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Abstract

We compute the RO(G)-graded equivariant algebraic K-groups of a finite field
with an action by its Galois group G. Specifically, we show these K-groups split as the
sum of an explicitly computable term and the well-studied RO(G)-graded coefficient
groups of the equivariant Eilenberg–MacLane spectrum HZ. Our comparison between
the equivariant K-theory spectrum and HZ further shows they share the same Tate
spectra and geometric fixed point spectra. In the case where G has prime order, we
provide an explicit presentation of the equivariant K-groups.
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1 Introduction

Algebraic K-theory is an important invariant of rings which provides a natural home for
constructions in a range of subjects, from number theory to geometric topology. Classically,
low dimensional K-groups of rings were defined first in terms of concrete algebraic construc-
tions in work of Grothendieck, Bass, Milnor, and others. Over time it was realized that these
groups fit into a larger picture: there should be a sequence of such groups, indexed on the
natural numbers. This idea was first implemented in the work of Quillen, who constructed
a space whose homotopy groups agreed with the already-known K-groups and whose higher
homotopy groups give the correct generalization of “higher algebraic K-theory.” Using this
machinery, Quillen gave a complete computation of the higher algebraic K-theory of finite
fields [Qui72].

Despite Quillen’s success in computing the algebraic K-theory of finite fields, the task of
computing higher algebraic K-theory for other rings remains difficult. Indeed, the algebraic
K-theory of the integers is still not entirely known, and its computation would resolve the
longstanding Kummer–Vandiver conjecture in number theory [Kur92].

The work of this paper exists in the context of equivariant algebraic K-theory, a variant
of algebraic K-theory defined for rings with an action by a group G. The most familiar
examples of such rings come to us from Galois theory, where the group G is the Galois
group of a field extension. Work of Merling [Mer17] provides a construction of algebraic K-
theory for rings with G-action which produces a genuine G-spectrum – an enhancement of a
spectrum with G-action – with many desirable properties. In particular, Merling shows that
this construction is naturally related to the (now proven) Quillen–Lichtenbaum conjecture
and provides a natural home for studying the K-theory of Galois extensions.

In addition to Merling’s work, Barwick and Barwick–Glasman–Shah provide a differ-
ent construction of equivariant algebraic K-theory using the language of ∞-categories and
spectral Mackey functors [Bar17, BGS20]. Malkiewich and Merling, in on-going work with
Goodwillie and Igusa, are using techniques of equivariant algebraic K-theory to prove an
equivariant refinement of Waldhausen’s A-theory and the stable parametrized h-cobordism
theorem [MM19, MM22, GIMM23]. A connection between equivariant algebraic K-groups,
equivariant A-theory, and Wall’s finiteness obstruction is provided in work of the first-named
author, Calle, and Mejia [CCM23].

1.1 Main result

One feature of genuine G-spectra is that their homotopy groups are graded on RO(G), the
Grothendieck group of real orthogonal representations of the group G. The ordinary Z-
grading is recovered by considering the trivial G-representations of various dimensions. The
computation of RO(G)-graded equivariant homotopy groups, even in tractable cases like
Eilenberg–MacLane spectra, can be challenging. This work can be quite valuable, however.
For example, in Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant one problem
they make critical use of these RO(G)-graded homotopy groups for the group G = C8

[HHR16].
Let us fix a field k with G-action and denote the equivariant algebraic K-theory of k

by KG(k). Because KG(k) is a genuine G-spectrum, the algebraic K-groups are naturally
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graded on the group RO(G). Our main result extends Quillen’s computation of theK-groups
of finite fields to a computation of the equivariant algebraic K-theory of finite fields with
action by their Galois groups.

Theorem A (Theorem 5.2.3 and Proposition 5.2.1). Let k/Fq be any finite extension of
finite fields with Galois group G, and let V be a virtual real orthogonal G-representation of
dimension |V |. Then the equivariant algebraic K-groups of k split as

πG
V (KG(k)) ∼=

{︄
H0(G; π|V |K(k))⊕ πG

V (HZ), |V | > 0,

πG
V (HZ), |V | ≤ 0,

where HZ is the equivariant Eilenberg–MacLane spectrum on the constant Mackey functor
Z. The RO(G)-graded ring structure is described in Proposition 6.2.1.

This is one of the first systematic computations of equivariant algebraic K-groups. In-
deed, to our knowledge, the only prior computation of RO(G)-graded equivariant K-groups
to appear in the literature is in the recent work of Elmanto and Zhang [EZ24]. There, the
authors give a partial computation of the RO(C2)-graded K-groups of finite quadratic field
extensions, and show how these groups are related to the study of Artin L-functions.

1.2 Overview of key ideas

Our computation of the RO(G)-graded K-groups of finite fields hinges on a comparison of
KG(k) with HZ, the equivariant Eilenberg–MacLane spectrum on the constant Z Mackey
functor. The choice of Z comes from the fact that there is an isomorphism of Mackey
functors π0(KG(k)) ∼= Z. Accordingly, there is always a truncation map of genuine G-spectra
τ≤0 : KG(k) → HZ which realizes this isomorphism. The fiber of this map

τ≥1KG(k) = hofib(KG(k)
τ≤0−−→ HZ)

is the 1-connective cover of KG(k).
Our analysis of this map begins with the observation that it is fully computable after

applying a construction called geometric completion. If X is a G-spectrum, its geometric
completion is the mapping G-spectrum

Xh = F (EG+, X).

The G-fixed points of Xh are the familiar homotopy fixed points XhG of X. As such, this
is computable via a homotopy fixed-point spectral sequence which begins with group coho-
mology. We directly compute the following.

Theorem B (Proposition 5.2.1). For any extension of finite fields k/Fq with Galois group
G, the 1-connective cover of the geometric completion of KG(k) has RO(G)-graded homotopy
groups

πG
V

(︁
τ≥1KG(k)

h
)︁ ∼= {︄

H0(G;K|V |(k)), |V | > 0,

0 otherwise.
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The proof of Theorem A proceeds by showing geometric completion induces an equiva-
lence on 1-connective covers

τ≥1KG(k)
∼−→ τ≥1KG(k)

h,

which yields the following result.

Theorem C (Theorem 5.0.1). For any extension of finite fields k/Fq with Galois group G
there is a homotopy pullback of genuine G-spectra

KG(k) HZ

KG(k)
h HZh.

τ≤0

τ≤0

In conclusion, we have a fiber sequence of G-spectra

τ≥1KG(k) → KG(k)
τ≤0−−→ HZ (1.2.1)

where we completely understand the homotopy groups of the fiber. This fiber sequence gives
the decomposition in Theorem A.

Our work reduces the RO(G)-graded K-groups of finite fields to the computation of the
RO(G)-graded coefficient ring of HZ. While these groups are complicated, they are known
in many cases where G is a finite cyclic group – the only possibility for a Galois extension of
finite fields. The first such computation appears in unpublished work of Stong for G = Cp,
and is recorded in Ferland–Lewis [FL04]. The computation for G = C2n plays an important
role in the work of Hill–Hopkins–Ravenel [HHR16, HHR17]. Work of Zeng handles the case
of G = Cp2 [Zen18], and work of Georgakopoulos revisits this case as well as providing
a computer program for G = Cpn [Geo21]. A recent preprint of Basu–Dey addresses the
general case of G = Cn [BD24]. In Section 7 we specialize to the case G = Cℓ, for ℓ a prime,
and write out the K-groups explicitly.

Remark 1.2.2. The statement here of Theorem A references the homotopy groups ofKG(k).
However, associated to any G-spectrum are its homotopy Mackey functors, a richer invari-
ant which contains the homotopy groups of all fixed-point spectra. Although it is more
data to keep track of, we will see that the additional structure present in Mackey functors
dramatically simplify calculations. In particular, it is essential to our approach to resolving
extension problems that appear throughout the paper. See Remark 4.2.2 for more details.
The Mackey functor structure is also critical in our analysis of the multiplicative structures
in Section 6, specifically in the proof of Proposition 6.2.1.

For this reason, we work almost exclusively with the homotopy Mackey functors of G-
spectra in the body of the paper.

1.2.1 Proof of Theorem C

Let us briefly outline our approach to proving Theorem C. The main method we employ is a
comparison of the Tate squares associated to the G-spectra KG(k) and HZ. To any genuine
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G-spectrum X there is a functorially associated homotopy pullback diagram of the form

X ˜︁X
Xh X t

where X t is called the Tate G-spectrum of X. As the name suggests, the homotopy groups
of X t can computed using a spectral sequence whose E2-page is computed using Tate coho-
mology. The map KG(k) → HZ induces a map on Tate diagrams and the following theorem
is proved using direct computation.

Theorem D (Proposition 4.2.4 and Proposition 5.1.5). For any extension of finite fields
k/Fq with Galois group G the map KG(k) → HZ induces equivalences of genuine G-spectra

˜︂KG(k) → ˜︃HZ and KG(k)
t → HZt.

Together with the naturality of the Tate square, this is enough to prove Theorem C.

