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1 Introduction

The theory of inflation constitutes the dominant paradigm of primordial cosmology. Besides
solving the most important problems of the standard Hot Big Bang model, it is able to provide
an explanation, in excellent agreement with observations, for the origin of the temperature
anisotropies present in the Cosmic Microwave Background (CMB) radiation and of the density
fluctuations that characterize the large scale structure of the Universe. Among the many
di�erent inflationary scenarios, axion inflation is one of those giving a satisfying solution
to the problem of UV sensitivity of the inflaton potential. In this model, proposed for the
first time in 1990 as natural inflation [1], the inflaton is a pseudo-Nambu-Goldstone Boson
that enjoys a (softly broken) shift symmetry, i.e., a symmetry under the transformation
„ æ „ + const, which protects its potential against large radiative corrections.

The axionic inflaton is naturally coupled to gauge fields through the operator „Fµ‹F̃ µ‹/f ,
where f is the axion decay constant. In the presence of such coupling, the rolling zero mode of
the inflaton acts as a source for the modes of the gauge field. As a result, quanta of the gauge
field are amplified into classical modes, which in turn source, through a process of inverse
decay, both scalar and tensor fluctuations. Since, due to the pseudoscalar nature of the
inflaton, only one of the two helicities of the gauge field experiences a tachyonic instability, the
spectra of the tensor modes of di�erent helicities have di�erent amplitudes. This scenario has
multiple phenomenological predictions, including nongaussianities [2], deviations from scale
invariance [3], formation of a population of primordial black holes [4], generation of primordial
chiral gravitational waves at CMB [5] or interferometer [6] frequencies, baryogenesis [7], as
well as the possible generation of cosmologically relevant magnetic fields [8, 9] — see [10]
for a review.

By comparing these phenomenological predictions with observations we can constrain
the relevant parameters characterizing the models of axion inflation. More specifically, there
are two significant observational lengthscales. At large scales, probed by CMB measurements,
the primary constraint arises from the non-observation of primordial nongaussianities for the
scalar fluctuations. In axion inflation the sourced scalar fluctuations are highly nongaussian.
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Consequently, the model can be viable only if the sourced component of scalar modes is
subdominant compared to that generated by the standard amplification of vacuum fluctuations.
This is equivalent to stating that the amplitude of the gauge field, which sources the scalar
and tensor fluctuations, must be relatively small. Therefore, the sourced component of tensor
fluctuations is also small at this stage.

At smaller scales, corresponding to modes that left the horizon closer to the end of
inflation, the situation becomes more interesting. For simple inflationary potentials, the
inflaton’s velocity increases as inflation progresses and therefore the population of gauge
quanta, whose amplitude depends exponentially on the inflaton’s velocity, becomes more
sizable towards the end of inflation. As a consequence, sourced gravitational waves of shorter
wavelengths, which are remarkably those probed by gravitational wave experiments, can
have a much larger amplitude and might even be directly detectable [6] by a variety of
observatories. Also in this regime we need the scalar fluctuations to remain bounded to avoid
an overproduction of primordial black holes [10, 11].

A natural follow-up to the recent observational evidence [12–14] of a stochastic gravi-
tational wave background (SGWB) is the search for anisotropies, in analogy to the scalar
anisotropies observed in the CMB (see, e.g., [15] for a recent analysis of LIGO/Virgo/KAGRA
and [16] for LISA’s reach in this respect). Study of these anisotropies can allow us to
distinguish between the astrophysical and cosmological origin of the SGWB. Furthermore,
cosmological tensor anisotropies may be correlated with the scalar anisotropies of the CMB
if they arise from the same underlying mechanisms [17]. Exploring such correlations can
give important information about the cosmological background of gravitational waves, thus
providing insights about the physics of the Early Universe. Reference [18] performed a study
of the statistics of these anisotropies while [19] studied the consequences of a non-trivial
primordial scalar-tensor-tensor nongaussianity on the energy density of gravitational waves.

In this work we compute the correlation between the curvature perturbation ’(x) and the
energy density �GW (x) = ḣij(x) ḣij(x)/(12 H2

0 ) of the tensor modes within the framework of
axion inflation. The computation is conducted at frequencies tested by gravitational detectors,
and the correlator is normalized by both the square root of the scalar power spectrum and
the average value of �GW (x). The two point function receives two contributions, reflecting
the fact that scalar fluctuations are generated both from the vacuum, through the standard
amplification process, and by modes of the gauge field, through the inverse decay process.
More specifically, we will study the two following situations:

• the rolling inflaton has fluctuations that are generated by the standard mechanism of
amplification of vacuum fluctuations in an expanding Universe. The rolling inflaton
then sources quanta of the gauge field, which in turn source gravitational waves. The
fluctuations in the inflaton are thus imprinted in the fluctuations in the gravitational
waves. We study this correlator in section 3.1;

• the rolling inflaton sources quanta of the gauge field, which in turn source both scalar
fluctuations and gravitational waves. Since these modes are produced by the same
population of gauge modes, they are correlated. We study this correlator in section 3.2.
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As we will see, due to the smallness of the amplitude of the gauge field — and therefore,
of the sourced scalar fluctuations and gravitational waves — at CMB scales, the former
e�ect is generally dominant over the latter, and leads to a normalized correlator of the
order of 10≠4

÷ 10≠2.
The correlator studied in this work is the one between scalar perturbations at CMB

scales, corresponding to modes that left the horizon early during inflation and gravitational
waves at interferometer scales, which correspond to modes that left the horizon later during
inflation. Even though these gravitational waves have relatively short (i.e., non cosmological)
wavelengths, their anisotropies are at large, cosmological scales.

