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Abstract

Quantum embedding methods are powerful tools to exploit the locality of electron

correlation, but thus far many wavefunction-in-wavefunction methods have focused on

small (e.g. minimal) basis sets. One major challenge for extended basis sets lies in

defining consistent atom- or fragment-localized orbitals in spite of the larger spatial

extent of the underlying atomic orbitals. In this work, we modify a particular form of

quantum embedding, Bootstrap Embedding (BE), to the case of extended basis sets.

We find that using intrinsic atomic orbital (IAO) localization schemes alongside BE

converges to ↑99.7% of the CCSD correlation energy in 3-21G, 6-311G, and cc-pVDZ

basis sets for reasonably sized fragments. These results mark an important first step in

extending the success of embedding methods to properly studying dynamic correlation.
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1 Introduction

The coveted goal of chemically accurate quantum calculations hinges on developing methods

capable of capturing at least 95% of the electronic correlation beyond the mean-field.1 Meth-

ods such as coupled cluster (CC) singles and doubles (CCSD)2 have been known to reach

chemical accuracy, but CCSD in particular scales as O(N6), quickly making it intractable

beyond 10–30 atoms. Not to be deterred, many great advances have been made on the

optimism that further method development can extend the great success of these proven

methods on small systems to new methods equally as successful on large systems. This is

an expansive and flourishing field, and a few successes will be highlighted here.

One approach is to restrict the correlated calculation to a subset of the full orbital

space. A popular criterion is to pick only orbitals within an energy range lying around the

valence orbitals, which intuitively is where the most important electronic e!ects should occur.

Among these types of methods are active space methods such as complete active space self-

consistent field3–6 and restricted active space self-consistent field methods.7,8 Rather than

an energy metric, others have realized that electron correlation decays as r→3. This inspires

a class of local correlation methods that restrict the calculation to spatially close orbitals9–15

such as the popular domain-based local pair natural orbital CC (DLPNO-CC).16–19 These

methods have shown that CCSD(T)-like accuracy can be achieved with near linear scaling

in some cases.

With the same aim of linear scaling in mind, fragment embedding methods20,21 partition

the system spatially into fragments, each correlated locally and the total energy comprised

as a sum over fragments. Unfortunately, the interaction of the fragment with the rest of

the system, the bath, cannot be ignored. Nothing would be gained if the bath is treated at

the same level of theory, so the bath is typically treated with cheaper theories. On the less

expensive end of theories, the bath can be treated classically as point charges, popularized

in QM/MM22 and fragment molecular orbitals,23,24 or as densities, used in frozen density

embedding.25,26 To obtain chemical accuracy for small fragment sizes, a more accurate quan-
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tum treatment of the bath is essential. Being one of the most popular low-scaling quantum

methods, DFT27,28 has been used to treat the bath in subsystem DFT29,30 and projection-

based embedding methods.31–35 Despite the practical scaling of DFT, the lack of systematic

improvement along with various shortcomings36 greatly limit quantum embedding methods

based on DFT. The next step towards accurate, linear scaling, electron correlation in the

framework of fragment embedding methods is to move beyond the density alone and in-

stead approximate the bath wave function. Methods of this type include those based on the

Schmidt Decomposition such as density matrix embedding theory (DMET),37–45 local ac-

tive space self-consistent field,46–48 orbital partitioning schemes,49 projected site-occupation

embedding theory,50 second order active space embedding theory,51 and bootstrap embed-

ding theory (BE).52–60 These methods have shown great promise for low-scaling electron

correlation but mostly for static correlation and minimal basis sets.

In this paper, we extend BE to work e"ciently in large basis sets for molecular systems.

We utilize an IAO-based localization scheme for multiple systems in extended basis sets, to

remove the ambiguities that arise in defining fragments with spatially delocalized extended

bases. For all systems, BE is able to capture >99.7% of the CCSD full system correlation

energy with reasonably-sized fragments. Notably, the number of atoms per fragment that

is required to achieve this level of accuracy appears to be roughly independent of both the

system size and the density of the atomic orbital basis set. This paper is organized as follows.