1.2.2 Geometric fixed points

As a further demonstration of our methods, we showKG(k) and HZ have the same geometric
fixed points. Using Theorem A, and the computation of the homotopy groups of the fiber,
we prove the following.

Theorem E (Theorem 5.3.2 and Proposition 5.3.4). There is an equivalence of spectra

ΦG(KG(k))
∼−→ ΦG(HZ).

The homotopy groups of these spectra as graded rings are given by

π∗(Φ
G(HZ)) ∼=

{︄
Z/p[x], G ∼= Cpn , n > 0,

0, else,

where |x| = 2.

We note that the computation of the groups π∗(Φ
G(HZ)) is well-known to experts, but

we did not know a reference in the literature so the computation is given in Proposition 5.3.4
below.

1.2.3 Multiplicative structure

When R is a commutative ring with G-action, work of Barwick–Glasman–Shah implies that
the RO(G)-graded homotopy groups πG

⋆ (KG(R)) form an RO(G)-graded ring. For finite field
k with Galois action by G, we show that the RO(G)-graded ring πG

⋆ (KG(k)) is a square-
zero extension of HZG

⋆ in Theorem 6.2.3. In the case where G = C2, we use this to give a
presentation of the ring πC2

⋆ (KC2(k)) in Theorem 7.1.6.
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1.3 Future directions

We end the introduction with a short discussion of possible future computations for equiv-
ariant algebraic K-theory of other Galois extensions. To any Galois extension E/F of fields
there is a natural map

K(F ) → K(E)hG.

Underlying the analysis in this paper is the fact that for finite fields, this map is a connective
cover. We prove a version of this statement on the level of G-spectra in Proposition 5.1.1.
This behavior, a version of Galois descent, is atypical of Galois extensions of rings; indeed
we are aware of no other examples where this for field extensions. In particular, a direct
application of the techniques in this paper is unlikely to apply in other examples.

On the other hand, the work of Clausen–Mathew–Naumann–Noel [CMNN20] (see also
[Tho85, TT90]) shows that algebraic K-theory satisfies Galois descent after chromatic lo-
calization at the spectra T (n). Given this, we expect that after T (n)-localization it should
be possible to use the ideas of this paper for further computations of equivariant algebraic
K-theory for other Galois ring extensions. We intend to explore this idea in future work.

Outline

The paper is organized as follows. In Section 2 we recall the Tate diagram associated to a
G-spectrum, which serves as a guiding framework to our work. In Section 3 we recall the
definition of a Mackey functor and prove results concerning extensions of Mackey functors. In
Section 4 we make a number of group (co)homology computations which provide the input
to homotopy fixed point and Tate spectral sequences. These computations set the stage
for the proofs of the main theorems which are in Section 5. The multiplicative structure
in π⋆(KG(k)) is discussed in Section 6. We conclude the paper in Section 7 with explicit
computations in the case G is a cyclic group of prime order.
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2 The Tate diagram

In this short section we recall the Tate diagram from [GM95], which forms the basis for
our work in later sections. For any finite group G let EG be a contractible CW -complex
with free G-action. An explicit model is the unit sphere in the G-representation obtained by
taking the infinite direct sum of copies of the reduced regular representation of G. Define a
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space ˜︁EG by the cofiber sequence

EG+
ε−→ S0 → ˜︁EG

and note that for any G-spectrum X we have an induced cofiber sequence

EG+ ∧X → X → ˜︁EG ∧X

which is natural in X.
We write Xh := F (EG+, X), where F denotes the internal mapping spectrum, and call

this spectrum the geometric completion of X. The map ε induces a map X ∼= F (S0, X) →
Xh which gives a map on cofiber sequences

EG+ ∧X X ˜︁EG ∧X

EG+ ∧Xh Xh ˜︁EG ∧Xh

called the Tate diagram. The key property of the Tate diagram is the following.

Theorem 2.0.1 ([GM95, Proposition 1.2]). The left vertical map in the Tate diagram is an
equivalence. Equivalently, the right square is a homotopy pullback of G-spectra.

For the remainder of this paper we use the abbreviations

Xh := EG+ ∧X ≃ EG+ ∧Xh,

X t := ˜︁EG ∧Xh,˜︁X := ˜︁EG ∧X,

so that the Tate diagram takes the abbreviated form

Xh X ˜︁X
Xh Xh X t

≃
⌟

.

The bottom row of the Tate diagram is called the norm cofiber sequence. The three G-
spectra in the norm cofiber sequence come equipped with spectral sequences which compute
their RO(G)-graded homotopy groups. These spectral sequences are recalled in Section 4.2
and are used to compute the homotopy groups appearing in the norm cofiber sequence
for equivariant algebraic K-theory spectra. From there, the computation of RO(G)-graded
K-groups is achieved by comparing the top and bottom rows of the Tate diagram.

We end this section with a lemma we will need in Section 5.
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Lemma 2.0.2. Suppose that f : X → Y is a map of genuine G-spectra which induces equiv-
alences ˜︁X → ˜︁Y and X t → Y t. Then the square

X Y

Xh Y h

f

fh

is a homotopy pullback square.

Proof. Consider the commutative diagram

Xh X

Yh Y

Xh Xh

Yh Y h

≃

≃
fh f

fhfh

obtained by naturality of the Tate square. It suffices to show that the induced map hofib(f) →
hofib(fh) is a weak equivalence. Taking fibers of the labeled maps in the cube above produces
a commutative square

hofib(fh) hofib(f)

hofib(fh) hofib(fh)

≃

≃

≃

where the horizontal maps are equivalences by the assumptions on the map f . Thus the
map hofib(f) → hofib(fh) is a weak equivalence which completes the proof.

3 Extensions of Mackey functors

In equivariant stable homotopy theory over a finite group G, invariants of G-spectra most
naturally take values in the category of Mackey functors. A Mackey functor is a collection of
abelian groups indexed on the subgroups of G with transfer and restriction maps between
them mimicking induction and restriction maps for representation rings.

In this section, we recall the definition of a Mackey functor and prove an Ext vanishing
result for Mackey functors that will be used repeatedly to solve extension problems later in
Proposition 3.0.2.

Definition 3.0.1. A Mackey functor M for a finite abelian group G is the data of

• an abelian group M(G/H) for each H ≤ G,
• a transfer homomorphism TK

H : M(G/H) → M(G/K) for H < K ≤ G,
• a restriction homomorphism RK

H : M(G/K) → M(G/H) for H < K ≤ G,
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• an action of the Weyl group WKH = K/H on M(G/H) for H < K ≤ G,

which are subject to axioms enforcing compatibility of the restrictions, transfers, and Weyl
actions [Bou97, §1.1.1].

A map M → N between Mackey functors is a collection of maps of abelian groups
M(G/H) → N(G/H) for H ≤ G which commute with restrictions, transfers, and Weyl
group actions.

For any Mackey functor M , the Weyl group action on M(G/e) turns M(G/e) into a
G-module. The functor taking a Mackey functor M to the G-module M(G/e) admits left
and right adjoints

MackG ModZG

L

R

which we denote by L and R, respectively. For a G-module P , L(P ) is its orbit Mackey
functor and R(P ) is its fixed point Mackey functor. Explicitly, we have

L(P )(G/H) = PH , and R(P )(G/H) = PH .

There is a natural transformation N : L ⇒ R which for a G-module P at each level G/H is
given by the norm map PH → PH ,

x ↦→
∑︂
h∈H

h · x

for any x ∈ PH . This transformation will arise in our computations of Mackey functor-valued
group cohomology in Section 4.1.

In our computations, we will often encounter extensions of Mackey functors with trivial
underlying G-module by Mackey functors in the image of R. We show that all of these
extensions must be trivial.

Proposition 3.0.2. For any G-Mackey functor M with M(G/e) = 0 and any G-module N ,

Ext1(M,R(N)) = 0.

Proof. We will show that any short exact sequence of Mackey functors

0 → R(N)
f−→ P → M → 0

must be split. Note that since M(Cn/e) = 0, we must have fCn/e : R(N)(Cn/e) → P (Cn/e)
is an isomorphism. Let φ : P (Cn/e) → R(N)(Cn/e) denote the inverse.

Since R is the right adjoint to evaluation at Cn/e, the map φ uniquely determines a map
of Mackey functors Φ: P → R(N) which is given by φ at level Cn/e. Thus the composite
Φ ◦ f is the identity on level Cn/e, and therefore must be the identity on the entire Mackey
functor. Thus every such short exact sequence is split and Ext1(M,R(N)) = 0.

A dual argument can be applied to see that Ext1(L(N),M) = 0 for any G-module N .
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4 The Galois action on K-theory

In her thesis [Mer17], Merling defines the algebraic K-theory of rings with G-action. This
invariant assigns a genuine G-spectrum KG(R) to every ring R with action of a finite group
G. The following theorem of Merling tells us how KG behaves when our G-rings arise from
Galois extensions; we refer the reader to Merling’s paper [Mer17] for proofs and further
discussion.

Theorem 4.0.1 ([Mer17, Theorem 1.2, (4) and (6)]). For a finite Galois extension of fields
E/F with G = Gal(E/F ) there are equivalences of spectra

K(F ) ≃ KG(E)G

where K(F ) is the non-equivariant algebraic K theory of F .

