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Abstract—Convolutional Neural Networks (CNNs) have
demonstrated significant success in advancing image and video
processing technologies, significantly outperforming traditional
methods in both accuracy and efficiency. However, deploying
CNNs effectively across diverse hardware platforms often faces
the challenge of latency, which can critically impact real-time
processing applications. In this work, we explore algorithmic
design choices aimed at reducing latency in CNN deployments.
We implement five convolution algorithms using SYCL and inte-
grate them into three popular CNN models: VGG16, Resnet101,
and Inception V4. By replacing the standard PyTorch Conv2d
function with our SYCL-based implementations, we evaluate the
execution time of each convolution layer and the overall model on
GPUs. Our extensive experiments benchmark the performance
of these algorithms against the baseline implementations of the
PyTorch and Pytorch Extension for Intel. The results demonstrate
significant improvements in execution time, underscoring the
potential of these algorithmic choices for achieving low latency
in CNN deployments.

Index Terms—Algorithmic Design Choices; Convolution Algo-
rithms; Vision Models; Performance Portability

I. INTRODUCTION

Convolution based models such as Convolutional Neural
Networks (CNN) and recent Vision Transformers [1] and
deep learning techniques that use convolution operations to
progressively create higher level abstraction for image or video
based applications. High impact applications such as facial
recognition for security and access control [2], medical image
processing [3], automated quality control of wafer design [4],
material characterization [5], etc. are just a few examples of
the successes of CNNS.

The versatility of Convolution based models can be at-
tributed to the extensive research that has been conducted
on developing Convolution algorithms — the most compu-
tationally intensive kernel of CNNs, targeting a variety of
use cases [6]. For example, IM2COL [7], was developed
to represent convolution layers as matrix multiplications to
enable utilization of BLAS library and significantly enhance
the portability of these models [8]. KN2ROW [9] was
developed to reduce the memory requirements of IM2COL
while depthwise convolution was developed to reduce both
memory and computational requirements making it suitable for
edge devices [9]. Scalar matrix multiplication was developed
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to speed up computations by avoiding matrix multiplica-
tions [10].

In DYNAMAP [6], authors demonstrated that the relative
performance of convolution algorithms on FPGAs is depen-
dent upon the input feature and kernel dimensions. Thus,
to achieve extreme low latency deployment of a convolution
based model, exploration of convolution algorithms to select
one that obtains the best performance is needed. However,
deep learning frameworks such as pytorch are packaged with
a standard im2col based convolution implementation [11] and
do not allow exploration of the benefits of algorithmic design
choices. Thus, there is a need for a framework that can enable
users to explore algorithmic design choices to obtain low-
latency implementations for various deployment scenarios.

Simultaneously, another visible trend is the proliferation
of Al accelerators as increasingly customized accelerators
are being developed for various use cases [12]. From high
performance data centers to low powered edge devices, GPUs
and FPGAs spanning across this entire spectrum are available
in the market [12]. Processing In Memory (PIM) based archi-
tectures are targeting low latency, low power use cases [13].
Additionally, startups that are developing custom ASIC based
Al accelerators such as Cerebras (for high performance dat-
acenters) [14] have proliferated in recent years. So, while
libraries such as CuDNN do offer implementations of various
convolution algorithms [15], as they are limited to Nvidia
GPU platforms, they fail to target a majority of deployment
scenarios. Developing a performance portable framework is
challenging due to extensive and ever evolving research in
convolution algorithms and the requirement of developing
platform specific implementations for a vast variety of Al
accelerators.

To address these issues, we develop a framework that en-
ables exploration of algorithmic design choices over a variety
of accelerator platforms. Specifically, the contributions of this
work are:

« We build a high performant, portable library of convolu-
tion algorithms using SYCL/oneAPI [16] targeting both
Nvidia and Intel GPUs.

o For scalar matrix multiplication and direct convolution
algorithms, we explore the impact of parallelization. Fur-
thermore, we develop a decision tree based performance



model to predict optimal parallelism for a platform.

e« We conduct extensive experimentation on Nvidia and
Intel GPUs to demonstrate the impact of algorithmic
choices on model performance. We obtain 1.4x improve-
ment in convolution algorithm execution and 1.3x in end
to end model inference latency against pytorch baselines.

o We also develop a performance model that predicts the
convolution algorithm that is expected to obtain the best
performance for a given model on a given hardware.

II. BACKGROUND AND RELATED WORKS
A. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of Deep
Neural Networks that use Convolution Layers as the core
technique for feature extraction. Each convolution layer is
characterized by the following parameters [17]: Input Feature
Dimensions: H;,, x W, x C;,, where H;, x W,, denotes
the image sizes and C;, denotes the channel width, basi-
cally, the number of images; Output Feature Dimensions:
H it X Wit X Cout, Where Hyye X Wy denote the image sizes
and C,,; denotes the channel width; and Kernel Dimensions:
k X k X Cyp X Coys. The operation performed by convolution
layer can then be represented by the following equation:

O(ivjacout) =
k k
Do D Ikl + k2, cin)

x K (k1, k2, cin, Cout) (D

Here 1,0, K denote the input feature image, output image,
and kernel respectively. In practice, appropriate padding and
striding are incorporated as suitable to obtain the output image.

B. Research on Convolution Algorithms

Extensive research has been conducted on the develop-
ment of algorithms to optimize convolution layers for differ-
ent objectives. IM2COL [7] was one of the earliest works
that modeled the convolution operation as matrix multipli-
cations to enable the use of BLAS libraries optimized for
devices. KN2ROW [9] was developed as an improvement
upon IM2COL to reduce its memory requirements. DEPTH-
WISE convolution was developed to reduce the computational
complexity of the convolution layer and has been especially
effective in edge settings [18]. Other algorithms such as direct
convolution [19], scalar matrix multiplication [10], indirect
convolution [20], deformable convolution [21], etc. have also
been developed for various use cases.

C. Related Works on CNN deployment

A variety of works have focused on accelerating the de-
ployment of CNNs on FPGAs, GPUs, and ASICs. However,
most of these work focus on hardware specific optimizations to
achieve best performance — execution time, energy-efficiency,
etc. They do not focus on exploring design choices provided
due to convolution algorithms. Moreover, they are limited to

specific devices such as FPGA or GPUs and do not offer
portability.

Work such as FPG-AI [22], BODA-RTC [23], Intel Pytorch
Extensions are a few works that have focused on the portability
aspect of CNN deployment. In FPG-AI, authors developed
a performance portable CNN deployment framework for a
variety of FPGA devices. They achieved this by developing
a template Convolution IP and using design space exploration
to customize the template for the target FPGA. In BODA-
ETC [23], authors developed a deployment framework that
implements the key operations of CNNs using openCL to
enable deployment on a variety of GPU platforms. They
only support the implementation of the convolution IM2COL
algorithm. The limitations with these frameworks are that they
achieve limited portability on either FPGA or GPU. Intel
Extension for Pytorch [24] is a DNN optimization framework
from Intel that currently support deployment of CPU and GPU
platforms. We are not aware of this framework supporting
FPGAs currently. However, given that the framework leverages
SYCL/onAPI [16] as one of the underlying library, future
iterations may support deployment on FPGA platforms. Here
again, the key limitation is that these frameworks do not allow
exploration of algorithmic design choices.

