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Abstract: In the present work, we explored the dynamics of single kinks, kink–anti-kink
pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-
Gordon equation. In particular, we modified the order β of the temporal derivative to that of
a Caputo fractional type and found that, for 1 < β < 2, this imposes a dissipative dynamical
behavior on the coherent structures. We also examined the variation of a fractional Riesz
order α on the spatial derivative. Here, depending on whether this order was below or
above the harmonic value α = 2, we found, respectively, monotonically attracting kinks,
or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium
separating the two. Finally, we also explored the interplay of the two derivatives, when
both Caputo temporal and Riesz spatial derivatives are involved.

Keywords: sine-Gordon equation; kinks; breathers; fractional derivatives; Caputo derivative;
Riesz derivative

MSC: 35Q51; 35R11

1. Introduction

The study of physical, chemical and biological applications of fractional calculus has
been a theme of growing interest over the past few years. Relevant applications extend
from optical media [1,2] to epidemiological models [3], and from biological systems [4]
to economics [5]. By now, a diverse and broad range of corresponding models has been
summarized in books and associated reviews. Some of them are more topical, such as,
e.g., [6], focusing on fractional models of dispersive waves, while others are of more general
interest, see, e.g., [7,8].

The field of wave dynamics has been a fertile platform for the investigation of such
ideas, as has been demonstrated by the introduction of the fractional Schrödinger equation
in optics through the work of [2]. Experimental realizations of related ideas, in the linear
regime, have also appeared in the literature, see, e.g., [1]. A wide palette of analytical and
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numerical results, linear, as well as nonlinear, continuum, and also (long-range) discrete,
were recently reported in [6]. Indeed, such wave phenomena hold considerable promise
for further experimental realizations, including the nonlinear regime, given the extensive
efforts of many scientists to engineer and control dispersion, which has been spearheaded in
recent years by the works of [9,10] (see also [11,12]). Very recently, the first nonlinear waves
experiment—to the best of our knowledge—in a spatially fractional dispersive setting was
reported in the work of [13]. Such an experiment in the realm of nonlinear optics paves
the way for future tailoring of dispersive properties in optics, as well as in other fields
and renders, which is especially timely with the consideration of prototypical nonlinear,
fractional dispersive partial differential equation models, such as fractional variants of
the Korteweg-De Vries equation, the nonlinear Schrödinger equation and the sine-Gordon
equation, among others [6].

With that spirit and motivation in mind, in the present work, we build on recent studies
of spatially fractional models of the ϕ4 type in [14] by examining the famous sine-Gordon
equation [15] with fractional derivatives in both space and time. While the relevant integer
derivative models first appeared in the context of constant negative curvature surfaces [16],
the sine-Gordon equation has also often emerged in numerous other subfields of solid state
physics, biophysics and beyond. For instance, in its discrete form, it is a widespread model
of the dynamics of crystal dislocations [17], while it has also been thoroughly examined in
the context of Josephson junction arrays [18] and the dynamics of DNA models, among
other areas [19].

More precisely, we consider herein, the modification of the prototypical sine-Gordon
model under the effect of spatial Riesz derivatives, which is motivated in part by the
possibility to engineer dispersion [9,10,13], as well as the introduction of temporal Ca-
puto derivatives. The latter is also motivated by the earlier work of two of the present
authors [20], where suitable discretizations for such models were first introduced.

After setting up the general framework of our model in Section 2, we proceed to
examine three distinct scenarios: In Section 3, we vary the order of the temporal (Caputo)
derivative, while preserving the sine-Gordon (sG) right hand side. Here, we see, for in-
stance, how kinks slow down in the presence of the Caputo temporal fractional derivatives
and appear to exhibit a dissipative effective motion. In Section 4, we return to the temporal
second derivative and allow the spatial derivative order to change in the evaluation of
the Riesz derivative. An important finding in this setting is the disparity between the
case of Riesz exponents above the value for the harmonic case (where there is a stationary
kink–antikink bound state with non-monotonic tails) and the exponent below the harmonic,
leading to a power law decay, which is, however, always monotonic in this limit. Then,
in Section 5, we combine these variations. In each case, we consider first the dynamics
of the single kink (the prototypical coherent structure) before exploring multi-kink or
bound states thereof in the form of kink–anti-kink or breather initial conditions. In this
setting, the above features, when combined, give rise to intriguing kink–anti-kink and
breather dynamics, including, e.g., kink–anti-kink annihilation or separation and breathers
that produce a kink–anti-kink pair that may or may not decay at long evolution times.
Finally, in Section 6, we summarize our findings and discuss some directions for possible
future studies.

2. Model Setup

The general problem we study here concerns different types of solutions of the frac-
tional sine-Gordon equation:

∂βu

∂tβ
=

∂αu

∂xα
− sin(u). (1)
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For the integrable case α = β = 2, the solutions of Equation (1) are well known [15].
To appreciate the effect of fractional derivatives, we consider the following cases of interest:

1. A Caputo derivative of order β ̸= 2 in time but a second derivative in space.
2. A Riesz derivative of order α ̸= 2 in space but a second derivative in time.
3. The general case, where a a Caputo derivative of order β ̸= 2 in time is combined

with a Riesz derivative of order α ̸= 2 in space.