During the last stages of axion inflation the large amplitude acquired by the gauge modes
implies that they can have strong backreaction e�ects on the inflating background. The
nonperturbative inflaton-gauge field dynamics, studied in numerous papers including [20–30],
is rich, complicated, and not yet fully understood. The production of gravitational waves,
although generated during the phase of strong backreaction, is treated at the perturbative
level. Reference [28] derived spectra of gravitational waves produced during this stage keeping
into account the nonperturbative dynamics of the inflaton-gauge field system, even if it
ignored inflaton inhomogeneities. Reference [31] performed an analogous study for the case
of an SU(2) gauge sector. The results of [28] suggest that, even though strong backreaction
e�ects complicate significantly the dynamics of the inflaton and of the gauge quanta, if the
inflaton evolution „(t) is known, then the resulting gravitational wave spectra reflect quite
accurately the shape of the function „̇(t). For the scope of our calculation, since we will
formulate our results in terms of „̇(t) without referring to the specific dynamics that led
to that expression, our results should be valid even in the strong backreaction regime, at
least as long as the inflaton inhomogeneities are ignored. Moreover, there are reasons to
expect that our results will not change even once inflaton gradients are accounted for, since
causality will prevent the late strong dynamics from a�ecting physics at scales that have
left the horizon at much earlier times.

This paper is organized as follows. Section 2 contains a review of the amplification
process that quanta of gauge field undergo as the inflaton rolls down its potential, together
with the generation of curvature perturbations and of gravitational waves. Then, in section 3,
we calculate the two contributions to the correlator between scalar fluctuations and the
energy density of the gravitational waves: in subsection 3.1 we study the correlation of
gravitational waves with the amplified vacuum scalar fluctuations and in subsection 3.2 the
correlation of gravitational waves with sourced scalar fluctuations. In section 4 we discuss
our results and we conclude. Appendix A contains the details of the calculation leading
to the results in section 3.2.

2 Review of scalar and tensor perturbations from axion inflation

Our system consists of a pseudoscalar inflaton „ and a U(1) gauge field Aµ in interaction
with each other and with gravity through the action

S =
⁄

d4x
Ô

≠g

C
M2

P

2 R ≠
1
2ˆµ„ ˆµ„ ≠ V („) ≠

1
4Fµ‹ F µ‹

≠
„

8 f

‘µ‹fl⁄

Ô
≠g

Fµ‹ Ffl⁄

D

, (2.1)
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where g = det(gµ‹), Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ, f is a constant with dimensions of mass, R is
the Ricci scalar, and ‘µ‹fl⁄ is the totally antisymmetric object defined by ‘0123 = +1. We
will not make any assumption about the shape of the potential V („), other than it is flat
enough to be able to support inflation.

Concerning the metric, we will assume that it is of the form of de Sitter space in flat
slicing plus tensor perturbations (repeated latin indices are understood to be summed upon)

ds2 = a2(·)
Ë
≠d·2 + (”ij + hij(x, ·)) dxi dxj

È
,

a(·) = ≠
1

H ·
, hii = ˆihij = 0 . (2.2)

We perturb the inflaton as

„(x, ·) © „0(·) + ”„(x, ·) , (2.3)

so that the curvature perturbation is given by ’ © ≠
H

„̇0
”„. We will denote the derivative

with respect to conformal time · by a prime and that with respect to the cosmic time t,
defined through dt = a(·) d· , by an overdot. We set the scale factor to be equal to unity
at the end of inflation, i.e., inflation will end at ·e = ≠1/H.

We treat the homogeneous inflaton „0(·) and the scale factor a(·) as background
quantities, and we work with the following canonically normalized perturbations

Aµ(x, ·) with A0(x, ·) = 0 , ˆiAi(x, ·) = 0 ,

�(x, ·) © a(·) ”„(x, ·) ,

Hij(x, ·) ©
MP

2 a(·) hij(x, ·) . (2.4)

Neglecting the mass of the inflaton, our perturbed Lagrangian takes the form

L =
31

2�Õ2
≠

1
2ˆk� ˆk� + aÕÕ

2 a
�2

4
+

31
2H Õ

ij H Õ
ij ≠

1
2ˆkHij ˆkHij + aÕÕ

2 a
Hij Hij

4

+
31

2AÕ
i AÕ

i ≠
1
2ˆkAi ˆkAi ≠

„0

f
‘ijk AÕ

i ˆjAk

4

≠
Hij

a MP

Ë
AÕ

i AÕ
j ≠ (ˆiAk ≠ ˆkAi) (ˆjAk ≠ ˆkAj)

È
≠

�
f a

‘ijk AÕ
i ˆjAk , (2.5)

where the first line describes the free scalar and free tensor perturbations, the second line
describes the free gauge field modes, and the last line contains the interactions that lead
to processes of the form AiAj æ Hij and AiAj æ �.

By varying the Lagrangian (2.5) with respect to �, Hij and Ai, we obtain the equations
of motion

�ÕÕ
≠

aÕÕ

a
� ≠ Ò

2� + 1
f a

‘ijk AÕ
i ˆjAk = 0 , (2.6)

H ÕÕ
ij ≠

aÕÕ

a
Hij ≠ Ò

2Hij + 1
a MP

Ë
AÕ

i AÕ
j ≠ (ˆiAk ≠ ˆkAi) (ˆjAk ≠ ˆkAj)

È
= 0 , (2.7)

AÕÕ
i ≠ Ò

2Ai ≠
„Õ

0

f
‘ijk ˆjAk = 0 . (2.8)
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The solution of eq. (2.6) splits into two parts: the solution of the homogeneous equation,
denoted as �V, and the particular solution, denoted as �S. The solution of the homogeneous
equation represents the usual vacuum fluctuations generated during inflation due to the
accelerated expansion of the background, while the particular solution is induced by the
inverse decay of the gauge fields. The homogeneous solution can be quantized through the
standard quantization of the free Lagrangian, using the first line of eq. (2.5), as

�V(x, ·) =
⁄

dk
(2fi)3/2

eikx
Ë
�V(k, ·) â(k) + �ú

V(k, ·) â†(≠k)
È

,

�V(k, ·) ©
1

Ô
2k

3
1 ≠

i

k·

4
e≠ik· , (2.9)

where the creation/annihilation operators â†(k)/â(k) satisfy the usual commutation relationsË
â(k), â†(q)

È
= ”(k ≠ q), [â(k), â(q)] =

Ë
â†(k), â†(q)

È
= 0.