We are interested in Merling’s construction when the ring R = k is a finite field which
is a finite Galois extension of a finite field with G the Galois group. Specifically, let p be a
prime, let q = pr for some r ≥ 1, and let Fq be the field with q elements. Quillen showed Fq

has its higher K-groups concentrated in odd degrees, where we have

K2i−1(Fq) ∼= Z/(qi − 1)

for i > 0 [Qui72, Theorem 8(i)]. We will consider the case where k = Fqn is a degree n
extension of Fq. The Galois group G = Gal(k/Fq) is cyclic of order n, generated by the
Frobenius automorphism φ specified by φ(x) = xq of k. Quillen furthermore calculated the
action of G on the higher K-groups.

Theorem 4.0.2 ([Qui72, Theorem 8(iii)]). Let k = Fqn and let G = Gal(k/Fq). For i > 0,
the action of the Frobenius automorphism φ on the group

K2i−1(k) = Z/(qni − 1)

is multiplication by qi.

In this section, we use these two results to preform the calculations underlying our main
results. Our goal is to explicitly compute the RO(G)-graded homotopy Mackey functors of
the terms appearing in the norm cofiber sequence for KG(k). In Section 4.1, we enumerate
all the possible Mackey functors appearing on the E2-pages of spectral sequences converging
to these terms, and in Section 4.2, we analyze these spectral sequences.

4.1 Galois cohomology Mackey functors

In this section, we determine the Mackey functors appearing on the E2-pages of the homotopy
orbit and homotopy fixed point spectral sequences for KG(k). The E

2-pages of these spectral
sequences are recalled in Section 4.2 below. We first extend Theorem 4.0.2 to a compuation
of the G-modules πe

VKG(k) for V ∈ RO(G), and then we obtain Mackey functors by applying
the functors

L,R : ModZG → MackG
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defined in the last subsection.
Since these functors are given by taking orbits and fixed points respectively, they form

the input for the filtration-zero line of the homotopy orbit and fixed point spectral sequences.
The remainder of the input for these spectral sequences amounts to computing the higher
group (co)homology of these G-modules. Since G is cyclic, its (co)homology with coefficients
in any G-module P is 2-periodic, and is fully determined by the norm map N : PG → PG.
Specifically, we have

Hs(G;P ) ∼=

⎧⎪⎨⎪⎩
PG s = 0,

cokerNP s > 0, s odd,

kerNP s > 0, s even,

Hs(G;P ) ∼=

⎧⎪⎨⎪⎩
PG s = 0,

kerNP s > 0, s odd,

cokerNP s > 0, s even.

Thus, we need to compute the kernel and cokernel of the norm transformation N : L ⇒ R.
Recall that KG(k)

e ≃ K(k) [Mer17, Theorem 6.4], so we have an isomorphism of abelian
groups πe

VKG(k) ∼= K|V |(k). The G-action on the group πe
VKG(k) is determined by Quillen’s

computation Theorem 4.0.2 and the G-action on the representation sphere SV . We introduce
terminology to classify the possible G-actions on representation spheres.

Notation 4.1.1. We call a G-representation V orientation-preserving (resp. reversing) if
the induced map on SV is orientation-preserving (resp. reversing.). By extending linearly to
virtual representations, this gives a well defined group homomorphism RO(G) → Z/2 where
the kernel is all orientation preserving virtual representations. Note that if G is a cyclic
group of odd order, all representations are orientation-preserving.

An orientation-reversing action of G on SV introduces a “twist” of −1 to the G-action
on πe

VKG(k). We use the notation Zσ to denote the sign representation, i.e., the group Z
with G acting by −1. For a G-module M , we write

Mσ = M ⊗ Zσ

for M twisted by the sign action. We write K2i−1(k) for the G-module Z/(qni − 1) with the
implicit G-action by qi as in Theorem 4.0.2.

Lemma 4.1.2. Let k be any finite field. For V ∈ RO(G), G-modules πe
VKG(k) are given by

πe
VKG(k) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z |V | = 0, V orientation-preserving,

Zσ |V | = 0, V orientation-reversing,

K2i−1(k) |V | = 2i− 1 > 0, V orientation-preserving,

K2i−1(k)
σ |V | = 2i− 1 > 0, V orientation-reversing,

0 otherwise.

Proof. The action on the homotopy groups is given by the conjugation action on maps, where
G acts on SV by sign when V is orientation-reversing and trivially when V is orientation-
preserving.

In virtual dimension |V | = 2i− 1 for i > 0, the claimed computation follows from Theo-
rem 4.0.2. In virtual dimension |V | = 0, the action of G onK0(k) ∼= Z is necessarily trivial, as
there are no nontrivial ring automorphisms of Z. Therefore, the G-module πe

VKG(k) is either
Z or Zσ, depending on whether V is orientation-preserving or orientation-reversing.
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Writing M for any of the G-modules in Lemma 4.1.2, the rest of this section is devoted
to computing the Mackey functors in the exact sequence:

0 → ker(N) → L(M)
N−→ R(M) → coker(N) → 0.

We treat the four cases of Lemma 4.1.2 in order. A summary of these calculations can be
found in Table 1.

4.1.1 The trivial G-module Z.

We denote by

R(Z) = Z = �,

L(Z) = �,

the fixed points and orbit Mackey functors, respectively, of trivial Cn-module Z. We define
the Mackey functor ◦ as the cokernel of the norm map. This is depicted by the short exact
sequence of Mackey functors

0 � � ◦ 0

Cn/Ca : 0 Z Z Z/a 0

Cn/Cb : 0 Z Z Z/b 0.

a

a/b 1 1

b

1 a/b a/b

4.1.2 The sign representation Zσ.

In the case where n is even, there is the Cn-module Zσ. We denote by

R(Zσ) = �,

L(Zσ) = �,

the fixed points and orbit Mackey functors, respectively. A subgroup Cm ≤ Cn acts nontriv-
ially on Zσ if and only if its index n/m is odd. The norm map L(Zσ) → R(Zσ) has both a
nontrivial kernel • and cokernel ◦, which have components given by:

�(Cn/Cm) ∼=

{︄
Z/2 n/m odd

Zσ n/m even,
�(Cn/Cm) ∼=

{︄
0 n/m odd

Zσ n/m even,

•(Cn/Cm) ∼=

{︄
Z/2 n/m odd

0 n/m even,
◦(Cn/Cm) ∼=

{︄
0 n/m odd

(Z/m)σ n/m even.

12



4.1.3 Higher K-groups with the Galois action.

Recall that the G-module K2i−1(k) is given by Z/(qni − 1) with G acting by qi.

Lemma 4.1.3. Let k = Fqn and G = Cn. The norm map

N : L(K2i−1(k)) → R(K2i−1(k))

is an isomorphism of Cn-Mackey functors, and thus has trivial kernel and cokernel.

We denote the resulting Mackey functor by �i, defined as

�i = L(K2i−1(k)) ∼= R(K2i−1(k)).

It is specified by �i(Cn/Cm) = Z/(qni/m − 1) with transfers and restrictions depicted in the
Lewis diagram

Cn/Ca : Z/(qni/a − 1)

Cn/Cb : Z/(qni/b − 1)

a−1∑︁
j=0

qjni/a 1

The Weyl group action of Cn/Cm on Z/(qni/m − 1) is given by multiplication by qni/m.

Proof of Lemma 4.1.3. The coinvariants and invariants of K2i−1 relative to the subgroup

Cm = ⟨qn/m⟩ ≤ Cn,

are computed as follows.
The coinvariants K2i−1(k)Cm are obtained by adding the relations qni/mx = x for all x

to the group Z/(qni − 1). In other words, this is the quotient by the subgroup generated by
qni/m − 1 ∈ Z/(qni − 1). This quotient is cyclic of order qni/m − 1, generated by the coset of
1 ∈ Z/(qni − 1).

The invariants K2i−1(k)
Cm are the subgroup of Z/(qni − 1) of elements x such that

qni/mx = x. In other words, it is the subgroup annihilated by qni/m − 1, which is cyclic
of order qni/m − 1 and is generated by the element

qni − 1

qni/m − 1
∈ Z/(qni − 1).

Thus, we see that the invariants and coinvariants are abstractly isomorphic. Moreover,
the norm map is multiplication by

N = 1 + qni/m + q2ni/m + · · ·+ q(m−1)ni/m =
qni − 1

qni/m − 1
.

Under the above identifications, this takes the generator of K2i−1(k)Cm to a generator of
K2i1(k)

Cm , from which the claim follows.

13



4.1.4 Higher K-groups with the twisted Galois action.

Lastly, we consider the norm map of the twisted G-modules K2i−1(k)
σ = K2i−1(k) ⊗ Zσ in

the case where n is even. This case is almost identical to the last, but with (−1)n/mqni/m in
place of qni/m. We leave the details to the reader.