DYNAMAP [6] does offer users to explore algorithmic
design choices, however, it is written in verilog and customized
for FPGA platforms and cannot be employed on GPUs. In
summary, to the best of our knowledge, there does not exist
a framework that enables users to explore algorithmic design
choices on a variety of a variety of target platforms, thereby,
motivating the need for this project.

D. SYCL/oneAPI

SYCL programming language was developed by Khronos
group to address the immense heterogeneity that is being ex-
hibited by modern computing platforms due to the integration
of accelerators such as FPGA, GPU, and custom Al processors
with CPU platforms [16]. Intel offers an implementation
of SYCL using its oneAPI frameworks and libraries. Using
SYCL/oneAPI, a programmer can write the code once and
deploy it on a variety of CPU+X platforms, where X can be
any accelerator. While the program can run with a reasonable
performance on a variety of platforms, the programmer also
has the option to further optimize code for specific platforms
without compromising its portability.

III. PERFORMANCE PORTABLE CONVOLUTION
ALGORITHM LIBRARY

We developed SYCL based implementations of popular
convolution algorithms — IM2COL, KN2ROW, SMM, Direct,
and Depthwise Convolution. SYCL enables portability by
enabling execution of the same source code on a variety of
platforms with minimal to no code modifications. To obtain
performance, we leverage device specific BLAS libraries for
IM2COL, KN2ROW. Intel MKL BLAS is used for Intel plat-
forms, while cuBLAS is used for NVIDIA GPU. For SMM,
direct, and depthwise convolutions, that do not map to matrix



multiplication, we develop parallel algorithms accompanied
by a decision tree based performance model to obtain optimal
parallelism parameters.

The algorithms implemented in our SYCL library as well
as the corresponding implementation strategies are described
below.

A. IM2COL

IM2COL [8], short for “image-to-column,” is a technique
used to optimize convolution operations in deep learning.
The method gained prominence in 2014 with the rise of
convolutional neural networks (CNNs) for image processing
tasks. The central concept behind IM2COL is to transform
the convolution operation into a matrix multiplication (GEMM
- General Matrix Multiply) operation. This transformation al-
lows leveraging highly optimized BLAS (Basic Linear Algebra
Subprograms) libraries, which are designed to perform matrix
multiplications very efficiently on modern hardware.
Implementation Strategy: The IM2COL approach reshapes
the input image and the filter into column vectors, making the
convolution operation equivalent to a matrix multiplication.
This is done by:

o Unfolding each receptive field (the region of the input

over which the filter is applied) of the input image into
a column.

o Stacking these columns side by side to form a matrix.

For an input tensor of shape (N, Ciy, Hin, Wiy), where N is
the batch size, the transformation can be visualized as:

Inputo; — Matrix of shape (Ciy - Hin - Win, N - Hoye - Wour)

Here, H,, and Wy, are the height and width of the output
feature map.

We utilize Intel’s oneAPI Math Kernel Library (oneMKL),
which provides device specific highly optimized matrix mul-
tiplication routines. For Intel, it leverages oneMKL GEMM
kernel. For Nvidia, it leverages Nvidia’s cuBLAS kernel.

B. KN2ROW

Kn2row [25] was developed to mitigate the limitations of
IM2COL. IM2COL algorithm results in a k X k increase in the
input memory size which results in significant inefficiencies
on devices with lower memory or larger kernel sizes. Similar
to IM2COL, KN2ROW also relies on converting convolution
operations into matrix multiplications. However, its approach
differs from IM2COL in how it rearranges the elements of the
convolution operation. Instead of focusing on the input image,
KN2ROW focuses on the kernel (filter) and transforms it into
row vectors.

Implementation Strategy: The KN2ROW data layout process
proceeds as follows:

« Reshaping the filter tensor into a matrix where each row
corresponds to a flattened version of the filter applied to
each output channel.

e Reorganizing the input tensor so that the receptive fields
match the rows of the transformed filter matrix.

For a filter tensor of shape (K, Ci, Hin, Win) (where K
is the number of output channels), the transformation can be
visualized as:

Filterrow — Matrix of shape (K, C, - Hiy - Wip)

The input tensor is rearranged accordingly to form a ma-
trix suitable for multiplication with the transformed filter.
KN2ROW results in an expansion in the output memory size
by a factor of k x k, but this can be mitigated by accumulating
the outputs when they are generated.

Here again, we utilize Intel’s oneAPI Math Kernel Library
(oneMKL), which provides device specific highly optimized
matrix multiplication routines. For Intel, it leverages oneMKL
GEMM kernel. For Nvidia, it leverages Nvidia’s cuBLAS
kernel.

C. Scalar Matrix Multiplication with Zero Packing (SMM)

Scalar Matrix Multiplication with Zero Packing (SMM) [26]
is a technique designed in 2022 that intends to optimize
convolution operations by avoiding matrix multiplications.

The central concept of SMM is to view the output of the
convolution operation as a linear combination of input features
with the kernel elements as weights. Using this view, matrix
multiplications are replaced using matrix scaling and matrix
addition operations. Compared to IM2COL and KN2ROW,
SMM does not result in an increase in input or output memory
size.

Another avenue of optimization in SMM is obtained by
avoiding the zero values of kernels explicitly. By avoid these
values, a number of matrix scaling and additions are avoided
resulting in observable reduction in execution times.
Implementation Strategy: SMM algorithm loops through the
input channels and processes each channel individually. We
use parallel_for loops provided by SYCL to implement
parallelism. parallel for enables us to spawn “work-
items”, that implement Single Program Multiple Data par-
allelism. “work-items” can be grouped together into logical
blocks of “work-groups”. “work-groups” have access to the
same shared cache leading to improved data reuse and perfor-
mance.

In our implementation of SMM, we parallelize along the
output channel dimension. For each output channel, an ac-
cumulator is used that accumulates the results of processing
the input channels Cj,. The input channels are processed
sequentially to avoid write conflicts. For each input channel
¢;, the following operations are performed:

« Extract Sub-Matrices: Extract k£ sub-matrices T;f from
the input image I, consisting of all the rows and k
columns such that 75" = I[c;, 1 : Hip,j: j+k—1],Vj €
{0,1,...,k — 1}. Each sub-matrix corresponds to one
column of the kernel matrix.

