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Abstract

Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique
that overcomes the limitations of current spectroscopic methods by combining the high-resolution
imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM
operating in sub-resonance tapping imaging mode, which enables the collection of multiple
physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a
highly repeatable manner. By comparing these properties to a database of known materials, the
technique identifies the location of constituent materials at each image pixel with the assistance of
ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an
unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new
avenues for nanoscale material study, including the material identification and correlation of
nanostructure with macroscopic material properties. The ability to map material composition with
such high resolution will significantly advance the understanding and design of complex,

nanostructured materials.
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Introduction

Identifying material composition at the nanoscale remains a critical challenge in materials science.
Accurate recognition of nanostructures is essential for the development of new nanocomposite
materials, for uncovering structure-property relationships !>, This understanding is instrumental in
the innovation of new composite materials, especially nanocomposites, which are integral to
advancements in technology and industry ¢, Broad utilization of polymeric materials brings
another challenge to understanding microplastic contamination "', The spectroscopy capable of
identifying the types of plastics down to the nanoscale, i.e., at the very early stages, will be

important in this area as well 1316

Traditional spectroscopic techniques such as infrared (IR) spectroscopy '8, Raman spectroscopy
19 X-ray photoelectron spectroscopy (XPS) 2°, and micro nuclear magnetic resonance (micro-
NMR) spectroscopy 2! have been the cornerstone for material identification by exploiting unique
material properties. However, these methods encounter resolution limitations that preclude material
identification at the nanoscale. Optical spectroscopic methods are convenient but are inherently
limited by the diffraction limit, while XPS offers exceptional height resolution but lacks lateral

resolution.

Recent advancements in spectroscopic methods have begun to bridge the gap to nanoscale
resolution. Infrared absorbance spectroscopy, when coupled with atomic force microscopy (AFM-
IR), achieves high resolution, albeit on thin films due to its reliance on heating a multi-micron
sample area with IR light, while a sharp AFM probe detects the thermal expansion of the sample **
25, AFM-IR is also constrained to ambient conditions and is unsuitable for aqueous environments.
Its relatively slow operation limits material identification to specific locations rather than enabling
comprehensive spectroscopic imaging. Moreover, resolving interfaces between polymers with
differing thermal expansion coefficients—a critical aspect in nanocomposite studies—remains a
significant challenge when using AFM-IR because the interface is moving laterally at the moment

of heating due to the different heat expansions of the materials of the interface. Tip-enhanced



Raman spectroscopy (TERS) has also emerged as a high-resolution spectroscopic method 2%, yet
its application has been largely confined to isolated structures, such as carbon nanotubes or single
DNA molecules, due to its complex setup and limited substrate versatility *°. Finally, both AFM-IR

and TERS suffer from the risk of changing samples due to excessive laser radiation.

Here, we introduce an innovative AFM mechano-spectroscopic imaging technique (AFM-MS) that

3133 “specifically PeakForce QNM version 3% with

uses AFM operating in a sub-resonance tapping
the extension Ringing mode (RM) 32363, RM yields multidimensional data of the mechanical and
physical characteristics of a sample surface with unparalleled resolution down to the single
nanometer scale. This mode captures a spectrum of mechanical and physical properties, such as the
dimensions of material necks formed by the AFM probe during disconnection, the length of
molecules pooled from the surface by the AFM probe, the energy dissipated upon the probe
detachment, etc. Each RM and PeakForce QNM channel serves as a distinct map, delineating the
distribution of specific physical properties across the sample surface. All RM channels can be
recorded simultaneously on top of several channels of PeakForce QNM mode. This provides a
comprehensive profile of the physical and mechanical properties of the surface recorded at each

image pixel. In our study, we demonstrate the use of twelve different surface properties, see the

Experimental section for detail.