Our aim in all cases was to explore the dynamics of the single kink, as well as the kink–
anti-kink pair (and related structures of particular relevance to the sine-Gordon continuum
model [21]) in the presence of fractional derivatives. Our motivation here is analogous to
the recent development of [13] within nonlinear optics. If, in any of the diverse settings
mentioned in the Introduction (see, e.g., an over-arching summary of the book of [15]),
the possibility to experimentally manipulate/engineer dispersion similarly arises, then
Equation (1) emerges as the canonical fractional derivative extension thereof.

We consider Caputo derivatives, instead of, e.g., those of Riemann–Liouville type,
as, in the former case, the initial conditions are immediately retrieved from the integer
derivative case, see, e.g., [7,8] for relevant details. Indeed, one can then specify u(0, x) and
∂tu(0, x), as is, in general, natural for initial value problems such as the ones specified
herein. The algorithm used for numerical integration is fde_pi12_pc, which can be found
in [22].

3. Caputo Derivative in Time and Laplacian in Space

We start with Case 1 above: preserving the spatial Laplacian and only modifying the
time derivative in the form of a variable Caputo exponent.

3.1. Kink Dynamics

First, we examine the most prototypical waveform solution of the model, namely the
single kink. We consider, as our Riesz exponent, α = 2 and values of the Caputo exponent
β < 2. We also comment on the case with β > 2 later on. As the initial condition for
Equation (1), we consider

((u(x, 0), u̇(x, 0)) = (u0, u̇0) = (4 arctan eγ0x,−2γ0v0 sech(γ0x)), (2)

where the overdot stands for the partial derivative in time and

γ0 =
1

√

1 − v2
0

(3)

represents the Lorentz contraction factor [15].
For β = 2, the kink propagates at a constant speed v = v0, which we fix to 0.2, as ex-

pected from the corresponding exact solution. However, when fractionality is introduced
in the equation, and we consider derivative orders β < 2, the kink velocity decays in time.
This is shown in Figure 1, where spatio-temporal plots of u(x, t) for β = 2 and β = 1.9
are compared. In addition, the left panel of Figure 2 depicts the kink velocity evolution
as a function of time. Here, we can clearly observe the dissipative effect of the Caputo
derivative. The kink naturally slows down and the velocity eventually tends to zero. In-
deed, similar features were first reported for breathers in the time-fractional sine-Gordon
equation [20,23], where the oscillations were first shown to be damped for values of β < 2.
It is this parameter setting that we also explore herein.

Remarkably, the velocity of the kink decays exponentially over time after an initial
short (transient) interval. This is clearly seen in the left panel of Figure 2, where the
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exponential fit is depicted as a black dashed line for β = 1.5, in excellent agreement with
the PDE results. We define, by τ, the characteristic time at which the velocity halves, and we
marked it in the figure with an horizontal gray dashed line. In the right panel of Figure 2,
we plotted the variation of the inverse of characteristic time with respect to the order of the
Caputo derivative. As β approaches the value 2, τ tends to infinity and the inverse tends to
zero, as one would expect, based on the absence of dissipation in that limit. In the same
panel, we included a logarithmic fit of the following form: 1/τ = a · log(b · |β − 2|+ 1),
with a = 0.0581, b = 2.6410 and r = 0.9998.

Figure 1. Time evolution of the kink with initial velocity v0 = 0.2 for the ordinary Laplacian (α = 2).
Panels show u(x, t) and compare the Hamiltonian constant–velocity dynamics of β = 2 (left) and the
decelerating dynamics of the Caputo-fractional case of β = 1.9 (right). Notice how the former panel
showcases a traveling kink, while, for the latter, the kink trajectory starts “bending”, reflecting the
kinks’ temporal slowdown.

Figure 2. Left panel: Kink velocity decay with the order of the Caputo derivative. For β = 2, the kink
propagated at a constant velocity. The fractionality acts as form of damping, exponentially decreasing
the velocity. For β = 1.5, the exponential fit is represented by a dashed black line. We defined
τ as the time for which the velocity halves (v = 0.1, also marked here in gray) for each β value.
Right panel: Inverse of the characteristic time with respect to the order of the Caputo derivative.
As β approached 2, the characteristic time tended to infinity (i.e., 1/τ tends to zero) since the kink
motion was undamped in that limit. The dotted black line depicts the numerical results and the red
solid line is a logarithmic fit.

It is interesting to complement the above results with the case of a kink that is sta-
tionary, in part because this is the ultimate fate of the structure in the model bearing a
Caputo derivative, but also to compare/contrast the relevant phenomenology with that
of the standard (conservative) sine-Gordon case. Thus, when initializing Equation (1)
for vanishing velocity v0 = 0, one observes the left panel of Figure 3 for β = 2 and the
right panel for β = 1.9. In the left panel, we show, in logarithmic scale, the pulse-like
derivative of the kink, and we observe that the approximation induced numerically by the
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local truncation error leads to the propagation of radiation wakes that move toward the
boundary and eventually is reflected from it, returning to the kink and impinging upon
it. The orange dominant color in these radiation waves reflects this discretization-induced
error for our spatial discretization of spacing of O(10−1). Importantly, the radiation is never
“washed away” given the Hamiltonian nature of the model. It is relevant to note here that,
in this stationary case, had we presented the 3D profile of u = u(x, t), the left and right
panels would be indiscernible as the 0 − 2π scale of such panels would not permit one to
distinguish their much smaller scale differences.

