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PRODUCT MANIFOLDS AND
THE CURVATURE OPERATOR OF THE SECOND KIND

XIAOLONG L1

We investigate the curvature operator of the second kind on product Rie-
mannian manifolds and obtain some optimal rigidity results. For instance,
we prove that the universal cover of an n-dimensional nonflat complete
locally reducible Riemannian manifold with (n+ "T_Z)-nonnegative (respec-
tively, (n+"T_2)-n0npositive) curvature operator of the second kind must be
isometric to S"~! x R (respectively, H"~! x R) up to scaling. We also prove
analogous optimal rigidity results for S"t x S"2 and H"t x H"2, ny, n > 2,
among product Riemannian manifolds, as well as for CP"! x CP™2 and
CH™ x CH™2, my, m, > 1, among product Kiihler manifolds. The approach
is pointwise and algebraic.

1. Introduction

On a Riemannian manifold (M", g), the curvature operator of the second kind
refers to the symmetric bilinear form R: SS(T,, M) x Sg(T,,M ) — R defined by

R(p,¥) = RijkipitV¥ k.

where SS(T,,M ) is the space of traceless symmetric two-tensors on 7, M. The
terminology is due to Nishikawa [1986]. Early works studying this notion of
curvature operator include [Calabi and Vesentini 1960; Berger and Ebin 1969;
Bourguignon and Karcher 1978; Koiso 1979a; 1979b; Ogiue and Tachibana 1979;
Nishikawa 1986; Kashiwada 1993].

Recently, the curvature operator of the second kind has received much attention;
see [Cao et al. 2023; Li 2022; 2023a; 2023b; 2024; Nienhaus et al. 2023a; 2023b;
Fluck and Li 2024; Dai and Fu 2024; Dai et al. 2024]. In particular, the longstanding
conjecture of Nishikawa [1986], which asserts that a closed Riemannian manifold
with positive curvature operator of the second kind is diffeomorphic to a spherical
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space form and a closed Riemannian manifold with nonnegative curvature operator
of the second kind is diffeomorphic to a Riemannian locally symmetric space, has
been resolved by Cao, Gursky and Tran [Cao et al. 2023], Li [2024], and Nienhaus,
Petersen, and Wink [Nienhaus et al. 2023a], under weaker assumptions but with
stronger conclusions. More precisely, it is known now that:

Theorem 1.1 [Cao et al. 2023; Li 2024; Nienhaus et al. 2023a]. Let (M", g) be a
closed Riemannian manifold of dimension n > 3.

(1) If (M", g) has three-positive curvature operator of the second kind, then M is
diffeomorphic to a spherical space form.

(2) If (M", g) has three-nonnegative curvature operator of the second kind, then
M is either flat or diffeomorphic to a spherical space form.

The key observation made by Cao, Gursky, and Tran in [2023] is that two-positive
curvature operator of the second kind implies strictly PIC1 (i.e., M x R has positive
isotropic curvature). This is sufficient to solve the positive case of Nishikawa’s
conjecture, as one can appeal to a result of Brendle [2008] stating that the normalized
Ricci flow on a compact manifold starting with a strictly PIC1 metric exists for
all time and converges to a limit metric with constant positive sectional curvature.
Shortly after, the author showed that strictly PIC1 is implied by three-positivity of
the curvature operator of the second kind; thus getting an immediate improvement
of the result in [Cao et al. 2023]. To deal with the nonnegative case, the author
[2024] reduces the problem to the locally irreducible case by proving that a complete
n-dimensional Riemannian manifold with n-nonnegative curvature operator of the
second kind is either flat or locally irreducible (see also Theorem 1.6 below for an
optimal improvement of this result). Finally, nonflat Kéhler manifolds are ruled out
using [Li 2024, Theorem 1.9] (see also [Li 2023a] for an optimal improvement of
it) and compact irreducible symmetric spaces are ruled out by Nienhaus, Petersen,
and Wink [2023a, Theorem A]. We refer the reader to [Li 2022] or [Li 2023a] for a
detailed account of the notion of the curvature operator of the second kind, as well
as some recent developments.