In Section 2, we review the theory behind BE and quantum embedding, and discuss how one

generalizes this theory for extended basis sets. In Section 3, we discuss the computational

details related to our results including the molecules of interest and the details of our BE

calculation. In Section 4, we present the results of BE in extended basis sets using the theory

presented and interpret the results. In Section 5, we wrap up the results and discuss future

directions.
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2 Theory

In this section, we review the established working equations of BE for minimal basis sets

and discuss the modifications made for extended basis sets. BE follows three steps. First,

a localization scheme is applied to a chemical system, split into disjoint atomic fragments,

to define a set of localized fragment orbitals (FO) for each. Second, a set of delocalized

bath orbitals (BOs) are defined for each fragment by choosing the BOs that are maximally

entangled with that fragment’s FOs. Finally, a correlated calculation is performed over each

FO + BO space and matching conditions are applied to overlapping fragments.

2.1 BE In Minimal Basis Sets

In second quantized notation, the electronic Hamiltonian is

Ĥ =
N∑

µω

hµω ĉ
†
µ
ĉω +

1

2

N∑

µωεϑ

Vµωεϑ ĉ
†
µ
ĉ†
ε
ĉϑ ĉω (1)

µ, ω,ε, ϑ denote the working minimal basis set of atomic orbitals (AOs). ĉ†
µ

(ĉµ) are the

creation (annihilation) operators for µ. hµω are the one electron integrals and Vµωεϑ are the

two electron integrals.

2.1.1 Fragment Orbitals

We begin by describing the choice of FOs. FOs are a set of orthogonal orbitals in which each

orbital is localized on one atom. We borrow from local correlation theories and obtain a set

of orthogonal, localized orbitals (LOs) from a localization procedure such as Boys.61

In order to determine which LOs belong to which fragments, an “atom-based” partitioning

scheme was developed for use with BE where the molecule is broken down into atomic groups

(a non-hydrogen atom and all hydrogens attached to that atom).56 Every LO is assigned to

an atomic group. An example of this is in Figure 1. Fragments are then chosen as any set

of atomic groups, and the set of FOs are all the LOs assigned to these atomic groups.
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Figure 1: Sample LOs obtained through Boys localization for C16H18 E-polyacetylene in
STO-3G. The top picture highlights an atomic group in this molecule and the bottom five
pictures show sample LOs assigned to this atomic group.
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2.1.2 Bath Orbitals

In quantum embedding approaches, orbitals outside the fragment that are entangled to the

fragment are included in the calculation and obtained via the Schmidt Decomposition.37,38,40

For a given fragment, call it F , with a defined set of FOs, the bath orbitals (BOs) are obtained

as orbitals outside the fragment defined by the Schmidt Decomposition, and the environment

orbitals (EOs) are the rest of the orbitals. The correlated fragment wavefunction can be

written as

|!↓ =

(
∑

I

C fb,F
I

∣∣∣!fb,F
I

〉)
↔
∣∣!env,F〉 (2)

The wavefunction takes a CASCI-like form consisting of the correlated fragment and bath

(denoted fb) space and the uncorrelated environment (denoted env) space, playing the same

role as the core in CASCI. The fb space consists of all NF

f
FOs and NF

b
BOs. Typically

NF

b
= NF

f
, but NF

b
< NF

f
is possible if there are linear dependencies among bath orbitals.

∣∣∣!fb,F
I

〉
are all

(2NF
f +2NF

b

2NF
f

)
configurations possible formed from distributing 2NF

f
electrons

into 2NF

f
+ 2NF

b
spin-orbitals in the fb space and C fb,F

I
are the configuration interaction

coe"cients of each configuration.
∣∣!env,F

〉
is the Slater determinant formed from the EOs,

which are not correlated.