AFM was first proposed as a spectroscopic technique for distinguishing different materials back in
1994 by measuring the van der Waals component of the force curve *°. However, the limited
number of distinguishable materials *! and the challenges associated with measuring small van der
Waals forces hindered the widespread adoption of this approach. Subsequently, piezoelectric force
microscopy (PFM) was employed to differentiate between various bacterial species 4>,
Nevertheless, this method is limited to materials exhibiting piezoelectric properties, which are
relatively uncommon, particularly in polymers. In contrast to these earlier techniques, the AFM-MS
technique described herein can be applied to a wide range of materials that undergo deformation
and exhibit adhesion under an AFM probe without requiring additional stimuli such as electrical
voltage or infrared heating of the sample. In this study, we demonstrate the effectiveness of this
technique through the identification of binary and ternary material blends. We also present a
comparative analysis with confocal Raman microscopy to highlight the strengths and potential

limitations of the AFM-MS approach.



Results and discussion

Nano mechano-spectroscopy (AFM-MS) approach

We demonstrate the method using a complex blend of three polymers. Figure 1 shows a schematic
of the suggested spectroscopy. Images (maps) of different physical/mechanical properties of known
polymers (Fig.1a) are used to train an ML algorithm, which is then used to identify polymers in the
composite sample. Since the data size of these images can be quite large (every single pixel of the
image is a data point), there are no restrictions related to the small data size problem, which is
typical for the ML processing of AFM images **. Both regular and deep-learning ML methods can
be used. Further, we will use supervised classification methods. Note that unsupervised methods,
like principal component analysis (PCA), can be used for some particular cases. However, it is not

working well in general, including the example of three polymers shown here (SI Figure S1).

Two approaches are proposed for working with the data, which differ in the databases used for
training the ML algorithm (Fig.1b). In Method I, the training is done using AFM images of pure
polymers, while in Method II, the training is done using information from known locations of
known polymers within the composite samples of the study. Both methods are used in all material
spectroscopies. Method I is more generic and allows building a broad database of nanomechanical
properties of polymers. Such a database will allow the identification of specific polymers within a
sample that contains unknown polymers. Although Method II seems less generic, it has multiple
advantages, which will be discussed later. The machine learning part is similar for both approaches.
The trained ML algorithm is applied then to each pixel of an unknown sample (Method I) or
unknown parts of the sample (Method II). Depending on the type of classifier, we can identify
either the polymers or the probability of belonging to the particular polymer at each image pixel.
The neural networks and decision trees used here presented probabilities for each of the three

polymers, which were encoded by RGB colors in Figure 1b.
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Figure 1. A schematic of the nano mechano-spectroscopy. (a) Physical and mechanical properties of
the samples are imaged simultaneously using 12 different imaging channels (see SI Figure S2 for

detail). An example of a 5x5 um? blend of three different polymers, polystyrene (PS), polyethylene



oxide (PEO), and polyvinyl pyrrolidone (PVP) is presented. (b) Two methods of material recognition
are shown. Method [: The training of the machine learning algorithm is done using the AFM images of
the corresponding pure polymers prepared in the same conditions. Method II: The training of the
machine learning algorithm is done using the areas of known polymers within the sample of study
(shown on the image with rectangles of different colors). Note that the AFM data can be used directly
for the training of ML algorithms without any preprocessing. An example of the application of both
methods to the blend of three different polymers is shown. Three different colors were used to identify
particular polymers: PS is red, PVP is green, and PEO is blue. Two machine learning algorithms,

(shallow) Neural Networks and Random Forest, were used here and showed identical results.

Comparing the results of both methods, one can see very similar results. Nevertheless, there are
some differences in the complex blend of PEO and PVP polymers (blue and green). This is
attributed to the different times the mix and pure polymer (needed for Method I) samples were
stored after preparation. It demonstrates the limitation of Method I, the need for strict control of the
sample preparation, including environmental factors when creating the database of materials for
training. Both PEO and PVP are sufficiently hydrophilic and, therefore, for example, sensitive to
environmental humidity. Method II, on the other hand, is more robust, as all parts of the sample
were prepared simultaneously under the same conditions, and images were collected in the same

environment during scanning.

Table 1 describes a more detailed comparison of these two methods. For example, the imaging
environmental conditions and sample preparation must be precisely the same as those used to
collect the external database of polymers. This is because the physical and mechanical
characteristics of polymers can change substantially when those parameters are not kept the same.
For example, the mechanical properties of polymers can strongly depend on temperature.
Hydrophilic polymers are sensitive to humidity, etc. The AFM imaging can result in different
values of the recorded sample properties. For example, the map of adhesion between the AFM
probe and sample depends upon the adhesion energy but also on the viscosity of the polymer and,
therefore, on the time of the probe-sample contact, i.e., the speed of tapping *°. Finally, the

roughness of the sample surface created by different sample preparation methods can result in



substantially different values of the recorded sample properties. For example, high roughness will

result in lower stiffness of the material at small indentation depths 4.