Lemma 4.1.4. Recall that Cn acts on K2i−1(k)
σ ∼= Z/(qni − 1) by −qi. For Cm ≤ Cn we

have

(a) the coinvariants (K2i−1(k)
σ)Cm are cyclic of order (−1)n/mqni/m − 1,

(b) the invariants (K2i−1(k)
σ)Cm are cyclic of order (−1)n/mqni/m − 1,

(c) the norm map
N : (K2i−1(k)

σ)Cm → (K2i−1(k)
σ)Cm

is an isomorphism.

Thus we have an isomorphism of Mackey functors L(K2i−1(k)
σ) ∼= R(K2i−1(K)σ) and we

write �i for this Mackey functor.

4.1.5 Summary

The results of the computations above are summarized in Table 1. For space reasons, we
abbreviate “orientation preserving” (resp. reversing) to o.p. (resp. o.r.). The symbols for
Cn-Mackey functors were chosen based on the following conventions:

• A square symbol indicates the underlying abelian group is Z.
• A circular symbol indicates each level is a finite cyclic group.
• A horizontal bar indicates the Weyl groups at even index levels act by sign.

KV (k) L(KV (k)) R(KV (k)) ker(N) coker(N)

|V | = 0, o.p. Z � � 0 ◦
|V | = 0, o.r. Zσ � � • ◦

|V | = 2i− 1 > 0, o.p. Z/(qni − 1) �i �i 0 0

|V | = 2i− 1 > 0, o.r. Zσ/(qni − 1) �i �i 0 0

Table 1: The G-modules KV (k) and associated Mackey functors

4.2 The norm cofiber sequence

In this section, we determine the RO(G)-graded homotopy Mackey functors of the G-spectra
in the norm cofiber sequence

KG(k)h KG(k)
h KG(k)

t,N

which forms the bottom row of the Tate diagram. The main result is Proposition 4.2.4,
which says that the map KG(k)

t → HZt is a weak equivalence of G-spectra.
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Our analysis is centered around the RO(G)-graded, Mackey functor-valued homotopy
orbit spectral sequence (HOSS)

E2
s,V = Hs(G; πe

VKG(k)) ⇒ πs+VKG(k)h,

and homotopy fixed point spectral sequence (HFPSS) [BBHS20, §2.2]

E2
s,V = H−s(G; πe

VKG(k)) ⇒ πs+VKG(k)
h.

The group homology Mackey functors H∗(G;M) appearing on the E2-page are given by

H∗(G;M)(G/K) = H∗(K; resGK M)

for a G-module M . The group cohomology Mackey H∗(G;M) functors are defined analo-
gously. The differentials have grading

dr : Er
s,V → Er

s−r,V+r−1.

Proposition 4.2.1. The RO(G)-graded homotopy Mackey functors of KG(k)h are given on
orientation preserving representations V by

πVKG(k)h ∼=

⎧⎪⎨⎪⎩
� |V | = 0,

�i ⊕ ◦ |V | = 2i− 1 > 0,

0 otherwise,

and on orientation reversing V by

πVKG(k)h ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
� |V | = 0

�i ⊕ ◦ |V | = 2i− 1 > 0,

• |V | = 2i > 0,

0 otherwise.

Proof. Fix a V ∈ RO(G) and let W = V − |V |. The homotopy orbit spectral sequence,
based at W , has the form

E2
s,W+t = Hs(G; πe

W+t(KG(k))) ⇒ πW+s+t(KG(k))

and we compute πV (KG(k)) by looking at the line in this spectral sequence with s+ t = |V |.
Note that by Lemma 4.1.2, the Mackey functors in this spectral sequence depend only on
the number |W | + t and whether W is orientation preserving or reversing. Since W and V
differ by a trivial representation they are either both orientation preserving or orientation
reversing.

The spectral sequences vanish for negative s because negative group homology is zero.
When t is negative, the spectral sequence vanishes because K(k) is a connective spectrum.
Thus we have a first quadrant spectral sequence. In fact this spectral sequence vanishes
except when s or t is equal to zero.
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To see this, suppose first that W is orientation preserving. Note that when t is not zero
we have

E2
s,t+W

∼= Hs(G;Kt(k))

and this Mackey functor is zero since the groupsKt(k) are either zero or the groups Z/(qin−1)
with Cn-action by qi. These homology groups vanish for s > 0 since, by Lemma 4.1.3, the
norm map from orbits to fixed points is an isomorphism. The case of W orientation reversing
is essentially the same.

The spectral sequence is displayed in Figure 1, with two cases depending on whether
W is orientation preserving or reversing. There are no possible differentials when W is
orientation preserving. There are possible differentials when W is orientation reversing.
These differentials have the form • → �i for various i. Note that these maps must be zero
since •(Cn/e) = 0 and thus there are no non-zero maps of Mackey functors • → �i since �i

is in the image of the functor R. All possible extensions are trivial by Proposition 3.0.2.

E2
s,W+t, W o.p.

s

t
+
|W

|

0 1 2 3 4 5

0

1

2

3

4

5

�

�1

�2

�3

◦ ◦ ◦

E2
s,W+t, W o.r.

s

t
+
|W

|

0 1 2 3 4 5

0

1

2

3

4

5

�

�1

�2

�3

◦ ◦ ◦• •

Figure 1: The E2-pages of the homotopy orbit spectral sequence (HOSS) for KG(k). Dashed
lines indicate potential extensions, and arrows indicate potential differentials.

Remark 4.2.2. The Ext computations afforded by Proposition 3.0.2 inform our choice to
work with Mackey functors throughout this paper. Even if one were interested only in the
Cn/Cn-level of the computations, it is important to make use of the entire Mackey functor
structure because it helps us to easily resolve extension problems which come from spectral
sequences.

For a concrete example, consider the Galois extension F9/F3, with Galois group C2, and
i = 1. If we tried to solve extension problems only at the level C2/C2, we would arrive at an
extensions problem which, a priori, has two possible solutions. Indeed,

Ext1Z(◦(C2/C2),�1(C2/C2)) = Ext1Z(Z/2,Z/2) = Z/2.
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Of course, one can often resolve such extension problems by other means, but using the
additional structure afforded by Mackey functors provides a systematic way to do so.

The next proposition follows from essentially the same arguments as the last, using the
homotopy fixed points spectral sequence in place of the homotopy orbits spectral sequence.
This spectral sequence is displayed in Figure 2. Note that in this case there is no room for
either non-trivial differentials or extensions.

Proposition 4.2.3. The RO(G)-graded homotopy Mackey functors of KG(k)
h are given on

orientation preserving representations V by

πVKG(k)
h ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
� |V | = 0,

�i |V | = 2i− 1 > 0,

◦ |V | = 2i < 0,

0 otherwise,

and on orientation reversing V by

πVKG(k)
h ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

� |V | = 0,

�i |V | = 2i− 1 > 0,

• |V | = 2i− 1 < 0

◦ |V | = 2i < 0,

0 otherwise.

E2
s,W+t, W o.p.

s

t
+
|W

|

−5 −4 −3 −2 −1 0

0

1

2

3

4

5

�

�1

�2

�3

◦◦

E2
s,W+t, W o.r.

s

t
+
|W

|

−5 −4 −3 −2 −1 0

0

1

2

3

4

5

�

�1

�2

�3

••• ◦◦

Figure 2: The E2-pages of the homotopy fixed point spectral sequence (HFPSS) for KG(k).

With this computation in hand, we prove the first part of Theorem D
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Proposition 4.2.4. There is an equivalence of G-spectra KG(k)
t ≃−→ HZt.

Proof. We consider the map of Tate spectral sequences

E2
s,V = ˆ︁Hs

(G; πe
VKG(k)) πs+VKG(k)

t

E2
s,V = ˆ︁Hs

(G; πe
VHZ) πs+VHZt

induced by the zeroth Postnikov section map KG(k) → HZ, and show that there is an
equivalence of E2-pages.

The effect of the computations in Lemmas 4.1.3 and 4.1.4 is that

ˆ︁H∗
(G; πe

VKG(k)) = 0

for |V | ≠ 0. Indeed, a G-module for which the norm map is an isomorphism has vanishing
Tate cohomology.

As a result, the E2-page forKG(k) is supported in the region where |V | = 0. The E2-page
for HZ is also supported in this range, since πe

⋆HZ is concentrated in total degree 0. Within
the |V | = 0 region of the E2-page, the zero Postnikov section map induces an isomorphism

ˆ︁H∗
(G; πe

VKG(k)) ∼= ˆ︁H∗
(G; πe

VHZ),

which finishes the proof of the claim.

5 Proofs of the main theorems

As in the last section, we fix a field k = Fqn for q a positive power of a prime p and let
G ∼= Cn be the Galois group of the extension k/Fq. In this section we prove the main results
of the paper, starting with Theorem C which we now recall.

Theorem 5.0.1. There is a homotopy pullback of genuine G-spectra

KG(k) HZ

KG(k)
h HZh

where the horizontal maps are the zeroth Postnikov truncations and the vertical maps are the
geometric completion maps from the Tate diagram.