The power spectrum of the curvature perturbation, P’ , defined through the two point
function

È’(k) ’(q)Í ©
2fi2

k3
P’(k) ”(k + q) , (2.10)

results in the sum of the power spectra corresponding to the homogeneous and the particular
solutions, denoted as P’, V and P’, S, respectively.

Specifically, the homogeneous solution, corresponding to the scalar perturbations associ-
ated to the mode functions (2.9), yields, at the end of inflation and for large scales,

P’, V = k3

2fi2

H2

„̇2
0

|�V(k, ·e)|2 ≠≠≠æ
kπH

H4

4fi2 „̇2
0

. (2.11)

An analogous discussion holds also for the tensor perturbations Hij(x, ·), whose vacuum
component gives rise to Ph, V = 2 H

2

fi2 M
2
P

.
In order to find the sourced components of the scalar and tensor power spectra we need

to take into account the generation of the electromagnetic field by the rolling pseudoscalar.
In order to do that, we start with the quantization of the vector field Ai(x, ·):

Ai(x, ·) =
⁄

dk
(2fi)3/2

ÿ

⁄=±
e ⁄

i (‚k) eikx
Ë
A⁄(k, ·) â⁄(k) + Aú

⁄(k, ·) â†
⁄
(≠k)

È
, (2.12)

where the helicity projectors e±
i

(‚k) satisfy the relations

ki e ⁄

i (‚k) = 0 , e ⁄

i (‚k)ú = e≠⁄

i
(‚k) = e ⁄

i (≠‚k) ,

i‘ijkkje ⁄

k (‚k) = ⁄ k e ⁄

i (‚k) , e ⁄

i (‚k)e ⁄
Õ

i (‚k) = ”⁄, ≠⁄Õ .
(2.13)

Inserting the decomposition (2.12) into eq. (2.8) we obtain the equation of motion for the
mode functions A⁄(k, ·),

AÕÕ
⁄(k, ·) +

3
k2

≠ ⁄
„Õ

0

f
k

4
A⁄(k, ·) = 0 , (2.14)
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which can be solved explicitly in terms of special functions if „̇0 = constant. However, we
do not need the exact solution. Defining

› ©
„̇0

2 f H
, (2.15)

we can rewrite eq. (2.14) as

d2 A⁄

d(k ·)2
+

3
1 + 2 ⁄

›

k ·

4
A⁄ = 0 , (2.16)

so that, assuming › > 0, the helicity ⁄ = ≠1 in eq. (2.16) has always real frequencies that are
adiabatically evolving (remember that · < 0). As a consequence, the mode A≠ stays in its
vacuum and we will neglect it from now on. On the other hand, the positive helicity mode A+

has imaginary frequencies for a range of values of k· and is therefore exponentially amplified.
In the WKB approximation, the leading term in the solution of the tachyonic modes

of A+ reads [9]

A+(k, ·) ƒ
1

Ô
2 k

3
≠

k ·

2 ›

41/4

e≠2

Ô
≠2›k·+fi › , (2.17)

which is strictly speaking valid only in the range [2] 1

8 ›
. |k · | . 2 › (we will assume › & O(1)

throughout this paper). However, since the momenta in this range dominate the contributions
to the observables we will be interested in, we will apply the expression (2.17) to the entire
range 0 < |k · | < Œ. Eq. (2.17) shows that the ⁄ = + helicity of the gauge field is amplified
by a factor efi›, which can be very large even for moderate values of ›.

We are now in position to compute the leading order contribution of the amplified gauge
field to the curvature perturbation ’. Taking the Fourier of eq. (2.6), we obtain the equation

�ÕÕ(q, ·) + q2�(q, ·) ≠
2
·2

�(q, ·) ≠ i
H·

f
‘ijk

⁄
dp

(2fi)3/2
AÕ

i(p, ·) (q ≠ p)jAk(q ≠ p, ·) = 0 .

(2.18)

The particular solution of this equation, �S, which corresponds to the sourced component
of scalar fluctuations, can be found using the retarded propagator

�S(q, ·) © i
⁄

d· Õ Gq(·, · Õ)H· Õ

f
‘ijk

⁄
dp

(2fi)3/2
AÕ

i(p, · Õ) (q ≠ p)jAk(q ≠ p, · Õ) . (2.19)

Given that we are assuming an exact de Sitter background, the retarded propagator can
be written explicitly as

Gk(·, · Õ) = (1 + k2 · · Õ) sin(k (· ≠ · Õ)) + k (· Õ
≠ ·) cos(k (· ≠ · Õ))

k3 · · Õ �(· ≠ · Õ) , (2.20)

where � denotes the Heaviside step function.
The sourced component of the scalar fluctuations induces an additional contribution

to the power spectrum of the curvature perturbation, that for › & 3, is well approximated
by the formula [2]

P’, S = k3

2fi2

H2

„̇2
0

|�S(k, ·e)|2 ≠≠≠æ
kπH

4.8 ◊ 10≠8
H8

„̇4
0

e4fi›

›6
. (2.21)
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A commonly used measure of nongaussianity is the parameter fNL, which measures the
amplitude of the bispectrum of the curvature perturbation and is defined via

È’(k1) ’(k2) ’(k3)Í = 3
10 (2fi)5/2 fNL(k1, k2, k3) P

2

’ ”(k1 + k2 + k3) k3
1 + k3

2 + k3
3

k3
1

k3
2

k3
3

. (2.22)

For single field, slow-roll inflation, the bispectrum has a small amplitude, and fNL is
of the order of the slow-roll parameters [32]. On the other hand, the sourced component
of the curvature perturbation, since it results from a 2 æ 1 process, obeys an intrinsically
nongaussian statistics. Since such nongaussianities originate from some sub-horizon dynamics,
the bispectrum is peaked on equilateral configurations, i.e., for k1 = k2 = k3, with [2]

f equil

NL
ƒ 7.1 ◊ 105

H12

„̇6

e6fi›

›9
, (2.23)

for › & 3 and in the regime P’, S π P’, V. In the regime of large ›, where P’, S ∫ P’, V, f equil

NL

converges to a value of the order of 104, which exceeds by a O(103) factor the constraints from
Planck. This limits severely the value ›CMB taken by › when Cosmic Microwave Background
scales are leaving the horizon, leading to ›CMB . 2.5 [33, 34].

