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Abstract

We compute the RO(G)-graded equivariant algebraic K-groups of a finite field
with an action by its Galois group G. Specifically, we show these K-groups split as the
sum of an explicitly computable term and the well-studied RO(G)-graded coefficient
groups of the equivariant Eilenberg—MacLane spectrum HZ. Our comparison between
the equivariant K-theory spectrum and HZ further shows they share the same Tate
spectra and geometric fixed point spectra. In the case where G has prime order, we
provide an explicit presentation of the equivariant K-groups.
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1 Introduction

Algebraic K-theory is an important invariant of rings which provides a natural home for
constructions in a range of subjects, from number theory to geometric topology. Classically,
low dimensional K-groups of rings were defined first in terms of concrete algebraic construc-
tions in work of Grothendieck, Bass, Milnor, and others. Over time it was realized that these
groups fit into a larger picture: there should be a sequence of such groups, indexed on the
natural numbers. This idea was first implemented in the work of Quillen, who constructed
a space whose homotopy groups agreed with the already-known K-groups and whose higher
homotopy groups give the correct generalization of “higher algebraic K-theory.” Using this
machinery, Quillen gave a complete computation of the higher algebraic K-theory of finite
fields |Qui72].

Despite Quillen’s success in computing the algebraic K-theory of finite fields, the task of
computing higher algebraic K-theory for other rings remains difficult. Indeed, the algebraic
K-theory of the integers is still not entirely known, and its computation would resolve the
longstanding Kummer—Vandiver conjecture in number theory [Kur92].

The work of this paper exists in the context of equivariant algebraic K-theory, a variant
of algebraic K-theory defined for rings with an action by a group G. The most familiar
examples of such rings come to us from Galois theory, where the group G is the Galois
group of a field extension. Work of Merling [Mer17] provides a construction of algebraic K-
theory for rings with G-action which produces a genuine G-spectrum — an enhancement of a
spectrum with G-action — with many desirable properties. In particular, Merling shows that
this construction is naturally related to the (now proven) Quillen-Lichtenbaum conjecture
and provides a natural home for studying the K-theory of Galois extensions.

In addition to Merling’s work, Barwick and Barwick—Glasman—Shah provide a differ-
ent construction of equivariant algebraic K-theory using the language of oco-categories and
spectral Mackey functors [Barl7, BGS20]. Malkiewich and Merling, in on-going work with
Goodwillie and Igusa, are using techniques of equivariant algebraic K-theory to prove an
equivariant refinement of Waldhausen’s A-theory and the stable parametrized h-cobordism
theorem [MM19, MM22l (GIMM?23]. A connection between equivariant algebraic K-groups,
equivariant A-theory, and Wall’s finiteness obstruction is provided in work of the first-named
author, Calle, and Mejia [CCM23].

1.1 Main result

One feature of genuine G-spectra is that their homotopy groups are graded on RO(G), the
Grothendieck group of real orthogonal representations of the group G. The ordinary Z-
grading is recovered by considering the trivial G-representations of various dimensions. The
computation of RO(G)-graded equivariant homotopy groups, even in tractable cases like
Eilenberg-MacLane spectra, can be challenging. This work can be quite valuable, however.
For example, in Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant one problem
they make critical use of these RO(G)-graded homotopy groups for the group G = Cjy
[HHR16].

Let us fix a field £ with G-action and denote the equivariant algebraic K-theory of k
by Kg(k). Because K¢(k) is a genuine G-spectrum, the algebraic K-groups are naturally



graded on the group RO(G). Our main result extends Quillen’s computation of the K-groups
of finite fields to a computation of the equivariant algebraic K-theory of finite fields with
action by their Galois groups.

Theorem A (Theorem and Proposition |5.2.1). Let k/IF, be any finite extension of
finite fields with Galois group G, and let V' be a virtual real orthogonal G-representation of
dimension |V'|. Then the equivariant algebraic K-groups of k split as

~ ) H(Gimy K (k) © o (HZ), |V| >0,
my (Ka(k)) = {wﬁ(HZ), V] <o,

where HZ is the equivariant Eilenberg—MacLane spectrum on the constant Mackey functor
Z. The RO(G)-graded ring structure is described in Proposition m

This is one of the first systematic computations of equivariant algebraic K-groups. In-
deed, to our knowledge, the only prior computation of RO(G)-graded equivariant K-groups
to appear in the literature is in the recent work of Elmanto and Zhang [EZ24]. There, the
authors give a partial computation of the RO(Cs)-graded K-groups of finite quadratic field
extensions, and show how these groups are related to the study of Artin L-functions.

1.2 Overview of key ideas

Our computation of the RO(G)-graded K-groups of finite fields hinges on a comparison of
Kg(k) with HZ, the equivariant Eilenberg-MacLane spectrum on the constant Z Mackey
functor. The choice of Z comes from the fact that there is an isomorphism of Mackey
functors my (K¢ (k)) = Z. Accordingly, there is always a truncation map of genuine G-spectra
7<0: Kg(k) — HZ which realizes this isomorphism. The fiber of this map

o1 K (k) = hofib(Ka(k) =% HZ)

is the 1-connective cover of K¢g(k).

Our analysis of this map begins with the observation that it is fully computable after
applying a construction called geometric completion. If X is a G-spectrum, its geometric
completion is the mapping G-spectrum

X"=F(EG,, X).

The G-fixed points of X" are the familiar homotopy fized points X" of X. As such, this
is computable via a homotopy fixed-point spectral sequence which begins with group coho-
mology. We directly compute the following.

Theorem B (Proposition [5.2.1). For any extension of finite fields k/F, with Galois group
G, the 1-connective cover of the geometric completion of Kg(k) has RO(G)-graded homotopy
groups

v (To1Ka(k)") =

H°(G; Kyy((k), |[V]>0,
0 otherwise.



The proof of Theorem [A] proceeds by showing geometric completion induces an equiva-
lence on 1-connective covers
m>1Ka(k) = 1K (k)"

which yields the following result.

Theorem C (Theorem [5.0.1). For any extension of finite fields k/F, with Galois group G
there is a homotopy pullback of genuine G-spectra

Kg(k) — HZ

! |

Ka(k)h =% HZ".

In conclusion, we have a fiber sequence of G-spectra
mo1Ka(k) = Ke(k) = HZ (1.2.1)

where we completely understand the homotopy groups of the fiber. This fiber sequence gives
the decomposition in Theorem [A]

Our work reduces the RO(G)-graded K-groups of finite fields to the computation of the
RO(G)-graded coefficient ring of HZ. While these groups are complicated, they are known
in many cases where G is a finite cyclic group — the only possibility for a Galois extension of
finite fields. The first such computation appears in unpublished work of Stong for G = C,,
and is recorded in Ferland-Lewis [FL04]. The computation for G = Cs. plays an important
role in the work of Hill-Hopkins—Ravenel [HHR16, HHR17]. Work of Zeng handles the case
of G = Cp2 [Zenl§], and work of Georgakopoulos revisits this case as well as providing
a computer program for G = Cpn [Geo2l]. A recent preprint of Basu-Dey addresses the
general case of G = (), [BD24]. In Section [7| we specialize to the case G = CY, for ¢ a prime,
and write out the K-groups explicitly.

Remark 1.2.2. The statement here of Theorem references the homotopy groups of Kq(k).
However, associated to any G-spectrum are its homotopy Mackey functors, a richer invari-
ant which contains the homotopy groups of all fixed-point spectra. Although it is more
data to keep track of, we will see that the additional structure present in Mackey functors
dramatically simplify calculations. In particular, it is essential to our approach to resolving
extension problems that appear throughout the paper. See Remark for more details.
The Mackey functor structure is also critical in our analysis of the multiplicative structures
in Section [6] specifically in the proof of Proposition [6.2.1

For this reason, we work almost exclusively with the homotopy Mackey functors of G-
spectra in the body of the paper.

1.2.1 Proof of Theorem

Let us briefly outline our approach to proving Theorem [C] The main method we employ is a
comparison of the Tate squares associated to the G-spectra Kg(k) and HZ. To any genuine



G-spectrum X there is a functorially associated homotopy pullback diagram of the form

X —— X

L

X — Xt

where X' is called the Tate G-spectrum of X. As the name suggests, the homotopy groups
of X! can computed using a spectral sequence whose E2-page is computed using Tate coho-
mology. The map K¢ (k) — HZ induces a map on Tate diagrams and the following theorem
is proved using direct computation.