2.1.3 Bootstrap Embedding

To overcome the error introduced at the edges of the fragment, common in all embedding

methods, BE utilizes overlapping fragments as illustrated in Figure 2. Each atom is used to

uniquely determine the center of a fragment. The other atoms in the fragment surrounding

the center make up its edge sites. With this partitioning, constraints can be applied between

the fragments such that the wavefunction on edge sites matches the wavefunction of that site

from a fragment for which it is the center. Fragments are systematically expanded by adding

in neighboring atomic groups, up to the n ↗ 1 coordination shell. We denote this fragment
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Figure 2: Illustrative example of atom-based BE. The fragments (boxed) pictured are chosen
as three carbons and three hydrogens and computationally, the FO space is defined as all
LOs lying on these atoms. The fragments overlap and their centers (highlighted) form a
complete covering of the molecule. Take for example the red fragment in the center. The
blue and purple atoms to the left and right are edge sites, and thus, the wavefunction of the
red fragment must be constrained to match the blue fragment on the blue atoms, and the
purple fragment on the purple atoms.

size as BE(n). Further details of the matching philosophy and fragmentation scheme can be

found in prior literature.56

After the fragments are defined, the constraint discussed earlier is implemented. We

match the wavefunctions through their one particle reduced density matrix (RDM1). For a

fragment F , we can obtain the RDM1 as

P F

pq
=

〈
!F

∣∣ âF †
p
âF
q

∣∣!F
〉

(3)

Let CF denote the center and EF denote the edge of fragment F . The matching conditions

are
〈
!F

∣∣ âF †
p
âF
q

∣∣!F
〉
= PG

pq
for p, q ↘ EF

≃ CG (4)

We must also enforce a global constraint to ensure that the number of electrons remains

consistent and correct for the full system across the fragments.

Nfrag∑

F

∑

p↑CF

〈
!F

∣∣ âF †
p
âF
p

∣∣!F
〉
= Ne (5)
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Here, Nfrag is the number of fragments and Ne is the total number of electrons in the system.

In order to judge the impact of the matching conditions, we also present calculations in

which density matching (Equation (4)) is not enforced, but the global number of electrons

(Equation (5)) is still constrained. Calculations with (without) matching of the density are

presented as BE(n) (BE(n)no match) where n is the fragment size.

Minimizing the e!ective fragment Hamiltonian HF , the Hamiltonian projected into the

FO + BO basis, with the constraints in Equations (4) and (5) leads to the Lagrangian

L =

Nfrag∑

F



〈!F
∣∣ ĤF

∣∣!F
〉
↗ E

F
(〈
!F

∣∣!F
〉
↗ 1

)
+

Nfrag∑

G ↓=F

EF
I ↔CG

I∑

pq

εF

pq

(〈
!F

∣∣ âF †
p
âF
q

∣∣!F
〉
↗ PG

pq

)




+µ




Nfrag∑

F

∑

p↑CF

〈
!F

∣∣ âF †
p
âF
p

∣∣!F
〉
↗Ne





(6)

where εF

pq
are the Lagrangian multipliers to enforce Equation (4) and µ is the Lagrangian

multiplier to enforce Equation (5). Solving Equation (6) for the stationary point with respect

to !F yields the following eigenvalue equation.



ĤF +
EF∑

pq

εF

pq
âF †
p
âF
q
+ µ

CF∑

p

âF †
p
âF
p



 ∣∣!F
〉
= E

F
∣∣!F

〉
(7)

This is the original fragment Hamiltonian in Equation (20) dressed with a local e!ective

potential, εF

pq
, and a global potential, µ. This dressed Hamiltonian exists in the whole FO

and BO space, but the local potential acts on only the FO space.

The embedding energy is calculated with a cumulant-based expression summed across

Nfrag fragments, following ref. 62 and described in ref. 60. The working equations are

presented in Appendix B.
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2.2 BE in Extended Basis Sets

In principle, the same theory described for minimal basis sets can be applied to extended

basis sets. Starting from a a larger AO basis set, the same localizations as before (e.g Boys,

PM, or Löwdin) can be performed and the LOs will be assigned to fragments consistent with

the size of the AO basis. The BOs can be obtained from the Schmidt Decomposition. The

space of FOs and BOs are treated in a correlated calculation in the combined FO+BO space.

