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We demonstrate the existence and stability of one-dimensional (1D) topological kink configurations
immersed in higher-dimensional bosonic gases and nonlinear optical setups. Our analysis pertains, in
particular, to the two- and three-dimensional extended Gross-Pitaevskii models with quantum fluctuations
describing droplet-bearing environments but also to the two-dimensional cubic-quintic nonlinear
Schrödinger equation containing higher-order corrections to the nonlinear refractive index. Contrary to
the generic dark soliton transverse instability, the kink structures are generically robust under the interplay
of low-amplitude attractive and high-amplitude repulsive interactions. A quasi-1D effective potential
picture dictates the existence of these defects, while their stability is obtained numerically and analytically
through linearization analysis and direct dynamics in the presence of external fluctuations showcasing their
unprecedented resilience. These “generic” (across different models) findings should be detectable in
current cold atom and optics experiments, offering insights toward controlling topological excitations.
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Introduction—Kink solitons (alias domain walls) are
nonlinear excitations encountered in disparate disciplines
ranging from optical [1] and magnetic media [2,3], living
cellular structures [4–6], and folding protein chains [7,8] to
atomic gases [9,10] and cosmology [11]. Their topological
character has been recently unveiled in two-dimensional
(2D) van der Waals materials [12], opening up the
possibility of robust computations [13]. Stabilization of
multidimensional spatially localized states is a fundamental
challenge of scientific interest in physics and beyond [14].
It is well known that 1D topological (e.g., dark solitons)
and nontopological (bright solitons) defects suffer from the
so-called snake instability [15–18] and infrared catastrophe
[19], respectively, once embedded in 2D and three-dimen-
sional (3D) geometries. Mechanisms of suppression of the
ensuing instabilities of defects have also been discussed.
These mainly consider nonuniform media, i.e., incorporat-
ing external trapping geometries [20–22], or are accom-
panied by nonlocal interactions [23–25] or accounting for
fractional dispersion in the presence of competing non-
linearities [26].
Cold atoms are ideal quantum many-body simulators,

i.e., platforms featuring remarkable tunability of system
parameters, such as, e.g., interactions and external
traps [27,28]. In this context, ultradilute and incompressible
self-bound states of matter, referred to as quantum droplets
[29,30], were recently experimentally detected in Bose
mixtures [31–35] and dipolar gases [36,37]. Stabilization of
these states is achieved through the counterbalance of
attractive and repulsive interactions modeled by mean-field

nonlinear couplings and quantum fluctuations. The latter
are incorporated perturbatively through the famous
Lee-Huang-Yang (LHY) [38,39] correction whose sign
and form depend on dimensionality [40] leading to an
extended Gross-Pitaevskii equation (eGPE) [41,42]. These
environments sustain also different kinds of nonlinear
excitations such as dark solitons [43–45], bubbles
[10,43], kinks [9,10,46], and vortices [47,48].
From a complementary nonlinear optics-seeded perspec-

tive, the cubic-quintic (CQ) model is an extension
of the famous nonlinear Schrödinger model [49] constitut-
ing a universal mathematical toolbox involving higher-
order nonlinearities. In the optical setting, the CQ model is
utilized to study the propagation of electromagnetic waves
[50,51] in photorefractive materials. In this context, the
quintic term accounts for higher-order corrections to the
nonlinear refractive index [52], i.e., incorporating suscep-
tibilities up to fifth order. Experimentally, it is often also
relevant to include the nontrivial (dissipative) absorption
effects. The broad applicability of the CQ manifests by the
fact that it has been deployed to describe various phenom-
ena, for instance, liquid waveguides [50], special types
of glasses [53], and colloids containing metallic nano-
particles [54]. In atomic gases, the cubic (quintic) coupling
is related to the presence of two- (three-) body interactions
[55–57] (see also, e.g., [58]).
In this Letter, we explore the dynamical transverse

stability of kinks in a wide range of models from nonlinear
optics and atomic physics, such as the 2D and 3D eGPE
settings, as well as the 2D CQmodel. A key feature of these
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setups is the competition between attractive nonlinearities
(dominant at low density) and repulsive ones (prevailing at
high density) whose presence is crucial for the stability of
kinks. Specifically, the stability and robustness of these
entities is demonstrated in a threefold manner. First, we
analytically extract and numerically evaluate the relevant
for each model Bogoliubov–de Gennes (BdG) spectrum.
Second, an analytical argument supporting kink’s spectral
stability against transverse modulations is constructed.
Finally, we subject the relevant one-dimensional (1D) kink
solutions to external, spatially distributed fluctuations
(customarily present in experimental settings) and sub-
sequently monitor their remarkable persistence for evolu-
tion times of the order of seconds. This demonstrates the
relevance of these 1D topological defects in current state-
of-the-art cold atom and nonlinear optics experiments and
their structural robustness as potential information carriers.
The topological character of the structures is evident in that
no continuous, finite energy deformation can lead to their
disappearance and that, accordingly, they preserve a form
of topological charge invariant, given their distinct asymp-
totics at �∞; see, e.g., [59,60] for details.