On the contrary, the right panel of the figure shows quite a different picture for the
case of a Caputo derivative with β = 1.9. What we see is that the color associated with
the radiation wakes drastically changes from orange to yellow and gradually to green and
blue, reflecting the dissipative nature of the corresponding derivative and essentially the
“annihilation” of the relevant wakes, or, as otherwise stated, the “distilling” of the kink into
the appropriate stationary state of the model. That is to say, these computations, both at the
dynamical level of the slowing down moving kink, but also at the stationary level of the
static kink, reflect the dissipative nature of the effect of the Caputo temporal derivative.

Figure 3. Time evolution of the pulse-like derivative of a stationary kink with weak (numerical
scheme-induced) radiation on top of an exact stationary kink solution, which is when fixed ends
boundary conditions and ordinary Laplacian (α = 2) are considered. Panels show log10 |∂xu(x, t)|
and distinguish between the radiation-reflecting case of β = 2 (left) and the “radiation-removing”
case of β = 1.9 (right). Thus, radiation is “distilled” (eliminated) in the Caputo-fractional case of
β = 1.9, while it hits the boundary and returns in the Hamiltonian (β = 2) case.

3.2. Kink–Anti-Kink Dynamics

Let us now consider the dynamics of head-on collisions of kink–anti-kink pairs in the
Caputo time derivative case with β < 2. To this end, we assume an initial condition of
the form

(u0, u̇0) = (4[arctan eγ0(x+δ) − arctan eγ0(x−δ)],−2γ0v0[sech(γ0(x + δ)) + sech(γ0(x − δ))]. (4)

If β is slightly smaller than 2, we observe that, if v0 is above a certain threshold,
the dynamics are similar to the β = 2 case, namely the collision is quasi-elastic, is followed
by an inversion of the kink–anti-kink roles and a subsequent deceleration of the kink–anti-
kink is similar to that previously observed for the individual kink. Below this threshold
velocity v0, the kink–anti-kink pair collapses to a breather-like structure that decays in time
in a form similar to what was observed in [23]. For a value of β = 1.95, the threshold v0 is
approximately 0.590.

Figure 4 shows, for β = 1.95, representative examples of these behaviors. More
specifically, these simulations suggest that the damped kink–anti-kink interaction dynamics
is still subject (as in the standard sG model) to an attractive interaction potential well with
finite depth [24].
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Contrary to the standard integrable sG case, however, where the dynamics inside
this well is conservative, here the dynamics is dissipative, as shown clearly on the left
panel of Figure 4. Thus, in order to escape, the kinks need to overcome both each other’s
attraction and the reduction in their speed due to dissipation. Understanding the energetics
and precise dynamics of the corresponding waveforms as a function of β is certainly an
intriguing question that needs further exploration.

When β decreases, the critical v0 increases and, if β is far enough from 2, this critical
value is very close to 1, and the kinks progressively widen before they interact at the same
time. It is worth mentioning that the critical v0 also depends on the initial separation 2δ, so
that v0 increases when δ increases. This is clearly due to the individual dissipative effect of
the Caputo derivative on each kink prior to their interaction.

Figure 4. The evolution of a kink–anti-kink pair is initially separated by a distance 2δ = 20, and it
is launched with an initial velocity v0, for β = 1.95 and α = 2. The left panel shows the generation
of a subsequently vanishing breather when v0 = 0.55, whereas the right panel corresponds to a
quasi-elastic collision occurring when v0 = 0.6. The critical value separating the two regimes is
v0 ≈ 0.590.

4. Riesz Derivative in Space and Conservative (β = 2) Dynamics in Time

Having explored the case of varying the order of the time derivative, we now turn
to the examination of what happens when the order of the space derivative is varied.
In particular, we examine the spatial Riesz derivative order α and the impact of its variation,
while we keep the temporal derivative at β = 2.

4.1. Kink Dynamics

Once again, our first consideration involved the single kink dynamics. Here, we
performed a study reminiscent of the recent ϕ4 model exploration carried out in [14]. In
particular, we point out that a single kink has a monotonic spatial profile for α < 2, as shown
on the left panel of Figure 5, while this changes to a non-monotonic state involving a single
crossing of the uniform steady states (of u = 0 and u = 2π) on each side when α > 2.
This non-monotonicity will be seen below to be connected to the existence of a potential
kink–anti-kink (or K-AK) equilibrium in this model. The inset of the figure more clearly
highlights the relevant spatial behavior.

On the other hand, in this setting, we not only explored the existence problem, identi-
fying the relevant stationary kink, but we also examined the corresponding linearization
problem associated with spectral stability. The relevant eigenvalue problem is based on the
ansatz u(x, t) = u0(x) + ϵeλtw(x), where u0(x) is the spatially stationary configuration (in
the context of this subsection the single kink) and leads to the following form:

λ2w =
∂αw

∂xα
− cos(u0)w. (5)
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The results of the spectral analysis are shown on the right panel of Figure 5. Here,
we see that the mode (in red) sitting at the band edge in the form of a resonance for the
standard integrable sine-Gordon case bifurcates from there for α > 2 and, indeed, becomes
an internal breathing mode of the kink coherent structure. Such internal modes have been
of considerable interest in the context of models such as the perturbed sG equation [25].
On the other hand, for the case of α < 2, the kink follows an opposite trajectory moving
inside of the continuous spectrum. In either case here, this does not affect the spectral
stability of the kink, but may affect the outcome of kink collisional interactions, as is well
known to occur in the presence of relevant internal modes [26]. Such a topic is outside the
scope of the present work and may be of interest in a future study.