The results from this approach are somewhat unreliable in larger basis sets, as illustrated

in Figure 3. In this figure, BE(2) in cc-pVDZ63 with CCSD as the fragment solver is run for

C16H18 E-polyacetylene (geometry in Supplementary Information). The data points labeled

“Boys” indicate the convergence of BE(2) using Boys localization. It is clear that this scheme,

as well as that labeled “Löwdin” referencing simple symmetric orthogonalization, fails to

converge as the matching condition is never satisfied. These results motivate the exploration

of other localization schemes for these more extended basis sets.

2.2.1 Fragment Orbitals

In order to understand why BE coupled with pure Boys or pure Löwdin orbitals struggles to

converge, it is instructive to look at the FOs each method produces. The LOs of the same

example system in the previous section are pictured in Figure 4. It is immediately apparent

that the spatial extent of these orbitals is far greater than that of the LOs in Figure 1. The

di"culty of localizing all the basis functions in extended basis sets is well-known.64 Not only

that, but there are some orbitals that cannot be clearly assigned to one atomic group, which

is a challenge for the atom-based fragmentation scheme.

Given that the localization schemes work robustly in minimal, valence-like basis sets, one

is naturally led to consider localization schemes that might leverage the valence-like functions

that exist even in extended basis sets. The natural tool in this spirit is the construction of

IAOs,65 which have previously seen success in many other fragment embedding schemes.40,66

In short, the IAOs involve projection of an extended basis set into a smaller “valence-like”
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Figure 3: BE(2) error (Hartrees) versus RMS error in the BE matching condition. The
system is C16H18 E-polyacetylene in cc-pVDZ. The three BE schemes listed are Löwdin
(simply perfoming symmetric orthogonalization), Boys (raw Boys localization following the
procedure in Section 2.1), and IAOs (the procedure in Section 2.2 matching only the IAOs).
Further right indicates that the BE matching condition is closer to convergence. Each data
point represents one Quasi-Newton iteration.
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Figure 4: Sample LOs obtained through Boys localization for C16H18 E-polyacetylene in
cc-pVDZ.

basis. These valence-like functions are designed to exactly span the occupied space and still

resemble the minimal basis set that is easier to localize and assign to atomic fragments.

As shown in Appendix C, the IAOs are obtained by starting with a set of target valence

functions |ϖ↓ and defining three projection operators: one onto the full working basis set P̂W ;

one onto the valence part of the occupied space (O); and one onto the non-valence part of

the occupied space (Õ). The IAOs are then obtained as:

|ϖ̄↓ = orth
([

Ô
ˆ̃
O + (1↗ Ô)(1↗ ˆ̃

O)

P̂W |ϖ↓


(8)

The projection in the parenthesis yields the IAOs, which are further orthogonalized through

Boys localization. The IAOs obtained this way are a set of orbitals the same size as and

resembling the valence basis set as much as possible while still spanning the occupied space

(and part of the virtual space).

Pictured in Figure 5 are two localized AOs for C16H18 E-polyacetylene using raw Boys

localization of the orbital space (as seen in Figure 4) compared to their counterparts in
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Figure 5: Two localized orbitals of E-polyacetylene (C16H18) in the cc-pVDZ basis. The two
orbitals on the left are localized using Boys localization. The two orbitals on the right are
obtained from using Boys localization on IAOs obtained from a STO-3G valence basis set.

the IAO space. Immediately, it can be seen that the IAO scheme yields orbitals far more

localized and easier to assign to atomic groups compared to raw Boys localization.

The IAOs only span part of the orbital space. The rest of the orbital space, the part

of the virtual space that is hard to localize, is included as PAOs. The PAOs67 are simply

the entire working basis with the IAOs projected out. This is accomplished by the following

projections.

|ϖ̄↗↓ = orth

(
1↗

∑

ϖ

|ϖ̄↓ ⇐ϖ̄|

(
1↗ P̂V


|µ↓

)
(9)

Note that the first projection in Equation (9) will give us a redundant set of orbitals.66 We

have chosen to perform a canonical orthogonalization to get rid of redundancies, and then a

Boys localization to localize the PAOs. Two example PAOs are pictured, in comparison to

the corresponding naïve Boys localized orbitals discussed earlier in Figure 6. As is evident in

the figure, the PAO scheme is no more e!ective than pure Boys at localizing these orbitals.