Theorem D (Proposition and Proposition |5.1.5). For any extension of finite fields
k/F, with Galois group G the map Kg(k) — HZ induces equivalences of genuine G-spectra

Ko(k) — HZ and Kg(k)' — HZ'.

Together with the naturality of the Tate square, this is enough to prove Theorem [C]

1.2.2 Geometric fixed points

As a further demonstration of our methods, we show K¢ (k) and HZ have the same geometric
fixed points. Using Theorem [A] and the computation of the homotopy groups of the fiber,
we prove the following.

Theorem E (Theorem and Proposition |5.3.4). There is an equivalence of spectra
O¢(Ka(k) = 06 (HZ).
The homotopy groups of these spectra as graded rings are given by

Z/plx], G=Cp,n >0,
0, else,

T (0 (HL)) = {

where |z| = 2.

We note that the computation of the groups m,.(®%(HZ)) is well-known to experts, but
we did not know a reference in the literature so the computation is given in Proposition [5.3.4
below.

1.2.3 Multiplicative structure

When R is a commutative ring with G-action, work of Barwick—Glasman—Shah implies that
the RO(G)-graded homotopy groups 7¢(Kg(R)) form an RO(G)-graded ring. For finite field
k with Galois action by G, we show that the RO(G)-graded ring 7% (Kq(k)) is a square-
zero extension of HZS in Theorem . In the case where G = (Y, we use this to give a
presentation of the ring 7¢2(K¢, (k)) in Theorem



1.3 Future directions

We end the introduction with a short discussion of possible future computations for equiv-
ariant algebraic K-theory of other Galois extensions. To any Galois extension E/F of fields

there is a natural map
K(F) — K(E)"“.

Underlying the analysis in this paper is the fact that for finite fields, this map is a connective
cover. We prove a version of this statement on the level of G-spectra in Proposition [5.1.1]
This behavior, a version of Galois descent, is atypical of Galois extensions of rings; indeed
we are aware of no other examples where this for field extensions. In particular, a direct
application of the techniques in this paper is unlikely to apply in other examples.

On the other hand, the work of Clausen-Mathew—Naumann—Noel [CMNN20] (see also
[Tho85. [TT90]) shows that algebraic K-theory satisfies Galois descent after chromatic lo-
calization at the spectra T'(n). Given this, we expect that after T'(n)-localization it should
be possible to use the ideas of this paper for further computations of equivariant algebraic
K-theory for other Galois ring extensions. We intend to explore this idea in future work.

Outline

The paper is organized as follows. In Section [2] we recall the Tate diagram associated to a
G-spectrum, which serves as a guiding framework to our work. In Section |3 we recall the
definition of a Mackey functor and prove results concerning extensions of Mackey functors. In
Section 4| we make a number of group (co)homology computations which provide the input
to homotopy fixed point and Tate spectral sequences. These computations set the stage
for the proofs of the main theorems which are in Section [5] The multiplicative structure
in w, (K¢ (k)) is discussed in Section [fl We conclude the paper in Section [7] with explicit
computations in the case G is a cyclic group of prime order.
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2 The Tate diagram

In this short section we recall the Tate diagram from [GM95], which forms the basis for
our work in later sections. For any finite group G let EG be a contractible CW-complex
with free G-action. An explicit model is the unit sphere in the G-representation obtained by
taking the infinite direct sum of copies of the reduced regular representation of G. Define a



space EG by the cofiber sequence
EG, 5 5° - EG
and note that for any G-spectrum X we have an induced cofiber sequence
EG,ANX X - EGAX

which is natural in X.

We write X" := F(EG,, X), where F' denotes the internal mapping spectrum, and call
this spectrum the geometric completion of X. The map ¢ induces a map X = F(S° X) —
X" which gives a map on cofiber sequences

EG, ANX >y X y EGAX

l | l

EG, A X" > XN y EG A X"

called the Tate diagram. The key property of the Tate diagram is the following.

Theorem 2.0.1 ([GMO95, Proposition 1.2]). The left vertical map in the Tate diagram is an
equivalence. Equivalently, the right square is a homotopy pullback of G-spectra.

For the remainder of this paper we use the abbreviations

X, =EG.ANX~FEG_NX",
X' = EGA X",
X := EGAX,

so that the Tate diagram takes the abbreviated form

| 1

X y XN » Xt

The bottom row of the Tate diagram is called the norm cofiber sequence. The three G-
spectra in the norm cofiber sequence come equipped with spectral sequences which compute
their RO(G)-graded homotopy groups. These spectral sequences are recalled in Section
and are used to compute the homotopy groups appearing in the norm cofiber sequence
for equivariant algebraic K-theory spectra. From there, the computation of RO(G)-graded
K-groups is achieved by comparing the top and bottom rows of the Tate diagram.

We end this section with a lemma we will need in Section [



Lemma 2.0.2. Suppose that f: X —Y is a map of genuine G-spectra which induces equiv-
alences X — Y and X' — Y. Then the square

x 1y

Lo

X fr h
— Y

1s a homotopy pullback square.

Proof. Consider the commutative diagram

Xp —— X

o ™

~ Y, Y

Xn X"

I o

Y, —— V"

obtained by naturality of the Tate square. It suffices to show that the induced map hofib(f) —
hofib(f*) is a weak equivalence. Taking fibers of the labeled maps in the cube above produces
a commutative square

hofib(f,) —— hofib(f)

- !
hofib(f) — hofib(f")

where the horizontal maps are equivalences by the assumptions on the map f. Thus the
map hofib(f) — hofib(f") is a weak equivalence which completes the proof. ]

3 Extensions of Mackey functors

In equivariant stable homotopy theory over a finite group G, invariants of G-spectra most
naturally take values in the category of Mackey functors. A Mackey functor is a collection of
abelian groups indexed on the subgroups of G with transfer and restriction maps between
them mimicking induction and restriction maps for representation rings.

In this section, we recall the definition of a Mackey functor and prove an Ext vanishing
result for Mackey functors that will be used repeatedly to solve extension problems later in
Proposition |3.0.2]

Definition 3.0.1. A Mackey functor M for a finite abelian group G is the data of

e an abelian group M(G/H) for each H < G,
e a transfer homomorphism 75 : M(G/H) - M(G/K) for H < K < G,
e a restriction homomorphism RE: M(G/K) — M(G/H) for H < K < G,
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e an action of the Weyl group WxH = K/H on M(G/H) for H < K < G,

which are subject to axioms enforcing compatibility of the restrictions, transfers, and Weyl
actions [Bou97, §1.1.1].

A map M — N between Mackey functors is a collection of maps of abelian groups
M(G/H) — N(G/H) for H < G which commute with restrictions, transfers, and Weyl
group actions.

For any Mackey functor M, the Weyl group action on M (G/e) turns M(G/e) into a
G-module. The functor taking a Mackey functor M to the G-module M (G/e) admits left
and right adjoints

L
>~
MaCkG E— MOdZG
~_

R

which we denote by L and R, respectively. For a G-module P, L(P) is its orbit Mackey
functor and R(P) is its fized point Mackey functor. Explicitly, we have

L(P)(G/H) = Py, and R(P)(G/H)=P".

There is a natural transformation N: L = R which for a G-module P at each level G/H is
given by the norm map Py — P,

for any x € Py. This transformation will arise in our computations of Mackey functor-valued
group cohomology in Section [4.1

In our computations, we will often encounter extensions of Mackey functors with trivial
underlying G-module by Mackey functors in the image of R. We show that all of these
extensions must be trivial.

Proposition 3.0.2. For any G-Mackey functor M with M(G/e) =0 and any G-module N,
Ext'(M, R(N)) = 0.
Proof. We will show that any short exact sequence of Mackey functors
0= RN)L P> M—0

must be split. Note that since M (C,/e) = 0, we must have fc, /.: R(N)(Cn/e) = P(Cy/e)
is an isomorphism. Let ¢: P(C,/e) — R(N)(C,/e) denote the inverse.

Since R is the right adjoint to evaluation at C), /e, the map ¢ uniquely determines a map
of Mackey functors ®: P — R(N) which is given by ¢ at level C),/e. Thus the composite
® o f is the identity on level C,, /e, and therefore must be the identity on the entire Mackey
functor. Thus every such short exact sequence is split and Ext' (M, R(N)) = 0. O

A dual argument can be applied to see that Ext'(L(N), M) = 0 for any G-module N.