The excited modes of the vector field are also a source of gravitational waves. To leading
order, production of gravitational waves via this process is described by the equation

H ÕÕ
ij(q, ·) + q2Hij(q, ·) ≠

2
·2

Hij(q, ·)

= H ·

MP

⁄
dp

(2fi)3/2

1
AÕ

i(p, ·) AÕ
j(q ≠ p, ·) ≠ Fik(p, ·)Fjk(q ≠ p, ·)

2
, (2.24)

where Fij(p, ·) © i piAj(p, ·) ≠ i pjAi(p, ·). As a consequence of the functional dependence
of A+ on k · and on ›, the electric field is stronger than the magnetic field by a factor ≥ › & 1.
For this reason we will neglect the term Fik(p, ·)Fjk(q ≠ p, ·) in eq. (2.24). Using again
the Green’s function (2.20) we eventually obtain

Hij, S(q, ·) ©

⁄
d· Õ Gq(·, · Õ) H · Õ

MP

⁄
dp

(2fi)3/2
AÕ

i(p, · Õ) AÕ
j(q ≠ p, · Õ) . (2.25)

The resulting power spectrum for the tensor modes reads [5]

Ph = Ph, V + Ph, S ƒ
2 H2

fi2 M2

P

+ 8.7 ◊ 10≠8
H4

M4

P

e4fi›

›6
. (2.26)

It is worth stressing that the sourced component of the gravitational waves is almost fully chiral,
as a consequence of the fact that only the + helicity of the gauge field is excited. While this
fact can lead to a rich and interesting phenomenology, we will not be concerned with it here.

The constraint on the parameter › coming from the limits on nongaussianities implies
that Ph, V ∫ Ph, S. This constraint, however, holds only for the value ›CMB taken by › when
CMB scales left the horizon. The quantity › Ã „̇0/H remains approximately constant in
a slow-roll inflationary background, but it shows small time variations at higher orders in
the slow-roll parameters. Therefore, we consider it as an adiabatically evolving quantity,

– 7 –
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i.e. we treat it as constant when studying the production of gauge fields at a particular
moment during inflation (eq. (2.17)), but we must take into account its variation, typically
an increase, when comparing two distinct stages of inflation. Since the sourced component
of the gravitational wave spectrum has an exponential dependence on ›, it is possible that
at later times Ph, V is actually overwhelmed by Ph, S. We will denote by ›INT > ›CMB the
value taken by › at this later stage, where the subscript INT refers to the fact that we are
thinking of frequencies probed by gravitational interferometers. In particular, this leads to
the possibility that gravitational waves sourced by the vector field have such large amplitude
to be directly detectable by current or future gravitational detectors [6].

In the next section we will describe two mechanisms that induce correlation between the
curvature perturbation and the gravitational waves produced in axion inflation.

3 The correlator between scalar fluctuations and gravitational waves

We define the normalized correlator of scalar fluctuations and gravitational waves as

C�’(k, t0) ©
1

�INT

GW

Ò
PCMB

’

k3

2fi2

⁄
dy e≠iky

È�GW (x + y, t0) ’(x, t0)Í

= 1
�INT

GW

Ò
PCMB

’

k3

2fi2
È�GW (k, t0) ’(≠k, t0)ÍÕ , (3.1)

where the symbol È. . .ÍÕ denotes the correlator stripped of the Dirac delta associated to
momentum conservation and t0 indicates the present value of cosmic time. Moreover, �INT

GW

denotes the fractional energy in gravitational waves at interferometer frequencies, whereas
P

CMB

’
denotes the amplitude of scalar perturbations at CMB scales. Given the weak scale

dependence of P
CMB

’
, from now on we will drop the index CMB from P’ , and will treat this

quantity as constant. On the other hand, axion inflation can lead to a strong scale dependence
of the energy in gravitational waves, which cannot be ignored in our analysis.

To proceed we observe that �GW (k) = 1

12 H
2
0

s
dp

(2fi)3/2 |k ≠ p| p hij(k ≠ p, t0)hij(p, t0).
The current amplitude hij(k, t0) is related to the primordial amplitude calculated at the end of
inflation hij(k, te) through the transfer function T (k), which is proportional to k≠1 for modes
that have re-entered the horizon during radiation domination, and to k≠2 for modes that
have re-entered the horizon during matter domination. Putting everything together, we have

C�’(k, t0) = 1
12 H2

0
�INT

GW


P’

k3

2fi2

⁄
dp

(2fi)3/2
T̂ (|k ≠ p|) T̂ (p)

◊ Èhij(k ≠ p, te) hij(p, te) ’(≠k, te)ÍÕ , (3.2)

where we have defined T̂ (p) © p T (p) and we have replaced the amplitude of the scalar
perturbations with its value at the end of inflation.

The correlator C�’(k, t0) receives two di�erent contributions: the first is the result of
the correlation of gravitational waves with the amplified vacuum scalar fluctuations; the
second is due to the correlation of gravitational waves with the sourced scalar fluctuations.
Below we will examine the two cases separately.
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3.1 Correlation with amplified vacuum scalar fluctuations
The spectrum Ph, S of gravitational waves sourced by the gauge field depends on the values of
„ and „̇ evaluated approximately at the time when the tensor modes under consideration left
the horizon, and where, in slow-roll approximation, „̇ is a function of „. As a consequence,
long wavelength perturbations in the values of „ will lead to correlated long wavelength
perturbations in the spectrum of gravitational waves.