This observation is consistent with the conventional wisdom from local electron correlation

approaches, where it is known that the virtual space (an in particular the non-valence part of

the virtual space) can be di"cult to localize.64 However, because we now only have di"culty

in localizing these non-valence virtual orbitals (which play a smaller role in the wavefunction)

one expects that the results will be somewhat more robust to the assignment of these orbitals
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to di!erent atoms.

Figure 6: Two localized orbitals of E-polyacetylene (C16H18) in the cc-pVDZ basis. The two
orbitals on the left are localized using Boys localization. The two orbitals on the right are
obtained from using Boys localization on PAOs obtained from projecting out IAOs (with
STO-3G as the valence basis set).

The set of working equations used to determine these IAOs and PAOs are detailed in

Appendix C.

2.2.2 Bath Orbitals

With a set of FOs in hand, one proceeds to form the BOs using the Schmidt Decomposition

as described above. We will note that, in principle, one ought to obtain an equal number of

FOs and BOs out of the Schmidt Decomposition. Indeed, for minimal basis sets this almost

always occurs. However, in more extended basis sets, the number of bath orbitals is almost

always less than the number of fragment orbitals due to linear dependence of the BOs—an

issue often referred to as bath disentanglement. In practice, we deal with this by keeping

only the linearly independent BOs and performing the fragment calculation in the reduced

FO+BO space. Future work will explore potential means of restoring the BOs that are “lost”

in this fashion.
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2.2.3 Bootstrap Embedding

The philosophy behind atom-based BE is to match atomic groups to atomic groups based

on the idea that certain atomic groups are more accurately represented. This fails when

orbitals cannot be definitively assigned to an atomic group, as it no longer becomes clear

whether an orbital delocalized between a center and edge atomic group can be considered

accurate. As demonstrated above, this is not a challenge for IAOs, but can be challenging

for some of the virtual PAOs.

These concerns motivate a truncation of the matching conditions. Instead of matching

all the LOs in the edge to the center, it may be helpful to only match the IAO blocks of the

density matrix, as follows. Define the subset of the center and edge orbitals that are IAOs

as CF

I
and EF

I
for fragment F . The new matching conditions are simply

〈
!F

∣∣ âF †
p
âF
q

∣∣!F
〉
= PG

pq
for p, q ↘ EF

I
≃ CG

I
(10)

and yield the e!ective fragment Hamiltonian



ĤF +

EF
I∑

pq

εF

pq
âF †
p
âF
q
+ µ

CF
I∑

p

âF †
p
âF
p



 ∣∣!F
〉
= E

F
∣∣!F

〉
(11)

where the only modification is that the matching potential acts on only the IAO part of the

FOs. As shown in Figure 3, this IAO scheme does indeed improve the convergence of the

calculation in cases where simple Boys or Löwdin fail. We will further explore the utility of

matching only the IAO part of the FO density matrix below.

3 Computational Details

All BE calculations were done using in-house software which utilizes PySCF68 for electronic

structure calculations and Libint269 for the integral evaluations. Any high level theory can
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be used to solve each fragment Hamiltonian in Equation (7). In this work, we used CCSD

as the fragment solver with the unrelaxed density matrices, and we compared the embedded

results to the full-system CCSD solutions, also calculated using PySCF. Positive percent error

indicates over-correlation and negative percent error indicates under-correlation. We note

that although BE can be applied to quite large systems, our comparative results are limited

by the size of systems on which we can run CCSD calculations.

BE calculations were done using the IAO and PAO scheme described in Section 2.2.1. The

valence basis set used is the MinAO basis set, and Boys localization was used to orthogonalize

the IAOs and PAOs. We hav e tried di!erent choices of valence basis sets, finding that while

some choices suit certain molecules, the MinAO/Boys scheme works universally well for

the test molecules. Any other results using di!erent choices for the valence basis set and

localization can be found in the Supplementary Information. The working basis sets tested

include STO-3G, 3-21G, 6-311G, and cc-pVDZ.