Models and theoretical analysis—To highlight the uni-
versal features of the existence and stability of kink solutions
in higher spatial dimensions, three different nonlinear
models characterized by competing attractive (at low den-
sity) and repulsive (at high density) interactions are inves-
tigated. These correspond to the eGPEs describing, for
instance, self-bound quantum droplets in 2D [29,42] and 3D
[29,41] and the CQ equation. Experimentally, the droplet-
bearing systems can be emulated, e.g., by considering two
hyperfine states of 39K [32]. In optics, the CQ model is
typically used to monitor, for instance, optical beam profiles
of topological defects in liquid CS2 [51]. In dimensionless
form (see also Supplemental Material [61]), these equations
read

i∂tΨ ¼ −
1

2
ð∂2x þ ∂

2
yÞΨþ gjΨj2Ψ lnðjΨj2Þ; ð1aÞ

i∂tΨ ¼ −
1

2
ð∂2x þ ∂

2
yÞΨ − jΨj2Ψþ gCQjΨj4Ψ; ð1bÞ

i∂tΨ ¼ −
1

2
ð∂2x þ ∂

2
y þ ∂

2
zÞΨþ g1jΨj2Ψþ jΨj3Ψ: ð1cÞ

Here, Eqs. (1a) and (1c) refer to the 2D and 3D eGPEs, while
Eq. (1b) is the 2D CQ model with gCQ > 0. The right-hand
side always contains the Laplacian and a nonlinear term
where the latter can bewritten asFðΨ;Ψ⋆Þ, using ⋆ to denote
complex conjugation. In the 2D eGPE, the logarithmic
nonlinearity encompasses both mean-field and first-order
quantum fluctuation effects [29,42] of strength g > 0, while
its 3D counterpart features a cubic (respectively, quartic)
attractive with g1 < 0 (respectively, repulsive) mean-field
(LHY) contribution [41]; see also Supplemental Material

[61]. Furthermore, in the CQ model there is an attractive
(repulsive) cubic (quintic) nonlinear coupling commonly
accounting for two- (three-) body interactions in the realm
of cold gases [55,57] or higher-order corrections to the Kerr
effect in nonlinear optics [51,52].
To infer the existence of planar kinks (i.e., one-dimensional

ones embedded in higher dimensions), the following ansatz
is employed: Ψðx; r⊥; tÞ ¼ e−iμtuðxÞ. Here, μ denotes the
chemical potential and r⊥ ¼ y (r⊥ ¼ ðy; zÞ) are the trans-
verse coordinates in 2D (3D). A uniform background is
assumed along the transverse directions, and the uðxÞ wave-
form is taken to be real without loss of generality. Introducing
this ansatz intoEqs. (1a)–(1c) results in their reduced effective
1D time-independent standing wave analogs. These can be
cast into Newtonian equations of motion, d2uðxÞ=dx2 ¼
−dVðuÞ=du, subjected to the relevant for each model
effective potential VðuÞ. These turn out to be

V2DðuÞ ¼ μu2 − g
u4

2
ln

�
u2ffiffiffi
e

p
�
; ð2aÞ

V2DðuÞ ¼ μu2 þ u4

2
− gCQ

u6

3
; ð2bÞ

V3DðuÞ ¼ μu2 −
g1
2
u4 −

2

5
u5: ð2cÞ

Integration of the Newtonian equations of motion yields the
effective energy E of the 1D reduced system [44]. While the
resulting potentials feature multiple maxima, the frequency
parameter μ can be generically tuned to render these maxima
equienergetic, thus enabling a “genuine heteroclinic orbit,”
i.e., a kink, between u ¼ 0 and u ¼ u� with E ¼ 0.
To systematically determine the finite kink back-

grounds and chemical potentials, two conditions need to
be satisfied, Vðu�Þ ¼ 0 and dV=duju� ¼ 0, namely, con-
ditions for the maximum at u ¼ u� being equienergetic
with the one at u ¼ 0. The relevant solution for potentials