Figure 5. Single-kink Riesz derivative of a fractional order α in space, with β = 2 in time. The left

panel shows the stationary kink for four different values of the spatial derivative order α, namely
α = 2.5, α = 2.25 α = 2 and α = 1.75. Observe the non-monotonic nature of the kink for α > 2,
while the structure becomes monotonic for α ≤ 2. The right panel shows the (squares of the) lowest
non-zero eigenvalues of the kink spectrum as a function of α. The eigenvalue positioned at the band
edge λ = ±i in the integrable case of α = 2, shown here in red, moves inside the continuous spectrum
for α < 2, while it becomes an “internal mode” of the kink for α > 2. The kink is spectrally stable for
all considered values of α.

4.2. Kink–Anti-Kink and Breather Dynamics

The examination of K-AK pairs in the setting of the Riesz spatial derivative is quite
interesting in its own right, as manifested in Figure 6. Here, we can see that, for all values of
α > 2, a K-AK bound state pair exists. Indeed, this pair bifurcates from ∞ as the separation
between K and AK diverges for α → 2+. Such an equilibrium is closely intertwined with
the non-monotonic nature of the tail and the existence of the zero crossing within such a
tail. It has been well known for some time [27] that the nature of the solitary wave tail is
responsible for the force between the solitary waves, as the latter is mediated through the
tails. Accordingly, our observation in the previous subsection about the existence of a zero
crossing of the kink tail leads to the emergence of a zero-crossing of the force between a
kink and an anti-kink. This, in turn, is responsible for the emergence of a K-AK bound
state, as illustrated for different values of the Riesz exponent α in Figure 6.

When analyzing the stability of this configuration, as shown in the right panel of
Figure 6, we find that the relevant state is generically unstable. The corresponding unstable
eigenmode has an eigenvalue which tends to 0 as the K-AK separation tends to ∞, restoring
the stability of isolated kinks in the limit of α → 2+. At the same time, exploring the
eigenvector associated with the instability, we see that it is related to the K-AK out-of-phase
motion. At the same time, the very fact that this is an unstable fixed point of the PDE
strongly suggests that this K-AK stationary configuration represents an energetic maximum
(i.e., a saddle point) in this Hamiltonian system.
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In turn, this has implications for the dynamics shown in Figure 7. Here, kinks with
separation lower than a critical value are expected to collapse into each other due to
their pairwise attraction. On the other hand, kinks with separations larger than this
value are expected to separate indefinitely due to their repulsion (with the force changing
from attractive to repulsive at this critical point). We selected two configurations (for a
fixed amplitude coincident with the amplitude of the equilibrium K-AK state) that were
parametrized by the inverse width of the configuration. The red dashed line represents
a configuration where K and AK have a separation larger that the (equilibrium) critical
one, while the black dash-dotted line pertains to a smaller separation. Indeed, the latter
are shown at the bottom of the left panel to be indefinitely bound to each other, while
the former configuration with the structures, being past the energy landscape’s saddle
point, can be seen to lead to indefinite separation of the kinks, which is in line with our
theoretical expectation.

Lastly, in the context of the Riesz derivative variation, we explored the dynamics of
breather configurations (as a variant of the K-AK structure). One of the consequences that
can be derived from the bottom left panel of Figure 7 is that, indeed, breathers exist for
the model with β = 2 and α ̸= 2. Although some numerical experiments were performed
in [28], they were not directly computed as periodic orbits. Here, we performed such a
computation using Fourier-space techniques similar to those developed in [29].

In particular, we show, in Figure 8, the profile of breathers in two cases, one with
α < 2 and another with α > 2, for the frequency ω = 0.8. In this setting, the second
and subsequent harmonics of the frequency lie within the continuous spectrum. As can
be deduced from the figure (and the insets, featuring the breather tails, as well as their
stability), there were no qualitative differences between the two cases. In addition, they
featured small wings, as expected because of the breaking of the integrability of the sine-
Gordon equation and the resonance of the breather’s n-th harmonic frequency with the
continuous spectrum when the Laplacian is fractional.

Figure 6. Left panel: kink–anti-kink stationary configuration for a Riesz derivative of a fractional
order α in space. The kinks are pinned symmetrically about x = 0 and separated by a distance that
depends on α. Indeed, a bound state exists ∀α > 2. Three different values of α were considered,
namely α = 2.5, α = 2.25 and α = 2.01. It can be seen that the distance between the kink and the anti-
kink of the bound state diverges as the fractional order α approaches the limit α → 2+. Right panel:
The eigenvalue pertaining to this kink–anti-kink bound state. We can see that this state is spectrally
unstable ∀α > 2, and, with the relevant eigenvalue becoming larger, the larger the deviation of α is
from its threshold at α = 2.

As a consequence, the breather is actually a so-called nanopteron, as typically occurs
in continuous models with finite domains [15]. Because of the resonances with the linear
modes, such models are connected with complex bifurcation diagrams (see [30] for a
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relevant example). As a consequence, in the examples shown in Figure 8, we have selected
a couple of cases where the breather appeared to be stable in the finite domain computation
provided herein. It is relevant to mention that, in order to assess the spectral stability of the
breather, standard Floquet multiplier methods were employed based on the eigenvalues of
the monodromy matrix, as discussed in, e.g., [31].