Calculations were conducted on five di!erent classes of molecules: E-polyacetylene, fullerenes,

polyglycine, nylon 6-6, and azane. The polymer molecules can be easily extended to larger

sizes to test the error scaling. For E-polyacetylene, polyglycine, nylon 6-6, and azane, the

geometry of each monomer unit is fixed and repeated to generate larger polymers. This

ensures that larger polymers are consistent with the smaller polymers. The xyz files for

all the geometries and visualizations of each molecule can be found in the Supplementary

Information, as well as the converged BE results for all structures in each basis set.

4 Results

The BE errors compared to CCSD for the various molecules in this study are plotted in

Figure 7. E-polyacetylene (Figure 7a) and fullerene (Figure 7e) are homogeneous carbon

systems studied in previous works. Fullerenes present additional di"culty compared to the

rest of the molecules in this study due to their two dimensional structure and their more
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Figure 7: BE error versus CCSD, averaged across converged geometries in each basis set, for
a) 16, 32, 48, and 64 carbon E-polyacetylene chains; b) 16, 32, and 48 nitrogen azane chains;
c) 2, 4, and 6 monomer chains of nylon; d) 4, 8, and 12 monomer chains of polyglycine;
and e) C36 ↗ D6H , C60, and C78 ↗ D3H fullerenes. All calculations used IAO-MINAO/Boys
localization schemes.
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Figure 8: BE(3)no match errors versus CCSD for Azane, E-polyacetylene, Nylon, Polyglycine
and Fullerene in the 3-21G, 6-311G, and cc-pVDZ basis sets. All are localized with the IAO-
MINAO/Boys scheme. Errors are averaged where converged for each basis set over multiple
geometries for each molecule type, and the standard deviation in this error is indicated.

complex connectivity. Azane (Figure 7b) is a similarly homogeneous nitrogen system. Nylon

(Figure 7c) and polyglycine (Figure 7d) are two non-homogeneous systems, with less uniform

fragments, used as more complex tests for BE. The 3-21G, 6-311G, and cc-pVDZ basis sets

are tested.

As shown by the small variations in accuracy across the di!erent examples, BE performs

similarly across di!erent sizes of polymeric chains and fullerenes. This demonstrates that

BE is consistently reliable with increasing system size, as is the expectation of size-consistent

embedding methods. The results presented here are averaged over all converged calculations

for a range of sizes of each molecule type. Though each data point represents an averaged

signed error (which can in principle mask large errors by cancellation of positive and negative

errors), for a given molecule and basis set, the errors for a given BE(n) level are almost

exclusively of the same sign. Because the sign is meaningful in di!erentiating over- and

under-correlation, we include it here. Each individual molecular result is included in the

Supplementary Information.
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In the polymer test cases, BE(2)no match and BE(2) capture about 98.5% of the correlation

energy, with a slightly higher error for the fullerenes. For the larger fragment BE(3)no match

and BE(3), 99.7% of the CCSD correlation energy is captured for all systems in all basis

sets, marking the success of BE for large basis sets, as seen in Figure 8. This combination

of the IAO localization and BE framework succeeds in describing these systems with non-

minimal basis sets in a systematically improvable way. In all cases, we see that the IAO-BE

calculation improves with increasing fragment size. BE(3) improves the BE(2) results for all

of the systems tested.

The e!ect of the matching condition can be seen by comparing BE(2)no match to BE(2)

and BE(3)no match to BE(3). The matching conditions for these systems does not have a

large impact on the accuracy of the calculated energy. For all systems and all basis sets,

BE(2)no match and BE(2) perform almost indistinguishably. The matching with BE(3) some-

times improves the result over BE(3)no match. However, the additional cost and di"culty

converging the BE(3) matching conditions should be weighed in choosing the appropriate

calculation. Matching has the greatest impact for the non-homogenous nylon and polyglycine

systems, which can be rationalized with the irregularity of their fragments. Fragments in

these compounds centered on oxygen, for instance, are chemically dissimilar from those

centered on carbon; thus, the RDM1 description of oxygen in each fragment di!ers. For

increasingly large and less atomically homogenous systems, matching may still prove benefi-

cial and should be investigated more thoroughly. These results demonstrate that converging

the matching conditions may not be necessary to chemical accuracy, allowing BE without

matching to be useful for even these di"cult cases.