9



4 The Galois action on K-theory

In her thesis [Merl7], Merling defines the algebraic K-theory of rings with G-action. This
invariant assigns a genuine G-spectrum Kg(R) to every ring R with action of a finite group
G. The following theorem of Merling tells us how K behaves when our G-rings arise from
Galois extensions; we refer the reader to Merling’s paper [Merl7] for proofs and further
discussion.

Theorem 4.0.1 ([Merl7, Theorem 1.2, (4) and (6)]). For a finite Galois extension of fields
E/F with G = Gal(E/F) there are equivalences of spectra

K(F)~ Kq(E)¢
where K(F) is the non-equivariant algebraic K theory of F'.

We are interested in Merling’s construction when the ring R = k£ is a finite field which
is a finite Galois extension of a finite field with G the Galois group. Specifically, let p be a
prime, let ¢ = p” for some r > 1, and let [F, be the field with ¢ elements. Quillen showed [,
has its higher K-groups concentrated in odd degrees, where we have

Koi1(Fg) = Z/(¢" — 1)

for i > 0 [Qui72, Theorem 8(i)]. We will consider the case where k = Fn is a degree n
extension of F,. The Galois group G = Gal(k/F,) is cyclic of order n, generated by the
Frobenius automorphism ¢ specified by ¢(z) = 27 of k. Quillen furthermore calculated the
action of GG on the higher K-groups.

Theorem 4.0.2 (|Qui72, Theorem 8(iii)]). Let k = Fpn and let G = Gal(k/F,). Fori >0,
the action of the Frobenius automorphism ¢ on the group

Ko 1 (k) = Z/(QM —1)
is multiplication by q'.

In this section, we use these two results to preform the calculations underlying our main
results. Our goal is to explicitly compute the RO(G)-graded homotopy Mackey functors of
the terms appearing in the norm cofiber sequence for K¢(k). In Section 4.1 we enumerate
all the possible Mackey functors appearing on the E*-pages of spectral sequences converging
to these terms, and in Section [£.2] we analyze these spectral sequences.

4.1 Galois cohomology Mackey functors

In this section, we determine the Mackey functors appearing on the E*-pages of the homotopy
orbit and homotopy fixed point spectral sequences for K (k). The E?-pages of these spectral
sequences are recalled in Section below. We first extend Theorem to a compuation
of the G-modules 7§, K (k) for V'€ RO(G), and then we obtain Mackey functors by applying
the functors

L,E: MOdZG — MackG

10



defined in the last subsection.

Since these functors are given by taking orbits and fixed points respectively, they form
the input for the filtration-zero line of the homotopy orbit and fixed point spectral sequences.
The remainder of the input for these spectral sequences amounts to computing the higher
group (co)homology of these G-modules. Since G is cyclic, its (co)homology with coefficients
in any G-module P is 2-periodic, and is fully determined by the norm map N: P; — P¢.
Specifically, we have

Pq s =0, P¢ s =0,
H,(G; P) = ( coker Np s > 0, s odd, H*(G; P) = < ker Np s> 0, s odd,
ker Np s >0, s even, coker Np s > 0, s even.

Thus, we need to compute the kernel and cokernel of the norm transformation N: L = R.

Recall that Kq(k)¢ ~ K(k) [Merl7, Theorem 6.4], so we have an isomorphism of abelian
groups 7{, K (k) = Ky (k). The G-action on the group 7{, K¢ (k) is determined by Quillen’s
computation Theorem and the G-action on the representation sphere SV. We introduce
terminology to classify the possible G-actions on representation spheres.

Notation 4.1.1. We call a G-representation V' orientation-preserving (resp. reversing) if
the induced map on SV is orientation-preserving (resp. reversing.). By extending linearly to
virtual representations, this gives a well defined group homomorphism RO(G) — Z/2 where
the kernel is all orientation preserving virtual representations. Note that if G is a cyclic
group of odd order, all representations are orientation-preserving.

An orientation-reversing action of G on SV introduces a “twist” of —1 to the G-action
on 7w, K¢ (k). We use the notation Z” to denote the sign representation, i.e., the group Z
with G acting by —1. For a G-module M, we write

M7 =M®Z°

for M twisted by the sign action. We write Ky;_1(k) for the G-module Z/(¢"* — 1) with the
implicit G-action by ¢’ as in Theorem [4.0.2]
Lemma 4.1.2. Let k be any finite field. For V € RO(G), G-modules 7, K (k) are given by

(7. V| =0, V orientation-preserving,

Z° V| =0, V orientation-reversing,
o Ka(k) =2 ¢ Kyi1(k)  |V]|=2i—1>0,V orientation-preserving,
Ky _1(k)? |V|=2i—1>0,V orientation-reversing,

\ 0 otherwise.

Proof. The action on the homotopy groups is given by the conjugation action on maps, where
G acts on SV by sign when V is orientation-reversing and trivially when V is orientation-
preserving.

In virtual dimension |V| = 2i — 1 for ¢ > 0, the claimed computation follows from Theo-
rem[4.0.2] In virtual dimension [V/| = 0, the action of G on K(k) = Z is necessarily trivial, as
there are no nontrivial ring automorphisms of Z. Therefore, the G-module 7§, K(k) is either
Z or 7.7, depending on whether V' is orientation-preserving or orientation-reversing. O

11



Writing M for any of the G-modules in Lemma the rest of this section is devoted
to computing the Mackey functors in the exact sequence:

0 — ker(N) — L(M) 25 R(M) — coker(N) — 0.
We treat the four cases of Lemma [4.1.2] in order. A summary of these calculations can be
found in Table [l
4.1.1 The trivial G-module Z.
We denote by

the fixed points and orbit Mackey functors, respectively, of trivial C,-module Z. We define
the Mackey functor o as the cokernel of the norm map. This is depicted by the short exact
sequence of Mackey functors

C,/Cy : 0 S

() ol A i [

(Jn/Cb: 0 >

4.1.2 The sign representation Z°.
In the case where n is even, there is the C,-module Z°. We denote by
R(z7) =0,
L7°) =1,
the fixed points and orbit Mackey functors, respectively. A subgroup C,, < C), acts nontriv-

ially on Z7 if and only if its index n/m is odd. The norm map L(Z?) — R(Z?) has both a
nontrivial kernel e and cokernel o, which have components given by:

Z/2 n/m odd
Z°  n/m even,

Z/2 n/m odd

0 n/m even,

0 n/modd

Z° n/m even,

0 n/m odd

(Z/m)? n/m even.

a(Cn/Cn) = { 0(Cn/C) = {

o(C,/Cy) & { o(Crn/Cr) = {

12



4.1.3 Higher K-groups with the Galois action.
Recall that the G-module Ky (k) is given by Z/(¢™ — 1) with G acting by ¢'.
Lemma 4.1.3. Let k = Fy» and G = C,,. The norm map
N: L(Kyi-1(k)) = B(Kzi-1(k))
1s an isomorphism of C,-Mackey functors, and thus has trivial kernel and cokernel.
We denote the resulting Mackey functor by &¢, defined as
©' = L(Kyi_1(k)) = R(Ky_1(k)).

It is specified by ©°(C,,/Cy,) = Z/(¢"/™ — 1) with transfers and restrictions depicted in the
Lewis diagram

C,/Ch: Z) (g™ — 1)
pEENE
C,/Ch: Z) (g™ — 1)

The Weyl group action of C,,/C,, on Z/(¢"™/™ — 1) is given by multiplication by ¢"/™.

Proof of Lemma[{.1.3 The coinvariants and invariants of K;_; relative to the subgroup
Cn = <qn/m> < Cn7

are computed as follows.

The coinvariants Ky;_;(k)c,, are obtained by adding the relations ¢"/™z = x for all z
to the group Z/(¢™ — 1). In other words, this is the quotient by the subgroup generated by
g —1eZ /(g™ — 1). This quotient is cyclic of order ¢™/™ — 1, generated by the coset of
1€Z/(g" —1).

