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ABSTRACT: We construct an explicit model for the black hole to white hole transition (k
as the black hole fireworks scenario) using the cut-and-paste technique. We model a blac
collapse using the evolution of a time-like shell in the background of the loop quantum g
inspired metric and then the space-like shell analysis to construct the firework geo:
Our simple and well-defined analysis removes some subtle issues that were present i
previous literature [1] and makes the examination of the junction conditions easier
further point out that the infalling and asymptotic observers, both in ours and the or
scenario in ref. [1], encounter quite different physics. While the proper time of the boun
an infalling observer can be determined without ambiguity, the bouncing time inters
the asymptotic observer can be chosen arbitrarily by changing how one cuts and past;
spacetimes outside the event horizons. It is puzzling that the proper time of a distant (1
than infalling) observer is subject to randomness since the infalling observer is suppos
experience a stronger quantum gravity effect. This result might suggest that a blacl
firework scenario does not allow for the existence of an effectively classical spacetime
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1 Introduction

The issue of formation and evaporation of a black hole is very important for understa
the nature of quantum gravity. In particular, this issue is related to the informatio
problem of an evaporating black hole [2]. Is there a unitary theory of quantum gravit;
explains the unitary evolution of evaporating black holes? If there is, is this theory cons
with the semi-classical description [3]? Will the classical singularity survive in the r
where quantum gravitational effects are dominant [4, 5|7

It is clear that understanding the fate of the singularity is very important to obta
complete answer to the black hole evaporation and the information loss problem. Intui
we may classify two ways. First, we may address this problem by introducing a wave fur
i.e., by solving the Wheeler-DeWitt equation [6]. In this approach, we need to solx
Wheeler-DeWitt equation (or some version of it) and interpret the solution in the cla
background, which is sometimes a subtle problem [7-10]; for an attempt to model qus
radiation from quantum background, see [11]. Second, we may remove the singular
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modification of the Hamiltonian which includes loop quantum gravitational effects [17].
this modified Hamiltonian, one can solve a set of semi-classical equations and obt
spacetime that includes loop quantum gravitational effects, e.g., resolution of the singu

A typical solution in the framework of the loop quantum gravity includes bot
of the collapsing object [18, 19] (see also [20, 21]). Bouncing inside the horizon is
very surprising scenario, except for some technical issues [22]. However, in reality, t
not easy to generalize to global spacetimes in an evaporating background. In some
inconsistencies may arise [23]. In an evaporating background, the bouncing spacetimes
to consistently connect not only inside but also outside the horizon [24]. A similar spac
structure happens in the more exotic proposal introduced in the Haggard-Rovelli mode
where the quantum gravitational effects can accumulate outside the apparent horizo
modify the metric beyond it. The resulting spacetime might be realized by cuttin
pasting spacetimes both inside and outside the apparent horizon. In [1], Han, Rovell
Soltani extend this idea to the black hole solution with quantum gravity modification,
gives a bouncing model that has two horizons. The scenario proposed in [1, 25] i
known as the black hole fireworks.

In this paper, we investigate this idea in the model in ref. [1], in which the spac
contains both the inner and outer horizons and the proposed bouncing effect chang
topology of the spacetime to have only one asymptotic infinity. To simplify the disct
we consider a time-like shell that describes a collapsing star interior and the dyna
formation of a black hole. In addition, we offer a simplified cut-and-paste procedt
accommodate a similar bouncing spacetime and to cover both the outer and inner apy
horizons. This simplified approach is technically well-defined and makes the examir
of junction conditions more straightforward.

However, apart from the validity of the spacetime from the justification of jur
conditions, in the resulting spacetimes constructed in both ref. [1] and this article,
exists a more fundamental issue. We notice this issue by tracking the trajectories of dif
observers theoretically existing in these spacetimes. The bouncing time interval measur
the distant observer can be chosen arbitrarily since it is determined mathematically b;
one cuts and pastes the spacetimes outside the event horizons. In contrast, for an inf
observer who travels through the black and white hole apparent horizons and then ou
duration of the bounce measured by his proper time can be determined with little amb
The unexpected outcome suggests that there may not be a semi-classical spacetime v
the inner event horizon in the black hole fireworks scenario. Therefore, simply empl
the cut-and-paste procedure is not adequate to describe the black hole fireworks, e

assuming that tunneling outside the horizon is possible.