« Shifting and Multiplication: For each element of col-
umn j of the kernel matrix, appropriately shift T;’
vertically to produce T]‘?;Vl € {0,1,...,k — 1} so that
it aligns with the output. This step produces a total of



k x k sub-matrices, one for each pixel of the kernel. The
sub-matrices are padded appropriately to match the output
size of H,,; X Wyy:. Each sub-matrix chl is scaled by
the kernel element at index ji.

o Accumulation: The results of the multiplications are
accumulated.

Optimizations: We incorporate the following optimizations to
obtain high performance in SMM.

« Kernel Layout for Contiguous Access: To match the
access pattern of the algorithm and ensure contiguous
memory accesses, the kernel layout is organized as a
multidimensional array of shape (c;, kuw, kn, Co)-

o Sub-matrices Layout for Memory Efficiency: While
we mention above that the algorithm requires creation of
k x k sub-matrices chf, in practice, submatrices TﬁVl €
{0,1,...,k—1} are sub-sets of T;i and so we only keep
a single copy and use appropriate indexing. The steps
of scaling of sub-matrices and accumulation to output is
combined so that we do not need to store the temporary
k x k scaled sub-matrices.

« Parallelization: In addition to output channel paral-
lelization, we parallelize the elementwise scaling and
accumulation of the sub-matrices. Specifically, we use
Dsmm threads and each thread computes the scaling
and accumulation of a sub-block of each sub-matrices.
As noted above, scaling and accumulation steps are
combined together to avoid allocation of memory for
temporary results. The k& x k sub-matrices are still pro-
cessed sequentially to avoid write conflicts. To utilize the
shared cache provided by modern GPU architectures, the
Psmm threads are grouped into a single “work-group” and
we have C,,; “work-groups” corresponding to the C\,;
output channels.

Determining Optimal Parallelism Dgy,,,: The parallelism pa-
rameter Py, can vary from 1 till the number of elements
of the output, i.e., Hyyy X Wy The optimal value of pgpm,
is expected to depend upon the number of output channels,
kernel size, as well as the device.

To obtain this optimal value, our framework includes a
simple decision tree model to predict the optimal pg,.,, value.
We trained the decision tree model by performing close to
400 runs by varying the number of output channels, kernel
size, image dimensions, and the value of pg,,,, on a targeted
hardware. We treated this as a classification problem with
number of labels varying from 1 till the product of image
dimensions. Using k— fold validation, our decision tree ob-
tained an F1 score of around 0.79 for both platforms, which
is significantly higher than random (given the large number
of classes). The corresponding R? score was around 0.83 for
both the platforms, showing a good predictability.

Limitation of Performance Model: Currently, we require run-
ning several 100 executions on a target platform to develop a
model. We plan to address portability of performance model
across platforms with minimal runs in future.

D. Direct Convolution

Direct Convolution [27] is one of the fundamental and
straightforward approaches to performing convolution opera-
tions in neural networks. Direct Convolution involves applying
the convolutional filter directly to the input data. This method
has been in use since the inception of convolutional neural
networks (CNNs) in the late 1980s and early 1990s, with
foundational work by Yann LeCun and others.

The key idea behind Direct Convolution is to apply the

convolutional kernel (filter) directly to the input tensor without
transforming the data into another format. This means per-
forming the sliding window operation, where the kernel is
applied to each spatial location of the input tensor, computing
dot products between the kernel weights and the corresponding
input region.
Implementation Strategy: Direct convolution simply imple-
ments the five loops of Equation 1 for each output channel.
Here again we use parallel_for loops to parallelize. Sim-
ilar to SMM, we compute output channels in parallel. Within
each output channel, pg;-ec: threads are used to compute the
output pixels in parallel. Similar to SMM, the value of pg;rect
can vary between 1 and the number of pixels in the output
image, i.e., H,yut X Wo,s. To utilize the shared cache provided
by modern GPU architectures, the pg;,e.; threads are grouped
into a single “work-group” and we have C,,; “work-groups”
corresponding to the C,,; output channels.

We again train decision tree models to estimate optimal
value for pgirect. The decision trees obtain F1 and R? score
of around 0.74 and 0.85 for both the platforms, which again
demonstrates high predictibility.

E. Depthwise Separable Convolution (DEPTHWISE)

Depthwise Separable Convolution [28], also known as
Depthwise Convolution, was introduced by the Xception [18]
architecture in 2016 and later adopted by MobileNets. It re-
duces computational cost and parameters in CNNs by dividing
standard convolution into two steps: depthwise convolution
and pointwise convolution. Depthwise Separable Convolution
splits the convolution operation into two simpler operations:

« Depthwise Convolution: This step performs spatial con-
volution independently for each input channel. Instead
of convolving all channels together with a set of filters,
each input channel is convolved with its own filter. This
reduces the number of computations as no cross-channel
mixing occurs at this stage.

« Pointwise Convolution: This step performs a 1x1 con-
volution to combine the output of the depthwise convo-
lution. This step mixes the information across channels
and is equivalent to applying a fully connected layer
independently at each spatial location.

Implementation Strategy: Depthwise Convolution requires
parallel computation of C;, = C,,; convolutions. We use
the following thread hierarchy: C,,: “work-groups” corre-
sponding to the C,,; output channels are utilized with each
“work-groups” using pqep:r, threads to compute the output pix-
els in parallel. For pointwise convolution, direct convolution



parallelism scheme is adopted. We again train decision tree
models to estimate optimal value for pge,.,. The decision trees
obtain F1 and R? score of around 0.72 and 0.83, for both the
platforms.

Note: Depthwise convolution is not functionally equivalent
to the convolution operation defined by Equation 1 as it
reduces the number of input-output channels that interact with
each other. Thus, simply replacing a convolution operation by
depthwise convolution during inference may reduce accuracy.
A model needs to be retrained if using depthwise convolution
algorithm. However, we demonstrate it in our results due to
its popularity.

F. Performance Modeling for Algorithm Selection

We also developed a simple decision tree model to estimate
the convolution algorithm that can obtain the best performance.
The model takes input dimensions, and number of input,
output channels and outputs the convolution algorithm to use.
The decision trees obtain F1 score of around 0.744 for both
the platforms.

IV. FRAMEWORK IMPLEMENTATION

Our framework integrates the performance portable SYCL
implementations of convolution algorithm into pytorch using
cppextensions to make them seamlessly available via the
popular python interface. A user can simply set the right flags
to select the appropriate algorithm. Moreover, the performance
models come packaged with the framework and users can train
device specific models by performing some measurements as
described above. After the performance models are trained,
the framework can be utilized as follows:

Input: The framework takes a pre-trained PyTorch CNN
model described in pytorch as input. The convolution layers
in these models are implemented using Conv2d () function
provided by PyTorch.

Output: For each model, a deployment-ready CNN model
where each convolution layer is replaced with the optimal
convolution algorithm is produced.

The framework is available on github'.