To first order in the vacuum-amplified fluctuation ”„V of the inflaton, and in the limit in
which the wavelength of ”„V is much larger than that of hij, S, we have

hij, S(x, „(x)) = hij, S(x, „0) + ˆhij, S(x, „0)
ˆ„0

”„V(x) , (3.3)

where the first term does not contribute to C�’ . Since hij, S(x, „0) Ã e2fi›, we can also write

hij, S(x, „(x)) = hij, S(x, „0)
A

1 ≠ 2fi
d ›

d„0

„̇0

H
’V(x)

B

, (3.4)

where we used ”„ = ≠„̇0 ’/H. We thus obtain the first contribution to the correlator between
�GW and ’V, that we denote as (C�’)V, and which reads

(C�’)V = ≠
1

12 H2
0

�INT

GW


P’

k3

2fi2

⁄
dp dq
(2fi)3

T̂ (|k ≠ p|) T̂ (|p ≠ q|)

◊ 4fi
„̇0

H

d ›

d„0

Èhij, S(k ≠ p, te) hij, S(p ≠ q, te) ’V(q, te) ’V(≠k, te)ÍÕ . (3.5)

Assuming „̇0 > 0, V Õ < 0, we have

› ©
„̇0

2 fH
ƒ ≠

V Õ

6 fH2
= ≠

M2

P

2 f

V Õ

V
, (3.6)

so that

d›

d„0

= ≠
M2

P

2 f

A
V ÕÕ

V
≠

V Õ2

V 2

B

=
3

‘ ≠
÷

2

4 1
f

, (3.7)

where we have defined as usual the slow-roll parameters as

‘ = M2

P

2
V Õ2

V 2
, ÷ = M2

P

V ÕÕ

V
. (3.8)

The correlator therefore becomes

(C�’)V = ≠


P’

12 H2
0

�INT

GW

⁄
dp
p3

› (2‘ ≠ ÷) T̂ (p)2
Ph, S(p) . (3.9)

To proceed we note that, since typically the amplitude of the induced tensor modes
increases as inflation progresses, the integral in eq. (3.5) is dominated by the largest frequencies,
that are typically close to those probed by the interferometers. For those wavelengths, that
re-entered the horizon well into the radiation dominated regime, we have

T̂ (p)2
Ph, S(p)

12 H2
0

�INT

GW

= Ph, S(p)
Ph, S(pINT) . (3.10)
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Using again the fact that the integral in eq. (3.5) is dominated by values of p of the order
of pINT, we can estimate

(C�’)V ƒ ≠4fi › �Nú (2‘ ≠ ÷)
Ò

P’ , (3.11)

where both › and the slow-roll parameters ‘ and ÷ are evaluated at the time when the scales
probed by interferometers have left the horizon. In eq. (3.11) the parameter �Nú accounts for
the number of efoldings during which the tensor power spectrum is approximately constant.
Numerical simulations indicate that this is the case in the strong backreaction regime, which
usually lasts �Nú ƒ 10 ÷ 30 efoldings. At this stage the parameter › takes values that are
typically of the order of 5 ÷ 10. The quantity (2‘ ≠ ÷) has to be smaller than unity and
is typically of the order of 10≠2

÷ 10≠1. So by putting everything together we obtain that
(C�’)V is typically of the order of 10≠4

÷ 10≠2.

3.2 Correlation with sourced scalar fluctuations

In order to calculate the correlator between the sourced scalar and tensor fluctuations, that we
denote as (C�’)

S
, we use eqs. (2.4), (2.19) and (2.25) to find Èhab, S(k1, ·) hab, S(k2, ·) ’S(k3, ·)Í

in terms of the canonically normalized perturbations as

Èhab, S(k1, ·) hab, S(k2, ·) ’S(k3, ·)Í

= ≠
4 H(·)

M2

P
„̇0(·) a3(·)

ÈHab, S(k1, ·) Hab, S(k2, ·) �S(k3, ·)Í

= 4 H(·)
M4

P
„̇0(·) a3(·) f

⁄
·

≠Œ

d·1

a(·1)
d·2

a(·2)
d·3

a(·3) Gk1(·, ·1) Gk2(·, ·2) Gk3(·, ·3)

◊

⁄
dq1 dq2 dq3

(2fi)9/2
e+

a („q1) e+

b
( \k1 ≠ q1) e+

a („q2) e+

b
( \k2 ≠ q2) e+

i
(„q3) e+

i
( \k3 ≠ q3) |k3 ≠ q3|

◊ ÈAÕ
+(q1, ·1) AÕ

+(|k1 ≠ q1|, ·1) AÕ
+(q2, ·2) AÕ

+(|k2 ≠ q2|, ·2) AÕ
+(q3, ·3) A+(|k3 ≠ q3|, ·3)Í ,

(3.12)

where we have assumed that only the positive helicity photons contribute because, from
eq. (2.14), A+ is the only helicity that is amplified.

Using Wick’s theorem to decompose the last line of eq. (3.12) and inserting it back
into (3.2) we obtain

(C�’)
S

= k3 H(·)
6 H2

0
fi2 M4

P
„̇0(·) a3(·) f �INT

GW


P’

⁄
dp

(2fi)3/2

⁄
·

≠Œ

d·1

a(·1)
d·2

a(·2)
d·3

a(·3)

◊ Gk1(·, ·1) Gk2(·, ·2) Gk3(·, ·3)
⁄

dq
(2fi)9/2

T̂ (|k ≠ p|) T̂ (p) A(q, k1 ≠ q, k2 + q)

◊

3
|k2 + q| AÕ

+(q, ·1) AÕ
+(|k1 ≠ q|, ·1) AÕ

+(q, ·2) AÕ
+(|k1 ≠ q|, ·3)

◊ AÕ
+(|k2 + q|, ·2) A+(|k2 + q|, ·3)

+ |k1 ≠ q| AÕ
+(q, ·1) AÕ

+(q, ·2) AÕ
+(|k1 ≠ q|, ·1) A+(|k1 ≠ q|, ·3)

◊ AÕ
+(|k2 + q|, ·2) AÕ

+(|k2 + q|, ·3)
4

, (3.13)

– 10 –



J
C
A
P
1
0
(
2
0
2
4
)
0
2
4

where k1 = k ≠ p, k2 = p and k3 = ≠k, and where we have collected the angular part
into the expression A:

A(k1, k2, k3) =

”ac ”bd ((e+

a („k1) e+

c ( ‰≠k1) e+

b
(„k2) e+

i
( ‰≠k2) e+

d
(„k3) e+

i
( ‰≠k3) + (a ¡ b)) + (c ¡ d)) .