The homotopy groups of the bottom horizontal arrow can be computed effectively using
the homotopy orbit spectral sequences. We use this to compute the homotopy groups of the
fiber of both horizontal maps in Proposition 5.2.1 below.
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To prove Theorem 5.0.1, note that Lemma 2.0.2 reduces the theorem to proving that the
map KG(k) → HZ induces equivalences

˜︂KG(k) → ˜︃HZ and KG(k)
t → HZt.

The equivalence on Tate spectra was proven in the previous section as Proposition 4.2.4.

The fact that the map ˜︂KG(k) → ˜︃HZ is an equivalence then follows from the observation,

Corollary 5.1.4 below, that the maps ˜︂KG(k) → KG(k)
t and ˜︃HZ → HZt are both connective

covers.

5.1 Comparison of Tate diagrams

Proposition 5.1.1. The map KG(k) → KG(k)
h is a connective covering of G-spectra.

Proof. By Merling’s result, Theorem 4.0.1, we know that for all Cm ≤ Cn we have

KG(Fqn)
Cm ∼= K((Fqn)

Cm) ∼= K(Fqn/m)

and so by Quillen’s computation, Theorem 4.0.2, we have

πCm
i (KG(k)) ∼= πi(K(Fqn/m)) ∼= Z/(qni/m − 1) ∼= �i(Cn/Cm)

and so there are isomorphisms πi(KG(k)) ∼= �i for all i ≥ 0. Comparing with Propo-
sition 4.2.3 for V = i, we see that the positive integral homotopy Mackey functors are
abstractly isomorphic and it remains to check that the map KG(k) → KG(k)

h from the Tate
diagram actually induces an isomorphism.

Since the map of underlying spectra KG(k) → KG(k)
h is an equivalence it gives an

isomorphism at Cn/e level of �i. Since

�i ∼= R(Z/qni − 1),

an endomorphism which is an isomorphism at the bottom level is an isomorphism. Thus for
all i ≥ 0 the map πi(KG(k)) → πi(KG(k)

h) is an isomorphism of Mackey functors.

Proposition 5.1.2. The map HZ → HZh is a connective covering of G-spectra.

Proof. On integer-graded homotopy groups, we have

πsHZh ∼= H−s(G;Z),

which is concentrated in nonpositive degrees. In degree zero,

π0HZh ∼= H0(G;Z) ∼= Z,

and π0HZ → π0HZh is an isomorphism.

Lemma 5.1.3 (c.f. [GM17, Lemma 11.2]). For any connective G-spectrum X, the map

X → Xh is a connective cover if and only if ˜︁X → X t is a connective cover.
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Proof. Because X is connective the homotopy orbit spectral sequence shows that Xh is also
connective. Thus the Tate diagram induces a map of long exact sequences of homotopy
Mackey functors which, near degree zero, looks like:

· · · π0(Xh) π0(X) π0( ˜︁X) 0 · · ·

· · · π0(Xh) π0(X
h) π0(X

t) 0 · · ·

∼=

For degree zero the claim follows from this portion of the diagram and the fact that there
is a column of zeros. For degrees above zero the claim follows inductively from the five
lemma.

The following is an corollary of Propositions 5.1.1 and 5.1.2 and Lemma 5.1.3.

Corollary 5.1.4. The maps ˜︂KG(k) → KG(k)
t and ˜︃HZ → HZt are connective coverings.

We now prove the second part of Theorem D.

Proposition 5.1.5. The Postnikov truncation KG(k) → HZ induces an equivalence of G-
spectra

˜︂KG(k) → ˜︃HZ.

Proof. There is a commutative square of G-spectra

˜︂KG(k) ˜︃HZ

KG(k)
t HZt

where both vertical maps are connective covers by Corollary 5.1.4. The result now follows
from that fact that the bottom arrow is an equivalence by Proposition 4.2.4.

This completes the proof of Theorem 5.0.1, which follows immediately from Proposi-
tions 4.2.4 and 5.1.5 and Lemma 2.0.2.

5.2 The RO(G)-graded K-groups of finite fields

Theorem 5.0.1 tells us there is a homotopy pullback diagram

KG(k) HZ

KG(k)
h HZh,
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which we use in this section to reduce the RO(G)-graded K-groups of finite fields to those
of HZ. This reduction proceeds by noticing that the pullback square give us an equivalence
of fibers

τ≥1KG(k)
∼−→ τ≥1KG(k)

h.

The homotopy Mackey functors of the fiber are straightforward to compute, giving us The-
orem B from the introduction.

Proposition 5.2.1. The RO(G)-graded homotopy groups of τ≥1KG(k)
h are given on orien-

tation preserving representations V by

πV

(︁
τ≥1KG(k)

h
)︁ ∼= {︄

�i |V | = 2i− 1 > 0,

0 otherwise,

and on orientation reversing V by

πV

(︁
τ≥1KG(k)

h
)︁ ∼= {︄

�i |V | = 2i− 1 > 0,

0 otherwise.

Proof. The homotopy fixed points spectral sequences shows that the map KG(k)
h → HZh

is an equivalence for all V ∈ RO(G) with |V | ≤ 0. Thus for |V | < 0 the long exact sequence
associated to the fibration

τ≥1KG(k)
h → KG(k)

h → HZh

takes the form

· · · → πV+1KG(K)h
∼=−→ πV+1HZh → πV (τ≥1KG(k)) → πVKG(k)

h ∼=−→ πVHZh → . . .

which shows that πV (τ≥1KG(k)) = 0 when |V | < 0. When |V | = 0 the claim holds because
the Mackey functor πV+1HZh = 0.

For |V | > 0, the long exact sequence takes the form

· · · → 0 → πV (τ≥1KG(k)) → πVKG(k)
h → 0 → . . .

so we have πV (τ≥1KG(k)) ∼= πVKG(k)
h for |V | > 0. Putting all this together with Proposi-

tion 4.2.3 we obtain the result.

Note that the groups appearing in the Mackey functors �i and �i consist of torsion
abelian groups with q invertible. If p denotes the characteristic of k, it follows that the
p-completion of all these Mackey functors are zero, hence (τ≥1KG(k))

∧
p ≃ 0.

Corollary 5.2.2. For q = pr then there there is an equivalence KCn(Fqn)
∧
p ≃ HZ∧

p .

Theorem 5.2.3. The RO(G)-graded homotopy groups of KG(k) are given by

πV (KCn(k))
∼= πV (τ≥1KG(k)) � πV (HZ).

for all V ∈ RO(Cn).
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Proof. We consider the long exact sequence

· · · → πV+1HZ → πV (τ≥1KG(k)) → πVKG(k) → πVHZ → πV−1(τ≥1KG(k)) → · · ·

associated to the fibration
τ≥1KG(k) → KG(k) → HZ

for various choices of V . Note that because πV (τ≥1KG(k)) = 0 for all V with |V | ≤ 0 we
immediately obtain the result for V with non-positive total degree.

When |V | = 2i > 0 we have an exact sequence

πV+1HZ → 0 → πVKG(k) → πVHZ → M i

where M i is either �i or �i. Note that we have

πV (HZ)(G/e) = πe
V (HZ) = π|V |HZ = 0.

Since both �i and �i are in the image of the right adjoint the the evaluation functor MackG →
ModZG, we see that the map πVHZ → M i must be the zero map and we have an isomorphism

πVKG(k)
∼=−→ πVHZ ∼= πV (τ≥1KG(k))⊕ πVHZ

for |V | = 2i > 0.
For |V | = 2i− 1 > 0 the long exact sequence has the form

πV+1HZ → πV (τ≥1KG(k)) → πVKG(k) → πVHZ → 0.

The same reasoning as the last case tells us that the leftmost map is the zero map so this is
really an extension problem of the form

0 → πV (τ≥1KG(k)) → πVKG(k) → πVHZ → 0.

and by Proposition 3.0.2 this extension problem is trivial, giving us the desired splitting.

Remark 5.2.4. While we obtain a splitting of K-groups at every degree, we stress that this
is not coming from a splitting of G-spectra. Indeed, looking at underlying spectra this would
be equivalent to K(k) splitting as HZ ∨ τ≥1K(k), which is not true.

5.3 Geometric fixed points

In this section, we show that calculating the geometric fixed points of KG(k) can also be
reduced to computing the geometric fixed points of HZ. For any finite group G let EP
denote a G-space with

(EP)H ∼=

{︄
∗ H ̸= G

∅ H = G.

This space is unique up to G-homotopy equivalence and we write ˜︁EP for the unreduced
suspension of EP . For any G-spectrum X we write XΦ = ˜︁EP ∧X. Note that if ℓ is a prime
number, and G is a cyclic group of order ℓ, there is a G-homotopy equivalence EP ≃ EG
and thus XΦ ∼= ˜︁X, as defined in Section 2.
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Definition 5.3.1. The geometric fixed points of X are the spectrum ΦG(X) = (XΦ)G.

Theorem 5.3.2. There is an equivalence of spectra ΦG(KG(k)) → ΦG(HZ).

We thank an anonymous referee for indicating Theorem 5.3.2 follows from the equivalence

of G-spectra ˜︂KG(k) ≃ ˜︃HZ (Proposition 5.1.5) and the following lemma.