Table 1. Comparison of two approaches for identification of components in a sample. Method 1
uses an existent database of nanomechanical properties of pure components (polymers). Method 11
uses the data collected on the part of known locations of particular pure components (polymers)
within the AFM image of the study.

Requirement Method I Method 11

Knowledge of individual (polymeric) Not required (optional) Required
components of the sample

The external database of components Required Not required
(polymers)

AFM imaging under a controlled Frequently required Not required
environment

AFM imaging is restricted to the same Required Not required

imaging conditions as used in the

external material (polymer) database

Sample preparation is limited to the one  Required Not required
used for the external material database

The advantages and limitations of both methods are not unique to the described mechano-
spectroscopy. For example, databases of materials exist in Raman spectroscopy *’. When dealing
with a blend of different polymer phases, in particular, at a small scale (Raman microscopy), the
existing database can usually be used reliably only for a qualitative evaluation of the material types.
A possible discrepancy with the pre-existing Raman database of polymers is also caused by
environmental factors (temperature, humidity) and sample preparation (different material
processing, residual solvents, etc.). Therefore, Method 11 is rather frequently used in Raman
microscopy. Another example of Method II is described in ref. %°, in which bacterial cells were
studied. Biological cells are susceptible to the environment. Therefore, it seems to be impractical to

implement Method I when studying such an environment-dependent object.

Figure 2 demonstrates the details of the work of the trained ML algorithms for material
recognition. Two samples comprising the same three polymers (PEO, PVP, PS) were prepared: a

freshly prepared blend of the polymers and the same sample aged for two weeks after preparation.



When applied to each pixel of the image, the algorithm calculates the probability that the pixel
belongs to each particular type of material/polymer. The left part of the image demonstrates the
maps of the distribution of these three probabilities separately for each of the three polymers. The
rightmost images of Figure 2 show an RGB combination of all three probabilities, in which red,
green, and blue channels correspond to each of the three polymers, respectively. One can see that
the freshly prepared sample demonstrates a clear separation between the three polymers. The same
sample after two weeks shows a clear inter-diffusion of polymers. This is expected because of the
hydrophilic nature of PVP and PEO polymers, which were exposed to environmental humidity
during storage. It demonstrates the ability of the presented technique to study the surface diffusion

of different materials.

Probability for PS Probability for PVP  Probability for PEO RGB combined:
- 3 r B3 € i, i :

-

Figure 2. Details of the work of machine learning classification algorithms. The trained ML algorithm
calculates the probability of each pixel representing a particular material. RGB combined images: The
probabilities are encoded by RGB colors and combined to present the distribution of particular polymers
over the sample. Two samples of 20x20 um? are shown. The top row: A freshly prepared blend of three
polymers (PS, PVP, PEO). The bottom row: The same sample two weeks after the preparation; polymer

diffusion makes the sample more challenging for recognition.



It is interesting to note that AFM-MS is rather tolerable to horizontal streak artifacts. These artifacts
are clearly seen in channels 2-4 in Fig.1a and the top probability images of Fig.2 as horizontal lines.
These artifacts are typically caused either by vibrational noise or a small piece of dirt picked up by
the AFM probe (which is quickly self-cleaned). It is possible to eliminate these artifacts or at least
minimize them by multiple imaging of the same area. However, it has not been done on purpose to
demonstrate this feature of AFM-MS, tolerance to these artifacts. After combining multiple
channels with a machine learning algorithm, the streak artifacts either substantially vanish or

completely disappear in the classification image, as shown in Figs. 1 and 2 (RGB images).

The lateral spectroscopic resolution of the presented technique can theoretically be defined by the
area of contact of one single AFM touch. The area, in turn, is defined by the radius of the AFM
probe, load force (indentation depth), the adhesion energy between the AFM probe and sample, and
the speed of indenting. Certainly, the two materials should be sufficiently different from the
physical/mechanical points of view. The radius of curvature of the AFM probe used in this work is
of the order 2-3 nm, whereas the indentation depth of the polymers used in this work is not more
than 2-4 nm. Thus, the lateral resolution of the described technique is expected to reach the level of

single nanometers.