Using the explicit form of the gauge field (2.17), the expression (3.13) becomes

(C�’)
S

= (3.14)

≠
k3 H4(·)

3 ◊ 29 fi8 H2
0

M4

P
„̇0(·) f a3(·) �INT

GW


P’

⁄
dp T̂ (|k ≠ p|) T̂ (p)

◊

⁄
·

≠Œ
d·1 d·2 d·3 ›1/2

1
›1/2

2

Ô
·1 ·2 ·3 G|k≠p|(·, ·1) Gp(·, ·2) Gk(·, ·3)e2fi(›1+›2+›3)

◊

⁄
dq A(q, k ≠ p ≠ q, p + q)q1/2

|k ≠ p ≠ q|
1/2

|p + q|
1/2(|k ≠ p ≠ q|

1/2 + |p + q|
1/2)

◊e≠2

Ô
≠2 ›1 q ·1≠2

Ô
≠2 ›1 |k≠p≠q| ·1≠2

Ô
≠2 ›2 q ·2≠2

Ô
≠2 ›2 |p+q| ·2≠2

Ô
≠2 ›3 |p+q| ·3≠2

Ô
≠2 ›3 |k≠p≠q| ·3 ,

where we have also accounted for the adiabatic time variation of the parameter ›, as we
are considering the entire inflationary stage, and we have denoted ›i © ›(·i). In order to
perform the calculation we set the time at the end of inflation to be ·e = ≠1/H. Since
we are interested in modes that are well outside of the horizon at the end of inflation, we
will assume k/H æ 0. The dependence of the integrand on e≠2

Ô
≠2 ›1 ·1

!Ô
q+

Ô
|k≠p≠q|

"
with

›1 ∫ 1 implies that we can set |k ≠ p| |·1| π 1 in the propagator, and we can approximate
G|k≠p|(·, ·1) ƒ ≠·2

1 /(3 ·). A similar argument applies to the other two propagators which are
approximated as Gp(·, ·2) ƒ ≠·2

2 /(3 ·) and Gk(·, ·3) ƒ ≠·2
3 /(3 ·). As a consequence, the de-

pendence of the integrand on ·1, ·2 and ·3 takes the form ·5/2

1
e≠2

Ô
≠2 ›1 ·1

!Ô
q+

Ô
|k≠p≠q|

"
+2fi›1 ,

·5/2

2
e≠2

Ô
≠2 ›2 ·2

!Ô
q+

Ô
|p+q|

"
+2fi›2 and ·3

3 e≠2

Ô
≠2 ›3 ·3

!Ô
|p+q|+

Ô
|k≠p≠q|

"
+2fi›3 respectively. To

proceed with the calculation, we need to know the explicit form of the model-dependent
function ›(·). Without choosing a particular model, we can still estimate the integral by
assuming that › has a weak dependence on · . In this case we see that the integral is
dominated by values of |·1|, |·2| and |·3| belonging respectively to a relatively narrow window
around (Ôq +


|k ≠ p ≠ q|)≠2, (Ôq +


|p + q|)≠2 and (


|p + q| +


|k ≠ p ≠ q|)≠2. We

can therefore approximate

›1 = ›
1
· ƒ ≠

1
Ô

q +
Ò

|k ≠ p ≠ q|

2≠22
,

›2 = ›
1
· ƒ ≠

1
Ô

q +
Ò

|p + q|

2≠22
,

›3 = ›
1
· ƒ ≠

1Ò
|p + q| +

Ò
|k ≠ p ≠ q|

2≠22
, (3.15)

which are now momentum-dependent. Using the expression
⁄ Œ

0

dx xn≠1 e≠a
Ô

x = 2
a2n

�(2n) , (3.16)
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we obtain

(C�’)
S

= k3 H7 �(7)2 �(8)
239 ◊ 34 H2

0
fi8 M4

P
„̇0(·) f �INT

GW


P’

⁄
dp dqe2fi(›1+›2+›3)

›3
1

›3
2

›4
3

◊ T̂ (|k ≠ p|) T̂ (p) (3.17)

◊
A(q, k ≠ p ≠ q, p + q) q1/2

|k ≠ p ≠ q|
1/2

|p + q|
1/2

(Ôq +


|k ≠ p ≠ q| )7 (Ôq +


|p + q| )7 (


|p + q| +


|k ≠ p ≠ q| )7
.

The computation of the remaining six-dimensional integral is complicated, again, by the
fact that the function ›(·) is model dependent. Even if the time dependence is weak (i.e.,
slow-roll implies that d›/dt π H ›), we cannot neglect it, because › appears in exponents.
Moreover, › is in general increasing during inflation. The time- (and therefore p- and q-)
dependence in the exponent leads the coe�cient e2fi(›1+›2+›3) to be an increasing function of
the integration variables. On the other hand, the factors (. . .)≠7

◊ (. . .)≠7
◊ (. . .)≠7 in the

denominator of eq. (3.17) give a contribution that is peaked at small values of |p| and |q|,
i.e. |p| ¥ |q| ¥ k. The result of the integral will thus depend on whether it is dominated
by |p| ¥ |q| ¥ k or by the largest values of |p| and |q|.

To proceed with our estimates, we assume that the function ›(·) is monotonically
increasing, which, as we said, is what typically happens. It will take a value ›(· = ≠1/k) © ›k

when scales with comoving wavenumber k, leave the horizon, Nk efoldings before the end
of inflation. In particular, we have in mind the case where k ƒ kCMB, with NCMB ƒ 60 (as
noted above, observations constrain ›CMB . 2.5 [34]). At a later time, denoted by ·BR, i.e.
NBR = log(≠H·BR) efoldings before the end of inflation, the system gets into the strong
backreaction regime, and › takes the value › = ›BR. The behavior of the system in this regime
is still object of active research, but it is reasonable to assume that › will be approximately
constant for · > ·BR, so that the integral does not receive significant contributions by the
values of p and q corresponding to scales that left the horizon after ·BR.

