — i.e., CALL statements with posi-
tive Ether value and controllable target address [26]. We (slightly) modified that
analysis so that when a CALL statement is reached, instead of verifying the prodi-
gal property, we just check whether the instruction address matches that of the
chosen statement z. If so, the analysis simply terminates. Similarly, we modify
the execution engine of MANTICORE and MYTHRIL to terminate when executing
the chosen statement z. As mentioned above, we were unable to run OYENTE
in our environment, and thus, we excluded it from our qualitative evaluation.
Finally, we run GREED in its default configuration (with directed search).

We evaluate all tools on a sample of 3,000 (randomly chosen) Ethereum
contracts? and report our findings in Table 2. In summary, we find that GREED
outperforms all existing tools, reaching 84% of all CALLs — whereas others reach
9% on average. We attribute the performance gap observed in related work
to a combination of (1) limited basic analysis features and (2) lack of (robust)
exploration strategies. In fact, existing systems perform reasonably well on small
contracts but struggle to handle the complexity of larger contracts. For example,
TEETHER is the only system with a (CFG-driven) exploration strategy, but its
CFG recovery often fails on larger contracts. Moreover, we observe that all tools
have several failures related to misimplemented instructions and mishandling of
external or symbolic data. For example, TEETHER discards any execution path
that includes instructions such as RETURNDATACOPY or RETURNDATASIZE, whereas
MAIAN fails to model instructions such as SELFBALANCE.

4.3 Ablation Study

In the following paragraphs, we study the effect of different analysis configura-
tions on the performance of GREED. In its default configuration, GREED uses full
support for symbolic memory operations (including read, write, and memcopy-
like operations), symbolic hash operations, and a directed search strategy that
uses prioritization — without pruning.

Directed Search. Table 3 shows the number of reached CALL instructions under
different directed search configurations. Disabling pruning (while keeping prior-
itization active) results in a slight increase in reached targets across all contract
sizes (from 958 to 960 for small contracts, from 780 to 821 for medium contracts,
and from 708 to 745 for large contracts). We attribute this to imprecisions in
the recovered control-flow graph that may incorrectly rule out reachable tar-
gets: When this happens, the lack of pruning allows GREED to explore these
additional paths. However, this gain comes with an increased memory footprint
(rising from an average of 180MB to 260MB per contract). In contrast, disabling
prioritization leads to a notable drop in performance, as the execution engine
wastes resources exploring paths that are farther from the target state. When

2 We compute the size distribution of all deployed contracts and sample 1,000 small
contracts (smallest 25%), 1,000 medium contracts, and 1,000 large contracts (largest
25%) with distinct code.

Practical Symbolic Execution for Ethereum Smart Contracts 287

Table 3. Number of reached CALL instructions under different directed search config-
urations. Disabling pruning yields a slight coverage increase but raises memory usage,
whereas disabling prioritization leads to a notable drop in performance — more pro-
nounced in large contracts.

Prioritization [No Prioritization
S| M|L|S|M]|L
Pruning 958 | 780 | 708/953 | 745 | 646
No Pruning (960 | 821 | 745947 | 513 | 352

Table 4. Comparison of the number of reached CALL instructions under different mem-
ory model configurations. Using a concrete memory model results in faster analysis
times at the cost of decreased precision. Our caching layer allows for boosting perfor-
mance without compromising precision.

Symbolic Memory|Concrete Memory
S| M|L S| M| L
Memory Cache 960 | 821 | 745 |937 | 866 | 757
No Memory Cache912 | 707 | 633 (925 | 745 | 720

both pruning and prioritization are disabled, the deterioration in performance is
even more pronounced, especially for medium and large contracts. Importantly,
even in this worst-case configuration, GREED still outperforms all other tools by
a wide margin.

Memory Model. We further investigate the impact of our precise symbolic
memory model on GREED’s performance by replacing it with (gradually) sim-
plified variants — that is, disabling our caching layer and symbolic memory oper-
ations. We observe that disabling our caching layer results in a sharp drop in
analysis performance across all contract sizes, although this is more evident in
larger contracts. As detailed in Table4, disabling our symbolic memory model
(and instead using a concrete one) results in a modest overall boost in perfor-
mance. We observe that, although approximating symbolic memory operations
with their concrete counterparts may result in faster analysis times, this comes
at the cost of a much-decreased analysis accuracy. In fact, we argue that GREED
achieves the best analysis results by combining our symbolic memory model with
our caching layer: this configuration yields robust performance without compro-
mising analysis accuracy.