The invariants Ky;_1(k)“™ are the subgroup of Z/(¢"™ — 1) of elements x such that

¢"/™x = z. In other words, it is the subgroup annihilated by ¢™/™ — 1, which is cyclic
of order ¢"/™ — 1 and is generated by the element
qni
L €T/ = 1),

Thus, we see that the invariants and coinvariants are abstractly isomorphic. Moreover,
the norm map is multiplication by
ni/m 2ni/m (m—1)ni/m an -1

Under the above identifications, this takes the generator of Ky i(k)¢,, to a generator of
Koy, (k)“, from which the claim follows. O
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4.1.4 Higher K-groups with the twisted Galois action.

Lastly, we consider the norm map of the twisted G-modules Ky _1(k)? = K9_1(k) ® Z7 in
the case where n is even. This case is almost identical to the last, but with (—1)"™¢"/™ in
place of ¢"/™. We leave the details to the reader.

Lemma 4.1.4. Recall that C,, acts on Ko 1(k)° = Z/(¢™ — 1) by —q'. For C,, < C,, we
have

(a) the coinvariants (Kq_1(k)?)c,, are cyclic of order (—1)"/mqg™/™ — 1,
(b) the invariants (Kq_1(k)?)™ are cyclic of order (—1)"/™qg™/™ — 1,
(¢) the norm map
N: (K1 (k) )e,, = (Kaia(k)7)m
s an isomorphism.

Thus we have an isomorphism of Mackey functors L(Ky;—1(k)7) = R(K2-1(K)7) and we
write @° for this Mackey functor.

4.1.5 Summary

The results of the computations above are summarized in Table [I For space reasons, we
abbreviate “orientation preserving” (resp. reversing) to o.p. (resp. o.r.). The symbols for
Cn-Mackey functors were chosen based on the following conventions:

e A square symbol indicates the underlying abelian group is Z.
e A circular symbol indicates each level is a finite cyclic group.
e A horizontal bar indicates the Weyl groups at even index levels act by sign.

Ky (k) L(Ky(k)) | R(Kv(k)) | ker(N) | coker(N)
V| =0, o.p. Z v O 0 o
V] =0, o.r. z° ] (] )
V| =2i—1>0,0p. | Z/(g" —1) e o' 0
V|=2i—1>0,0r. | Z°/(¢" — 1) @ @ 0

Table 1: The G-modules Ky (k) and associated Mackey functors

4.2 The norm cofiber sequence

In this section, we determine the RO(G)-graded homotopy Mackey functors of the G-spectra
in the norm cofiber sequence

Ko(k), —Y— Ko(k)" —— Ka(k)t,

which forms the bottom row of the Tate diagram. The main result is Proposition [£.2.4]
which says that the map Kq(k)! — HZ' is a weak equivalence of G-spectra.
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Our analysis is centered around the RO(G)-graded, Mackey functor-valued homotopy
orbit spectral sequence (HOSS)

E}y = H(G;myKa(k) = myv Ka(k)n,
and homotopy fixed point spectral sequence (HFPSS) [BBHS20, §2.2]
By = H (G K (k) = oy Ka (k)"
The group homology Mackey functors H,(G; M) appearing on the E*-page are given by
H.(G;M)(G/K) = H.(K;res M)

for a G-module M. The group cohomology Mackey H*(G; M) functors are defined analo-
gously. The differentials have grading

[ iy T
d": ES,V - Es—r,V—i—r—l'

Proposition 4.2.1. The RO(G)-graded homotopy Mackey functors of Kq(k), are given on
ortentation preserving representations V- by

| V] =0,
v Kelk)h 20 @o |V]|[=2i—1>0,
0 otherwise,
and on orientation reversing V by
4] V=0
& @5 |V|=2i—-1>0,
v Kq(k), =
T e = V| =2i >0,
0 otherwise.

Proof. Fix a V. € RO(G) and let W = V — |V|. The homotopy orbit spectral sequence,
based at W, has the form

Eg,WH = H (G;my (Ka(k))) = my g (Ka(k))

and we compute 7, (Kg(k)) by looking at the line in this spectral sequence with s+t = |V].
Note that by Lemma [4.1.2] the Mackey functors in this spectral sequence depend only on
the number |WW| + ¢ and whether W is orientation preserving or reversing. Since W and V'
differ by a trivial representation they are either both orientation preserving or orientation
reversing.

The spectral sequences vanish for negative s because negative group homology is zero.
When t is negative, the spectral sequence vanishes because K (k) is a connective spectrum.
Thus we have a first quadrant spectral sequence. In fact this spectral sequence vanishes
except when s or t is equal to zero.

15



To see this, suppose first that 1 is orientation preserving. Note that when ¢ is not zero

we have
E2, o = H(G; Ky(k))

and this Mackey functor is zero since the groups K;(k) are either zero or the groups Z /(¢ —1)
with C,-action by ¢*. These homology groups vanish for s > 0 since, by Lemma , the
norm map from orbits to fixed points is an isomorphism. The case of W orientation reversing
is essentially the same.

The spectral sequence is displayed in Figure [I, with two cases depending on whether
W is orientation preserving or reversing. There are no possible differentials when W is
orientation preserving. There are possible differentials when W is orientation reversing.
These differentials have the form e — @ for various 7. Note that these maps must be zero
since o(C,,/e) = 0 and thus there are no non-zero maps of Mackey functors ¢ — @' since @'
is in the image of the functor R. All possible extensions are trivial by Proposition[3.0.2] [

Eiwﬁ, W o.p. Eiwﬁ, W o.r.
5 | e 5@
4 " N . 4 " N .
B 31 6° RS B 3| & .
i_ ) ~ | . \ i— 5 AN N N \
tlet NN Lol N
0| & o o o 0| & \\6 e 5 Ne '3
0 1 2 3 4 ) 0 1 2 3 4 )
S S

Figure 1: The E*-pages of the homotopy orbit spectral sequence (HOSS) for K¢ (k). Dashed
lines indicate potential extensions, and arrows indicate potential differentials.

Remark 4.2.2. The Ext computations afforded by Proposition inform our choice to
work with Mackey functors throughout this paper. Even if one were interested only in the
C,,/Cy-level of the computations, it is important to make use of the entire Mackey functor
structure because it helps us to easily resolve extension problems which come from spectral
sequences.

For a concrete example, consider the Galois extension Fo/F3, with Galois group Cs, and
i = 1. If we tried to solve extension problems only at the level Cy/Cy, we would arrive at an
extensions problem which, a priori, has two possible solutions. Indeed,

Exty(0(Ca/Cs), ©1(Cy/Ch)) = Exty(Z/2,Z/2) = L2
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Of course, one can often resolve such extension problems by other means, but using the
additional structure afforded by Mackey functors provides a systematic way to do so.

The next proposition follows from essentially the same arguments as the last, using the
homotopy fixed points spectral sequence in place of the homotopy orbits spectral sequence.
This spectral sequence is displayed in Figure 2] Note that in this case there is no room for
either non-trivial differentials or extensions.

Proposition 4.2.3. The RO(G)-graded homotopy Mackey functors of Kq(k)" are given on
orientation preserving representations V' by

O |V]=0,
o |V|=2i-1>0,
o |V|=2i<0,

0  otherwise,

EVKG(k)h =

and on orientation reversing V by

o |V|=0,

® |V|=2i—1>0,
ayKa(k)"=2Je |V|=2i—-1<0
s |V|=2i<0,

\ otherwise.
Ei,Wth? W o.p. Eg,WH? W o.r.
5 Sk 5 ooh
4 4
= 3 e 5 3 -
I I
1 ol 1 B!
0 o o O 0 ° 5 ° ) e 0O
-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
s s

Figure 2: The E*-pages of the homotopy fixed point spectral sequence (HFPSS) for K (k).

With this computation in hand, we prove the first part of Theorem

17



Proposition 4.2.4. There is an equivalence of G-spectra Kq(k)t = HZ'.

Proof. We consider the map of Tate spectral sequences

B, = H (G n{ Ka(k) == n, v Ka(k)!

| !

E, = ES(G§ mHL) === m, vHZ'

induced by the zeroth Postnikov section map Kqg(k) — HZ, and show that there is an
equivalence of E%-pages.
The effect of the computations in Lemmas and is that

H (G; 75 Ka(k)) =0

for |V| # 0. Indeed, a G-module for which the norm map is an isomorphism has vanishing
Tate cohomology.