As we show in the appendix, the integral is dominated by |p| ¥ |q| ¥ k if ›BR≠›k . (Nk≠

NBR)/(2fi), and by |p| ¥ |q| ¥ ≠1/·BR otherwise. Let us examine these two cases separately.

3.2.1 ›BR ≠ ›k . Nk≠NBR
2fi

In this case the integral is dominated by |p| ¥ |q| ¥ k, so that we can set ›1 ƒ ›2 ƒ ›3 © ›k

everywhere. Moreover, since we are assuming that k is at CMB scales, it corresponds to
wavenumbers that reentered the horizon during matter domination, so that we can assume
T̂ (k) ƒ k̄2/k, where k̄2

©
3

4
Ô

2
keq H0

Ô
�rad ƒ (.5 H0)2, with keq being the scale that reentered

the horizon during matter-radiation equality [35]. We are thus left with

(C�’)
S

= H7 �(7)2 �(8) k̄4

239 ◊ 34 fi8 H2
0

M4

P
„̇0 f �INT

GW


P’

e6fi›k

›10

k

(3.18)

◊ k3

⁄
dp dq

p |k ≠ p|

A(q, k ≠ p ≠ q, p + q) q1/2
|k ≠ p ≠ q|

1/2
|p + q|

1/2

(Ôq +
Ô

k ≠ p ≠ q)7 (Ôq +
Ôp + q)7 (


|p + q| +


|k ≠ p ≠ q)7

,
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where the integral on the second line can be computed numerically, using

A(k1, k2, k3) = 1
4

3
2 + 3 („k2 · „k3)2

≠ 5 „k2 · „k3 + („k1 · „k3)2 + („k1 · „k2)2

≠ „k1 · „k3 + „k1 · „k2 ≠ („k1 · „k3)(„k1 · „k2) ≠ („k2 · „k3)(„k1 · „k2)

+ („k2 · „k3)(„k1 · „k3) ≠ („k1 · „k2)(„k1 · „k3)(„k2 · „k3) ≠ i („k1 · „k2 ≠ „k1 · „k3

≠ „k2 · „k3 + 1) ‘dil
„k1d

„k2i
„k3l

4
. (3.19)

One thus obtains

(C�’)
S

(k) ƒ 6 ◊ 10≠12
H7 k̄2

H2
0

M4

P
„̇0 f �INT

GW


P’

e6fi ›k

›10

k

k̄2

k2
. (3.20)

After substituting


P’ ƒ


P’, V = H2/(2fi „̇0) and �INT

GW
ƒ

�
0
rad
24

Ph,S(kINT) [35], with
�0

rad
ƒ 8.2 ◊ 10≠5 and Ph,S(kINT) from (2.26), we obtain the simple form

(C�’)
S

ƒ 8 H2
0

k2

H

f
e6fi ›k≠4fi ›INT ›6

INT

›10

k

. (3.21)

Finally, if k is at CMB scales, we use eq. (2.23) together with the measured amplitude of
the scalar perturbations P’, V ƒ 2 ◊ 10≠9 to obtain

(C�’)
S

ƒ 600 H2
0

k2
(f equil

NL
)1/3 e≠4fi(›INT≠›k)

›6

INT

›6

k

, (3.22)

which despite the O(103) coe�cient in front, and assuming the factor k̄
2

k2 (f equil

NL
)1/3 to be

of the order of the unity, is exponentially small. For instance, assuming ›k ƒ 2.5 (which
is the largest value of ›k allowed by non-observation of nongaussianities in the CMB) and
›INT ƒ 5, which is on the lower end of the values found in numerical studies for › in the
strong backreaction regime, the factor e≠4fi(›INT≠›k) ›

6
INT
›

6
k

evaluates to approximately 10≠11,
making this dimensionless, normalized correlator tiny.

3.2.2 ›BR ≠ ›k & Nk≠NBR
2fi

In this case the integral is dominated by the scales that left the horizon when › attained its
largest value at the beginning of the strong backreaction regime. Since we are interested
in largest value of the momenta, we consider only wavenumbers that reentered the horizon
during radiation domination. The integral

⁄
dp dq A(q, k ≠ p ≠ q, p + q) q1/2

|k ≠ p ≠ q|
1/2

|p + q|
1/2

(Ôq +
Ô

k ≠ p ≠ q)7 (Ôq +
Ôp + q)7 (


|p + q| +


|k ≠ p ≠ q)7

, (3.23)

is estimated in the appendix, and it evaluates to O(10≠2) e6fi ›BR/k3

BR
. As a consequence

we obtain the result

(C�’)
S

(k) ƒ O(10≠2) k3

k3

BR

H

f

e2fi ›BR

›4

BR

. (3.24)
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In this case the correlator contains an exponentially large factor (for typical values of
›BR ¥ 5, one has e2fi ›BR = O(1013)) that is however suppressed by a volume factor k3/k3

BR

equal to the inverse of the number of patches of size ≥ k≠1. Given that typically strong
backreaction kicks in only ¥ 10 efoldings before the end of inflation (see however [28], where
this occurs as early as ¥ 40 efoldings before the end of inflation), the suppression factor is
typically of the order of e≠150

¥ 10≠65 (!), making this correlator, also in this regime, tiny.

4 Discussion and conclusions

An important component of current and future gravitational wave research is the detection
and characterization of the stochastic gravitational wave background. This background may
originate from astrophysical sources or have a cosmological origin. Specifically, identifying
a cosmological gravitational wave background will provide important information about
the very early universe.

A powerful approach to distinguish between astrophysical and cosmological backgrounds
involves studying their anisotropies. Notably, it has been shown that these anisotropies are
correlated with the anisotropies in the CMB [36, 37]. The exploration of such correlations
can significantly contribute to the interpretation of the CMB and SGWB measurements.

In the present paper we have investigated the correlator between the curvature per-
turbation and the energy density of the gravitational waves, computed today, within the
axion inflation model. In this model, scalar fluctuations are generated through two distinct
mechanisms: first, from the vacuum via the standard amplification process, and second, as a
consequence of the production of gauge fields through a process of inverse decay. Consequently,
the correlator exhibits two distinct components.