Hash Functions. We find that disabling our precise handling of (symbolic)
hash operations results in a slight boost in analysis performance (from 960 to
962 for small contracts, from 821 to 824 for medium contracts, and from 745 to
755 for large contracts). Similar to the observations above, while approximating
hash operations might result in faster analysis times, this comes at the cost of a
much-decreased analysis accuracy.

288 N. Ruaro et al.

1 # Discard statements with concrete jump destination
2 stmts = set()

3 for s in proj.stmts:

1 if s.op == "JUMPI" and not s.dest_val:

5 stmts.add (s)

7 # Analyze each JUMPI statement

8 for s in stmts:

9 # Set up directed symbolic execution
10 simgr.use_strategy(DirectedSearch(s))

1
12 # Explore each state until we reach the target statement
13 for found in simgr.findall():

14 # Jump condition must be satisfied

1

1

5 found.solver.add_constraint (Equal(s.cond_val, TRUE))

6

17 # Jump destination must be controllable

18 found.solver.add_constraint (Equal(s.dest_val, ARBITRARY))

20 # Check if the state (with the new constraints) is satisfiable
21 if found.solver.is_sat():
22 yield found.solver.eval_memory(found.calldata, CALLDATASIZE)

Fig. 3. Simplified Python code for the controllable JUMPI analysis.

Cross-Contract Interactions. Finally, in the context of this experiment, our
reachability analysis stops when it encounters an external interaction (CALL).
Therefore, any configuration change in our handling of external interactions does
not lead to any change in performance.

Overall, our results underscore the importance of incorporating advanced
analysis features — such as exploration strategies and a precise symbolic memory
model — in GREED. We observe that while disabling pruning can reveal addi-
tional reachable targets, prioritization is essential to guide the search efficiently
and keep the state space manageable. Similarly, our precise memory model and
caching layer enable GREED’s accurate analysis of complex memory operations,
thus contributing to its overall superior performance.

4.4 Detecting Controllable JUMPIs

In this section, we demonstrate that GREED can be easily tailored to novel secu-
rity analyses. To this end, we implement a novel analysis to detect controllable
JUMPI instructions — i.e., conditional JUMP instructions. A controllable JUMPI
allows an attacker to hijack the program counter, and thus take control of the
program execution. This vulnerability has been recently reported [37] in a highly
profitable MEV bot and could have resulted in hundreds of thousands of US dol-
lars of financial damage. We implement this analysis in 50 lines of Python code.
Figure 3 presents the core of our analysis script.

First, we (statically) inspect all contract statements to identify any JUMPI
instructions with a non-constant destination (target) addresses. This lightweight
analysis reduces the number of contracts in scope from 4.1M (all contracts with
distinct bytecode across Ethereum and BSC) to 1,141. We symbolically execute
these contracts and use directed search to reach the target statement. We add

Practical Symbolic Execution for Ethereum Smart Contracts 289

additional constraints to enforce that (1) the guarding condition for the JUMPI
instruction is satisfied, and (2) the JUMPI destination is controllable. If our engine
reaches the JUMPI instruction and the two aforementioned constraints are satis-
fied, we synthesize a concrete attack and verify it against a private fork of the
respective chain. We evaluate our analysis on all deployed contracts in Ethereum
and BSC and identify 134 and 256 previously unknown vulnerabilities, respec-
tively, as well as one known vulnerability [37]. We manually confirmed that 130
of the 134 Ethereum contracts are still vulnerable at the time of writing (block
22,279,016). Three of the contracts were vulnerable in the past but have since
been destructed and redeployed. One of the contracts contains an invalid JUMPI
destination derived from a memory operation that does not appear to be con-
trollable. We confirmed that all 256 BSC contracts are still vulnerable at the
time of writing (block 48,398,024). We reported all issues to the Cybersecurity
and Infrastructure Security Agency [9].

5 Case Studies

In this section, we illustrate how GREED has been successfully applied to build
advanced program analysis systems for Ethereum smart contracts. We focus
on two representative case studies: (a) detecting confused deputy vulnerabilities
and (b) detecting storage collision vulnerabilities. Both studies leverage GREED’s
symbolic execution capabilities — augmented with domain-specific rules — to ana-
lyze real-world contracts at scale and automatically generate proof-of-concept
exploits.