Figure 1. The Penrose diagram of the model in eq. (2.1). The solution has two horizons, r.
the time-like center.

by the cut-and-paste procedure, which is very different from the bouncing time defined t
distant observer. We conclude that this fact challenges the existence of an effectively cle
spacetime inside the horizons for the black-hole-firework scenario. Finally, in section
summarize our results and discuss possible future research.

2 The cut-and-paste procedure for the black hole firework

In this section, we utilize the gravitational collapse of a time-like thin-shell to revis
cut-and-paste procedure introduced in ref. [1], in which a black hole model with a qua
corrected center proportional to 1/r* is considered. We next reproduce a similar res
spacetime by considering a simplified cut-and-paste procedure consisting of two spac
hypersurfaces. Both the collapsing thin-shell and the space-like cuts modeling the
to-white hole tunneling follow the formalism of the Israel junction conditions, an
construction is shown explicitly. We also briefly discuss the difference between th
different cut-and-paste procedures.

2.1 Time-like thin-shells and gravitational collapses

We consider the black hole model defined in [1], which has a quantum-corrected «
The metric is
1

2 _ ) di2
ds® = —f(r)dt +f(7°)

dr® + 7’2d§22,
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Figure 2. Left: the Penrose diagram of the black hole solution, where the red lines are outer hc
and the blue lines are inner horizons. There exists a time-like shell solution that is oscillating be
Tmin < T < Tmax, Where 7,y is outside the outer horizon and ry,;, is inside the inner horizon.
inside the shell, the geometry is Minkowski. This diagram represents the resulting spacetime
black hole formation.

oscillating behavior. At large values of r, the attractive term, 2M /r, dominates and «
the collapse. At some minimal value of r, the repulsive term causes bounce and p
the collapsing object out to larger values of » where the attractive term again dom:
and the cycle starts again.

Now, we review the thin-shell approximation of a collapsing time-like thin-shell

this metric. The metric outside and inside the shell is
1

f=(r)

where + and — stand for outside and inside the shell, respectively. The metric ¢

dst = —fi(r)dt® + dr? + r2d9?,




Figure 3. Left: the green dashed line indicates the single complex cut introduced in ref. [1],
consists of two constant-t spacelike hypersurfaces and four null hypersurfaces. Right: the res
spacetime is constructed by discarding the right piece to the cut and then pasting the two cons
spacelike hypersurfaces together. This procedure leaves an empty area (light green) whose bounc
given by the four null hypersurfaces that are parts of the complex cut, and the metric of this area is
mined by the continuity condition. Notice that pasting two constant-t spacelike hypersurfaces dc
require the existence of any thin-shell, so the violation of the NEC is limited to the light green re

where o(r) is the tension of the shell, and e; = £1 are the signs of the extrinsic curve
Here, extrinsic curvatures (4 are

_ - T 1672022 )
Bt = / f+87mr = €x\/7? + fx.

Note that if ex = +1, r increases along the outward normal direction, while if e+ =

decreases along the outward normal direction. Therefore, we have to assume e+ =1
After simple computations, we obtain the equation:

72 + Veﬁ’(T) =0,

where

2
(f— — f+ — 167%02r?)
Verr(r) = fy = 64720212

Here, we interpret that Vog < 0 corresponds to the region where classical trajectoris

' =] re) 9 1 . 9 N / -




Figure 4. Left: the two green dashed lines indicate the simplified cutting procedure that we
Right: the causal structure resulted from pasting two space-like slices.

on the general features of the procedure and of the resulting spacetime, which are suf
for the discussions later. For more details, we refer the reader to the original paper.
In ref. [1], the authors introduce a single but complex cutting of spacetime wh
composed of two constant-t hypersurfaces connecting to different spatial infinities an
different null hypersurfaces as shown in figure 3 (left). Then, by keeping only th
containing the collapsing thin-shell, the pasting procedure is simply given by identifyir
two constant-t hypersurfaces to be the same as shown in figure 3 (right). This proc
leaves an empty region (the light green part in the figure), in which the metric is not
by eq. (2.2) but is determined by the continuity of the metric at the boundary. Notics
pasting constant-t hypersurfaces does not require the existence of any thin-shell, and tht
possible violation of the null energy condition (NEC) is limited to the light green area
resulting spacetime, which we will refer to as the HRS model in the rest of this work, i
semi-classical everywhere and has only one asymptotic infinity. Lastly, the complex ci
procedure implemented here creates corners outside the outer event horizon, so the ¢
conditions must be satisfied to avoid the conical singularity [32]. To avoid this complex
the following subsection, we will consider a simplified cut-and-paste procedure to reproc
similar bouncing model with the same global structure. This simplified procedure h:
advantage that the junction conditions are more straightforward to examine.