As a result, the E*-page for K (k) is supported in the region where |V'| = 0. The E*-page
for HZ is also supported in this range, since 7¢HZ is concentrated in total degree 0. Within
the |V| = 0 region of the E*-page, the zero Postnikov section map induces an isomorphism

H (G;ni Ka(k) = H (G; 75 HEZ),

which finishes the proof of the claim. m

5 Proofs of the main theorems

As in the last section, we fix a field k& = F;» for ¢ a positive power of a prime p and let
G = (), be the Galois group of the extension k/F,. In this section we prove the main results
of the paper, starting with Theorem [C] which we now recall.

Theorem 5.0.1. There is a homotopy pullback of genuine G-spectra

Kg(k) — HZ

l |

Kg(k)h —— HZ"

where the horizontal maps are the zeroth Postnikov truncations and the vertical maps are the
geometric completion maps from the Tate diagram.

The homotopy groups of the bottom horizontal arrow can be computed effectively using
the homotopy orbit spectral sequences. We use this to compute the homotopy groups of the
fiber of both horizontal maps in Proposition below.
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To prove Theorem [5.0.1}, note that Lemma reduces the theorem to proving that the
map K¢ (k) — HZ induces equivalences

Ko(k) — HZ and Kg(k) — HZ'.

The equivalence on Tate spectra was proven in the previous section as Proposition |4.2.4]

The fact that the map Kqg(k) — ﬁz is an equivalence then follows from the observation,

Corollary |5.1.4 below, that the maps Kg(k) — Kg (k)" and HZ — HZ' are both connective
covers.

5.1 Comparison of Tate diagrams

Proposition 5.1.1. The map Kg(k) — Kg(k)" is a connective covering of G-spectra.
Proof. By Merling’s result, Theorem 4.0.1, we know that for all C, < C), we have
KG(Fq")Cm = K((Fq")cm) = K(Fqn/m)
and so by Quillen’s computation, Theorem [4.0.2] we have
7" (K (k) 2 mi(K (Fgum)) 2 Z/ (g™ = 1) = &(Co/Ca)

and so there are isomorphisms m,(Kg(k)) = ©' for all 4+ > 0. Comparing with Propo-
sition for V' = i, we see that the positive integral homotopy Mackey functors are
abstractly isomorphic and it remains to check that the map Kqg(k) — Kg(k)" from the Tate
diagram actually induces an isomorphism.

Since the map of underlying spectra Kg(k) — Kg(k)" is an equivalence it gives an
isomorphism at C), /e level of &°. Since

an endomorphism which is an isomorphism at the bottom level is an isomorphism. Thus for
all i > 0 the map m,(Kq(k)) — m;(Kg(k)") is an isomorphism of Mackey functors. O

Proposition 5.1.2. The map HZ — HZ" is a connective covering of G-spectra.

Proof. On integer-graded homotopy groups, we have
r HZ" = H*(G;Z),
which is concentrated in nonpositive degrees. In degree zero,
EOHZh = ﬂO(G5 L) =L,
and myHZ — wyH 7" is an isomorphism. O

Lemma 5.1.3 (c.f. [GMI7, Lemma 11.2]). For any connective G-spectrum X, the map
X — X" is a connective cover if and only if X — X' is a connective cover.
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Proof. Because X is connective the homotopy orbit spectral sequence shows that X}, is also
connective. Thus the Tate diagram induces a map of long exact sequences of homotopy
Mackey functors which, near degree zero, looks like:

c—— mp(Xp) —— mp(X) —— mp(X) ’

[ l:

- — mp(Xp) —— (X)) —— (X)) ——

~

For degree zero the claim follows from this portion of the diagram and the fact that there
is a column of zeros. For degrees above zero the claim follows inductively from the five
lemma. [

The following is an corollary of Propositions p.1.1] and [5.1.2] and Lemma [5.1.3

Corollary 5.1.4. The maps Kg(k) — Kg(k)" and HZ — HZ!' are connective coverings.
We now prove the second part of Theorem D]

Proposition 5.1.5. The Postnikov truncation Kg(k) — HZ induces an equivalence of G-
spectra

Proof. There is a commutative square of G-spectra

Ka(k) —— HZ

| !

Ko(k)t —— HZ'

where both vertical maps are connective covers by Corollary The result now follows
from that fact that the bottom arrow is an equivalence by Proposition |4.2.4] O]

This completes the proof of Theorem [5.0.1] which follows immediately from Proposi-

tions [1.2.4] and [5.1.5] and Lemma 2.0.2

5.2 The RO(G)-graded K-groups of finite fields
Theorem tells us there is a homotopy pullback diagram

Ka(k) —— HZ

| |

Kok —— HZ",
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which we use in this section to reduce the RO(G)-graded K-groups of finite fields to those
of HZ. This reduction proceeds by noticing that the pullback square give us an equivalence
of fibers

TZlKg(/{?) 1) TZlKg(k)h.

The homotopy Mackey functors of the fiber are straightforward to compute, giving us The-
orem [Bl from the introduction.

Proposition 5.2.1. The RO(G)-graded homotopy groups of T>1Kg (k)" are given on orien-
tation preserving representations V' by

12

Ty (1 Ka(k)")

e |V|=2i—1>0,
0  otherwise,

and on orientation reversing V by

® |V|=2i—1>0,
Ty (ro1Ka(k)") = { i

0 otherwise.

Proof. The homotopy fixed points spectral sequences shows that the map Kq(k)" — HZ"
is an equivalence for all V- € RO(G) with |V| < 0. Thus for |V| < 0 the long exact sequence
associated to the fibration

o1 Ka(k)" — Kq(k)" — HZ"

takes the form
=y Ka(K)" = Ty HL" = 1y (121K (k)) — 1y Ko (k)" =y HZ — ...

which shows that 7 (751 Kg(k)) = 0 when |V| < 0. When |V| = 0 the claim holds because
the Mackey functor EVHHZh =0.
For |[V]| > 0, the long exact sequence takes the form

co = 0= Ty (1 Ka(k) — my Ka(k)" =0 — ...

so we have my (751 Kg(k)) & 7y, Kg (k)" for V]| > 0. Putting all this together with Proposi-
tion [£.2.3 we obtain the result. O

Note that the groups appearing in the Mackey functors @ and ©° consist of torsion
abelian groups with ¢ invertible. If p denotes the characteristic of k, it follows that the
p-completion of all these Mackey functors are zero, hence (7>1K¢g(k)), =~ 0.

Corollary 5.2.2. For q = p" then there there is an equivalence K¢, (Fgn)) ~ HZ;)\.

Theorem 5.2.3. The RO(G)-graded homotopy groups of Ka(k) are given by
Ty (Kc, (k) = my (21K6(k)) @ 7y (HZ).

for all Ve RO(C,).
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Proof. We consider the long exact sequence
o=y HZ — 1y (121K6 (k) = my Kg(k) = myHZ — w4 (121 K6 (k) — -+

associated to the fibration
TZlKg(k‘) — Kg(k‘) — HZ

for various choices of V. Note that because m (751 Kg(k)) = 0 for all V with |V]| < 0 we
immediately obtain the result for V' with non-positive total degree.
When |V| = 2i > 0 we have an exact sequence

where M* is either @&° or &*. Note that we have
v (HZ)(G/e) = ny,(HZ) = mpy|HZ = 0.

Since both @' and © are in the image of the right adjoint the the evaluation functor Mackg —
Modzg, we see that the map 7y, HZ — M must be the zero map and we have an isomorphism

L

nyKa(k) = oy HZ = w1y (151 Ka(k)) © Ty HZ

for |[V| =2i > 0.
For |V| =2i — 1 > 0 the long exact sequence has the form

Ty HZ — wy (151 Kg (k) = my Ka(k) = ny HZ — 0.

The same reasoning as the last case tells us that the leftmost map is the zero map so this is
really an extension problem of the form

0— my(r>1Kq(k)) = ny Kg(k) - m,HZ — 0.
and by Proposition this extension problem is trivial, giving us the desired splitting. [J

Remark 5.2.4. While we obtain a splitting of K-groups at every degree, we stress that this
is not coming from a splitting of G-spectra. Indeed, looking at underlying spectra this would
be equivalent to K (k) splitting as HZ V 71 K (k), which is not true.