Fullerenes stand out in this dataset as a particular challenge for BE. Fullerenes are

pseudo two-dimensional systems, making the BE(3) prescription expensive and di"cult to

converge due to the rapid fragment size growth with respect to coordination shell. This

problem is exacerbated in large basis sets, leading to a steep computational cost. Such

larger fragment sizes, however, may be necessary to achieve desired accuracy, perhaps due
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to the two-dimensional nature of these more locally correlated systems. Moving forward, an

alternative scheme to increasing fragment sizes may be necessary to describe these systems

at a lower computational cost.

5 Conclusion

In this paper, we extend the methodology of Schmidt Decomposition-based embedding meth-

ods, BE in particular, to the realm of extended basis sets. Our initial success in studying

molecular properties with BE56,57 can now be expanded into the regime of dynamic corre-

lation. The main challenge for embedding methods in large basis sets is the di"culty of

localizing the basis functions and defining fragments. Our remedy involves the localization

of the IAO subspace and restricting all fragment matching to the IAOs. This modified BE

successfully converges and captures 99.7% of the CCSD correlation energy for all systems in

this study and for basis sets including 6-311G and cc-pVDZ.

While the prescription used in this paper has been successful, the questions of whether

there are more e!ective localization schemes or ways to include more matching conditions

beyond matching the IAOs could still be explored. The results in this work indicate that

matching conditions are not as important as fragment size for converging to the correct

correlation energy. It is possible that certain systems will require matching conditions for

this level of accuracy, but we did not encounter them in this study. We also find that for

highly connected systems (like the 2D fullerene systems studied here) or for basis sets that

are even more dense than the ones studied here (e.g. TZ2P or QZPP basis sets), the BE(3)

calculations that we would expect to give chemical accuracy are computationally prohibitive.

To improve BE calculations shown in this work, a scheme for improving BE(2) at a lower

cost than full BE(3) is desirable. One potential means of doing so would be to use the cluster

natural orbitals70 that have been successful in other embedding strategies. Alternative local-

ization schemes and perhaps alternative choices of valence basis sets for the IAO projection
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could yield better results, or even improve the convergence issues with BE(3). Although

much regarding BE in extended basis sets has yet to be explored, the results presented

here are extraordinarily promising and suggest that with further development, embedding

can become a benchmark-quality low-scaling electron correlation method making worthwhile

impacts in predictive chemistry.
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A Schmidt Decomposition for Mean-Field Wavefunctions

In this section, we detail how one obtains the fragment, bath, and environment orbitals

used in the embedding calculation. The following expressions are assumed to be in some

orthogonal basis of local orbitals (LOs). Define the fragment, F , and identify all LOs that

belong to F . In our case, F is defined by a set of atoms and LOs are assigned to atoms

based on their maximum Löwdin population.71 Denoting the list of LOs belonging to F as

IF and the complement as JF , we partition the rows of the occupied coe"cient matrix in

the LO basis (Cocc) as

Cocc =




Cocc

IF

Cocc
JF



 (12)
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In order to obtain the maximally entangled elements from the complement of F , we perform

a singular value decomposition on Cocc
JF

Cocc
JF

= UF”FVFT (13)

where ” is the core tensor, which is diagonal. The diagonal elements of ” lie between 0 and

1. 0 means fully virtually, 1 means fully occupied, and between 0 and 1 means entangled.

We divide U in columns corresponding to orbitals that are entangled and those that are fully

occupied.

UF

B;ij = UF

ij
for j such that ”F

jj
⇒= 0, 1 (14)

UF

E;ij = UF

ij
for j such that ”F

jj
= 1 (15)

Now, the fragment, bath, and environment orbitals (FOs, BOs, EOs) can be defined.