5.1 Detecting Confused Deputy Vulnerabilities

Confused deputy vulnerabilities occur when an attacker hijacks a smart con-
tract’s privileged operations via an inter-contract call (e.g., CALL) that is not
intended to handle untrusted input. This can lead to unauthorized actions such
as transferring assets or modifying critical state variables. For example, the
TradingBot contract in Fig. 4 exposes a public execute function that forwards
untrusted input directly to any target contract. As a result, an attacker can craft
a transaction that redirects this call to the Token contract’s transfer function,
effectively leveraging the TradingBot’s identity (and privileges) to initiate unau-
thorized asset transfers.

Implementation Overview. While we provide a high-level summary of the
approach here, the complete system, JACKAL, is detailed in a separate paper [22].
JACKAL is built on top of GREED’s core symbolic execution engine and incorpo-
rates several analysis stages tailored to detecting confused deputy vulnerabilities:

— Confused Contract Discovery. JACKAL leverages directed symbolic exe-
cution to inspect inter-contract calls where untrusted input might influence
(control) the target address or function selector. As a result, contracts with
controllable CALL instructions are flagged as confused contract “candidates.”

290 N. Ruaro et al.

1 pragma solidity ~0.8.0;

3 contract TradingBot {

] function execute(address target, bytes calldata data) public {
7 target.call(data);

o}

11 contract Token {
12 mapping (address => uint256) public balances;

15 function transfer (address recipient, uint256 amount) public {
16 [...]
17 }

Fig. 4. Simplified Solidity code of the TradingBot and Token contracts. The Trading-
Bot contract is vulnerable to a confused deputy attack.

— Target Contract Discovery. For each confused contract candidate, JACKAL
examines historical blockchain transactions to identify interesting external
interactions and determines whether such interactions could lead to state
modifications (e.g., via SSTORE) that exploit the confused contract’s iden-
tity. When JACKAL determines that an external interaction could lead to
the exploitation of the confused contract’s identity, the respective external
contract is flagged as a “target” contract.

— Exploit Generation. For each target contract, JACKAL leverages GREED
to synthesize a transaction that forces the confused contract to invoke sensi-
tive functions in the target contract, thereby demonstrating the exploit. The
synthesized transaction is then replayed in a local blockchain simulator to
confirm that the attack does not unexpectedly revert.

Through these stages, JACKAL enables end-to-end detection and exploitation
of confused deputy vulnerabilities. JACKAL’s analysis of over 2.3 million smart
contracts identified 529 vulnerable instances and synthesized 31 working end-
to-end exploits. All 31 exploits have been manually verified, demonstrating that
attackers could potentially compromise digital assets valued at over one million
US dollars.

5.2 Detecting Storage Collision Vulnerabilities

Storage collision vulnerabilities arise in proxy-based architectures, where
a “proxy” contract delegates calls to separate “logic” contracts via the
DELEGATECALL instruction. In this context, although the proxy and logic con-
tracts execute independently, they both share the same underlying persistent
storage. As a result, when the two contracts have conflicting interpretations of
their storage slots, they might inadvertently overwrite such slots with the wrong
value. This allows an attacker to overwrite privileged variables, potentially lead-
ing to unauthorized access (privilege escalation) and loss of funds. For example,

Practical Symbolic Execution for Ethereum Smart Contracts 291

1 pragma solidity ~0.8.0;
contract Proxy {

address public implementation;

€ fallback () external payable {
7 implementation.delegatecall (msg.data);
8 ¥

I

11 contract Implementation {

13 address public owner;
14 function setOwner (address _owner) public {
15 owner = _owner;

16 }

Fig. 5. Simplified Solidity code of the Proxy and Logic contracts. The interaction of
such contracts results in a storage collision.

in Fig. 5, the Proxy contract reserves storage slot zero for its implementation
variable. Instead, the Implementation contract reserves the same storage slot
for its owner variable. As a result, when the Proxy delegates a call (Line 6)
to the Implementation’s setOwner function, the owner value overwrites the
implementation variable in the Proxy contract, leading to a storage collision.

Implementation Overview. While we provide a high-level summary of the
approach here, the complete system, CRUSH, is presented in a separate paper [28§].
CRUSH builds on GREED to automatically detect and exploit storage collision
vulnerabilities through the following analysis stages:

— Component Discovery. CRUSH analyzes on-chain transactions to identify
clusters of contracts — namely, proxies and their corresponding logic contracts
— that interact via DELEGATECALL.