Note: While we do not perform experiments on FPGA
platforms as they were unavailable to us, our framework
is still expected to support these platforms as our selected
programming language SYCL also has support for FPGAs.

V. EXPERIMENTS AND RESULTS
A. Setup

We evaluate the performance-portable library on three pop-
ular CNN models: VGG16 [29], ResNetl01 [30], and In-
ceptionV4 [31]. Our experiments span a range of hardware,
including the Intel® Iris® Xe MAX GPU and Intel® Xeon®
Platinum 8468V CPU as low-power options, and the NVIDIA
V100, A100 GPUs, and Intel Max 1100 GPU for high-
performance deep learning and HPC tasks.

As described in Section IV, the SYCL algorithms are
integrated into pytorch and can be utilized by simply setting

Thttps://github.com/KLab- Al3/hipc-24

a flag. No code change is needed between the Intel and the
Nvidia platform.

Baselines: We use the eager execution pytorch (default
mode) [11] and Intel extensions of pytorch [24] as baselines.
Pytorch, even though it is implemented in python is heavility
optimized as it takes the computational graph of a deep
neural network model and maps it to device specific BLAS
operations (for example, cuDNN on Nvidia). Similarly, Intel
extensions for pytorch in an optimized version of pytorch
for Intel platforms. Thus, even modest improvements against
these baselines is a significant result. Both these frameworks
utilize a single convolution algorithm and so the performance
improvements presented in the following sections can be
attributed to the impact of choosing appropriate convolution
algorithm.

B. Evaluation Objectives

Our experimental evaluations are geared towards answering
the following questions:

1) How does parallelism impact the performance of SMM
and Direct Convolution? (Section V-C)

2) What is the relative performance of convolution algo-
rithms on different models on different hardware? (Sec-
tions V-D- V-E)

3) What are the tradeoffs in various convolution algorithms?
(Section V-F)

C. Impact of Parallelism on SMM and Direct Convolution
performance

Figure 1 shows the change in execution time of convolution
for a few selected input and kernel dimensions with respect
to the parallelism parameters pgy,m , Pdirect, denoted as work-
group size in the label. In all four scenarios, we observe that
the performance initially improves with increasing number of
threads. However, after reaching a minima, it starts reducing
again. We make the following observations:

o The improvement in performance from 16 to 32 threads
is much more pronounced in SMM compared to direct
across all the points. This may imply that direct convo-
lution is bounded by memory even with a lower number
of threads. In other words, in our implementations, SMM
has a better data reuse than direct.

o For SMM, work-group size of 128 has the best perfor-
mance on both Intel and Nvidia platform. For Direct, the
optimal work-group size is again 128 for most of the
points and is 256 for Point 2.

D. Relative Performance of Convolution Algorithms on CNN
Model Inference

TABLE I: Relative Performance Table on VGG16

Hardware \ Algorithms
Intel® Xeon® Platinum 8468V
Intel® Iris® Xe MAX

Nvidia V100

Nvidia A100

Intel Max 1100 GPU

Direct | SMM
3.4938 | 3.2134
0.8875 | 0.7614
0.8701 | 0.6832
0.2689 | 0.1942
0.3251 | 0.2498

Im2col
3.6583
0.8876
0.8751
0.2658
0.2928

Kn2row
3.7421
0.8742
0.8724
0.2534
0.2815

Depthwise
3.9217
0.8704
0.8605
0.2656
0.2801

PyTorch
3.8762 -
1.0983 0.8981
1.0000 -

0.3017

0.3736

Intel PyTorch Extension
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Fig. 1: Performance of Direct and SMM convolution on Nvidia and Intel platforms with varying parallelism. X-axis points:
Point 1: 3x3 kernel, 128 input/output channels; Point 2: 5x5 kernel, 128 input/output channels; Point 3: 3x3 kernel, 128 input,
256 output channels; Point 4: 5x5 kernel, 128 input, 256 output channels; Point 5: 3x3 kernel, 256 input, 128 output channels;
Point 6: 5x5 kernel, 256 input, 128 output channels; Point 7: 3x3 kernel, 256 input/output channels; Point 8: 5x5 kernel, 256

input/output channels. Image size is fixed at 1024x1024.

In Tables I, II, and III, we present the relative performance
of the convolution algorithms compared to the execution time
of the convolution layers of the model using PyTorch on
NVIDIA V100 as the baseline (shown as 1.0). Lower relative
execution times indicate better performance.

The relative performance of algorithms can be determined
by the rows, whereas, columns denote relative performance
of the same algorithm on the two hardware. However, due
to the widely different capabilities of the two platforms, the
difference in performance is to be expected.

For VGG16 on the Intel® Xeon® Platinum 8468V platform
(Table I), the Kn2row, Im2col, Depthwise, and Direct algo-
rithms all show performance improvements over PyTorch, with
improvements of 1.04x, 1.06x, 1.05x, and 1.11x, respectively.
The SMM algorithm achieves the best performance on this
platform, providing a 1.21x improvement over PyTorch, mak-
ing it the most efficient algorithm in terms of reducing execu-
tion time. For VGG16 on the Intel® Iris® Xe MAX platform
(Table I), Kn2row, Im2col, Depthwise, and Direct outperform
PyTorch with improvements of 1.26x, 1.24x, 1.26x, and 1.24x,
respectively. Once again, the SMM algorithm provides the best
performance, with a 1.44x improvement over PyTorch and a
1.18x improvement over Intel PyTorch Extensions. The Intel
PyTorch Extensions provide a modest performance boost over
PyTorch, but still fall short of the efficiency gains offered by

the SMM algorithm and other custom algorithms. For VGG16
on the Nvidia V100 platform (Table I), Kn2row, ImZ2col,
Depthwise, and Direct show performance improvements of
1.15x%, 1.14x, 1.16x, and 1.15x, respectively, compared to
PyTorch. The SMM algorithm delivers the best performance,
achieving a 1.46x improvement over PyTorch, making it the
most efficient choice for this platform. On the Nvidia A100
platform (Table I), the SMM algorithm continues to provide
the best performance, with a 1.55x improvement over PyTorch.
Kn2row, Im2col, Depthwise, and Direct show improvements
of 1.19x, 1.13x, 1.13x, and 1.12x, respectively, over Py-
Torch. On the Intel Max 1100 GPU platform (Table I), the
custom algorithms (Kn2row, Im2col, Depthwise, and Direct)
demonstrate performance improvements over PyTorch, with
improvements of 1.33x, 1.28x, 1.33x, and 1.15x, respectively.
The SMM algorithm continues to be the fastest-performing
algorithm, with a 1.49x improvement over PyTorch.