space-like slices intersect each other inside the inner horizon like the cut shown in fig
thus creating a corner. In either case, the intersecting point or the corner is deep insic
inner horizon, where a complete description of this intersection perhaps belongs to the r
of quantum gravity. Thus, we neglect the possible complications in this regime and s
consider the junction conditions of a general space-like shell given in figure 4 (right).
the formalism of the thin-shell approximation is similar to the case of a time-like shell we
discussed in section 2.1, we leave the derivation and numerical examples in appendis

Though both resulting spacetimes have the same global structure, some differences
due to the different cut-and-paste procedures used to model the bounce. Here, we
some remarks on the qualitative differences and some special features shared by botl
will be important to the next section:

— 1. In the minimal model, the violation of the NEC happens along the shell and re
infinity. Although the effect can approach zero asymptotically, violation of NF
away from the black hole is expected. In the HRS model, the possible violation
NEC can be limited to the light green region in figure 3 (right).!

— 2. In the minimal model, there is no corner or intersection of thin-shells outsic
event horizon. However, corners exist outside the event horizons in the HRS 1
There is no guarantee that the corner conditions can be satisfied, for which the vio
leads to the conical singularity.

— 3. In both of the models, one can choose having either a corner (formed by tw
hypersurfaces in the HRS model or by two spacelike hypersurfaces in the minimal
or intersections between the collapsing shell and the null/space-like hypersurfaces
the inner event horizon.

— 4. Both of the models have only one asymptotic infinity, which is topologically dif
from the original classical spacetime given by the metric eq. (2.2).

Although there might be some interest in determining the exact range of the violat
the NEC and the corner conditions required in the HRS model, in the next section we
on remark 4 to argue that the existence of a semi-classical spacetime inside the inner
horizon is improbable in both models by considering the bouncing time for different obs

3 Bouncing time-scale for black hole firework scenarios

In this section, we discuss the bouncing time observed by different observers. We u;
same assumption that the quantum gravity corrections should be small, i.e. A ~m%; <
In this limit, the parameter A plays no role in the leading order estimate, and therefor



Figure 5. Bouncing time in the Schwarzschild metric. In ref. [1], the trajectory of V' = V; is wt
determined by the corresponding spacetime diagram therein. However, the bouncing time, defi

= —4M In ¢ in ref. [1], is rooted from a geometric relation in the Schwarzschild spacetime, eq
It means that the duration of bouncing time defined in this way is related to the arbitrary cut
spacetime.

3.1 Bouncing time scale with the § parameter

Outside the horizon, the black hole is well approximated by the Schwarzschild sol
Assuming the Schwarzschild solution, the double-null coordinates U and V' satisfy

r
- (1 - — r/2M
uv ( 2M>e

and U Y
v 5

in the region of interest (see figure 5). In figure 5, events A, B, and C are given L
intersections of a specific ingoing light ray V' = V} with the constant-¢ hypersurfaces,
and t = tp, and a constant-r trajectory r = R, respectively. Since t{p is an arbitrary cor
event A is just a special case with tg = 0.

In terms of the Schwarzschild coordinate (¢,r), the locations of B and C are
by (tg,2M + A) and (t¢, R), respectively. Using (3.1) and (3.2), one can show th:
quantities A, tg, and t¢ satisfy the following relation

(% o 1) oR/2M

A (1+A/2M
2Me( /2M)

_ T/




where T'/2 ~ —t¢. In ref. [1], the term independent of R on the r.h.s. of eq. (3.5) is d
to be the bouncing time of the black-to-white hole tunneling, 7 = —4M In é. However
we see that it is a special case of eq. (3.4), when tp = 0 is chosen. Since the metric (2
its approximation, Schwarzschild metric, are both static, choosing tg = 0 to cut and
spacetime bears no special meaning. From the mathematical point of view, one can c
any other constant ¢t p—hypersurface to construct the resulting cut-and-pasted spacetime
different bouncing time given by the similar definition from eq. (3.4): 7 = —4M In A.

this arbitrariness on the choice of the constant ¢tp—hypersurface to perform the cut-and
procedure gives the arbitrariness of the bouncing time defined in this way. Later, w
discuss the issue of this arbitrariness from the physical point of view. Before endin
subsection, we would like to point out that eq. (3.4) has a simple physical interpre
by itself. A distant observer shoots a ray of light radially into the black hole from
C. After T'/2 of this observer’s proper time elapsed, the observer would think the lig]
is A away from the event horizon.