— Collision Discovery. For each pair of proxy-logic contracts, CRUSH lever-
ages GREED to symbolically execute their bytecode and infer the type of
their storage variables. More precisely, after identifying all SLOAD and SSTORE
instructions, CRUSH leverages (1) GREED’s backward slice analysis to deter-
mine how each storage slot is computed and (2) GREED’s forward slice anal-
ysis to deduce the accessed byte ranges. Then, CRUSH compares the inferred
types of the proxy and logic contracts to detect collisions.

— Exploit Generation. Once a collision is detected, CRUSH verifies whether an
attacker can exploit it by writing to a critical slot in one contract and reading
it in another. To do this, CRUSH leverages GREED to synthesize concrete
transactions that demonstrate the exploit.

By leveraging GREED’s precise modeling of EVM instructions and storage
access patterns, CRUSH uncovered critical storage collision vulnerabilities. These
vulnerabilities could have led to serious incidents in practice: CRUSH’s analysis
of over 14 million smart contracts identified 14,891 vulnerable instances and
synthesized 956 working end-to-end exploits. All profitable exploits have been

292 N. Ruaro et al.

manually verified, demonstrating that attackers could potentially compromise
digital assets valued at over 6 million US dollars.

6 Discussion and Limitations

GREED inevitably inherits some limitations that arise from our design choices.
First, we choose to build GREED directly on top of Gigahorse’s IR, rather than
extending an existing binaryaASanalysis framework — such as angr [30]. This
decision significantly simplifies our modeling of blockchain-specific concepts —
e.g., blockchain state, transactions, persistent storage, cross-contract interac-
tions. However, it also implies that sophisticated analyses that already exist
in other frameworks, such as taint analysis, are not available out-of-the-box in
GREED and must be re-implemented. While this creates unfortunate duplication
of effort in the short term, it ultimately enables a more flexible, extensible, and
research-friendly framework for smart contract security analysis.

Second, GREED’s reliance on Gigahorse’s intermediate representation (IR),
provides robust static analysis capabilities, but makes GREED’s effectiveness
partly dependent on Gigahorse’s accuracy. For example, inaccuracies such as
missing JUMP destinations can cause pruning of paths that are in fact reach-
able. In Sect. 4.3 we show that this occasionally happens in practice: For some
contracts, disabling pruning yields marginal coverage gains at the cost of a sharp
increase in memory usage. Although we limit this dependency to well-tested fea-
tures of Gigahorse (lifting, constant folding, and control-flow analysis), it remains
a potential source of inaccuracies.

Other Limitations. Beyond the limitations discussed above, GREED shares
modeling limitations common to similar symbolic execution systems. First, our
handling of gas costs is deliberately simplified and may potentially miss vul-
nerabilities that arise from gas-specific behaviors. Second, by default, GREED
employs a simplified handling of CALL instructions, which may miss vulnerabil-
ities that require symbolic modeling of contract interactions. Additionally, the
blockchain state (e.g., block number, timestamp, difficulty) remains symbolic by
default, although one can optionally constraint such a state to actual (concrete)
values when needed for more precise analysis. Addressing the aforementioned
limitations, including the modeling of gas costs and cross-contract interactions,
presents promising avenues for future research.

7 Related Work

Static Analysis. Early research in smart contract security focused on static
analysis of the source code. Tools such as SmartCheck [35] and Slither [17] detect
common vulnerabilities (e.g., re-entrancy, integer overflows) by scanning Solidity
source code using rule-based approaches, offering quick insights to developers.
Their availability and ease of use lowered the barrier for preliminary security

Practical Symbolic Execution for Ethereum Smart Contracts 293

audits. For example, Slither converts Solidity code into an intermediate repre-
sentation for detailed data-flow and control-flow analysis, providing both vul-
nerability detection and potential code optimization insights.

In parallel, other efforts focused on direct analysis of EVM bytecode. Brent
et al. proposed Vandal [7] and Ethainter [6], two tools that perform control-
flow and data-flow analyses post-compilation, enabling insight even when source
code is unavailable. In a similar vein, Grech et al. proposed Gigahorse [20] and
Elipmoc [21] — a decompilation framework for EVM bytecode that also provides
several rule-based vulnerability analyses. However, these tools often rely on fixed
heuristics — such as rigid slicing rules or pattern matching — which may be
insufficient to fully capture complex state interactions during execution.