Lemma 5.3.3. For any G-spectrum X the canonical map

X → ˜︁X
becomes an equivalence of spectra after applying ΦG.

Proof. It suffices to check that the map ˜︁EP → ˜︁EP∧ ˜︁EG, obtained by smashing the canonical
map S0 → ˜︁EG with ˜︁EP , is an equivalence of G-spectra. For this, it suffices to check that
the fiber ˜︁EP ∧ EG+ is contractible. For this, consider the fiber sequence

EP+ ∧ EG+ → EG+ → ˜︁EP ∧ EG+.

We are done if we show that the left map is an equivalence. For this, we observe that this
map is obtained by applying the suspension functor to the map of G-spaces

EP × EG → EG

obtained by collapsing EP to a point. This is an equivariant map between free contractible
G-spaces and is therefore a G-homotopy equivalence.

Therefore, the computation of ΦGKG(k) reduces to the following well-known computation
of ΦGHZ. We did not know a complete reference in the literature so we give the computation
here.

Proposition 5.3.4. Let G be a finite cyclic group.

(a) If G is a nontrivial cyclic ℓ-group for a prime ℓ, then as a graded ring,

π∗Φ
GHZ ∼= Z/ℓ[x], |x| = 2.

(b) If G is a cyclic group whose order has at least two prime factors, then

ΦGHZ ≃ 0.

We begin with the case where |G| is a power of a prime ℓ. The ℓ = 2 case was proven
by Hill–Hopkins–Ravenel [HHR16, Proposition 3.18]. We learned of the following proof
technique for the general case from a MathOverflow answer by Justin Noel.
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Proof of Proposition 5.3.4 (a). First suppose that G = Cℓn and for all n write ˜︁EPCn for
unreduced suspension of the associated universal space. For all n > 1 let f : Cℓn → Cℓ

denote the quotient by the subgroup Cℓn−1 . Checking the fixed points for all subgroups, we
see that f ∗ ˜︁EPCℓ

is a model for ˜︁EPCℓn
. We have an isomorphism

ΦCℓn (HZ)∗ ∼= HZCℓn

∗ ( ˜︁EPCℓn
) = HZCℓn

∗ (f ∗ ˜︁EPCℓ
) ∼= HZCℓ

∗ ( ˜︁EPCℓ
)

where the last isomorphism comes from an isomorphism of Bredon chains

CCℓn

∗ (f ∗ ˜︁EPCℓ
;Z) ∼= CCℓ

∗ ( ˜︁EPCℓ
;Z).

Thus the computation for G = Cℓn is reduced to the case n = 1.
When n = 1 we have ˜︁ECℓ = ˜︁EPCℓ

and so there is an equality

ΦG(HZ) = ˜︃HZ
G
.

By Corollary 5.1.4, the right hand side is the connective cover of HZtG. Using the Tate
spectral sequence ([GM95, Theorem 10.3])

E2
r,s = ˆ︁Hr(Cℓ; π

Cℓ
s HZ) ⇒ πCℓ

r+sHZtCℓ

we see that πCℓ
∗ HZtCℓ is isomorphic, as a graded ring, to the Tate cohomology of Cℓ. Taking

the non-negative part, we see that π∗Φ
Cℓ(HZ) is isomorphic to the group cohomology ring

of Cℓ, as claimed.

Before handing the case where n has two prime factors, we need some notation and a
lemma. The equivariant homotopy groups of XΦ can be understood as a localization of
the homotopy groups of X. Let ρ̃ denote the reduced regular representation of G and let
α : S0 → S˜︁ρ be the inclusion of the the fixed points {0,∞}. Since the reduced regular
representation has trivial fixed points the map α is not null homotopic and represents a
non-trivial class in πG

−˜︁ρ(SG).

Lemma 5.3.5. For any G-spectrum X the homotopy groups of ΦG(X) are given by the
localization

π∗(Φ
G(X)) ∼= α−1πG

∗ (X).

Proof. The statement when G = C2n is [HHR16, Proposition 3.18]. The proof in the general
case is identical, except that we replace the role of the sign representation σ from [HHR16]
with ˜︁ρ.
Proof of Proposition 5.3.4 (b). Now suppose that G is any finite group with at least two dis-
tinct prime factors s and t. So there exists some subgroups Cs, Ct ⊂ G. Let ˜︁ρ denote the
reduced regular representation of G and let λs and λt denote the 2-dimensional representa-
tions of Cs and Ct, respectively, which rotate the plane by 2π

s
and 2π

t
radians. Note that λs

and λt have trivial fixed points and thus the induced representations Λs = IndG
Cs
(λs) and

Λt = IndG
Ct
(λt) have trivial G-fixed points. It follows that for a sufficiently large integer n

there is an equivariant embedding of Λs and Λt into n˜︁ρ.
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For any two G-representations V and W we have αV⊕W = αV αW so we must have that
αΛs and αΛt divide αn˜︁ρ. Thus if we invert α˜︁ρ we also invert αΛs and αΛt . We claim that,
as elements in the ring HZ⋆, αΛs is s|G/Cs|-torsion and αΛq is t|G/Ct|-torsion. It follows that
inverting both kills everything and thus ΦG(HZ) ≃ ∗.

To prove the claim, note that αλs and αλt are s and t-torsion, in HZ⋆. This follows,
for example, from Theorem 7.2.1 and Theorem 7.1.1 below which imply that HZCs

−λs

∼= Z/s.
Since HZ is a G-E∞ ring spectrum we can take norms and we have αΛs = NG

Cs
(αλs). The

claim now follows from the multiplicative property of the norms.

6 Multiplicative structure

In this section we describe multiplicative structure in the RO(G)-graded equivariant K-
theory of finite fields. We begin by describing the precise algebraic object which encodes
these multiplications in Section 6.1. In Section 6.2 prove qualitative statements about the
multiplication in π⋆KG(k).

6.1 E∞-Green functor structure

Whereas Mackey functors are the analogues of abelian groups in G-equivariant algebra,
Green functors are the analogues of rings.

Definition 6.1.1 ([Bou97, Chapter 2]). A Green functor for an abelian group G is a G-
Mackey functor S such that:

(a) S(G/H) is a ring for all H ≤ G,
(b) the restriction maps are ring homomorphisms,
(c) the Weyl group actions are actions through ring automorphisms, and
(d) (Frobenius reciprocity) whenever it makes sense, we have the relations

TK
H (x) · y = TK

H (x ·RK
H(y)), x · TK

H (y) = TK
H (RK

H(x) · y).

The category MackG of G-Mackey functors has a symmetric monoidal product called the
box product. We denote the box product of two Mackey functors M and N by M ⊠ N . A
Green functor is precisely a monoid with respect to the box product [Bou97, §2.3].

Just as the zeroth homotopy group π0 of a commutative ring spectrum is a commuta-
tive ring, the zeroth homotopy Mackey functor π0 of a commutative ring G-spectrum is a
commutative Green functor. The collection of all homotopy Mackey functors assembles into
an RO(G)-graded Green functor. Explicitly, this structure consists of a collection of Mackey
functors M⋆, graded on ⋆ ∈ RO(G), together with maps of Mackey functors

MV ⊠MW → MV+W

subject to certain associativity and unitality assumptions. We note also that the properties of
the box product imply a graded version of Frobenius reciprocity (part (d) of Definition 6.1.1)
which is completely analogous to the ungraded case. A full account can be found in a paper of
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Lewis–Mandell [LM06, Section 3]. Note that Lewis–Mandell refer to graded Green functors
as graded Mackey rings.

There are several things one might mean by a commutative ring G-spectrum. The pos-
sible commutative ring structures correspond to kinds of operads collectively known as N∞-
operads, as introduced by Blumberg–Hill [BH15]. On the zeroth homotopy Mackey functor
π0, an algebra over an N∞-operad admits multiplicative structure called an incomplete Tam-
bara functor [BH18].

In this paper, we only work with algebras over the “most incomplete” N∞-operad. Fol-
lowing Barwick–Glasman–Shah [BGS20], we refer to these as E∞-Green functors. The cor-
responding notion of incomplete Tambara functor has no multiplicative norms, and as such,
is equivalent to the notion of a Green functor. Our reason for this choice is that we are
not aware of a proof in the literature that equivariant K-theory spectra are algebras over
any more structured N∞-operads. For completeness, we include a proof, due to Barwick–
Glasman–Shah [BGS20], that KG(R) has the claimed multiplicative structure.

Proposition 6.1.2 (Barwick–Glasman–Shah). Let R be a commutative G-ring for a finite
group G. Then KG(R) admits the structure of a E∞-Green functor.

Proof. For the purposes of this proof we use the model for KG(R) given in [BGS20, Section
8], where it is called the “K-theory of group actions.” A proof that this model for equivariant
algebraic K-theory of a G-ring is isomorphic to Merling’s in the equivariant stable homotopy
category is widely expected, and will appear in forthcoming work of the first-named author
with Calle, Chedalavada, and Mejia [CCCM].