5.3 Geometric fixed points

In this section, we show that calculating the geometric fixed points of K (k) can also be
reduced to computing the geometric fixed points of HZ. For any finite group G let EP
denote a G-space with

x H#*G

This space is unique up to G-homotopy equivalence and we write EP for the unreduced
suspension of EP. For any G-spectrum X we write X® = EP A X. Note that if ¢ is a prime
number, and G is a cyclic group of order ¢, there is a G-homotopy equivalence EP ~ EG
and thus X® & X , as defined in Section .
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Definition 5.3.1. The geometric fized points of X are the spectrum ®%(X) = (X?)¢.
Theorem 5.3.2. There is an equivalence of spectra ®¢(Kg(k)) — ®C(HZ).

We thank an anonymous referee for indicating Theorem follows from the equivalence
of G-spectra K¢(k) ~ HZ (Proposition |5.1.5)) and the following lemma.

Lemma 5.3.3. For any G-spectrum X the canonical map
X=X

becomes an equivalence of spectra after applying ®C.

Proof. Tt suffices to check that the map EP — EPAE G, obtained by smashing the canonical
map S° - EG with EP is an equivalence of G-spectra. For this, it suffices to check that
the fiber EP A EG. is contractible. For this, consider the fiber sequence

EP, NEG, — EG, — EP A EG..

We are done if we show that the left map is an equivalence. For this, we observe that this
map is obtained by applying the suspension functor to the map of GG-spaces

EP x EG — EG

obtained by collapsing EP to a point. This is an equivariant map between free contractible
G-spaces and is therefore a G-homotopy equivalence. m

Therefore, the computation of ®“ K (k) reduces to the following well-known computation
of ®“HZ. We did not know a complete reference in the literature so we give the computation
here.

Proposition 5.3.4. Let G be a finite cyclic group.

(a) If G is a nontrivial cyclic (-group for a prime £, then as a graded ring,

T, ®CHZ = 7./0[x], 2| = 2.

(b) If G is a cyclic group whose order has at least two prime factors, then
P“HZ ~ 0.
We begin with the case where |G| is a power of a prime ¢. The ¢ = 2 case was proven

by Hill-Hopkins—Ravenel [HHRI6, Proposition 3.18]. We learned of the following proof
technique for the general case from a MathOvertlow answer by Justin Noel.
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Proof of Proposition . First suppose that G = Cy» and for all n write EPCn for
unreduced suspension of the associated universal space. For all n > 1 let f: Cpm — Cp
denote the quotient by the subgroup Cyn-1. Checking the fixed points for all subgroups, we
see that f*EPc, is a model for EP¢,,. We have an isomorphism

O (HL). = HL" (EPc,.) = HL" (f*EPe,) = HLS (EPe,)
where the last isomorphism comes from an isomorphism of Bredon chains
C (f*EPoi Z) = CF(EPo,; L)

Thus the computation for G = Cyn is reduced to the case n = 1.
When n =1 we have ECy = E'P¢, and so there is an equality

——G
®“(HZ) = HZ .

By Corollary [5.1.4] the right hand side is the connective cover of HZ'®. Using the Tate
spectral sequence ([GM95, Theorem 10.3])

Ef’s = f’.\[T(Cg; S HZ) = ﬁg{SHZtCe

we see that 7¢¢ HZ'“ is isomorphic, as a graded ring, to the Tate cohomology of C;. Taking
the non-negative part, we see that 7, (HZ) is isomorphic to the group cohomology ring
of Cy, as claimed. O

Before handing the case where n has two prime factors, we need some notation and a
lemma. The equivariant homotopy groups of X® can be understood as a localization of
the homotopy groups of X. Let p denote the reduced regular representation of G and let
a: S% — SP be the inclusion of the the fixed points {0,00}. Since the reduced regular
representation has trivial fixed points the map « is not null homotopic and represents a
non-trivial class in Wgﬁ(SG).

Lemma 5.3.5. For any G-spectrum X the homotopy groups of ®%(X) are given by the
localization
7.(P% (X)) =2 a 78 (X).

Proof. The statement when G = Con is [HHRI6, Proposition 3.18]. The proof in the general
case is identical, except that we replace the role of the sign representation o from [HHRI6]
with p. m

Proof of Proposition . Now suppose that G is any finite group with at least two dis-
tinct prime factors s and t. So there exists some subgroups C,, C; C G. Let p denote the
reduced regular representation of G and let \; and A\; denote the 2-dimensional representa-
tions of Cy and C}, respectively, which rotate the plane by 2?” and 27” radians. Note that A,
and \; have trivial fixed points and thus the induced representations Ay = Indgs(/\s) and
A = Indgt(/\t) have trivial G-fixed points. It follows that for a sufficiently large integer n
there is an equivariant embedding of A, and A; into np.
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For any two G-representations V' and W we have aygw = ayaw so we must have that
ap, and oy, divide a,5. Thus if we invert oz we also invert oy, and ay,. We claim that,
as elements in the ring HZ,, ay, is s/%/%I-torsion and ayp, 1s tI&/Ctl_torsion. It follows that
inverting both kills everything and thus ®“(HZ) ~ x.

To prove the claim, note that a,, and «,, are s and t-torsion, in HZ,. This follows,
for example, from Theorem and Theorem below which imply that H Z(}j\s =7/s.
Since HZ is a G-E, ring spectrum we can take norms and we have a,, = NCGS(a,\S). The
claim now follows from the multiplicative property of the norms. O]

6 Multiplicative structure

In this section we describe multiplicative structure in the RO(G)-graded equivariant K-
theory of finite fields. We begin by describing the precise algebraic object which encodes
these multiplications in Section [6.1 In Section prove qualitative statements about the
multiplication in m, Kg(k).

6.1 [E_,-Green functor structure

Whereas Mackey functors are the analogues of abelian groups in G-equivariant algebra,
Green functors are the analogues of rings.

Definition 6.1.1 ([Bou97, Chapter 2]). A Green functor for an abelian group G is a G-
Mackey functor S such that:

(a) S(G/H) is aring for all H < G,

(b) the restriction maps are ring homomorphisms,

(c) the Weyl group actions are actions through ring automorphisms, and
(d) (Frobenius reciprocity) whenever it makes sense, we have the relations

Ti(z)-y=Th(z- Ry(y), = TH(y) =TH(Ry(x)-y).

The category Mackg of G-Mackey functors has a symmetric monoidal product called the
box product. We denote the box product of two Mackey functors M and N by M X N. A
Green functor is precisely a monoid with respect to the box product [Bou97, §2.3].

Just as the zeroth homotopy group 7y of a commutative ring spectrum is a commuta-
tive ring, the zeroth homotopy Mackey functor 7, of a commutative ring G-spectrum is a
commutative Green functor. The collection of all homotopy Mackey functors assembles into
an RO(G)-graded Green functor. Explicitly, this structure consists of a collection of Mackey
functors M,, graded on x € RO(G), together with maps of Mackey functors

My, XMy, — My .y

subject to certain associativity and unitality assumptions. We note also that the properties of
the box product imply a graded version of Frobenius reciprocity (part (d) of Definition|6.1.1])
which is completely analogous to the ungraded case. A full account can be found in a paper of
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Lewis—Mandell [LMO6, Section 3]. Note that Lewis-Mandell refer to graded Green functors
as graded Mackey rings.

There are several things one might mean by a commutative ring GG-spectrum. The pos-
sible commutative ring structures correspond to kinds of operads collectively known as N-
operads, as introduced by Blumberg—Hill [BH15]. On the zeroth homotopy Mackey functor
T, an algebra over an N,-operad admits multiplicative structure called an incomplete Tam-
bara functor [BH1S].

In this paper, we only work with algebras over the “most incomplete” N -operad. Fol-
lowing Barwick—Glasman—Shah [BGS20], we refer to these as E.,-Green functors. The cor-
responding notion of incomplete Tambara functor has no multiplicative norms, and as such,
is equivalent to the notion of a Green functor. Our reason for this choice is that we are
not aware of a proof in the literature that equivariant K-theory spectra are algebras over
any more structured N -operads. For completeness, we include a proof, due to Barwick—
Glasman—-Shah [BGS20], that K¢(R) has the claimed multiplicative structure.

Proposition 6.1.2 (Barwick-Glasman—Shah). Let R be a commutative G-ring for a finite
group G. Then Kg(R) admits the structure of a Ey-Green functor.