Figure 7. Dynamics of the kink–anti-kink bound state for a fractional order α = 2.5 (typical of
α > 2). In the top panel, the blue solid curve represents the equilibrium configuration for α = 2.5.
The red dashed line corresponds to the initial condition u(x, 0) = A sech(0.4x) (with A ≈ 5.3719
being the maximum amplitude of the K-AK bound state), reflecting a “wider” configuration, while
the black dash-dotted line corresponds to the initial condition u(x, 0) = A sech(0.8x), pertaining
to a “narrower” initial condition. The latter can be seen in the bottom left panel to lead the kink
and the anti-kink attracting each other and colliding indefinitely forming a breathing state (while
emitting radiation). The widening K-AK initial state, on the other hand, lying “outside” of the energy
maximum, yields a space–time evolution associated with an indefinite separation of the kink and the
anti-kink (see bottom right panel).

Figure 8. Breathers with β = 2 and α = 1.85 (left) and β = 2.15 (right). Their frequency is ω = 0.8
and their domain is [−50, 50]. The right inserts in each figure show a zoom on the breather wings,
while the left inserts present the Floquet multipliers spectrum.
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5. A Caputo Derivative of Order β ̸= 2 and a Riesz Derivative of
Order α ̸= 2

Before discussing our results regarding the dynamics of kinks in this case, it is relevant
to remark that, as demonstrated in the Appendix A, the stability spectrum of stationary
kinks for any value of β is exactly the same as for β = 2. The relevant findings indeed apply
to the results of Section 3, yet we mention this feature here as it is also true for all values
of α. This suggests the intriguing feature that, for β < 2, while the kink has a spectrum
lying on the imaginary axis (i.e., with λ2 < 0), the corresponding temporal eigenfunction is
responsible for its decay.

5.1. Kink Dynamics

Similarly to the case of α = 2, we considered here the dynamics of kinks with an initial
velocity v0 when β < 2 is varied. To this aim, we took, as an initial condition, a perturbed
static kink ukink(x) of the following form:

(u0, u̇0) = (ukink(x), v0∂xukink(x)). (6)

This choice of initial conditions was motivated by the difficulty of applying a Lorentz
boost to the numerical function ukink(x) (for values of β ̸= 2).

As can be seen in Figure 9, the dynamics of the kink was almost independent of the
value of α and was predominantly dictated by the decay imposed by the presence of the
Caputo derivative. Notice, for example, the decay for β = 1.7, for which we present here
for the cases of α = 1.7 (solid green line) and α = 2.5 (dotted green line). The curves are
nearly identical. Consequently, the dynamics for α ̸= 2 was quite similar as for α = 2.
The only remarkable difference is the existence of oscillations in the velocity for β = 2,
which is somewhat artificial and is caused by the fact that Equation (6) is not consonant
with the Lorentz boost, which can be applied (cf. Equations (2) and (3)) in the latter case,
giving rise to a traveling solution.

Figure 9. Kink velocity decay with time for different values of the order of the Caputo derivative for
α = 1.7. We have also included a dotted line for the case β = 1.7 with a different value of α, which
is α = 2.5 here for comparison. It can be seen that the value of α barely affects the velocity decay.
The initial velocity in all cases was v0 = 2.

5.2. Kink–Anti-Kink Dynamics

In this section, we consider the Riesz derivative and Caputo derivative combined to
further study the K-AK pair. First of all, we performed a study similar to the case with
α = 2, monitoring the dynamics of collisions between kinks and anti-kinks, which were
separated at a distance of 2δ. To this end, we took an initial condition of the form

(u0, u̇0) = (ukink(x + δ) + (2π − ukink(x − δ)), v0[∂xukink(x + δ)) + ∂xukink(x − δ))]), (7)
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with ukink(x) being the stationary kink solution for such a value of α. The observed
evolution is qualitatively similar to that of Figure 4; for that reason, no additional figures
were included. It must be noticed that, as expected, the critical initial velocity depends on
both α and β so that, for a fixed β, the critical v0 increases when α decreases.

An additional dynamical scenario that we considered involves the evolution of the
K-AK pairs in a similar fashion to what was captured in Figure 7, i.e., two localized con-
figurations were considered, one narrower and another one wider than the stationary
(and unstable) K-AK pair, initializing the system with a symmetric and stationary such
pair. As can be seen in Figure 10, where the same initial condition was taken, for β < 2,
the dynamics were similar to the β = 2 case, including a dissipative evolution due to the
role of the Caputo time-derivative. That is, the generated breather for narrow initial condi-
tions had a vanishing amplitude, whereas the wide initial condition led to an increasing
separation (but decelerated in time) for the K-AK pair.

Figure 10. Dynamics of the kink–anti-kink bound state for a fractional order α = 2.5 and β < 2 in a
similar fashion to Figure 7. The left panel shows the outcome for β = 1.99 and an initial condition
u(x, 0) = A sech(0.8x) (with A ≈ 5.3719), resulting in a breather whose oscillation decays over time.
The right panel corresponds to β = 1.9 and a “wider” initial condition u(x, 0) = A sech(0.4x), leading
to a kink and anti-kink whose separation increases in time but in a decelerated fashion.

Finally, we included, as shown in this section, the dynamics of breathers. This aspect
involves revisiting, for longer time evolutions, the results of [20] in order to determine
the asymptotic fate of such configurations. To that purpose, we considered the initial
conditions even in time, namely u(x, 0) = ϕbr(x, 0)

ϕ(x, 0) = 4 arctan

( √
1 − ω2

ω cosh(
√

1 − ω2x)

)

, (8)

and u̇(x, 0) = 0. For the values of β < 2, the oscillations of the breather decayed with
time. For u(0, t), we fit the maxima and minima to an exponential of the type ae−bt, and we
considered the characteristic decay time denoted by τ = 1/b.