3.2 Bouncing time for the comoving observer

Apart from the asymptotic observer whose coordinate system is incomplete, there is ar
observer who is perhaps more relevant to the bouncing process. This is an observer comr
with the collapsing shell. Thus, a more appropriate physical time scale can be calculated
the proper time of the observer that crosses the event horizon.? One can easily evalua
proper time of the time-like shell that transitions from the black hole to the white hole ph

rwin  dp
R V=V(r)

Here we use a collapsing shell of (pressureless) dust as a demonstration. In this case, th

T =2

mass of the dust « is conserved and is given by a = 47r?20 = const., where o is the ¢
density of the shell. From the Israel junction conditions, we obtain
2

M=aVi+i?—2,

2r
where the overdot is the derivative with respect to the proper time along the timelike traje
of the infalling shell. From this, one can compute the proper time elapsed along the
trajectory for one complete cycle as follows

7:2/%“ dr .
o \/(%+%)2—1

To have Ry ax finite, i.e. the shell is bounded, we must have o > M, for which Ry ax = 5



Figure 6. Left: due to the time-translation symmetry, there can be several equivalent sp:
slices (red curves) that have a different coordinate time at infinity. Black dotted curves corresp
constant ¢ hypersurfaces. Right: the bouncing time is the difference between ¢t = t; and t = 1,
tp is arbitrary.

where C = 1% and B = O‘—QMQ If we further consider large R.x > M, based ¢
- a(1-2>

relation for Ry ax, we also have a ~ 2Ry ,x. Thus, the above integration is approxin
given by

Tmin T'min
T~ 2 / —adz ~ 2 / r | = 2\/R2 — 72
e (g7 1] s [l
In this limit, the bouncing time is mostly determined by R,.x, while the exact value of
not that important. This is physically reasonable since in this limit, the shell’s velocity re
to the center of the black hole is high when r is small. If we include the quantum g
modification, i.e. using the metric in eq. (2.2) instead of the Schwarzschild solution, the
will be repelled at some minimal radius due to the extra repulsive term AM?/r*. Th
have to set the ryi, to be the bouncing point inside the horizon, which is determined t

- o = Y



for the space-like hypersurface (left of figure 6). This means that the time difference be
the ¢t = t; (that can be chosen in the sufficient past) and ¢ = ¢; (the bouncing time insi
horizon) is arbitrary in this setup (right of figure 6), which is similar to the setting in r
According to the discussion in section 3.1, one may find a corresponding d parameter to c
the ¢ = t; hypersurface. As already mentioned in ref. [1], the bouncing time for the d
observer is determined by how one cuts and pastes the spacetime outside the event hc
The same argument is valid for the spacelike slicing considered in our case (see figur

On the other hand, the bouncing time measured by the comoving observer discus:
section 3.2 is very different in this aspect. Based on the previous discussion, the contril
to the bouncing time around rp;, is small, so even if we cut out a certain portion
spacetime as in figure 4, the corresponding proper time is only mildly affected by th
and-paste procedure. Interestingly, this bouncing time can be unambiguously determir
the model considered in ref. [1] since the trajectory of the shell (or surface of the colle
star) is intact by the designed cut (see figure 4 in ref. [1] or figure 3 in this article).’
can easily construct the scenario in which two observers (the comoving and the fixed-
begin their journeys at the same spacetime event when the shell is at some Ry,.x. Aft
whole period of the bounce, in the absence of any dissipation (as the assumption m:
refs. [25] and [1]), the two observers meet each other again at the next r = Ryax. Witl
doubt, the two observers experience different durations of proper time. One might thin
nothing but a generalization of the twin parador result in Minkowski spacetime to a c
spacetime. However, the subtle issue here is that it is the distant observer’s proper
subjected to arbitrariness instead of the proper time of the comoving observer who ente
regime where the quantum gravity effect is generally expected to be more dominant. Fro
mathematical construction discussed previously, we can see that it is due to the arbitra
of choosing the cut-and-pasted hypersurface ¢t = t; to obtain the resulting spacetime
a single asymptotic region, i.e. single past and future null infinity.