Although the spectroscopic resolution of AFM-MS is theoretically defined as a single-pixel
resolution, it can be quite misleading due to the variation of the measured properties across each
material. As demonstrated in SI Figure S3, there is an illusion that a human eye can distinguish
between PEO, PS, and PVP polymers even in single channels. However, the histogram of the
distribution of physical properties (SI Figure S4) reveals significant overlap among the properties of
the three polymers. Consequently, relying on a single channel for spectroscopic separation would
result in incorrect identification in many pixels. To achieve nearly unambiguous identification of

the specific polymer, a combination of multiple channels is necessary.

It is instructional to demonstrate the spectroscopic resolution using mechanically distinctive
materials. Figure 3 demonstrates the spectral resolution of ~1.6 nm by distinguishing silica material

of a nanoparticle embedded in epoxy resin. This is in agreement with the above theoretical



estimations. Presumably, the value of this resolution is limited by the radius of curvature of the

AFM probe.
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Figure 3. Experimental demonstration of the lateral spectral resolution of the described nano-mechano-
spectroscopy. (a) 3D height AFM image of 200x200 nm? is shown. The probabilities of identification of
material as epoxy (red) and silica (green) are superimposed on the height image using different colors. (b)
A cross-section of the probability of identifying material as silica is shown. The specific location of this
cross-section is shown in panel (a) by a solid blue line. The width of the probability change of 1.6 nm, which

can be called the lateral spectral resolution %, is shown.

It is useful to compare the described AFM-MS with another technique, confocal Raman
spectroscopy, which is broadly used to identify the type of materials. Figure 4a shows an example
of'a 4 um polystyrene bead partially embedded in epoxy resin. The lateral resolution of Raman
microscopy is limited by the diffraction limit of ~200 nm. However, the actual lateral resolution can
be confusing because the Raman signal comes from a noticeable thickness of the sample (Fig.4 b).
For example, AFM identifies only 2 um of the polystyrene bead exposed above the epoxy (Fig.4
d,f)). However, Raman microscopy detects the signal from polystyrene of the full size of 4 pm
(Fig.4 e,f). This shows the substantial difference between the Raman technique and the described
mechano-spectroscopy. The AFM-MS provides substantially higher both lateral and vertical

resolutions over the sample surface. At the first-order approximation, one can say that the vertical



resolution of AFM-MS can be approximated by the depth of the sample deformation by the action

of the AFM probe, which is 2-4 nm in the considered examples. It comes at the cost of not being

able to detect materials hidden beneath the surface. The vertical resolution of Raman microscopy is

hard to estimate because it is defined by many parameters, including the type of material, numerical

aperture of the objective, and magnification. Realistically, it could be estimated as ~0.5 pm.

The synergy between Raman confocal spectroscopy and the described AFM-MS should be noted.

Large parts of the sample can be identified with Raman spectroscopy, as shown in Figure 4. It can

directly be used to train the classification algorithms of Method II. AFM-MS applied to such a

sample will then reveal the location of particular materials on the sample surface with nanoscale

accuracy.
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Figure 4. Comparison with confocal Raman microscopy/spectroscopy and mechano-spectroscopy: an

example of a polystyrene sphere partially embedded in epoxy. (a) A schematic of the sample. The AFM

probe can easily image the outstanding part of the polystyrene bead. Substantial differences in

roughness and adhesion (not shown) allow easy identification of the bead above the epoxy. (b) A

diagram showing the work of Raman microscopy. The finite depth of focus of the laser excitation light

may result in a Raman signal coming from both polystyrene and epoxy. (c) A 3D AFM image of the



polystyrene sphere embedded in epoxy (shown in panel d) superimposed with the map of the Raman
signal (shown in panel e). (f) Shows the size of the outstanding part of the polystyrene bead as well as

the location of the detectable Raman signal associated with polystyrene.