Given a G-ring R, let PerfR be a the ∞-category of perfect modules over the Eilenberg–
MacLane spectrum HR in the∞-category of spectra Sp. This∞-category inherits a G-action
which, informally, is given as follows: if M is a perfect R-module then gM is the R-modules
whose action is given by the composite

R ∧M
g∧1−−→ R ∧M → M,

where the second map is the action of R on M .
If R is an E∞-ring, then PerfR is an E∞-algebra in the ∞-category Fun(BG,Catperf∞ ) of

perfect stable ∞-categories with a G-action. Barwick–Glasman–Shah show [BGS20, Propo-
sition 8.2], there is a lax monoidal functor of ∞-categories

KG : Fun(BG,Catperf∞ ) → Mack(Sp)

where the target is Barwick’s∞-category of spectral Mackey functors [Bar17]. TheK-theory
of group actions is exactly KG(PerfR). Since lax monoidal functors preserve E∞-algebras,
the claim follows.

6.2 Products in equivariant K-theory

In this section, we describe how to compute multiplications in the RO(G)-graded equivariant
K-theory of finite fields.

To get a sense of the expected multiplicative behavior inKG(Fqn), we first discuss the ring
structure of the nonequivariant K-theory of finite fields. There, all products are essentially
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determined for degree reasons. Indeed, the K-theory in nonzero even degrees vanishes, so
the product of any two classes in nonzero degrees vanishes. Therefore, the truncation map

K(Fq) → HZ

exhibits the graded ring K∗(Fq) as a square-zero extension of π∗HZ. This section will
culminate in Theorem 6.2.3, which shows that this is true equivariantly: πH

⋆ KG(k) is a
square zero extension of HZH

⋆ for all H ≤ G.
We keep the notation of Section 5, whereby k is a degree n Galois extension of Fq with

Galois group G ∼= Cn. We write τ≥1KG(k) for the fiber of the truncation map τ≤0 : KG(k) →
HZ. For a subgroup H ≤ G, the direct sum decomposition of RO(G)-graded rings

πH
⋆ KCn(k)

∼= πH
⋆ (τ≥1KG(k))⊕HZH

⋆

of Theorem 5.2.3 reduces the possible ways that classes can multiply together to the cases
where each multiplicand is contained in exactly one of the direct summands.

Proposition 6.2.1. For a subgroup H ≤ G, let x ∈ πH
V KG(k) and y ∈ πH

WKG(k) for virtual
representations V,W ∈ RO(G). The multiplication in πH

⋆ (KG(k)) satisfies the following.

(a) If x and y are both elements in πH
⋆ (τ≥1KG(k)) then xy = 0.

(b) If x ∈ πH
V (τ≥1KG(k)) and y ∈ HZH

W with |W | ≠ 0 then xy = 0.

(c) If x, y ∈ HZ⋆ then xy ∈ HZ⋆ and the product is identified with the product in the ring
structure of HZ⋆.

Proof of Proposition 6.2.1 (a). Note that the homotopy Mackey functors in π⋆(τ≥1KG(k)),
given by either �i or �i satisfy the property that the transfer maps are surjective. With
this, we may write x = TH

e (x′) for some element x′ ∈ πe
V (KG(k)) ∼= K|V |(k) where |V | is the

total virtual dimension. By Frobenius reciprocity we have

xy = TH
e (x′)y = TH

e (x′RH
e (y))

and we can compute the product x′RH
e (y) using the multiplicative structure for the under-

lying ring spectrum K(k). All such products are zero for degree reasons.

The same argument, together with the fact that HZe
W = 0 for |W | ≠ 0 proves Proposi-

tion 6.2.1 (b).
The case where |W | ≠ 0 is handled similarly. Indeed, if x ∈ πH

V (τ≥1KG(k)) and y ∈ HZH
W

with |W | = 0 then again we have xy = TH
e (x′RH

e (y)), in which case we have reduced the
computation to the case where H =. In this case, HZe

W
∼= Z, y is an integer, and xy is given

by the canonical action of the integers on πH
V (τ≥1KG(k)).

All that remains is the case where both x and y come from the HZ⋆ components.

Proof of Proposition 6.2.1 (c). The second claim follows from the first because the projection
map πH

⋆ (KG(k)) → HZH
⋆ is induced by the truncation map KG(k) → HZ, which is a map

of ring spectra [HHR16, Prop. 4.35]. Thus it suffices to check that the component of xy in
πH
V+W (τ≥1KG(k)) is zero. We will write (xy)≥1 for this element.

27



If |V | = |W | = 0 then πV+W (τ≥1KG(k)) = 0 by Proposition 5.2.1 so (xy)≥1 = 0. Thus it
suffices to consider one of |V | or |W | is not zero. Without loss of generality say |V | ̸= 0. In
this case, the element (xy)≥1 is in the image of the composite

HZV ⊠HZW → πV+W (KG(k)) → πV+W (τ≥1KG(k)) (6.2.2)

of the multiplication map followed by the projection. Note that (HZV ⊠ HZW )(G/e) ∼=
HZe

V ⊗HZe
W , which is the zero group because |V | ≠ 0. But πV+W (τ≥1KG(k)) is either �i,

�i, or zero so in all cases there is a G-module M so that πV+W (τ≥1KG(k)) ∼= R(M), where
R is the right adjoint to the functor MackG → ModZG which evaluates at G/e. In particular,
since (HZV ⊠HZW )(G/e) = 0 the composite (6.2.2) is the zero map of Mackey functors so
(xy)≥1 = 0.

By Proposition 6.2.1 (c) we have that HZH
⋆ is a subalgebra of πH

⋆ (KG(k)). We see that
πH
⋆ (τ≥1KG(k)) is a submodule, and by Proposition 6.2.1 (a) we identify πH

⋆ KG(k) is a square
zero extension.

Theorem 6.2.3. For any H ≤ G, πH
⋆ (KG(k)) is a square zero-extension of HZH

⋆ .

The ring HZG
⋆ is quite complicated. Already for the group G = C2, HZC2

⋆ is infinitely
generated and non-noetherian. A presentation of this ring can be found in work of Greenlees
[Gre18, Corollary 2.6] and Zeng [Zen18, Proposition 6.5]. In the next section we use these
presentations to give a presentation of the RO(C2)-graded ring πC2

⋆ (KC2(Fq2)).

7 Extensions of prime degree

In this section we specialize to the case of k = Fqℓ as a degree ℓ extension of Fq for ℓ a
prime. We recall the computation of HZ⋆ and use this to give an explicit identification of
the RO(Cℓ)-graded K-groups. The computation is slightly different when ℓ = 2 so we treat
this case separately.

7.1 Quadratic extensions

Our first example is the case of quadratic extensions Fq2/Fq where the Galois group is C2.
Table 2 below gives Lewis diagrams for all the relevant C2-Mackey functors.

7.1.1 The RO(C2)-graded equivariant K-groups π⋆KC2(k)

We begin by recalling the RO(C2)-graded homotopy groups of HZ. This computation is
originally due to unpublished work of Stong; we use [FL04] as a reference. We recall this
computation following the motivic grading convention. There are two irreducible real orthog-
onal C2-representations: the 1-dimensional trivial representation 1 and the 1-dimensional
sign representation σ. As a result, π⋆HZ is a bigraded Mackey functor. We write (x, y) for
the bidegree corresponding to the representation (x− y) + yσ, whereby x is the total degree
and y is the twisted degree.
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Theorem 7.1.1 ([FL04, Theorem 8.1]). Let (x, y) ∈ RO(C2). The RO(C2)-graded homotopy
groups of HZ are given by the following rules:

(a) If x = y then

πx,yHZ ∼=

⎧⎪⎨⎪⎩
0 x > 0,

� x = 0,

◦ x < 0.

(b) If y < 0 and x = 0 then

πx,yHZ ∼=

{︄
� y even,

� y odd,

(c) If y > 0 and x = 0 then

πx,yHZ ∼=

⎧⎪⎨⎪⎩
� y even,

� y ≥ 3 odd,

� y = 1

(d) If x > y and x < 0 then

πx,yHZ ∼=

{︄
◦ x− y even,

0 x− y odd,

(e) If y ≥ x+ 3 and x > 0 then

πx,yHZ ∼=

{︄
◦ x− y odd,

0 else

(f) If x− y and x are both positive or both negative then πx,yHZ = 0.

We depict this result graphically in Figure 3, along with multiplicative structure we will
discuss in the next section.

With the homotopy groups of HZ and τ≥1KC2(k) in hand we can read off the RO(C2)-
graded homotopy groups of KC2(k) using Theorem 5.2.3.