One might argue that the arbitrariness could be removed once we have the correct t
of quantum gravity. This is, in fact, argued by the authors of ref. [1]: “A quantum the
gravity must provide the probability distribution of T as a function of m. In the classical
T — oo and black holes are eternal.” However, one should notice that the arbitrariness c
be removed entirely from this physical point of view. In this scenario, the black-to-
hole bounce is due to a quantum tunneling effect, which is intrinsically subjected t
randomness of the probability distribution as pointed out by the authors of ref. [1].
the issue still exists. That is, in the resulting spacetime, the proper time experienced
infalling observer can be determined unambiguously, even in the quantum tunneling sce
The question is then: “Is an effective classical spacetime inside the horizons still val



Now, let us further consider the semi-classical description of tunneling by consic
the following thought experiment. We start with two maximally entangled particles

1 N
¢> = \/_N z@: ’Z>in|z>out7

where N is the number of accessible states. One particle (]i)iy) falls into the black hol
is attached to the time-like shell, while the other particle (|¢)out) stays outside the blac
horizon. Whatever the time evolution of the quantum state 1) is, as long as the intera
of |i)in and |i)oy are restricted by the local operations and classical communication
entanglement entropy between two particles must be a constant.

However, we expect that the observer outside the horizon will experience qua
tunneling near the space-like shell, where the tunneling indicates a time evolution
superposition of histories which depends on the tunneling time. Hence, the quantum
outside the horizon must be a superposition of different histories, i.e.,

outﬁza |] outy

where the orthonormal basis {|i)out} and {|j')out} are not equivalent in general.

In this context, let us define a semi-classical observer A which is inside the time-like
It is very reasonable to assume that the time evolution of the quantum state inside the
follows a single classical history. On the other hand, let us define a semi-classical ob:
B which is outside the horizon. As long as the observer B is semi-classical, this ob:
will select a specific quantum state (|&")ous) as an eigenstate such that

’i>0ut — Zagj)‘j/>ou — a, ')|Z >Out7

where |i')oyt corresponds the collapsed state from |i)oyt.
Now, let us think about the situation in which the observers A and B meet tog
eventually. The quantum state evolves

\/—Z| 1n| out_>\/—za 1n|Z out-

Of course, this evolution is not unitary, and the new quantum state does not guarante
maximum entanglement between two particles.

The paradoxical situation happens because we assumed semi-classical observers A :
The tunneling process outside corresponds to branching out different histories with dif
durations of proper time, while the inside exists only one proper time history. If s



4 Discussion

In this paper, we revisited some aspects of the black hole fireworks (i.e. a black h
white hole transition) scenario proposed in [1, 25]. We constructed an explicit model f
black hole fireworks using the cut-and-paste technique. First, we used the evolutio
time-like shell in the background of the loop quantum gravity inspired metric to mod
process of gravitational collapse. Then using the space-like shell analysis, we constr
the firework geometry. We used well-defined thin-shell techniques where all the rel
quantities are clearly defined. Thus, our analysis removes some subtle issues that
present in the previous literature.

We showed that the firework scenario requires specific conditions outside the
horizon, in principle the violation of the energy conditions. This can be expressed in
of the tension of the space-like junction where the two metrics meet. In particular, we
a rather simple and well-studied space-like junction technique to create the black-to-
hole bounce with a single asymptotic region. For comparison, in ref. [1], a more compl
cut-and-paste procedure is utilized to achieve the same goal without violating the null ¢
condition far away from the horizon. However, such a cut corresponds to a hypers:
that changes its characteristic from spacelike to null, and thus, corners exist outside
outer event horizon. The tension conditions for such a scenario are highly non-trivie
might not be physically justifiable. We leave this issue for future work.

Apart from the issue of the junction condition mentioned above, we point out a
fundamental issue related to the black hole firework scenarios in general. Such an
exists both in the spacetime constructed here and in the original work [1], regard]
whether Israel junction conditions are strictly followed or not. Namely, due to the rec
cut-and-paste procedure aiming to obtain a spacetime with a single asymptotic regio:
bouncing time interval defined by a distant observer suffers from the arbitrariness
spacelike cut that one is free to choose. In contrast, this arbitrariness has little effect «
infalling observer in our model and, furthermore, has zero effect on the infalling ob:
living in the spacetime given in ref. [1]. We further argue that from the physical point of
this arbitrariness for the distant observer cannot be removed. In contrast, as long as
exists an effective classical spacetime inside the event horizon, the bouncing time in
defined by the infalling observer does not have similar randomness. If accumulated qus
gravity effects outside of the horizon drive the bounce (as argued in ref. [1]) and i
cause the randomness in the duration of the bounce, then the assumption of an effec
classical spacetime inside the inner horizons in the firework scenario might not be jus
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Figure 7. Dynamics of the time-like shell. Top left: Vg with M = 10, A = 0.1, and o9 = 0.04.
are two bouncing points located at ry.x >~ 19.9993 and ryn >~ 0.795. Note that the outer hor
r+ = 19.9987 and the inner horizon is r_— = 0.8046. Top right: Veg around rpi, ~ 0.795. Bottc
(black) and S_ (red). This shows that for ryi <7 < Tmax, S+ > 0 conditions are satisfied.