(a) (b)

FIG. 1. Existence of kink configurations. Effective potential for
the three nonlinear models: (a) 2D eGPE and CQ models with
g ¼ gCQ ¼ 1 as well as (b) the 3D eGPE setup with g1 ¼ −0.952
(g1 ¼ −1.629) for μ ¼ −0.1 (μ ¼ −0.5). The effective potentials
host the kink configuration, whose wave function is constrained
within 0 and u�. These states occur at specific chemical potentials
(see legends).
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with a competing set of interactions yields μ and u�
of the kink. The solution exists provided that the attractive
and repulsive potentials grow faster than the quadratic
power of the chemical potential term within V and that the
repulsive contribution dominates the attractive as u → ∞.
For the 2D eGPE (CQ) these values lead analytically to
μ ¼ −g=ð2 ffiffiffi

e
p Þ, u� ¼ e−1=4 [μ ¼ −3=ð16gCQÞ and u� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð4gCQÞ
p

] [Fig. 1(a)]. The u� boundary for the 2D eGPE
separates the parameter region of droplets from that of 2D
bubbles [29,42], analogous to what is the case also in 1D
[10]. For the 3D eGPE, the chemical potential and
extremum are μ ¼ 25g31=216 and u� ¼ −5g1=6, respec-
tively [Fig. 1(b)]. Notice that, while such kink-type states
have been discussed for CQ settings previously (see, e.g.,
[72]), they are unprecedented, to our knowledge, for the
emergent atomic theme of 2D and 3D quantum droplet
settings. Interestingly, the asymmetry of the effective
potential V3DðuÞ [Fig. 1(b)] suggests the concurrent exist-
ence of a heretofore unexplored quantum droplet (for
values of u < 0) whose analysis is deferred for future
studies.
Within the effective potential framework, unique kink

solutions exist for each coupling strength when competing
interactions exist, i.e., when gCQ > 0 and g1 < 0.
Otherwise, for gCQ ≤ 0 and g1 ≥ 0 kink configurations
do not exist as dictated by the effective potentials of
Eqs. (2b) and (2c), respectively; see also Supplemental
Material [61]. In what follows, without loss of generality g
and gCQ are set to unity in order to inspect the stability
properties of these topological defects. On the other hand,
the mean-field interaction g1 in the 3D eGPE is routinely
tunable in experiments via Feshbach resonances; see
Ref. [32] and Supplemental Material [61]. Stability of
the kink can also be ensured for other values of the
interaction coefficients in the 3D eGPE and 2D CQ models
as long as there is an active attractive-repulsive interplay;
see for details Supplemental Material [61].
Spectral stability of kinks in higher dimensions—

According to the aforementioned effective potential descrip-
tion, the 1D planar kink solution occurs for μ ¼ −1=ð2 ffiffiffi

e
p Þ,

μ ¼ −3=16, and, e.g., μ ¼ −0.115 where g1 ¼ −1, within
the 2D eGPE, 2D CQ, and 3D eGPE models, respectively.
The relevant effective 1D but also the higher-dimensional
stationary states are obtained upon utilizing hetero-
clinic (tanh-shaped) initial guesses, bearing the correct
asymptotics. In the CQ case, an analytical form exists,

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8
½1þ tanhð ffiffiffi

3
p

x=2
ffiffiffi
2

p Þ�
q

[72,73]. Naturally, such 1D

planar waveforms satisfy the corresponding 2D and 3D
time-independent version of Eqs. (1a)–(1c).
To extract the stability properties of these configurations,

small perturbations of the numerically exact (up to a
prescribed tolerance) kink solutions are considered having
the form Ψ ¼ ðΨ0 þ ϵae−iωt þ ϵb⋆eiω

⋆tÞe−iμt. a; b (ω)
refer to the eigenvectors (eigenfrequencies), while ϵ ≪ 1

is a small perturbation parameter. Utilizing this ansatz and
keeping terms of orderOðϵÞ leads to an eigenvalue problem
that, irrespective of the system under consideration
[Eqs. (1a)–(1c)], can be written as

�
L̂11 L̂12

L̂21 L̂22

��
a

b

�
¼ ω

�
a

b

�
: ð3Þ

The model-dependent diagonal matrix elements are L̂11¼
−1

2
∇2−μþΨ2

0þ2Ψ2
0 lnðΨ2

0Þ, L̂11¼−1
2
∇2−μ−2Ψ2

0þ3Ψ4
0,

and L̂11 ¼ − 1
2
∇2 − μþ 2g1Ψ2

0 þ 5
2
Ψ3

0, for the 2D eGPE,
CQ, and 3D eGPE models, respectively. Their relevant
off-diagonal counterparts read L̂12 ¼ Ψ2