Formal Verification. To provide stronger correctness guarantees, researchers
have developed verification frameworks for smart contracts. For instance, Secu-
rify [36] operates on EVM bytecode and extracts predicates via a domain-specific
language to capture compliance and violation patterns. Similarly, eThor [29]
frames safety specifications in terms of reachability and uses an off-the-shelf
SMT solver to reason about property violations. On the Solidity side, VerX [27]
employs symbolic execution with induction and predicate abstraction to verify
safety properties across multiple transactions, while VeriSmart [32] focuses on
arithmetic safety through counterexample-guided invariant refinement. Extend-
ing these approaches further, Stephens et al. [33] incorporate liveness specifi-
cations to broaden the range of verifiable properties. Although these methods
promise high-assurance security, they often incur significant engineering over-
head, limiting their widespread adoption.

Symbolic Execution. Symbolic execution has emerged as a powerful technique
for systematically exploring a contract’s execution paths. One of the pioneer-
ing systems in this area, Oyente [24], demonstrated that symbolically execut-
ing EVM bytecode could effectively uncover vulnerabilities such as re-entrancy
and transaction-ordering dependence. Mythril [10] is a symbolic execution-based
tool that detects issues including integer overflows, unhandled exceptions, and
unprotected self-destruct instructions. Similarly, Teether [23] and Maian [26]
also leverage symbolic execution to identify vulnerable states. Manticore [25]
and EthBMC [18] further advanced the state-of-the-art by integrating precise
memory models and supporting cross-contract analysis. Nonetheless, Manticore
does not integrate static analysis techniques — such as control-flow graph recov-
ery or program slicing — limiting its ability to dynamically target critical code
regions. Similarly, although EthBMC supports fully symbolic handling of cross-
contract calls and a precise memory model, its monolithic design enforces rigid
exploration strategies, making it difficult to extend to novel attack vectors.

In contrast to approaches that rely exclusively on static or dynamic meth-
ods, our framework GREED integrates static analyses (such as control-flow graph
recovery and program slicing) with a flexible suite of symbolic exploration strate-
gies — including directed search, loop limiting, state rewriting, and selective con-
cretization. This unified approach preserves the core advantages of existing sys-
tems while adapting more readily to novel attack vectors.

294 N. Ruaro et al.

8 Conclusion

We introduce GREED, a versatile open-source symbolic execution framework for
EVM-based smart contracts. GREED addresses the limitations of existing tools
by providing a novel combination of analysis techniques, including both a state-
of-the-art SE engine and a suite of supporting analyses. Our experiments show
that GREED reaches significantly more (10x) CALL statements in a sample of (ran-
domly chosen) smart contracts. As a result, GREED enables more efficient path
exploration — and superior flexibility — without compromising on the accuracy of
the analysis. To demonstrate GREED’s flexibility and ease of use, we implement
a novel analysis to detect controllable JUMP instructions and evaluate it against
all contracts in Ethereum and BSC [3], identifying 390 previously unknown vul-
nerable contracts. By releasing GREED to the community, we aim to lower the
barrier to developing advanced security analyses for smart contracts, empowering
security researchers to contribute to a more secure blockchain ecosystem.

Acknowledgments. This material is based upon work supported by NSF under
Award No. CNS-2334709. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily reflect
the views of the NSF.

References

1. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) (2018)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer (2013)

3. Binance: Binance Smart Chain. https://binance.com/en (2024)

4. Bose, P., Das, D., Chen, Y., Feng, Y., Kruegel, C., Vigna, G.: Sailfish: Vetting
smart contract state-inconsistency bugs in seconds. In: 2022 IEEE Symposium on
Security and Privacy (SP). IEEE (2022)

5. Bradley, A.R., Manna, Z.: The calculus of computation: decision procedures with
applications to verification. Springer Science & Business Media (2007)

6. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
a smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (2020)

7. Brent, L., et al.: Vandal: A scalable security analysis framework for smart contracts.
arXiv preprint (2018)

8. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and
arrays. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer (2009)

9. CISA: Cybersecurity and Infrastructure Security Agency. https://www.cisa.gov
(2024)

10. ConsenSys: Mythril. https://github.com/ConsenSys/mythril (2022)

https://binance.com/en
https://binance.com/en
https://binance.com/en
https://binance.com/en
https://www.cisa.gov
https://www.cisa.gov
https://www.cisa.gov
https://www.cisa.gov
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril

11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Practical Symbolic Execution for Ethereum Smart Contracts 295

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer (2008)

DefiLlama: Ethereum. https://defillama.com/chain/Ethereum (2024)

DefiLlama: Hacks. https://defillama.com /hacks (2024)

Dutertre, B., De Moura, L.: The yices smt solver (2006)

Ethereum: Ethereum. https://ethereum.org/en (2024)