Our analysis shows that the dominant contribution is provided by the correlator with
the amplified vacuum fluctuations of the inflaton, that we examined in section 3.1. Our main
result, eq. (3.11), shows that the normalized correlator between �GW and ’ could be as large
as O(10≠2). The formalism of [38–40] can then be applied to derive potentially observable
quantities. The actual observability of such correlators, subject to instrumental noise as well
as to the intrinsic variance of the isotropic component [41, 42], will depend on the amplitude
of the anisotropies in the gravitational wave spectra. Such an amplitude is encoded in the
correlator È�GW(x) �GW(y)Í, whose calculation, in the model of axion inflation, includes the
evaluation of the gauge field’s eight-point function — a calculation that we leave to future work
(see however [40] for work along this direction). Anisotropies might be large. For instance, the
lattice study of [43] showed that the spectrum of gravitational waves induced by preheating
at the end of inflation display anisotropies with an amplitude of the order of ≥ 10≠2.
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A Finding the dominant contribution to the integral in eq. (3.17)

In this appendix we discuss how to evaluate the integral in eq. (3.17)

I(k, ·) =
⁄

dp dq e2fi(›1+›2+›3) (A.1)

◊
A(q, k ≠ p ≠ q, p + q) q1/2

|k ≠ p ≠ q|
1/2

|p + q|
1/2

(Ôq +
Ô

k ≠ p ≠ q)7 (Ôq +
Ôp + q)7 (


|p + q| +


|k ≠ p ≠ q)7

,

where the quantities ›1, ›2 and ›3 are given in eq. (3.15).
As discussed in the main body of the paper, the integral I(k, ·) includes a factor

(containing inverse powers of p and q) that decreases as p and q increase, and a factor
Ã e2fi(›1+›2+›3) that is, on the other hand, an increasing function of those variables. To
estimate which contribution dominates the integral we model the function ›(·) as

›(·) =
I

›BR + ” log(·BR/·) , · < ·BR ,

›BR , · > ·BR ,
(A.2)

where ·BR < 0 corresponds to the time when the produced quanta of gauge field start to
backreact strongly on the inflating background. This rough modeling of the function ›(·)
has the sole purpose of indicating which range of values of p and q dominate the integral in
eq. (3.17). Given that in this parameterization › is constant for · > ·BR, the integral will
receive a subdominant contribution from momenta satisfying |p ·BR| & 1, |q ·BR| & 1, so we
will limit our integrations to p, q . 1/|·BR| © kBR. Moreover, since the strong backreaction
regime will kick in relatively late during inflation, when the scales that reenter during radiation
domination are leaving the horizon, we can set T̂ = constant in this regime, and thus ignore
the e�ects of the transfer function in this analysis.

We present here only an analysis of the contribution to I(k, ·) given by the range of
momenta where p & k. We have checked that the contribution from p . k has no significant
e�ect. To start with, we estimate the integral in dq which is composed by three di�erent
relevant momentum intervals

⁄
dq =

A⁄
k

0

+
⁄

p

k

+
⁄

kBR

p

B

dq q2

⁄
d�q , (A.3)

and we subsequently estimate the integrals in dp, using

⁄
dp =

⁄
kBR

k

dp p2

⁄
d�p . (A.4)

After performing the integrals in dq and on the solid angles d�p, d�q, we obtain

I(k, ·) ƒ

⁄
kBR

k

dp p2(A1 + A2 + A3) , (A.5)
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with

A1 ƒ .9 ◊
e6fi›BR

k6fi”

BR

p6fi”≠ 19
2 k7/2 ,

A2 ƒ .9 ◊
e6fi›BR

k6fi”

BR

p6fi”≠ 19
2 (p7/2

≠ k7/2) ≥
e6fi›BR

k6fi”

BR

p6fi”≠ 19
2 p7/2 ,

A3 ƒ
8 ◊ 10≠6

” ≠ 1/fi

e6fi›BR

k6fi”

BR

(≠p6fi”≠6 + kBR
6fi”≠6)

≥
8 ◊ 10≠6

|” ≠ 1/fi|

e6fi›BR

k6fi”

BR

◊

I
kBR

6fi”≠6 , if ” > 1/fi ,

p6fi”≠6 , if ” < 1/fi .
(A.6)

Finally, performing the integral on p we have I = I1 + I2 + I3, with

I1 ƒ
5 ◊ 10≠2

|” ≠ 13/(12fi)|
e6fi ›BR

k3
◊

I
(k/kBR)13/2 , if ” > 13/(12fi) ,

(k/kBR)6fi” , if ” < 13/(12fi) ,

I2 ƒ
5 ◊ 10≠2

|” ≠ 1/(2fi)|
e6fi ›BR

k3
◊

I
(k/kBR)3 , if ” > 1/(2fi),
(k/kBR)6fi ” , if ” < 1/(2fi) ,

I3 ƒ
3 ◊ 10≠6

|” ≠ 1/fi|

e6fi ›BR

k3
◊

Y
__]

__[

(k/kBR)3 , if ” > 1/fi,
0.2

|”≠1/(2fi)| (k/kBR)3 , if 1/(2fi) < ” < 1/fi,
0.2

|”≠1/(2fi)| (k/kBR)6fi ” , if ” < 1/(2fi) .

(A.7)

In particular, we find that for ” < 1

2fi
the correlator is proportional to the sixth power of

the amplitude of the gauge field when the scale k left the horizon, i.e. efi(›BR≠” log(kBR/k). On
the other hand, for ” > 1

2fi
, the result is proportional to the sixth power of the gauge field at

the beginning of the strong backreaction regime. From the definition (A.2) we deduce that the
integral is dominated by the value of › when scales k leave the horizon if ›BR ≠ ›k . Nk≠NBR

2fi
,

it is dominated by the scales that left the horizon at the beginning of the strong backreaction
regime. While this result is based on the parameterization (A.2), we expect it to be generally
valid as long as ›(·) monotonically increases during inflation.
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