0 þ Ψ2
0 lnðΨ2

0Þ,
L̂12 ¼ −Ψ2

0 þ 2Ψ4
0, and L̂12 ¼ g1Ψ2

0 þ 3
2
Ψ3

0, respectively.
In all cases, L̂11 ¼ −L̂22, L̂12 ¼ −L̂21, and ∇2 denotes the
N -dimensional Laplace operator. Additionally, Ψ0 desig-
nates the stationary, real kink state for each distinct model.
The stability analysis outcome for all three models is

depicted in Figs. 2(a)–2(c). In all scenarios, spectral
stability of the kink state can be inferred from the absence
of a finite imaginary part, ImðωÞ ∼ 10−12, in the pertinent
BdG spectrum. For all settings, the first hundred eigenval-
ues of the continuous quasi-1D BdG spectra are illustrated,
while we verified that their relevant higher-dimensional
analogs produce the same stability result. For the quasi-1D
BdG spectra, the transverse direction is decomposed into
Fourier modes with the “quantization” thereof from a finite
transverse computational domain accounted for. The sta-
bility of a plethora of effective 1D spectra for different
transverse wave numbers is confirmed.
Moreover, an analytical argument for the kinks stability

relies on an alternative BdG formulation, utilizing the
perturbation Ψðx; r⊥; tÞ ¼ ½ũðxÞ þ wðx; r⊥; tÞ�e−iμt, where

(a)

(b)

(c)

FIG. 2. Spectral stability of kinks. BdG analysis for the kink
waveforms within (a) the 2D eGPE, (b) 2D CQ, and (c) the 3D
eGPE models. The absence of a finite imaginary part, Im½ω� ≠ 0,
in the spectrum showcases the stability of the respective kink
states.
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w is a complex wave function (see also Supplemental
Material [61]). Here, stability is determined by the
spectral operators L�;0 ¼ − 1

2
∂
2
x − μþ ½∂Fðu; u⋆Þ=∂u�jũ �

½∂Fðu; u⋆Þ=∂u⋆�jũ at transverse wave number k⊥ ¼ 0,
where ũ is the relevant kink solution. Direct calculation
yields Lþ;0ð∂xũÞ ¼ 0 and since ∂xũ is nodeless, according
to the Sturm-Liouville theorem, it is the ground state
of Lþ;0 with eigenvalue λ ¼ 0. Similarly, L−;0ũ ¼ 0 leading
ũ to be an eigenfunction of the latter operator with
λ ¼ 0. This, together with the addition of k2⊥=2 for trans-
verse modulations ∝ eik⊥r⊥ implies that the spectra
of the operators L�;k⊥ ¼ L�;0 þ k2⊥=2 are non-negative.
Then, a straightforward spectral argument (provided in
Supplemental Material [61]) rigorously proves that there
are no exponentially growing transverse modulations of
finite k⊥, which can destabilize the kink, as further verified
by our simulations below.
Dynamical confirmation of the absence of transverse

instability for the kinks—To corroborate our BdG findings,
we next consider the dynamical evolution of the stationary
kink solution for each of the models under study.
Specifically, we aim not only to mimic unavoidable
experimental imperfections but also to exemplify the robust
nature of the kink structure in the presence of transverse
perturbations. To that effect, the kink initial state is
significantly perturbed via a random normal distribution
generator δðx; r⊥Þ. The ensuing wave function acquires the
form ψðx; r⊥; t ¼ 0Þ ¼ Ψ0½1þ εδðx; r⊥Þ�. In this context,
δðx; r⊥Þ is characterized by zero mean and unit variance,
while ε ¼ εR þ iεI such that also phase disturbances are
encountered. This implies that both the core and the
background of the kink are perturbed with the latter

accounting for chemical potential (particle number) fluc-
tuations unavoidable in experiments. The same holds upon
considering perturbations in the interaction coefficients
(not shown for brevity). In particular, the considered
amplitudes of the perturbation range lie in the interval
½10%; 50%� of the solution amplitude. Typical evolution
times (in the dimensionless units adopted herein) are of the
order of ∼500 and ∼103 for the 3D and 2D settings,
respectively, confirming the longevity of these planar 1D
defects upon their exposure to transverse excitations.
Evidently, despite the significantly excited nature of the