� � ◦ � �

Z

Z

1 2

0

Zσ

0 0

Z/2

0

0 0

Z

Z

2 1

Z/2

Zσ

0 1

�i �i

Z/(qi − 1)

Z/(q2i − 1)

1+qi 1

Z/(−qi − 1)

Z/(q2i − 1)

1−qi 1

Table 2: C2-Mackey functors which appear in the RO(C2)-graded homotopy of KC2(Fq2).
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πx,yHZ
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� 1

◦
α

◦
α2

◦
α3

◦
α4

◦
α5

◦
α6

� u

◦

◦

◦

◦

� u2

◦

◦ � u3

�

�

�

�

�2
u

�2
u2

�2
u3

�y1,1

◦
y2,1

◦
y3,1

◦
y4,1

�y1,2

◦

Figure 3: The RO(C2)-graded homotopy Mackey functors ofHZ. Names for some generators
at the C2/C2 level are shown. Lines indicate multiplication by α. The square-zero summand
(see Proposition 7.1.3) M is shown in red.
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Theorem 7.1.2. The RO(C2)-graded homotopy Mackey functors of KC2(Fq2) admit a direct
sum decomposition

πx,yKC2(Fq2) ∼= πx,y (τ≥1KG(k))⊕ πx,yHZ.

Explicitly, they are given by

πx,yKC2(Fq2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x = 2i > 0 and x− y > −3 or even

◦ x = 2i > 0 and x− y < −3 and odd

◦ ⊕ �i x = 2i− 1 > 0 and x− y ≤ −3 and odd

�i x = 2i− 1 > 0 and x− y > −3 and odd

�i x = 2i− 1 > 0 and x− y even

πx,yHZ else

We depict this result graphically in Figure 4.

7.1.2 RO(C2)-graded ring πC2
⋆ KC2(k)

Finally, we can describe the graded ring πC2
⋆ KC2(k). First, we recall the ring structure of

HZC2
⋆ which is described in [Gre18, Section 2] and [Zen18, Proposition 6.5]. We begin with

an RO(C2)-graded ring

B = Z
[︃
u, α,

2

um

]︃
/(2α)

|u| = (0,−2) |α| = (−1,−1)

where m runs over all positive integers. Note that we are interpretting 2
um as purely formal;

the element 1
um does not exist. We are using the motivic grading so that (a, b) corresponds

to the virtual representation (a− b) + bσ. Let M be the B-module

M = F2[yj,k]j,k>0 = F2[Σ
−1α−ju−k]j,k>0

where |yj,k| = |Σ−1α−ju−k| = (j − 1, j + 2k) and the multiplication the element u and α in
B works as indicated by the exponents, with the understanding that if either j or k becomes
non-negative then the element is zero. Because M is 2-torsion, multiplication by all elements
of the form 2

ui are zero.

Proposition 7.1.3. The ring HZC2 is isomorphic to the square zero extension B ⊕M .

We can now describe the RO(C2)-graded ring πC2
⋆ (KC2(Fq2)). We write

N = πC2
⋆ (τ≥1KC2(k))

for the elements which do not come from HZC2
⋆ . The elements of N form a module over

HZC2
⋆ ⊂ πC2

⋆ (KC2(Fq2)), and by propositions 6.2.1 (a) and 6.2.1 (b), the ring πC2
⋆ (KC2(k)) is

in fact a square zero extension B⊕ (M ⊕N) of B. Thus we are done as soon as we describe
the action of B on N .
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πx,yKC2(Fq2)
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Figure 4: The RO(C2)-graded homotopy Mackey functors of KC2(Fq2). The contribution
from the square-zero summand M of HZ⋆ (see Proposition 7.1.3) is red, and the summand
π⋆ (τ≥1KG(k)) is blue. Bidegrees (e.g., (1,4)) in which two Mackey functors appear side-by-
side represent the sum of the two Mackey functors.
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By Proposition 5.2.1 we have an RO(C2)-graded decomposition

N ∼=
⨁︂

(a,b)∈Z2

Na,b

where

Na,b
∼=

⎧⎪⎨⎪⎩
Z/(qi − 1) a = 2i− 1 for i > 0 and b even

Z/(qi + 1) a = 2i− 1 for i > 0 and b odd

0 else.

For any i > 0 let us write xi,b for chosen generators of N2i−1,b. Note that we are free to
choose this element to the be transfer of the generator 1 ∈ πe

2i−1,bKC2(Fq2) ∼= Z/(q2i − 1).
The next lemma completely describes the module structure of N over B.

Lemma 7.1.4. For any i > 0 and b ∈ Z we have

uxi,b = xi,b−2,
2

um
xi,b = 2xi,b+2m, and αxi,b = 0.

Proof. The identity αxi,b = 0 follows from Proposition 6.2.1 (b) because the total dimension
of α is not zero.

To show that uxi,b = xi,b−2, we note that u is the generator of the C2/C2 level of
HZC2

(0,−2)
∼= �. In particular, the restriction of u is the element 1 ∈ �(C2/e) = Z. Now

we have
uxi,b = uTC2

e (1) = TC2
e (RC2

e (u)1) = TCe
e (1) = xi,b−2.

Multiplying by 2um−1 gives 2umxi,b = 2xi,b−2m, which we rearrange to 2
umxi,b−2 = 2xi,b.

From this lemma, we see that the generators depend on the characteristic of Fq2 . Note
that xi,b and xi,b+1 will generate xi,b′ for any b′ < b. If q = 2r for some r then 2 is invertible
in Z/(qi − 1) and Z/(qi + 1) and 2xi,b is a generator of N2i−1,b. On the other hand, if q = pr

for p > 2 then 2 is not invertible in Z/(qi − 1) nor Z/(qi + 1) and we have 2xi,b is not a
generator of N2i−1,b.

Corollary 7.1.5. If q = 2r then N is generated by {xi,0, xi,1} for i > 0. If q = pr for p > 2
then N is generated by {xi,b} for i > 0 and b ∈ Z.

We gather together the above observations in the following theorem.

Theorem 7.1.6. The ring πC2
⋆ (KC2(Fq2)) has the presentation

Z
[︃
u, α,

2

um
, xi,b, yj,k

]︃
/I

where I is the ideal generated by the relations

2α = 0, αyj,k = yj−1,k, uyj,k = yj,k−1, yj,kyj′,k′ = 0, 2yj,k = 0,

uxi,b = xi,b−2, xi,byj,k = 0, xi,bxi′,b′ = 0, αxi,b = 0, (qi + (−1)b)xi,b = 0

The indices i, j, k, and m are positive integers. When q = pr for p ̸= 2 then b runs over all
integers. When q = 2r then b ∈ {0, 1}.

The (motivic) bi-gradings are

|α| = (−1,−1), |u| = (0,−2), |xi,b| = (2i− 1, b), |yj,k| = (j − 1, j + 2k).
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Remark 7.1.7. The attentive reader will note that the Koszul rule does not appear explicitly
in this presentation. This is a coincidence, coming from the fact that the product of any two
elements which both have odd total degree is zero.

7.2 Extensions of odd prime degree

7.2.1 The RO(Cℓ)-graded equivariant K-groups π⋆KCℓ
(k)

Here we compute the RO(Cℓ)-graded homotopy ofKCℓ
(Fqℓ) for an odd prime ℓ. The RO(Cℓ)-

graded homotopy of HZ is similar to the case ℓ = 2, except it is a bit simpler because all
non-trivial irreducible representations have dimension 2. Lewis diagrams for the relevant
Mackey functors can be found in Table 3

� ◦ � �i

Z

Z

1 ℓ

Z/ℓ

0

0 0

Z

Z

ℓ 1

Z/(qi − 1)

Z/(qℓi − 1)

ℓ−1∑︁
j=0

qji 1

Table 3: Cℓ-Mackey functors which appear in the RO(Cℓ)-graded homotopy of KCℓ
(Fqℓ) for

ℓ an odd prime.

Theorem 7.2.1 ([FL04, Theorem 8.1]). Let ℓ be an odd prime and let V ∈ RO(Cℓ). The
RO(Cℓ)-graded homotopy groups of HZ are given by the following rules:

(a) If |V Cℓ | = 0 then

πVHZ ∼=

⎧⎪⎨⎪⎩
0 |V | > 0,

� |V | = 0,

◦ |V | < 0.

(b) If |V Cℓ | > 0 and |V | = 0 then πVHZ ∼= �.
(c) If |V Cℓ | < 0 and |V | = 0 then πVHZ ∼= �.
(d) If |V Cℓ | > 0 and |V | < 0 then

πVHZ ∼=

{︄
◦ |V Cℓ | even,
0 |V Cℓ | odd,

(e) If |V Cℓ | < 0 and |V | > 0 then

πVHZ ∼=

{︄
◦ |V Cℓ | ≤ −3 odd,

0 else

(f) If |V Cℓ | and |V | are both positive or both negative then πVHZ = 0.

Once again we can immediately obtain theRO(Cℓ)-gradedK-groups using Theorem 5.2.3.
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Theorem 7.2.2. The RO(Cℓ)-graded homotopy Mackey functors of KCℓ
(Fqℓ) admit a direct

sum decomposition
πVKCℓ

(Fqℓ) ∼= πV (τ≥1KG(k))⊕ πVHZ.

Explicitly, they are given by

πVKCℓ
(Fqℓ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 |V | = 2i > 0 and |V Cℓ | > −3 or even

◦ |V | = 2i > 0 and |V Cℓ | < −3 and odd

◦ ⊕ �i |V | = 2i− 1 > 0 and |V Cℓ| ≤ −3 and odd

�i |V | = 2i− 1 > 0 and |V Cℓ| > −3 and odd

πVHZ else.
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