The FOs are simply the LOs in F . The BOs and EOs are the columns of UF

B
and UF

E
,

respectively. Hence, denoting our LO basis as |ϱi↓, we have

∣∣fF

p

〉
=

∑

i

ςip |ϱi↓ (16)

∣∣bF
q

〉
=

∑

i

UF

B;iq |ϱi↓ (17)

∣∣eF
r

〉
=

∑

i

UF

E;ir |ϱi↓ (18)

where p ↘ IF . Denote the transformation from the LOs into the FOs and BOs as TF

TF =




I 0

0 UF

B



 (19)

With these orbital definitions in mind, we can form an e!ective Hamiltonian for fragment
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F .

ĤF =
2NF∑

pq

hF

pq
âF †
p
âF
q
+

1

2

2NF∑

pqrs

V F

pqrs
âF †
p
âF †
r
âF
s
âF
q
+ Eenv;F (20)

where

Penv;F
⇑

∑

pq

∣∣eF
p

〉 〈
eF
q

∣∣ (21)

hF

pq
=

N∑

µω

T F

µp
F env,F

µω
T F

ωq
(22)

V F

pqrs
=

N∑

µωεϑ

T F

µp
T F

ωq
VµωεϑT

F

εr
T F

ϑs
(23)

Eenv;F = Tr
(
h+ F env,F

)
P env,F (24)

and F env is the environment Fock matrix.

B Cumulant Energy

The cumulant energy can be expressed as

E = E [0]
HF

+

Nfrag∑

F

∑

p↑CF


2NF∑

q

F [0],F
pq

#P F

pq
+

1

2

2NF∑

qrs

V F

pqrs
KF

pqrs


(25)

where E [0]
HF

is the reference system HF energy, F [0],F is the Fock matrix corresponding to

that reference HF density in each FO + BO basis, and #P F is the di!erence between the

correlated RDM1, P F , and the corresponding reference HF density of the fragment, PHF,F .

The approximate two-body cumulant term, KF , is defined relative to the true two-body

fragment cumulant K̃F :

KF

pqrs
= K̃F

pqrs
+#P F

pq
#P F

rs
↗

1

2
#P F

pr
#P F

sq
(26)
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The true two-body cumulant K̃F is related to the RDM2 $F by

$F

pqrs
= P F

pq
P F

rs
↗

1

2
P F

pr
P F

sq
+ K̃F

pqrs
(27)

As demonstrated in periodic-BE,60 we note that the cumulant-based energy expression in

Equation 25 provides significantly better correlation energies for our embedded calculations

compared to the previously used density-matrix based energy expression54–57 . This is also

observed in ref. 62.

C IAO and PAO Working Equations

Here, we detail the working equations to obtaining the IAOs and PAOs.

We start with the working AO basis set |µ↓ (with span BW ) and choose a “valence basis”

denoted by |ϖ↓ (with span BV ). This valence basis set, in our case, is some minimal basis

set that we want the final IAOs to resemble.

All matrices are in the working basis set. Define the overlap matrix between the working

basis and the valence basis as SWV . The projection operators are

PW = S→1
W

(28)

PV = SWV S
→1
V
ST

WV
(29)

Let Cocc be the occupied coe"cient matrix. Begin by obtaining the depolarized occupied

orbitals.

C̃occ = PWPVCocc (30)
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The projection into the occupied orbitals and the depolarized occupied orbitals are

Pocc = CoccC
T

occ (31)

P̃occ = C̃occS̃
→1C̃T

occ (32)

where

S̃ = C̃T

occSW C̃occ (33)

The IAOs are (Equation (8))

C̄ = orth
[
(I↗ (Pocc + P̃occ ↗ 2PoccSW P̃occ)SW )R̃


(34)

where orth indicates Boys localization. Next we solve for the PAOs. Define

D = S→1
W
SWV (35)

and the non-valence part of the working basis is

M↗ = I↗DDT (36)

The projection into the IAOs is

P̄ = C̄C̄TSW (37)

The PAOs are (Equation (9))

C̄↗ = orth

(I↗ P̄)M↗ (38)

These PAOs are canonically orthogonalized and then Boys localized.
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