As shown in Figure 11, we plotted τ for different values of the Riesz derivative order,
fixing the Caputo derivative order to β = 1.99 and β = 1.9. The Caputo derivative causes
the breather oscillations to decay, as we have previously commented. In this scenario,
the Riesz derivative modifies the duration of the transient oscillations, with the oscillations
decaying more slowly for higher values of α (for a given β). Notice the difference in the
scale of the vertical axis caused by the difference in the values of the Caputo derivative
order. The effect of the Riesz derivative was more dramatic for values of β closer to 2. Also,
as is transparent already from earlier sections, for a given α, the decay time was higher the
closer β was to 2. For values of β much smaller than the ones considered here, oscillations
were more rapidly damped and τ was less straightforward to estimate.
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Finally, it is interesting to consider here a connection with the earlier work of [20],
where a different realization of the breather solution was brought to bear. In particular,
in that case, an odd in time initial condition u(x, 0) = 0 and

u̇(x, 0) = 4
√

1 − ω2 · sech (x
√

1 − ω2) (9)

was considered. Remarkably, what was found there was that the system settles in a new
transient state, i.e., the end result of the simulation was fundamentally different than the
previous decaying state and led to the formation of a K-AK pair. Indeed, in some cases,
the latter state appeared in the simulations of [20] as permanent; however, this was the case
due to the time horizon of the simulations considered. As shown in Figure 12, to better
understand this transient state, we show u(x, t) when the initial condition u(x, 0) = 0
was considered. Notice that this transient occurs for a small enough value of the breather
frequency ω.

Figure 11. Plots of the characteristic decay time τ for β = 1.99 (left panel) and β = 1.9 (right panel),
and different values of the Riesz derivative order α. Here, we consider ω = 0.5.

Figure 12. Evolution of u(x, t) for β = 1.4, α = 1.8 and u0 = 0.

Let us study now, in more detail, this transient bound state. To this end, we consider
variations of β and study its time duration, which we name T, to avoid confusion with τ,
which was considered previously for the damping of the kink velocity. For values of β very
close to 2, the behavior of the system is very similar to the non-fractional case. However,
for smaller values of β, like β = 1.4, this transient state is observed for a wide range of
values of α. As shown in Figure 13, we show how the duration of the transient bound state
depends on the value of the Riesz derivative for β = 1.4. We observed that, as α approached
2, T increased exponentially. Hence, the relevant state may, depending on the combination
of α and β, become extremely long-lived, yet it always has a finite lifetime.
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For values of α ≥ 2 and 1 < β < 2, this bound state is no longer transient, meaning that
the system remains in this state. As shown in the right panel of Figure 13, a simulation with a
large final time (t f = 20 · 103) is shown for α = 2.01. In fact, the kink and anti-kink emerging
from the breather separate to sufficiently large distances (larger than the equilibrium
separation for this α) repelled each other. Because of the periodic boundary conditions
that naturally stem from the Riesz derivative and the long-range (power-law) nature of
the spatial fractional derivative, each member of the pair experiences two repulsive forces,
one from its front and another one from its back, so that they equilibrate at x = ±L/4,
with L = 100 being the domain length in our case, and, consequently, the kink/anti-kink
eventually stopped at that point. We have checked this fact by varying many parameters,
such as the initial frequency of the breather, values of α > 2 or β < 2 or domain lengths, all
resulting in the same outcome. This settling of the kinks at x = ±L/4 was also observed
in the above-mentioned case of kink–anti-kink interactions and the dynamics of unstable
K-AK bound states.

Figure 13. Left panel: Duration of the transient bound state dependence on the value of the Riesz
derivative for β = 1.4 (red line) and β = 1.6 (blue line). Right panel: Bound state for β = 1.7 and
α = 2.01. As α ≥ 2, this state was no longer transient.

6. Conclusions and Future Challenges

In the present work, we explored the fractional dispersive dynamics of the sine-Gordon
equation. We achieved this by considering three independent scenarios. In the first one, we
imposed a Caputo temporal derivative, while preserving the spatial part of the model. In
the second one, we fixed the temporal second derivative and explored the role of variation
of the spatial Riesz derivative away from the Laplacian limit. Finally, having understood
the role of the previous two variations, we combined them in the final part of our study.
In each one of these cases, we explored both the dynamics of a single coherent structure
and those of a pair (or a bound state) of such coherent structures.