Proof. For the purposes of this proof we use the model for K (R) given in [BGS20, Section
8], where it is called the “K-theory of group actions.” A proof that this model for equivariant
algebraic K-theory of a G-ring is isomorphic to Merling’s in the equivariant stable homotopy
category is widely expected, and will appear in forthcoming work of the first-named author
with Calle, Chedalavada, and Mejia [CCCM].

Given a G-ring R, let Perfg be a the oo-category of perfect modules over the Eilenberg—
MacLane spectrum HR in the co-category of spectra Sp. This co-category inherits a G-action
which, informally, is given as follows: if M is a perfect R-module then 9M is the R-modules
whose action is given by the composite

RAM Y RAM = M,

where the second map is the action of R on M.

If R is an E-ring, then Perfy is an E.-algebra in the oo-category Fun(BG, CatP) of
perfect stable co-categories with a G-action. Barwick—Glasman—Shah show [BGS20), Propo-
sition 8.2], there is a lax monoidal functor of co-categories

K¢ : Fun(BG, CatP™) — Mack(Sp)

where the target is Barwick’s co-category of spectral Mackey functors [Bar17]. The K-theory
of group actions is exactly Kg(Perfg). Since lax monoidal functors preserve E.-algebras,
the claim follows. O]

6.2 Products in equivariant K-theory

In this section, we describe how to compute multiplications in the RO(G)-graded equivariant
K-theory of finite fields.

To get a sense of the expected multiplicative behavior in K¢ (IFyn ), we first discuss the ring
structure of the nonequivariant K-theory of finite fields. There, all products are essentially
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determined for degree reasons. Indeed, the K-theory in nonzero even degrees vanishes, so
the product of any two classes in nonzero degrees vanishes. Therefore, the truncation map

K(F,) — HZ

exhibits the graded ring K,.(F,) as a square-zero extension of m,HZ. This section will
culminate in Theorem [6.2.3] which shows that this is true equivariantly: 77 Kg(k) is a
square zero extension of HZ," for all H < G.

We keep the notation of Section , whereby k is a degree n Galois extension of I, with
Galois group G = C,,. We write 751 K¢ (k) for the fiber of the truncation map 7<o: K (k) —
HZ. For a subgroup H < @G, the direct sum decomposition of RO(G)-graded rings

! Ke, (k) = n! (r21Ka(k)) © HL!

of Theorem [5.2.3| reduces the possible ways that classes can multiply together to the cases
where each multiplicand is contained in exactly one of the direct summands.

Proposition 6.2.1. For a subgroup H < G, let x € mif Kq(k) and y € nll, K (k) for virtual
representations V,W € RO(G). The multiplication in 7 (Kq(k)) satisfies the following.

(a) If x and y are both elements in 71 (151 Kq(k)) then zy = 0.
(b) If v € 7l (151K a(k)) and y € HZY, with |W| # 0 then xy = 0.

(c) If z,y € HZ, then xy € HZ, and the product is identified with the product in the ring
structure of HZ, .

Proof of Proposition[6.2.1 (a) Note that the homotopy Mackey functors in m, (751 K¢(k)),
given by either @' or © satisfy the property that the transfer maps are surjective. With
this, we may write = T (') for some element 2’ € nf,(K¢(k)) = K)v|(k) where |V] is the
total virtual dimension. By Frobenius reciprocity we have

vy =T, (2")y = T."(+'R] (y))

and we can compute the product 2’ R (y) using the multiplicative structure for the under-
lying ring spectrum K (k). All such products are zero for degree reasons. O

The same argument, together with the fact that HZj, = 0 for |IW| # 0 proves Proposi-
tion .

The case where |W| # 0 is handled similarly. Indeed, if z € 7{f (75, K¢(k)) and y € HZY,
with |[W] = 0 then again we have xy = TH (2’ R¥(y)), in which case we have reduced the
computation to the case where H =. In this case, HZj, = Z, y is an integer, and xy is given
by the canonical action of the integers on 7l (751 Kg(k)).

All that remains is the case where both z and y come from the HZ, components.

Proof of Proposition|6.2.1 (c¢). The second claim follows from the first because the projection
map 77 (Kq(k)) — HZY is induced by the truncation map Kq(k) — HZ, which is a map
of ring spectra [HHR16, Prop. 4.35]. Thus it suffices to check that the component of zy in
i w (151K (k)) is zero. We will write (zy)s1 for this element.
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If |V] = |W| =0 then my w(m>1Kc(k)) = 0 by Proposition so (xy)>1 = 0. Thus it
suffices to consider one of |V| or |[IW| is not zero. Without loss of generality say |[V| # 0. In
this case, the element (zy)>; is in the image of the composite

HZy W HZy — Ty ow(Ka(k)) = mypw (m21K6(k)) (6.2.2)

of the multiplication map followed by the projection. Note that (HZ, X HZy )(G/e) =
HZ;, ® HZS,, which is the zero group because |V| # 0. But my (751 Kg(k)) is either &7,
6", or zero so in all cases there is a G-module M so that my (751 Kg(k)) = R(M), where
R is the right adjoint to the functor Mackg — Modyze which evaluates at G/e. In particular,
since (HZ, W HZ,)(G/e) = 0 the composite is the zero map of Mackey functors so

(l’y)Zl =0. O

By Proposition we have that HZ! is a subalgebra of 77 (K(k)). We see that
(751 Kg(k)) is a submodule, and by Proposition [6.2.1 (a)| we identify 7 K¢ (k) is a square
zero extension.

Theorem 6.2.3. For any H < G, 71 (Kq(k)) is a square zero-extension of HZY.

The ring HZS is quite complicated. Already for the group G = Co, HZ®? is infinitely
generated and non-noetherian. A presentation of this ring can be found in work of Greenlees
[Grel8, Corollary 2.6] and Zeng [Zenl8| Proposition 6.5]. In the next section we use these
presentations to give a presentation of the RO(Cy)-graded ring 7&* (K¢, (F,2)).

7 Extensions of prime degree

In this section we specialize to the case of k = F, as a degree ¢ extension of F, for £ a
prime. We recall the computation of HZ, and use this to give an explicit identification of
the RO(Cy)-graded K-groups. The computation is slightly different when ¢ = 2 so we treat
this case separately.

7.1 Quadratic extensions

Our first example is the case of quadratic extensions F 2 /F, where the Galois group is Cs.
Table [2| below gives Lewis diagrams for all the relevant Co-Mackey functors.

7.1.1 The RO(Cy)-graded equivariant K-groups 7, K¢, (k)

We begin by recalling the RO(C5)-graded homotopy groups of HZ. This computation is
originally due to unpublished work of Stong; we use [FL04] as a reference. We recall this
computation following the motivic grading convention. There are two irreducible real orthog-
onal Cs-representations: the 1-dimensional trivial representation 1 and the 1-dimensional
sign representation o. As a result, 7, HZ is a bigraded Mackey functor. We write (x,y) for
the bidegree corresponding to the representation (x — y) + yo, whereby x is the total degree
and y is the twisted degree.
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Theorem 7.1.1 ([FL04, Theorem 8.1)). Let (z,y) € RO(Cy). The RO(Cy)-graded homotopy
groups of HZ are given by the following rules:

(a) If x =y then

(b) If y <0 and x = 0 then

(¢) If y >0 and x = 0 then

y even,

y > 3 odd,
y=1

(d) If x >y and x < 0 then

r HL~ o T —y even,
0 z—yodd,

(e) If y>x+3 and x > 0 then

gz~ T odd,
e =
Ty 0 else

(f) If x —y and x are both positive or both negative then m, ,HZ = 0.

We depict this result graphically in Figure [3] along with multiplicative structure we will
discuss in the next section.