Acknowledgments

DY and WL were supported by the National Research Foundation of Korea (Gran
2021R1C1C1008622, 2021R1A4A5031460). DS is partially supported by the US Na
Science Foundation, under Grants No. PHY-2014021 and PHY-2310363.

A The junction equations and solutions

A.1 Numerical results for the time-like shell

Figure 7 is an example that describes the gravitational collapse of a time-like shell ar
formation of a black hole. Top left and right of figure 7 are V.g, where we choose M
A =0.1, and o¢p = 0.04. For these values of parameters, r, = 19.9987 and r_ = 0.804

-~ — e~ o~ o~ o~ o~ o e o~ m ——



Figure 8. Left: the space-likes shells with e_ = —1 (upper) and €, = +1 (lower), where smal
arrows denote the outward normal direction. We paste the future of the upper shell ( f_, yellow-c
region) and the past of the lower shell ( f+, orange-colored region). Right: after we paste two r
we obtain the final causal structure of the black hole fireworks.

is outside the outer horizon and 7, is inside the inner horizon. Using the cut-and-
technique, we paste a Minkowski space inside the shell. On the right side of the fig
there are dashed curves. These curves apparently do not follow the thin-shell trajec
However, assuming some properties of a star interior, it is reasonable to assume that
a stationary shell is located outside the horizon [33].

A.2 Space-like thin-shells and black hole fireworks

To consider the black hole firework scenario, we need to cut and paste on top of fig
We introduce a space-like shell and use it to paste two space-like slices [28]. (All the
we have implemented on the black hole solution described by the metric (2.2) are s
in figure 8 (left).)

MmMhAa vt rie At1itaida and svwaoida +1ha ahall-



Here, we impose that

_ 2
Folr) = —f(r) = —1 4 2M_AMT

T r

in other words, the regions outside and inside the shell correspond to the black hole so
in question.

After imposing the junction equation [34], the result is

e—\/7? + f-- ex\/ 72 + fi =dnro(r),

where o(r) is the tension of the shell, and e; = £1 are the signs of the extrinsic curve
Here, the extrinsic curvatures Bi are

~ f—f ¥ 16720212 . ~
By = J-— I = ex /72 + fi.

8mor

Note that if e = +1, r increases along the outward normal direction (direction from f

to the past), while if e = —1, r decreases along the outward normal direction. Then

in our case, we assume that e, = 41 and e = —1. Hence, 0 < 0 is required, and th

energy condition must be violated. This is expected because of the repulsive term in eq.
After simple computations, we obtain the equation

where )
i X ( ff - 167r202r2)
‘/eff(r) — f-l— - 647’(’20'27‘2

We now need to assume the condition for the thin-shell. The energy conserx

equation is
,r‘,
y=—2—(0c—\),
b= =2 (7 =)

where A is the pressure of the shell. If we assume the equation of state of the space-like
w; = —A;/o; to be a constant, the generic solution of this equation is

00
o(r) = Z 204w,)”

where o(p; are constants.
By assuming a specific function of the tension, we want to impose the following cond
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Figure 9. Dynamics of a space-like shell. Left: Veg with M =10, A = 0.1, g = —0.5, and w
This shows that the space-like shell covers the space from infinity to the center. Right: B+ (
and S_ (red). This shows that f; > 0 and f_ < 0 as expected.
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Figure 10. Another example of a space-like shell. Left: Vg with M =10, A = 0.1, o9 = —0.
w = —0.5. Again, the space-like shell covers the region from infinity to the center. Right: £, |
and S_ (red). This shows that 1 > 0 and S_ < 0 as expected.

approaches zero at infinity (w = —0.5 and ¢ ~ 1/r), and thus the negative tension ¢
disappear at infinity.

After we cut and paste the spacetimes outside and inside the shell, we obtain the ¢
structure in figure 8. Outside the shell satisfies e. = —1, while inside the shell sa
e+ = +1. We paste the future of the outer shell (yellow-colored region) and the p.
the inner shell (orange-colored region). As a result, we obtain the final causal struct
the black hole fireworks (right of figure 8).
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