TABLE II: Relative Performance Table on Resnet101

Im2col

Direct | SMM
4.0274 4.1325 | 3.4549
0.7768 0.8570 | 0.7368
0.7543 0.8332 | 0.7139
0.2314 0.2577 | 0.2061
0.2935 0.3094 | 0.2691

Kn2row
3.6547 | 3.7458
0.8073 | 0.8356
0.7828 [ 0.8123
0.2409 | 0.2438
0.2832 | 0.2863

Hardware \ Algorithms
Intel® Xeon® Platinum 8468V
Intel® Iris® Xe MAX

Nvidia V100

Nvidia A100

Intel Max 1100 GPU

Depthwise PyTorch
4.5476
1.0286
7.0000
0.2854
03791

Tntel PyTorch Extension

0.8770

For Resnetl01 on the Intel® Xeon® Platinum 8468V
platform (Table II), Kn2row, Im2col, Depthwise, and Direct
show performance improvements over PyTorch of 1.24x,



1.21x, 1.13x, and 1.10x, respectively. The best performance
is achieved by the SMM algorithm, which provides a 1.32x
improvement against PyTorch on this platform. This result
highlights the efficiency of SMM on the CPU platform, re-
ducing execution time compared to PyTorch significantly. For
Resnet101 on the Intel® Iris® Xe MAX platform (Table II),
Intel PyTorch Extensions perform better than PyTorch as
expected. However, the SMM algorithm achieves the best
performance, with a 1.4x improvement over PyTorch and a
1.19x improvement over Intel PyTorch Extensions. Other algo-
rithms, such as Kn2row, Im2col, Depthwise, and Direct, obtain
1.27x, 1.23x, 1.33x, and 1.20x improvements against PyTorch,
respectively, and 1.02x, 1.01x, 1.02x, and 1.02x improvements
against Intel PyTorch Extensions. For Resnet101 on the Nvidia
V100 platform (Table II), all the algorithms (Kn2row, Im2col,
Depthwise, and Direct) outperform PyTorch by achieving
improvements of 1.28x, 1.23x, 1.33x, and 1.20x, respectively.
The best performance is obtained by the SMM algorithm,
with a 1.4x improvement over PyTorch. For Resnet101 on
the Nvidia A100 platform (Table II), the performance of the
algorithms relative to PyTorch is even better. Kn2row, Im2col,
Depthwise, and Direct achieve improvements of 1.18x, 1.17x,
1.23x, and 1.11x, respectively. The SMM algorithm per-
forms the best with a 1.39x improvement over PyTorch. For
Resnet101 on the Intel Max 1100 GPU platform (Table II),
similar improvements are observed, with Kn2row, Im2col,
Depthwise, and Direct showing 1.34x, 1.32x, 1.29x, and 1.22x
improvements over PyTorch, respectively. Once again, the
SMM algorithm shows the best performance with a 1.41x
improvement over PyTorch.

TABLE III: Relative Performance Table on InceptionV4

Hardware \ Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.8723 3.9154 4.1072 4.1026 | 3.4358 | 4.7251

Intel® Iris® Xe MAX 0.8275 | 0.8080 0.7684 0.8428 [ 0.7478 | 1.0352 0.8695

Nvidia V100 0.8002 | 0.7812 0.7444 0.8135 | 0.7242 | 1.0000

Nvidia A100 0.2171 0.2204 0.2281 0.2472 | 0.1914 | 0.2750

Intel Max 1100 GPU 0.2849 | 0.2860 0.2905 0.2974 | 0.2725 | 0.3683

For InceptionV4 on the Intel® Xeon® Platinum 8468V
platform (Table III), Kn2row, Im2col, Depthwise, and Direct
perform better than PyTorch with improvements of 1.22x,
1.21x, 1.15x, and 1.15x, respectively. The SMM algorithm
shows the best performance, delivering a 1.38x improvement
over PyTorch. This consistent trend highlights SMM’s ability
to significantly reduce execution time on this CPU platform.
On the Intel® Iris® Xe MAX platform (Table III), the Kn2row,
Im2col, Depthwise, and Direct algorithms offer improvements
of 1.25x, 1.28x, 1.35x, and 1.23x, respectively, over PyTorch.
The SMM algorithm provides the best performance on this
platform, offering a 1.39x improvement over PyTorch and
a 1.16x improvement over Intel PyTorch Extensions. The
Intel PyTorch Extensions perform better than PyTorch but
are still slower than the custom algorithms, especially SMM.
For InceptionV4 on the Nvidia V100 platform (Table III),
Kn2row, Im2col, Depthwise, and Direct achieve performance
improvements over PyTorch by 1.25x, 1.28x, 1.34x, and 1.23x,
respectively. The SMM algorithm shows the best perfor-
mance on the V100, providing a 1.38x improvement over

PyTorch. On the Nvidia A100 platform (Table III), the SMM
algorithm continues to outperform all others, achieving the
best performance with a 1.44x improvement over PyTorch.
Kn2row, Im2col, Depthwise, and Direct also perform better
than PyTorch, offering improvements of 1.27x, 1.25x, 1.21x,
and 1.11x, respectively. On the Intel Max 1100 GPU platform
(Table III), Kn2row, Im2col, Depthwise, and Direct algorithms
show performance improvements of 1.29x, 1.29x, 1.27x, and
1.24x, respectively, over PyTorch. The SMM algorithm offers
the best performance, with a 1.35x improvement over PyTorch.

E. Relative End to End Performance of Convolution Algo-
rithms

In Tables IV, V, and VI, we present the relative perfor-
mance of various convolution algorithms, using the execution
time of the entire model with PyTorch on the NVIDIA V100 as
the baseline (denoted as 1.0). Lower relative execution times
correspond to improved performance.

The rows in these tables illustrate the relative performance
of the different convolution algorithms, while the columns
compare the performance of the same algorithm across two
distinct hardware platforms. Given the considerable differ-
ences in the capabilities of these platforms, the variations in
performance are expected.

TABLE IV: Relative End to End Performance of Convolution
Algorithms Table on VGG16

Hardware \Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.7052 3.7618 3.8823 4.0964 | 3.4027 | 4.5065