With the homotopy groups of HZ and 751 K¢, (k) in hand we can read off the RO(C))-
graded homotopy groups of K¢, (k) using Theorem [5.2.3|

] [m] o 7] ]
Z 0 7./2 7 7./2
1H 2 oﬁo Oﬂo gﬂ ] Oﬂl
Z 7° 0 Z 70
o' "
Z/(¢ - 1) Z/(—q" —1)
1+q’iT1 1—qllT1
Z/(¢* = 1) Z/(¢* —1)

Table 2: Cy-Mackey functors which appear in the RO(C5)-graded homotopy of K¢, (F2).
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x?y
6 % 2 O/ O/
“ / Ya1
N2y o
/ Y3
4 2 o
v Y21
N1 pm
2 lnm
O
0 01
a/
o O
o2/
—2 o Ou
a?/ /
o o 0O
a4/ /
—4 o) o O U2
a“/ / /
o o o 0O
A
_ 3
6 /o /o /o /D m
—6 —4 -2 0 2 4 6

Figure 3: The RO(Cy)-graded homotopy Mackey functors of HZ. Names for some generators
at the Cy/C5 level are shown. Lines indicate multiplication by a. The square-zero summand
(see Proposition [7.1.3) M is shown in red.
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Theorem 7.1.2. The RO(Cy)-graded homotopy Mackey functors of K¢, (Fp2) admit a direct
sum decomposition

Ty Koy (Fge) & (71 Kg(k)) © 7, ,HZ.

ey

Ezxplicitly, they are given by

(0 x=21>0and z—y > —3 or even

o x=21>0and z—y < —3 and odd
r. K, (Fp) = O@@i r=21—1>0and r —y < —3 and odd
Ty SN r=2—1>0and x —y > —3 and odd

@' r=2i—1>0and x —y even

\ T, HZ else

We depict this result graphically in Figure [4]

7.1.2 RO(C,)-graded ring 72K, (k)

Finally, we can describe the graded ring 7¢2 K, (k). First, we recall the ring structure of
HZE? which is described in [GrelS8, Section 2] and [ZenlS8, Proposition 6.5]. We begin with
an RO(Cy)-graded ring

B-17 [u,a, uim] /(20)
lul = (0,-2) Jaf =(-1,-1)

where m runs over all positive integers. Note that we are interpretting uim as purely formal,
the element - does not exist. We are using the motivic grading so that (a,b) corresponds

u

to the virtual representation (@ — b) + bo. Let M be the B-module
M = TFalyjaljnso0 = Fo[ S a 7u ™ 1m0

where |y; | = | 'au™F| = (j — 1,7 + 2k) and the multiplication the element u and « in
B works as indicated by the exponents, with the understanding that if either j or k£ becomes
non-negative then the element is zero. Because M is 2-torsion, multiplication by all elements
of the form % are zero.

Proposition 7.1.3. The ring HZ? is isomorphic to the square zero extension B @& M.
We can now describe the RO(Cy)-graded ring 7¢2(K¢, (F,2)). We write
N = a2 (r1K¢, ()

for the elements which do not come from HZ®?. The elements of N form a module over
HZS> C 7% (K¢, (F,2)), and by propositions [6.2.1 (a)| and [6.2.1 (b)} the ring 7¢2 (K¢, (k)) is
in fact a square zero extension B & (M @ N) of B. Thus we are done as soon as we describe
the action of B on N.
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us KC2 (FQQ)

Z,Y

6 B ool 06? o?

o oe' o & f

4 B ool o’ e?

o e €° a

2 %] 61 62 93

o o ©* ®°

0 O 91 @2 93

o O o = ®?

-9 o o of o2 a3

o o O o o2 @3

—4 o o o o o2 o3

o o o O o o8 o3

6| o o o o ot o? o3
—6 —4 —2 0 2 4 6

Figure 4: The RO(C,)-graded homotopy Mackey functors of K¢,(F,2). The contribution
from the square-zero summand M of HZ, (see Proposition is red, and the summand
m, (151 Kg(k)) is blue. Bidegrees (e.g., (1,4)) in which two Mackey functors appear side-by-
side represent the sum of the two Mackey functors.
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By Proposition we have an RO(Cy)-graded decomposition

N= B Ny

(a,b)eZ?
where '
Z/(¢"—1) a=2i—1fori>0andbeven
Nopy =<Z/(¢"+1) a=2i—1fori>0andbodd
0 else.
For any ¢« > 0 let us write x;; for chosen generators of Nj;_1;. Note that we are free to
choose this element to the be transfer of the generator 1 € 75,_, , K¢, (Fg2) = Z/(¢* — 1).
The next lemma completely describes the module structure of N over B.
Lemma 7.1.4. For any i > 0 and b € Z we have
2
um
Proof. The identity ax;, = 0 follows from Proposition [6.2.1 (b)| because the total dimension
of « is not zero.
To show that ux;p = x;p_2, we note that u is the generator of the Cy/Cy level of

HZ(COQ_Q) =~ 0. In particular, the restriction of w is the element 1 € O(Cy/e) = Z. Now
we have

UL p = Tjp—2, Tip = 2Tiprom, and oz = 0.

uryy = uT?(1) = T2 (R (u)1) = T (1) = 244
Multiplying by 2u™~! gives 2u™x;p = 2T p—2m, Which we rearrange to ulml'i,b_g =2x;p. O
From this lemma, we see that the generators depend on the characteristic of F2. Note
that z;;, and ;41 will generate x; for any b < b. If ¢ = 2" for some r then 2 is invertible
inZ/(¢"—1) and Z/(¢" + 1) and 2z, is a generator of Ny;_1;,. On the other hand, if ¢ = p”

for p > 2 then 2 is not invertible in Z/(¢* — 1) nor Z/(q" + 1) and we have 2x;; is not a
generator of Ny;_q.

Corollary 7.1.5. If ¢ = 2" then N is generated by {z;,x;1} fori>0. If ¢ =7p" forp > 2
then N is generated by {z;p} fori >0 and b € Z.

We gather together the above observations in the following theorem.

Theorem 7.1.6. The ring 72 (K¢, (Fz2)) has the presentation

2
4 |:U, &, —, Tip, y],k:| /-[
um
where 1 1s the ideal generated by the relations
20=0, Yjr =Yj-1k Wik =Yjk-1, YirYir =0, 2y;r=0,
UTip = Tip-2, Tiplie =0, Tipwoy =0, awip =0, (¢ +(=1)")a, =0

The indices i, j, k, and m are positive integers. When q = p" for p # 2 then b runs over all
integers. When q = 2" then b € {0,1}.
The (motiwic) bi-gradings are

|Oé| = (_17 _1)> |u| = (07 _2)7 |xi,b| = (22 - 17b)a |yj,k| = (] - 17] + Qk)

33



Remark 7.1.7. The attentive reader will note that the Koszul rule does not appear explicitly
in this presentation. This is a coincidence, coming from the fact that the product of any two
elements which both have odd total degree is zero.

7.2 Extensions of odd prime degree
7.2.1 The RO(C))-graded equivariant K-groups «, K¢, (k)

Here we compute the RO(Cy)-graded homotopy of K¢, (IF,¢) for an odd prime £. The RO(Cy)-
graded homotopy of HZ is similar to the case ¢ = 2, except it is a bit simpler because all
non-trivial irreducible representations have dimension 2. Lewis diagrams for the relevant
Mackey functors can be found in Table

O o % o
z YAl z ?/ (¢ = 1)
Jo | ol | A | gl
Z 0 Z Z/(q" = 1)

Table 3: Cp-Mackey functors which appear in the RO(Cy)-graded homotopy of K¢, (F,) for
¢ an odd prime.

Theorem 7.2.1 ([FL04, Theorem 8.1]). Let £ be an odd prime and let V € RO(Cy). The
RO(Cy)-graded homotopy groups of HZ are given by the following rules:

(a) If [VC] =0 then

0 |V]|>0,
rHZ={0 [V]=0,
o |V]<O.

(b) If[VC| >0 and |V| = 0 then =, HZ = 0.
(c) If [V <0 and |V| =0 then m, HZ = 7.
(d) If VY| >0 and |V| < 0 then

o |V%%| even
HZ =~ ’
Vs {o VO odd,

(e) If V| <0 and |V| > 0 then

o |VCZ| < —3 odd,

T, HZ =
Vi {O else

(f) If |V | and |V| are both positive or both negative then w,, HZ = 0.

Once again we can immediately obtain the RO(Cy)-graded K-groups using Theorem|5.2.3|
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Theorem 7.2.2. The RO(Cy)-graded homotopy Mackey functors of K¢,(F ) admit a direct
sum decomposition
EVKC%(FqZ) =my (TleG(k')) © EVHZ-

Ezxplicitly, they are given by

p

0 V| =2i >0 and |V%| > —3 or even

o V| =2i >0 and |V°| < —3 and odd
myKe,(Fe)=So0d 6" |V|=2i—1>0and |[V| < -3 and odd

o' V]| =2i—1>0and |V > —3 and odd

nyHZ  else.
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