We aim to study the curvature operator of the second kind on product Riemannian
manifolds and obtain some optimal rigidity results. We first recall the following
definition. Let N := % denote the dimension of Sg(TpM ). For @ € [1, N1,
we say (M", g) has a-positive (respectively, ¢-nonnegative) curvature operator of
the second kind if for any p € M and any orthonormal basis {¢;}"_, of SZ(T,M),

L]

A-1) Y R(@i, ¢1) + (@ — L)) R(@laj 11, Plaj1) > O (respectively, > 0).
i=1



CURVATURE OPERATOR OF THE SECOND KIND 169

Here and in the rest of this article, | x| denotes the floor function defined by
|x] :=max{m e Z:m < x}.

When o = k is an integer, this reduces to the usual definition, which means the
sum of the smallest k eigenvalues of the matrix I%((p,-, ;) 18 positive (respectively,
nonnegative) for any orthonormal basis {(pi}lN: | of SS(TPM ). Similarly, (M", g)
is said to have a-negative (respectively, ¢-nonpositive) curvature operator of the
second kind if the direction of the inequality (1-1) is reversed.

Our first main result is the following rigidity result for "' x R and H"~! x R,
where S" and H", n > 2, denote the n-dimensional sphere and hyperbolic space

with constant sectional curvature 1 and —1, respectively.

Theorem 1.2. Let (M", g) be a nonflat complete locally reducible Riemannian

manifold of dimension n > 4.

(1) If M has (n+”n;2)—n0nnegative curvature operator of the second kind, then
the universal cover of M is, up to scaling, isometric to S"~' x R.

2) If M has (n+”T_2)-n0np0sitive curvature operator of the second kind, then the
universal cover of M is, up to scaling, isometric to H" ™! x R.

Closely related is the following holonomy restriction theorem in the spirit of
[Nienhaus et al. 2023b].

Theorem 1.3. Let (M", g) be a (not necessarily complete) Riemannian manifold
of dimension n > 3. Suppose that (M, g) has «-nonnegative or a-nonpositive
curvature operator of the second kind for some o < n + "n;z Then either M is flat
or the restricted holonomy of M is SO(n).

Theorems 1.2 and 1.3 improve previous results obtained in [Li 2024] and [Nien-
haus et al. 2023b]. The author [2024, Theorem 1.8] proved that an n-dimensional
complete Riemannian manifold with n-nonnegative curvature operator of the second
kind is either flat or locally reducible. This result plays a significant role in resolving
the nonnegative part of Nishikawa’s conjecture in [Li 2024], as it allows one to
reduce the problem to the locally irreducible setting. A slight modification of the
proof yields the same conclusion under n-nonpositive curvature operator of the
second kind. The method used in [Li 2024] is pointwise and algebraic. In [Nienhaus
et al. 2023b], it is shown that if the curvature operator of the second kind of an
n-dimensional Riemannian manifold, not necessarily complete, is n-nonnegative
or n-nonpositive, then either the restricted holonomy of M is SO(n) or M is flat.
This is a generalization of the author’s result in [Li 2024] mentioned above. The
approach of [Nienhaus et al. 2023b] is local. The key idea is that, unless the
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restricted holonomy is generic, there exists a parallel form, at least locally on the
manifold. However, the Bochner technique with the curvature assumption implies

that no such local parallel form exists unless the manifold is flat.

n—2
n

optimal in all dimensions, since $" ! x R and H"~! x R have (n-l—””;z)—nonnegative

in Theorems 1.2 and 1.3 is

We would like to point out that the number n +

and (n+"n;2)—n0npositive curvature operator of the second kind, respectively, and
they both have restricted holonomy SO(n — 1). In dimension four, CP? and CH?
have 4%—nonnegative and 4%—n0np0sitive curvature operator of the second kind,
respectively, and they both have restricted holonomy U(2).

Theorem 1.3 can also be viewed as supporting evidence to the author’s conjecture
in [Li 2022]: a closed n-dimensional Riemannian manifold with (n+"n;2)—positive
curvature operator of the second kind is diffeomorphic to a spherical space form.