initial state, the kink remains intact preserving its shape
throughout the evolution, while “shedding” some of the
relevant “radiation” in the form of dispersive wave packets,
as can be seen in Figs. 3(a)–3(c). Particularly here, distinct
plates correspond to density, jΨðx; y; tÞj2, contours in the
x − y plane taken at different times during the propagation
of the perturbed kink configuration. For the 3D dynamics,
the z direction is integrated out, while we note that the
robustness of the kink configurations has also been verified
for different values of the chemical potential and hence
distinct interaction strengths.
Experimental implications—For droplet-bearing set-

tings, two hyperfine levels, e.g., jF ¼ 1; mF ¼ 0i and
jF ¼ 1; mF ¼ −1i of ultracold 39K in the vicinity of the
59 G intraspecies Feshbach resonance [62,74] feature
competing intra- and interspecies interactions [32,33].
They are experimentally populated using radio frequency
spectroscopy [33] and their dynamics can be adequately
described by the eGPE models [Eqs. (1a) and (1c)]
in 2D and 3D. For the 3D setup with averaged mean-field
scattering length δa ¼ −0.24a0, propagation times

(a) (b) (c)

FIG. 3. Resilience of kink states. Density snapshots depicting the evolution of perturbed kink solutions within the (a) 2D eGPE,
(b) CQ, and (c) 3D eGPE models with μ ¼ −0.1. It can be readily seen that, in all cases, the kink is robust throughout the evolution with
its core remaining intact and the waveform maintaining its shape despite being significantly distorted due to external spatial and phase
fluctuations. The box sizes used for the simulations correspond to Lx ¼ Ly ¼ 400 and Lz ¼ 6.
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of the kink (∼500 in dimensionless units) refer approx-
imately to 800 m s [61]. The corresponding 2D pancake
geometry features a tight harmonic trap along one spatial
dimension [75] and, e.g., for ωz ¼ 2π × 2 kHz [33,63] and
δa ¼ −1.5a0 (see Supplemental Material [61]), the relevant
timescale (∼1000 in dimensionless units) for the kink
evolution is 2 sec. These long evolution times guarantee
the resilience of the kink in current state-of-the-art
experiments incurring additionally three-body recombina-
tion [32].
On the other hand, the 2D CQ equation is used to

describe, for instance, propagation of electromagnetic
waves in optical media incorporating higher-order non-
linear refractive indices [76]. Characteristic materials fea-
turing such properties are chalcogenide glasses [53], such
as liquid CS2 [50,51]. In these setups (where optical
vortices and their destabilization has been monitored [77]),
the time evolution is probed by measuring the transmission
of the kink along the axial direction of the nonlinear
medium. Considering a light beam of 900 nm [50], a
propagation distance of 103 corresponds to 0.14 mm axial
depth for the kink transmission. Finally, in either cold
bosonic mixtures or nonlinear optical media, kink defects
can be imprinted in the bulk by means of the well-
established technique of density engineering [18,64,65,78]
or by utilizing digital micromirror device patterned optical
traps [63,79–81]. In the Supplemental Material [61], we
demonstrate the kink dynamical formation through density
engineering and its potential robustness under different trap
settings.
Conclusions and future challenges—The existence and

corresponding spectral and dynamical stability of 1D kink
solutions embedded in higher-dimensional gases or non-
linear optical media featuring competing attractive lower-
order and repulsive higher-order interactions is unveiled. To
establish the breadth and generality of results, this is
exemplarily demonstrated for three representative models,
the 2D and 3D eGPE droplet-bearing systems and the 2D
CQ setting relevant in nonlinear optics. We explicated the
existence of these 1D topological defects upon analytically
extracting, in each case, a quasi-1D effective potential
picture, subsequently supplemented by their spectral sta-
bility inferred through linearization analysis, both numeri-
cally and analytically. Additionally, monitoring their
dynamical evolution in the presence of external fluctuations
revealed their profound robustness and resilience, for times
up to few seconds.
These results suggest the use of kink defects as prom-

ising candidates for topological quantum computing.
Indeed, contrary to the generically transversely unstable
dark soliton states [17], kinks appear to defy the proneness
to transverse modulations. Importantly, also, these results
pave the way for further physical and mathematical studies.
Our effective potential analysis suggests the existence of
further lower-dimensional nonlinear excitations (including

droplets, bubbles, etc.), whose transverse dynamics and
potential dynamical features may be of further theoretical
and experimental interest in their own right.
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