Intel® Iris® Xe MAX 0.9706 | 0.9917 0.9685 1.0142 [ 0.7894 | 1.1393 0.9985

NVIDIA V100 0.8549 | 0.8703 0.8500 0.8897 | 0.6932 1.0000

Nvidia A100 0.2939 [ 0.3165 0.2964 0.3497 [ 0.2399 | 03912

Intel Max 1100 GPU 0.3721 0.3842 0.3716 0.4064 | 0.3492 | 0.4628

On the Intel® Xeon® Platinum 8468V platform (Table IV),
the algorithms show slower performance compared to the GPU
platforms, but they still outperform PyTorch. Kn2row achieves
a 1.22x improvement, Im2col achieves a 1.20x improvement,
Depthwise achieves a 1.16x improvement, and Direct achieves
a 1.10x improvement. The SMM algorithm remains the best
performer, with a 1.32x improvement over PyTorch. On the
Intel® Iris® Xe MAX platform (Table IV), the Intel PyTorch
Extensions perform better than the standard PyTorch imple-
mentation. However, the SMM algorithm again demonstrates
the best performance, with a 1.44x improvement over PyTorch
and a 1.26x improvement over Intel PyTorch Extensions. The
other algorithms show the following improvements relative
to PyTorch: Kn2row achieves a 1.17x improvement, Im2col
achieves a 1.15x improvement, Depthwise achieves a 1.18x
improvement, and Direct achieves a 1.12x improvement. Com-
pared to Intel PyTorch Extensions, the improvements are
as follows: Kn2row achieves a 1.03x improvement, Im2col
achieves a 1.01x improvement, Depthwise achieves a 1.03x
improvement and Direct achieves a 1.02x improvement. For
VGG16 on the Nvidia V100 platform (Table IV), the algo-
rithms Kn2row, Im2col, Depthwise, and Direct show superior
performance compared to PyTorch, with relative execution
times being lower. Specifically, Kn2row achieves a 1.17x



improvement, Im2col achieves a 1.15x improvement, Depth-
wise achieves a 1.18x improvement, and Direct achieves a
1.12x improvement. The SMM algorithm stands out with the
highest performance gain, achieving a 1.44x improvement over
PyTorch. For the Nvidia A100 platform (Table IV), the algo-
rithms perform significantly better than PyTorch, with Kn2row
achieving a 1.34x improvement, Im2col achieving a 1.26x
improvement, Depthwise achieving a 1.36x improvement, and
Direct achieving a 1.26x improvement. The SMM algorithm
exhibits the highest improvement, with a 1.63x improvement
over PyTorch. On the Intel Max 1100 GPU (Table IV), the
performance also improves compared to PyTorch. Kn2row
achieves a 1.25x improvement, Im2col achieves a 1.21x im-
provement, Depthwise achieves a 1.32x improvement, and
Direct achieves a 1.23x improvement. The SMM algorithm
remains the most efficient, with a 1.43x improvement over
PyTorch.

TABLE V: Relative End to End Performance of Convolution
Algorithms Table on Resnet101

Hardware \Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.6538 3.7431 4.0292 4.1305 | 3.4521 4.5498

Intel® Iris® Xe MAX 0.8045 | 0.8229 0.7665 0.8577 [ 0.7376 | 1.0312

0.8854

NVIDIA V100 0.7800 0.7979 0.7434 0.8315 | 0.7154 1.0000

Nvidia A100 0.2416 0.2445 0.2321 0.2584 | 0.2073 | 0.2849

Intel Max 1100 GPU 0.2847 | 0.2871 0.2942 03101 | 0.2695 | 0.3788

On the Intel® Xeon® Platinum 8468V platform (Table V),
Kn2row, Im2col, Depthwise, and Direct show slower per-
formance than the GPU platforms, but they still outperform
PyTorch. Kn2row achieves a 1.22x improvement, Im2col
achieves a 1.18x improvement, Depthwise achieves a 1.14x
improvement, and Direct achieves a 1.13x improvement. The
SMM algorithm remains the fastest, providing a 1.32x im-
provement over PyTorch. In examining the performance of
Resnet101 on the Nvidia V100 platform (Table V), we observe
that the Kn2row, Im2col, Depthwise and Direct algorithms
all demonstrate enhanced performance compared to PyTorch.
Kn2row achieves a 1.28x improvement, Im2col sees a 1.25x
enhancement, Depthwise records a 1.34x improvement, and
Direct achieves a 1.20x improvement. In particular, the SMM
algorithm outperforms all others, delivering a 1.40x improve-
ment over PyTorch. For the Intel® Iris® Xe MAX platform
(Table V), the Intel PyTorch Extensions outperform standard
PyTorch performance. However, the SMM algorithm again
emerges as the top performer, achieving a 1.40x improvement
over PyTorch and a 1.26x enhancement over the Intel PyTorch
Extensions. Other algorithms also show significant improve-
ments: Kn2row achieves a 1.28x improvement, Im2col records
a 1.25x enhancement, Depthwise sees a 1.34x improvement,
and Direct achieves a 1.20x enhancement compared to Py-
Torch. When compared to Intel PyTorch Extensions, Kn2row
improves by 1.03x, Im2col by 1.02x, Depthwise by 1.05x,
and Direct by 1.02x. On the Nvidia A100 platform (Table V),
Kn2row achieves a 1.30x improvement, Im2col achieves a
1.29x improvement, Depthwise achieves a 1.28x improvement,
and Direct achieves a 1.23x improvement. The SMM algo-
rithm continues to stand out, with a 1.48x improvement over
PyTorch. For the Intel Max 1100 GPU (Table V), Kn2row

achieves a 1.24x improvement, Im2col a 1.23x improvement,
Depthwise a 1.29x improvement, and Direct a 1.21x im-
provement. The SMM algorithm remains the most efficient,
delivering a 1.41x improvement over PyTorch.

TABLE VI: Relative End to End Performance of Convolution
Algorithms Table on InceptionV4

Hardware \Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.8731 3.9162 4.1065 4.1032 | 3.4375 | 4.7268

Intel® Iris® Xe MAX 0.8608 | 0.8736 0.7715 0.8379 | 0.7060 | 1.0351 0.8724

NVIDIA V100 0.8315 0.8439 0.7453 0.8094 | 0.6822 1.0000

Nvidia A100 0.2178 | 0.2209 0.2294 0.2468 | 0.1919 | 0.2758

Intel Max 1100 GPU 0.2855 | 0.2864 0.2909 0.2983 | 0.2734 | 0.3689

On the Intel® Xeon® Platinum 8468V platform (Table VI),
Kn2row, Im2col, Depthwise, and Direct demonstrate bet-
ter performance than PyTorch, with Kn2row achieving a
1.21x improvement, Im2col a 1.19x improvement, Depth-
wise a 1.14x improvement, and Direct a 1.13x improvement.
The SMM algorithm remains the best performer, with a
1.33x improvement over PyTorch. For InceptionV4 on the
Nvidia V100 platform (Table VI), the algorithms Kn2row,
Im2col, Depthwise, and Direct all show enhanced performance
compared to PyTorch, with lower relative execution times.
Specifically, Kn2row achieves a 1.20x improvement, Im2col
achieves a 1.19x improvement, Depthwise achieves a 1.34x
improvement, and Direct achieves a 1.24x improvement. The
SMM algorithm stands out as the best performer, delivering
a 1.47x improvement over PyTorch. On the Intel® Iris® Xe
MAX platform (Table VI), Intel PyTorch Extensions show
better performance than the standard PyTorch implementa-
tion. However, the SMM algorithm again demonstrates the
highest performance, with a 1.47x improvement over PyTorch
and a 1.24x improvement over Intel PyTorch Extensions.
Other algorithms also exhibit notable enhancements: Kn2row
achieves a 1.20x improvement, Im2col achieves a 1.18x im-
provement, Depthwise achieves a 1.34x improvement, and
Direct achieves a 1.24x improvement compared to PyTorch.
Relative to Intel PyTorch Extensions, the improvements are
as follows: Kn2row improves by 1.01x, Im2col improves by
1.01x, Depthwise improves by 1.13x, and Direct improves
by 1.04x. On the Nvidia A100 platform (Table VI), the al-
gorithms show significantly better performance, with Kn2row
achieving a 1.31x improvement, Im2col a 1.29x improvement,
Depthwise a 1.35x improvement, and Direct achieving a 1.26x
improvement. The SMM algorithm stands out with a 1.55x
improvement over PyTorch. For the Intel Max 1100 GPU
(Table VI), Kn2row achieves a 1.24x improvement, Im2col
a 1.23x improvement, Depthwise a 1.29x improvement, and
Direct achieves a 1.21x improvement. The SMM algorithm
remains the highest performer, with a 1.42x improvement over
PyTorch.