Our findings clearly showcase some common conclusion paths. The role of the Caputo
derivative is to induce dissipative effects in the case where β < 2. This leads to the
slowdown and eventual stopping of a kink, and it may be responsible for the trapping
and eventual elimination of a kink–anti-kink pair if the latter does not have sufficient
kinetic energy. The presence of a Riesz derivative seems to maintain an attractive kink–
anti-kink interaction (through the power-law tails of the still monotonic structures) for
α < 2. On the other hand, it creates the potential for long-range repulsion through the
inter-atomic force for α > 2. In the latter case, a saddle equilibrium emerges and the kink
acquires non-monotonic tails. The kink–anti-kink interaction, then, evolves in this more
complex effective energy landscape, featuring attraction at short and repulsion at long
distances. Finally, the phenomenology of both the Caputo temporal and the Riesz spatial
derivative together showcase both effects, leading again to decay to stationarity, albeit
faster for smaller β and larger α.
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Naturally, there exist numerous further directions for future study. On the one hand,
while models of the Klein–Gordon type are extremely useful for building intuition (lacking
the complexity of phase degrees of freedom), it would be especially instructive to extend
considerations to, arguably, the most widespread dispersive nonlinear PDE model, namely
the nonlinear Schrödinger equation (see, e.g., [32,33]. In that case, we expect some notable
differences, such as the fact that dark soliton bound state pairs may actually feature stable
waveforms rather than unstable ones (as seen here) in the presence of Riesz spatial deriva-
tives. On the other hand, there have been numerous intriguing proposals for manipulating
dispersion in nonlinear optics [9,11]. Potentially, adapting such proposals to the settings
considered herein would be especially meaningful. The very recent experiment of [13],
albeit in the bright soliton setting, may pave the wave for a significant surge of activity
in this direction. On a related vein, seeking a deeper understanding of the temporally
differentiated scenario and its dissipation, through a variational or similar description,
would also be of particular interest. These are among the many novel directions (including
also higher dimensional settings and the interplay therein) meriting further investigation.
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Appendix A. Stability of Static Kinks

We considered the case when the Caputo derivative in time is combined with the Riesz
derivative in space. We will show that the stability of static kinks is independent of the
order of the Caputo derivative.

To this aim, let us introduce a perturbation w(x, t) to the static kink given by u0(x),
that is, u(x, t) = u0 + εw(x, t) is introduced in the fractional sine-Gordon equation. Conse-
quently, the perturbation w(x, t) fulfills the following:

∂βw

∂tβ
=

[

∂α

∂xα
− cos(u0(x))

]

w. (A1)

This equation can be solved by separation of variables

w(x, t) = Eβ(λ
2t)v(x), (A2)

jcuevas@us.es


Mathematics 2025, 13, 220 15 of 16

with Eβ(z) being the Mittag-Leffler function defined as

Eβ(z) =
∞

∑
k=0

zk

Γ(βk + 1)
, z ∈ C, (A3)

with Γ being Euler’s gamma function Γ(x) =
∫ ∞

0 tx−1e−tdt. The Mittag–Leffler function
has the property that [34]

∂βEβ(λ
2t)

∂tβ
= λ2Eβ(λ

2t) (A4)

Thus, the equation for v(x) reads as

λ2v =

[

∂α

∂xα
− cos(u0(x))

]

v, (A5)

which is the same equation that one must solve for the stability analysis of the static kink
in the case of second derivative in time, except for the time dependence of w(x, t), which
is different. However, Eβ(λ

2t) has a monotonically decreasing dependence (if 0 < β < 1),
or a damped oscillatory dependence (if 1 < β < 2), when λ2 < 0 and a monotonically
(exponential) increase when λ2 > 0; the latter property is easily determined by inspecting
the definition of the Mittag–Leffler function. Thus, the spectral picture is analogous to the
case of β = 2, with the latter bearing a time dependence exp(λt). In fact, E1(z) = exp(z)
and E2(z) = cosh(z).
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5. Ming, H.; Wang, J.; Fečkan, M. The application of fractional calculus in Chinese economic growth models. Mathematics 2019, 7, 665.

[CrossRef]
6. Kevrekidis, P.; Cuevas-Maraver, J. Fractional Dispersive Models and Applications; Springer: Berlin/Heidelberg, Germany, 2024.
7. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 1998.
8. Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives—Theory and Applications; Gordon and Breach: Amsterdam,

The Netherlands, 1993.
9. Blanco-Redondo, A.; de Sterke, C.M.; Sipe, J.; Krauss, T.F.; Eggleton, B.J.; Husko, C. Pure-quartic solitons. Nat. Commun. 2016, 7, 10427.

[CrossRef]
10. Runge, A.F.J.; Hudson, D.D.; Tam, K.K.K.; de Sterke, C.M.; Blanco-Redondo, A. The pure-quartic soliton laser. Nat. Photonics 2020,

14, 492–497. [CrossRef]
11. Tam, K.K.K.; Alexander, T.J.; Blanco-Redondo, A.; de Sterke, C.M. Stationary and dynamical properties of pure-quartic solitons.

Opt. Lett. 2019, 44, 3306–3309. [CrossRef] [PubMed]
12. Tam, K.K.K.; Alexander, T.J.; Blanco-Redondo, A.; de Sterke, C.M. Generalized dispersion Kerr solitons. Phys. Rev. A

2020, 101, 043822. [CrossRef]
13. Hoang, V.T.; Widjaja, J.; Qiang, Y.L.; Liu, M.; Alexander, T.J.; Runge, A.F.J.; de Sterke, C.M. Observation of fractional evolution in

nonlinear optics. arXiv 2024, arXiv:2410.23671.
14. Decker, R.J.; Demirkaya, A.; Alexander, T.J.; Tsolias, G.A.; Kevrekidis, P.G. Fractional solitons: A homotopic continuation from the

biharmonic to the harmonic ϕ4 model. arXiv 2024, arXiv:2410.18426.
15. Cuevas-Maraver, J.; Kevrekidis, P.; Williams, F. The Sine-Gordon Model and its Applications, Nonlinear Systems and Complexity;

Springer: Cham, Switzerland, 2014.
16. McLachlan, R. A gallery of constant-negative-curvature surfaces. Math. Intell. 1994, 16, 31–37. [CrossRef]
17. Frenkel, J.; Kontorova, T. On the theory of plastic deformation and twinning. J. Phys. Acad. Sci. USSR 1939, 1, 137.