It should be noted that the idea of combining multiple physical properties to resolve a very large
number of materials comes from “artificial nose”. It was demonstrated that by combining a limited
number of sensors (“receptors”) specific to particular molecules, one could obtain a combinatorial
sensor that can distinguish a large number of different stimuli/smells **°. Therefore, we expect the
nano mechano-spectroscopy technique to be able to distinguish a very large number of polymers,
though we demonstrated the approach using only three polymers. The limits of the utility of the
described AFM-MS are yet to be determined.

Conclusions

This study introduces an innovative nano mechano-spectroscopy technique (AFM-MS) that utilizes
physical and mechanical properties of materials to identify the materials. It allows the locating of
specific material components within a composite sample up to a single nanometer spatial resolution.
In this respect, the new spectroscopy surpasses the capabilities of existing techniques used for
material identification. The unprecedented resolution of this spectroscopy is expected to have wide-
ranging applications in material science and engineering, encompassing polymers, biomaterials,
nanocomposites, and other complex materials. Furthermore, the AFM-MS technique is a relatively
fast imaging technique, which allows obtaining the spectroscopic images of a sample surface with
the speed of a regular sub-resonance AFM tapping. Compared to other techniques, AFM-MS is
rather versatile; it can be used both in air and in a liquid medium with a minimum nondestructive
energy exchange with the sample study. The unique information obtained through this technique
can be synergistically combined with other characterization methods, such as confocal Raman

microscopy, to provide a more comprehensive analysis of materials.

Experimental section



Materials

Polystyrene (PS), polyethylene oxide (PEO), and polyvinyl pyrrolidone (PVP) were purchased (all
by SigmaAldrich, Hoeilaart, Belgium) and used as is. The polymer blends were prepared as
follows. All polymer solutions were prepared in Chloroform (10mg/mL). The stock solution was
then blended with 1:1:1 ratio. The samples for the AFM-MS study were then prepared by drop
casting (500 pL/cm?) on a freshly cleaned Si wafer and then allowed to dry for 24 hours with a
solvent annealing process (a small beaker of Chloroform placed in the vicinity of the drying
samples in a closed chamber). The samples with embedded particles were prepared as follows >!.
Washed and dried 4 um polystyrene beads (BaseLine Chromtech, Tianjin, China) were spread over
semi-rigidified epoxy (Loctite EA E-30CL, Henkel Corporation, CT, USA). Silica nanoparticles
(Pureon Inc., NC, USA) were partially embedded in epoxy (Loctite EA E-30CL, Henkel
Corporation, CT, USA) as follows. The silica nanoparticles were freeze-dried to obtain a powder. A
layer of epoxy was applied to a glass slide, which was allowed to semi-solidify. Once the epoxy

reached a semi-solid state, the silica nanoparticle powder was evenly spread over it. The sample

was then left to solidify thoroughly for 48 hours.

Atomic force microscopy

Atomic force microscopes Icon and Bioscope Catalyst (Bruker Nano, Inc., Santa Barbara, CA)
working in PeakForce QNM mode with Ringing mode extension (NanoScience Solutions, Inc.,
Woburn, MA) were used. ScanAsyst AFM probes for working in air (by Bruker Nano, Inc., Santa
Barbara, CA) were used. The radius of the AFM probe was found by using TipCheck sample
(BudgetSensors, Sofia, Bulgaria). It was in the range between 3 to 4 nm. The spring constant of the
cantilever was measured using the thermal tuning method, and it was in the range between 0.3 — 0.4
N/m. The scanning was done in air in humidity between 30 to 40%. The scanning speed was 0.1-0.3
Hz. The PeakForce was chosen to be 1-2 nN. The speed and the amplitude of PeakForce tapping
were set to 1 kHz and 300 nm, respectively. The following channels were recorded and used in the

described method: PeakForce QNM: Adhesion, Deformation, Dissipation, Peak Force;

Ringing mode: Restored adhesion, RM Adhesion, RM Peak Force, Viscoelastic adhesion, Neck

height, Disconnection length, Energy loss during disconnection, Dynamic phase shift.



Machine learning algorithms

First, let us describe the structure of the data obtained with AFM on a sample. Each AFM scan M
consists of K channels M®:
M={MD .. MO where k=1..K. (1)
Each k" channel is represented by an image which constists of NxN pixels located at
Cartesian coordinates (x;, y;). So,
N N
m® ==z, )
i=1 j=1
where z;/® is the value of the k" channel at pixel (x;, y)), i,j, =1..N. Since all channels are recorded at
the same pixels, the coordinates of the pixels do not carry the channel index.