F. Tradeoffs in Convolution Algorithms

In this section, we evaluate the relative performance of
the convolution algorithms by varying the image and kernel
dimensions to evaluate under what conditions one algorithm
performs better than the other.
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Fig. 2: Relative Performance of Algorithms for Varying

Convolution Sizes.
Points represent configurations as follows:

Point 1: 50x50 image, 5x5 kernel, 64 input/output channels;
Point 2: 50x50 image, 5x5 kernel, 128 input, 4 output channels;
Point 3: 100x100 image, 5x5 kernel, 32 input, 64 output channels;
Point 4: 200x200 image, 3x3 kernel, 32 input/output channels;
Point 5: 200x200 image, 5x5 kernel, 16 input, 128 output channels;
Point 6: 250x250 image, 3x3 kernel, 32 input, 8 output channels;
Point 7: 250x250 image, 5x5 kernel, 2 input, 32 output channels;
Point 8: 250x250 image, 5x5 kernel, 16 input, 2 output channels;
Point 9: 400x400 image, 3x3 kernel, 64 input, 8 output channels;
Point 10: 500x500 image, 5x5 kernel, 1 input, 32 output channels.

Figure 2 illustrates the relative performance of five con-
volution algorithms: SMM, Depthwise, Kn2row, Im2col, and
Direct across ten distinct convolution dimensions. Each di-
mension is defined by a combination of Input Size (Im),
Kernel Size (Kn), Input Channels (Ic), and Output Channels
(Oc). Analyzing these algorithms under various parameters is
crucial for optimizing convolution operations in deep learning
models. At point 2 (Im:50, Kn:5, Ic:128, Oc:4), Im2col shows
the best execution time, indicating its efficiency with high-
dimensional input data and smaller kernel sizes, while Direct
exhibits significantly higher execution time, highlighting its
inefficiency for such configurations. At point 5 (Im:200, Kn:5,
Ic:16, Oc:128), SMM and Depthwise outperform others, with
Depthwise particularly effective in handling moderate input
sizes with high output channels, whereas Direct again shows
poor performance. Point 6 (Im:250, Kn:3, Ic:32, Oc:8) sees
SMM delivering the best performance, whereas Direct is the
least efficient, suggesting SMM’s adaptability to moderate
input and output channels. At point 9 (Im:400, Kn:3, Ic:64,
Oc:8), SMM excels with the highest input channels, reflecting
its suitability for high-depth inputs, while Im2col and Direct
lag behind, emphasizing their inefficiency under these condi-
tions.

Based on the experiments we draw the following general
conclusions for tradeoffs between the various convolution
algorithms:

o The optimal algorithm is highly dependent upon the spe-
cific convolution algorithm. As discussed in Section V-F,
even a non-linear decision tree model is not able to predict
the best algorithm with near perfect accuracy.

o For smaller image dimensions, IM2COL performs the
best (Points 1-3), but its performance worsens faster

compared to other algorithms for larger image dimensions
(Point 9-10).

« For majority of points (Points 4-10), SMM achieves the
best execution time if we disregard Depthwise (as the
model will need to be retrained to use it).

« Among the two matrix multiplication based algorithms,
im2col performs better for lower image dimensions
(Points 1-3) whereas kn2row performs better for higher
image dimensions (Points 4-10).

o In general, the performance of direct convolution is the
lowest.

These analyses underscore the importance of algorithm se-
lection based on convolution parameters to enhance efficiency
in deep learning frameworks, guiding practitioners towards
more effective and efficient model deployments.

G. Relative Performance with ILSVRC-2012 Dataset

The ILSVRC-2012 (ImageNet) [32] dataset is a large-
scale benchmark for image classification and object detec-
tion, containing 1.2 million training images, 50,000 validation
images, and 100,000 test images across 1,000 categories. Its
comprehensive labeling has made it foundational in advancing
CNN and deep learning research.

TABLE VII:
(ILSVRC-2012)

Relative Performance Table on VGG16

Hardware \ Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.7032 | 3.6289 3.8717 34538 | 3.1632 | 3.8258

Intel® Iris® Xe MAX 0.8513 0.8676 0.8614 0.8772 | 0.7519 1.0787

0.8778

Nvidia V100 0.8627 | 0.8651 0.8505 0.8606 | 0.6728 | 1.0000

Nvidia A100 0.2423 | 0.2558 0.2556 0.2584 | 0.1851 | 0.2909

Intel Max 1100 GPU 0.2719 | 0.2828 0.2702 0.3156 | 0.2403 | 0.3642

For VGG16 on the Intel® Xeon® Platinum 8468V plat-
form (Table VII), all algorithms outperform PyTorch. Kn2row
achieves a 1.03x improvement, Im2col 1.05x, Depthwise
1.00x, and Direct 1.11x. SMM stands out with a 1.21x
improvement over PyTorch. On the Intel® Iris® Xe MAX
platform, Intel PyTorch Extensions improve upon standard
PyTorch, while SMM again performs best, achieving 1.43x
over PyTorch and 1.17x over Intel PyTorch Extensions.
Other algorithms offer 1.27x (Kn2row), 1.24x (Im2col), 1.25x
(Depthwise), and 1.23x (Direct) improvements over PyTorch.
For the Nvidia V100 platform, Kn2row, Im2col, Depthwise,
and Direct show improvements of 1.16x, 1.15x, 1.18x, and
1.16x, respectively, over PyTorch. SMM is again the top
performer, with a 1.49x improvement. On the Nvidia A100
platform, Kn2row, Im2col, Depthwise, and Direct achieve
1.20x, 1.14x, 1.14x, and 1.13x improvements, respectively,
over PyTorch. SMM leads with a 1.57x improvement. On
the Intel Max 1100 GPU, all algorithms show gains: Kn2row
achieves 1.34x, Im2col 1.29x, Depthwise 1.35x, and Direct
1.15x over PyTorch, while SMM remains the top performer
with a 1.51x improvement.