http://doi.org/10.3390/photonics8090353
http://dx.doi.org/10.1364/OL.40.001117
http://www.ncbi.nlm.nih.gov/pubmed/25768196
http://dx.doi.org/10.1016/j.chaos.2020.109744
http://dx.doi.org/10.1016/j.cnsns.2017.04.001
http://dx.doi.org/10.3390/math7080665
http://dx.doi.org/10.1038/ncomms10427
http://dx.doi.org/10.1038/s41566-020-0629-6
http://dx.doi.org/10.1364/OL.44.003306
http://www.ncbi.nlm.nih.gov/pubmed/31259946
http://dx.doi.org/10.1103/PhysRevA.101.043822
http://dx.doi.org/10.1007/BF03024701


Mathematics 2025, 13, 220 16 of 16

18. Barone, A.; Paternò, G. Physics and Applications of the Josephson Effect; Wiley: Hoboken, NJ, USA, 1982.
19. Malomed, B.A. The Sine-Gordon Model: General Background, Physical Motivations, Inverse Scattering, and Solitons; Springer Interna-

tional Publishing: Cham, Switzerland, 2014; pp. 1–30.
20. Macías-Diaz, J.E.; Bountis, T. An efficient dissipation-preserving numerical scheme to solve a caputo–riesz time-space-fractional

nonlinear wave equation. Fractal Fract. 2022, 6, 500. [CrossRef]
21. Birnir, B.; McKean, H.P.; Weinstein, A. The rigidity of sine-gordon breathers. Commun. Pure Appl. Math. 1994, 47, 1043–1051.

[CrossRef]
22. Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16.

[CrossRef]
23. Bountis, T.; Cantisán, J.; Cuevas-Maraver, J.; Macías-Díaz, J.; Kevrekidis, P.G. The dissipative effect of Caputo–time-fractional

derivatives and its implications for the solutions of nonlinear wave equations. Partial. Differ. Equ. Appl. Math. 2024, 11, 100807.
[CrossRef]

24. Carretero-González, R.; Cisneros-Ake, L.; Decker, R.; Koutsokostas, G.; Frantzeskakis, D.; Kevrekidis, P.; Ratliff, D. Kink–antikink
stripe interactions in the two-dimensional sine–gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2022, 109, 106123.
[CrossRef]

25. Kivshar, Y.S.; Pelinovsky, D.E.; Cretegny, T.; Peyrard, M. Internal modes of solitary waves. Phys. Rev. Lett. 1998, 80, 5032–5035.
[CrossRef]

26. Campbell, D.K.; Schonfeld, J.F.; Wingate, C.A. Resonance structure in kink–anti-kink interactions in ϕ4 theory. Phys. D

1983, 9, 1–32. [CrossRef]
27. Manton, N.S. An effective Lagrangian for solitons. Nucl. Phys. B 1979, 150, 397–412. [CrossRef]
28. Alfimov, G.; Pierantozzy, T.; Vázquez, L. Numerical study of a fractional sine-gordon equation. In Fractional Differentiation and Its

Applications; Méhauté, A.L., Machado, J.T., Trigeassou, J., Sabatier, J., Eds.; U-Books Verlag: Augsburg, Germany, 2005.
29. Chirilus-Bruckner, M.; Kevrekidis, P.; Cuevas-Maraver, J. Stability of breathers for a periodic Klein–Gordon equation. Entropy

2024, 26, 756. [CrossRef] [PubMed]
30. Kevrekidis, P.; Carretero-González, R.; Cuevas-Maraver, J.; Frantzeskakis, D.; Caputo, J.-G.; Malomed, B. Breather stripes and

radial breathers of the two-dimensional sine-gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2021, 94, 105596. [CrossRef]
31. Flach, S.; Gorbach, A.V. Discrete breathers—Advances in theory and applications. Phys. Rep. 2008, 467, 1–116. [CrossRef]
32. Sulem, C.; Sulem, P. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse; Springer: New York, NY, USA, 1999.
33. Ablowitz, M.; Prinari, B.; Trubatch, A. Discrete and Continuous Nonlinear Schrödinger Systems; Cambridge University Press:

Cambridge, UK, 2004.
34. Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/fractalfract6090500
http://dx.doi.org/10.1002/cpa.3160470803
http://dx.doi.org/10.3390/math6020016
http://dx.doi.org/10.1016/j.padiff.2024.100807
http://dx.doi.org/10.1016/j.cnsns.2021.106123
http://dx.doi.org/10.1103/PhysRevLett.80.5032
http://dx.doi.org/10.1016/0167-2789(83)90289-0
http://dx.doi.org/10.1016/0550-3213(79)90309-2
http://dx.doi.org/10.3390/e26090756
http://www.ncbi.nlm.nih.gov/pubmed/39330089
http://dx.doi.org/10.1016/j.cnsns.2020.105596
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/0960-0779(95)00125-5

	Introduction
	Model Setup
	Caputo Derivative in Time and Laplacian in Space
	Kink Dynamics
	Kink–Anti-Kink Dynamics

	Riesz Derivative in Space and Conservative (=2) Dynamics in Time
	Kink Dynamics
	Kink–Anti-Kink and Breather Dynamics

	A Caputo Derivative of Order =2 and a Riesz Derivative of Order =2
	Kink Dynamics
	Kink–Anti-Kink Dynamics

	Conclusions and Future Challenges
	Appendix AStability of Static Kinks
	References