Falke, S., Merz, F., Sinz, C.: Extending the theory of arrays: memset, memcpy, and
beyond. In: Verified Software: Theories, Tools, Experiments (VSTTE). Springer
(2014)

Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB). IEEE (2019)

Frank, J., Aschermann, C., Holz, T.: ETHBMC: A bounded model checker for
smart contracts. In: Proceedings of the 29th USENIX Conference on Security Sym-
posium (2020)

Frowis, M., Fuchs, A., Béhme, R.: Detecting token systems on ethereum. In: Finan-
cial Cryptography and Data Security (FC). Springer (2019)

Grech, N., Brent, L., Scholz, B., Smaragdakis, Y.: Gigahorse: thorough, declar-
ative decompilation of smart contracts. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE (2019)

Grech, N., Lagouvardos, S., Tsatiris, 1., Smaragdakis, Y.: Elipmoc: advanced
decompilation of Ethereum smart contracts. In: Proceedings of the ACM on Pro-
gramming Languages (2022)

Gritti, F., et al.: Confusum contractum: confused deputy vulnerabilities in ethe-
reum smart contracts. In: 32nd USENIX Security Symposium (USENIX Security
23) (2023)

Krupp, J., Rossow, C.: teether: Gnawing at Ethereum to automatically exploit
smart contracts. In: 27th USENIX Security Symposium (USENIX Security 18)
(2018)

Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: 2016 ACM SIGSAC Conference on Computer and Communications
Security (2016)

Mossberg, M., et al.: Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE (2019)

Nikoli¢, I., Kolluri, A., Sergey, 1., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference (2018)

Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx:
safety verification of smart contracts. In: 2020 IEEE Symposium on Security And
Privacy (SP). IEEE (2020)

Ruaro, N., Gritti, F., McLaughlin, R., Grishchenko, I., Kruegel, C., Vigna, G.: Not
your type! detecting storage collision vulnerabilities in Ethereum smart contracts.
In: Network and Distributed Systems Security (NDSS) Symposium 2024 (2024)
Schneidewind, C., Grishchenko, 1., Scherer, M., Maffei, M.: Ethor: Practical and
provably sound static analysis of Ethereum smart contracts. In: 2020 ACM SIGSAC
Conference on Computer and Communications Security (2020)

Shoshitaishvili, Y., Wang, R., et al.: Sok:(state of) the art of war: Offensive tech-
niques in binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP),
IEEE (2016)

https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/hacks
https://defillama.com/hacks
https://defillama.com/hacks
https://defillama.com/hacks
https://ethereum.org/en
https://ethereum.org/en
https://ethereum.org/en
https://ethereum.org/en

296

31.

32.

33.

34.
35.

36.

37.

N. Ruaro et al.

So, S., Hong, S., Oh, H.: SmarTest: effectively hunting vulnerable transaction
sequences in smart contracts through language Model-Guided symbolic execution.
In: 30th USENIX Security Symposium (USENIX Security 21) (2021)

So, S., Lee, M., Park, J., Lee, H., Oh, H.: Verismart: a highly precise safety verifier
for Ethereum smart contracts. In: 2020 IEEE Symposium on Security and Privacy
(SP). IEEE (2020)

Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, [.: SmartPulse: automated
checking of temporal properties in smart contracts. In: 2021 IEEE Symposium on
Security and Privacy (SP). IEEE (2021)

Tange, O.: Gnu parallel-the command-line power tool. Usenix Mag (2011)
Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: static analysis of ethereum smart contracts. In: Pro-
ceedings of the 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (2018)

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: 2018 ACM SIGSAC
Conference on Computer and Communications Security (2018)

Zellic: Your Sandwich is My Lunch: How to Drain MEV Contracts V2. https://
zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2 (2023)

https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2
https://zellic.io/blog/your-sandwich-is-my-lunch-how-to-drain-mev-contracts-v2

	A History of Greed: Practical Symbolic Execution for Ethereum Smart Contracts
	1 Introduction
	2 Motivation
	2.1 Basic Analysis Features
	2.2 Beyond the State-of-the-Art

	3 Practical Symbolic Execution with Greed
	3.1 Static Analysis
	3.2 Exploration Strategies
	3.3 Additional Analysis Features and Implementation Details

	4 Evaluation
	4.1 Analysis Features
	4.2 Exploration Capabilities
	4.3 Ablation Study
	4.4 Detecting Controllable JUMPIs

	5 Case Studies
	5.1 Detecting Confused Deputy Vulnerabilities
	5.2 Detecting Storage Collision Vulnerabilities

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	References