For Resnet101 on the Intel® Xeon® Platinum 8468V plat-
form (Table VIII), Kn2row, Im2col, Depthwise, and Direct
outperform PyTorch by 1.25x, 1.22x, 1.13x, and 1.10x, re-
spectively, with SMM achieving a 1.32x improvement. On
the Intel® Iris® Xe MAX platform, Intel PyTorch Extensions



TABLE VIII: Relative Performance Table on Resnet101
(ILSVRC-2012)

Hardware \ Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.6051 3.6962 3.9772 4.0823 | 3.4051 4.5016

Intel® Iris® Xe MAX 0.7862 0.8161 0.7564 0.8366 | 0.7271 1.0083

0.8672

Nvidia V100 0.7731 | 0.8027 0.7445 0.8227 | 0.7043 | 1.0000

Nvidia A100 0.2312 0.2337 0.2209 0.2479 [ 0.1965 | 0.2749

Intel Max 1100 GPU 0.2728 | 0.2768 0.2835 0.3014 | 0.2603 | 0.3697

improve upon PyTorch, but SMM performs best with a 1.39x
improvement over PyTorch and 1.19x over Extensions. Other
algorithms yield 1.28x, 1.23x, 1.33x, and 1.21x gains. For
Nvidia V100, Kn2row, Im2col, Depthwise, and Direct improve
upon PyTorch by 1.29x, 1.25x, 1.34x, and 1.22x, respectively,
while SMM achieves a 1.42x gain. On Nvidia A100, Kn2row,
Im2col, Depthwise, and Direct show 1.29x, 1.27x, 1.31x,
and 1.11x improvements, with SMM reaching 1.51x. On
Intel Max 1100 GPU, all algorithms improve over PyTorch,
with Kn2row, Im2col, Depthwise, and Direct achieving 1.35x,
1.33x, 1.30x, and 1.22x, while SMM leads with 1.42x.

TABLE IX: Relative Performance Table on InceptionV4
(ILSVRC-2012)

Hardware \ Algorithms Kn2row | Im2col | Depthwise | Direct | SMM | PyTorch | Intel PyTorch Extension

Intel® Xeon® Platinum 8468V | 3.8226 3.8658 4.0569 4.0531 | 3.3855 | 4.6761

Intel® Iris® Xe MAX 0.8081 | 0.7874 0.7482 0.8331 [ 0.7382 | 1.0149

0.8602

Nvidia V100 0.7903 | 0.7709 0.7341 0.8038 | 0.7143 | 1.0000

Nvidia A100 0.2067 0.2108 0.2179 0.2374 | 0.1816 | 0.2642

Intel Max 1100 GPU 0.2742 | 0.2763 0.2804 0.2877 | 0.2631 | 0.3572

For InceptionV4 on the Intel® Xeon® Platinum 8468V
platform (Table IX), Kn2row, Im2col, Depthwise, and Direct
show improvements over PyTorch by 1.23x, 1.22x, 1.15x,
and 1.16x, respectively, with SMM achieving 1.38x. On the
Intel® Iris® Xe MAX platform, Kn2row, Im2col, Depthwise,
and Direct improve upon PyTorch by 1.28x, 1.29x, 1.38x,
and 1.24x, respectively. SMM performs best with 1.39x over
PyTorch and 1.18x over Intel PyTorch Extensions. For Nvidia
V100, SMM achieves a 1.40x improvement over PyTorch,
with Kn2row, Im2col, Depthwise, and Direct showing gains
of 1.27x, 1.29x, 1.36x, and 1.24x. On Nvidia A100, SMM
again leads with 1.45x over PyTorch, while Kn2row, Im2col,
Depthwise, and Direct yield 1.30x, 1.25x, 1.20x, and 1.12x
improvements. On Intel Max 1100 GPU, SMM reaches the
highest performance with 1.43x over PyTorch, while Kn2row,
Im2col, Depthwise, and Direct show gains of 1.35x, 1.33x,
1.32x, and 1.22x.

VI. FUTURE DIRECTIONS

Based on the results of our current study, we have identified
several directions for future work to further enhance the
efficiency and applicability of our SYCL-based convolution
algorithms in Convolutional Neural Networks (CNN).

Adding Support for Grouped Convolution: One imme-
diate extension is to incorporate support for grouped convolu-
tions. Grouped convolutions, which divide the input and output
channels into smaller groups and perform convolutions inde-
pendently on each group, have proven to be effective in reduc-
ing computation while maintaining accuracy. By integrating
grouped convolutions into our framework, we can potentially
achieve even greater reductions in latency, particularly for

models like ResNeXt [33] and EfficientNet [34] that heavily
utilize this technique.

Enhancing Accuracy in Performance Modeling: While
our decision tree-based performance model has shown promis-
ing results in predicting optimal parallelism parameters, there
remains room for improvement in accuracy. Future efforts will
focus on refining the model to better capture the complex
interactions between various hardware characteristics and con-
volution operations. Incorporating more sophisticated machine
learning techniques, such as ensemble learning or neural
networks, may provide more precise predictions and further
optimize performance.

Supporting Advanced Convolution Techniques: Extend-
ing our framework to support advanced convolution techniques
such as Fourier [35], Winograd [36], and deformable convo-
lutions [21] is another important direction. Fourier and Wino-
grad convolutions offer substantial computational savings for
specific kernel sizes and input dimensions, while deformable
convolutions provide enhanced modeling flexibility for tasks
requiring precise spatial transformations. Implementing these
techniques within our SYCL-based framework will broaden
its applicability and effectiveness for a wider range of CNN
architectures and applications.
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VII. CONCLUSION

In this work, we explored low-latency CNN deployment
through SYCL-based implementations of five convolution al-
gorithms integrated into VGG16, Resnet101, and Inception
V4. By replacing the standard PyTorch Conv2d function, we
evaluated layer and model execution times on multiple GPUs.

Experiments showed that algorithm choice critically affects
performance across hardware. SMM consistently achieved the
lowest execution times on Nvidia V100, Intel® Iris® Xe
MAX, and demonstrated strong results on Nvidia A100 and
Intel Max 1100 GPUs, underscoring its suitability for low-
latency deployments.

Other algorithms, such as Kn2row and Im2col, showed
notable improvements on Nvidia V100 and competitive results
on GPU systems. Our decision tree-based model effectively
predicted optimal parallelism parameters, further boosting
SMM and Direct Convolution performance with minimal
manual tuning. This result underscores the utility of machine
learning-based modeling for identifying optimal configurations
and will be explored in future.

This study highlights the value of algorithm selection
and parallelism for efficient CNN deployments on diverse
hardware. Future work will extend the framework to more
platforms and refine our performance models, enabling more
efficient, cross-device CNN optimization.
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