So each AFM scan now can be written as
m=JU{e," 12, 3)

Different AFM scans will be presented using an index s, where s=/ .. S, S is the number of
different scans. Usually different scans are collected on different areas of the sample. In this case,

the database recorded on the sample reads as

w=UUU 2, etz ). )

s=1 i=l j=1
In some cases it is useful to consider only a small portion p of the total image restricted by a
specific choice of pixels i, j; p} . For example, it can be a zoomed area specific to a particular
material. This portion of the database A , reads as follows:

M, =UU

s=1 i=

C=

{(20" ) et ). ©)

J

In the machine learning terminology, vector {{Zi,j;p(l;S)} ot Zi,j;p(K;S)}} for specific i,j,s,p is a

feature of the instance dataset. To train a classifier in supervised machine learning, each feature
should be assigned a particular class C”, where /=1..L; L is the number of classes in consideration.
So the database D used for building the classifier has a class assignment for each feature on the

database



D OLNJLNJ{ 4.4, ¢ (62)
t/ ° ’ 11 > i

or

S N N . p
Dp - UUU{{Zi,j;p( ,S)} 2 {Zi,j;p( ’S)}; Ci%lj)}’ (6b)

s=1 i=l j=

—_

dependent on the case of equations 4 or 5.

Method 1:

In this method, the classification algorithm is created on samples containing datasets of pure
polymers. In the case of three polymers (L=3) analyzed in this work, the total dataset is {D”S, D'?,
DPEOY where DP°V™er is the database for each particular class (polymer) described by equation 6a.

The number of images per sample, S=1, was sufficient due to the homogeneity of the samples.

The whole dataset was split into training and validation sets. The validation set was typically
around 10-20% of the entire dataset. A classifier CL was trained on the training set and then tested
on the validation set to ensure that the classifier was not overtrained and could distinguish each pure

polymer well. The trained this way classifier CL was then applied to every pixel (7,j) of the polymer

blend AFM image-dataset M "™ (given by equation 4). The obtained vector of probabilities was the
result of application of the classifier:

N N (K- )
UUUL etz (7)
j=1

In the considered example, S=1, N=512 (or 256), K=12.

{ Proba™, Proba®"?, Proba™°}=CL|[

H CV)

Method 2:

Here, to develop a classifier to be applied to the unknown mixed sample, we used a zoomed area in
which the known polymers were located. In contrast with Method 1, the used database is now
described by equation 6b, in which p ={PS, PVP, PEO}. (An example of a particular location of
those zoomed areas is shown in Figure 1.) Similarly, trained classifier CL is then applied for the
rest of the image(s) to obtain probabilities of each pixel to belong to a particular class:

S N N
{ Proba™, Proba®"?, ProbaPEO}ZCL[UUU{{Z, i Bh oz j;ﬁ(K;S)}}], ®)

s=1i=1 j=1



where p is the indicator of the pixels complementary to all used zoomed areas, i.e, all pixels of the

image with the exception of the zoomed areas used to build a classifier.

In the considered example, S=1, N=512 (or 256), K=12.

In both of these methods, the pixels of the analyzed sample are assigned a vector of classification
probabilities exampled by equations 7 and 8. The dimension of this vector equals to the number of
components in the sample of study. In the example considered here, we deal with three
components/polymers. Three dimensions (or less) can be conveniently represented by the RGB
color model, and the result of classification can be immediately plotted using the so-called

classification map, which is used in the figures of this work.

The classifiers used in this work were either a shallow Neural Network or Random Forest. A
Python code of the used classifier is shown in the Supplementary materials. Random forest as
implemented within Scikit-learn python package and the Neural Networks were built using
PyTorch package. A variety of shallow Neural Network architectures were considered for
classification. The final architecture consisted of two fully connected hidden layers with 7 and 5
neurons, respectively. The input number of neurons depended on the number of AFM channels used

for classification.

Data availability
Raw data are available from the corresponding author upon request; an example of data and the

processing ML code (in Python) are uploaded as Supplementary data.
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