As a generalization of Theorem 1.1, the author proved in [Li 2022] that a closed
Riemannian manifold of dimension n > 4 with 4%—positive curvature operator of
the second kind is homeomorphic to a spherical space form. This is obtained by
showing that 4%—positive curvature operator of the second kind implies positive
isotropic curvature and (n+"n;2)—positive curvature operator of the second kind
implies positive Ricci curvature, and then making use of the work of Micallef and
Moore [1988]. A classification result of closed manifolds with 4%—n0nnegative
curvature operator of the second kind was also obtained in [Li 2022, Theorem 1.4].
Using Theorem 1.2, together with [Li 2023a, Theorem 1.2] and [Nienhaus et al.
2023a, Theorem B], we get an improvement of [Li 2022, Theorem 1.4].

Theorem 1.4. Let (M", g) be a closed nonflat Riemannian manifold of dimension
n > 4. Suppose that M has 4%—n0nnegative curvature operator of the second kind.
Then one of the following statements holds:

(1) M is homeomorphic (diffeomorphic if either n = 4 or n > 12) to a spherical
space form.

(2) n =4 and M is isometric to CP* with Fubini—Study metric up to scaling.

(3) n = 4 and the universal cover of M is isometric to S® x R up to scaling.

Our second main result is the rigidity of S™' x §"2 and H"' x H"? among product
Riemannian manifolds.

Theorem 1.5. Let (M;”, gi) be a Riemannian manifold of dimension n; > 2 for
i=1,2,and let (MM T™, g) = (Mfl X Mgz, 81D g2). Set

ni(ny —1) +na(ny —1)

(1-2) Ap iy, =14+n1n2+
ny+ny
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Then:

(1) If M has a-nonnegative or a-nonpositive curvature operator of the second
kind for some a < Ay, p,, then M is flat.

(2) If M has Ay, »,-nonnegative curvature operator of the second kind, then both
M and M5 have constant sectional curvature ¢ > 0.

(3) If M has A, ,,-nonpositive curvature operator of the second kind, then both
1,12 p P
M and M> have constant sectional curvature ¢ < 0.

If M is further assumed to be complete and nonflat, then the universal cover of M
is isometric to S x §"2 in part (2) and H** x H"? in part (3), up to scaling.

The author [2024, Proposition 5.1] proved that an n-manifold with (k(n—k)+1)-
nonnegative curvature operator of the second kind cannot split off a k-dimensional
factor with 1 <k < 7, unless it is flat. The number k(n — k) + 1 is only optimal
for some special n and k. Combining Theorems 1.2 and 1.5, we get the following
generalization, which is optimal for any n and 1 <k < 7.

Theorem 1.6. An n-dimensional Riemannian manifold with a-nonnegative or o-

nonpositive curvature operator of the second kind for some

oz<k(n—k)+M

cannot locally split off a k-dimensional factor with 1 < k < 5, unless it is flat.

In another direction, the curvature operator of the second kind has been investi-
gated for Kédhler manifolds in [Bourguignon and Karcher 1978; Li 2023a; 2023b;
2024; Nienhaus et al. 2023b]. For instance, it was shown in [Li 2023a] that an m-
dimensional Kéhler manifold with %(mz— 1)-nonnegative (respectively, %(mz— 1)-
nonpositive) curvature operator of the second kind has constant nonnegative (respec-
tively, nonpositive) holomorphic sectional curvature, and a closed m-dimensional
Kéhler manifold with (3'”32_—mm+2)—positive curvature operator of the second kind
has positive orthogonal bisectional curvature; thus being biholomorphic to CP™.
Here we prove the following rigidity result for CP""' x CP"? and CH™' x CH™?

(all equipped with their standard metrics) among product Kédhler manifolds.

Theorem 1.7. Let (M", g;) be a Kiihler manifold of complex dimension m; > 1
fori=1,2,and let (M™ "2, g) = (M]"' x M3?, g1 &® g»). Set

o 2 my+m;

Then:
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(1) If M has a-nonnegative or «-nonpositive curvature operator of the second
kind for some a < By, m,, then M is flat.

(2) If M has B,,, m,-nonnegative curvature operator of the second kind, then both
M and M, have constant holomorphic sectional curvature ¢ > Q.

(3) If M has By, m,-nonpositive curvature operator of the second kind, then both
M and M, have constant holomorphic sectional curvature ¢ < 0.

If M is further assumed to be complete and nonflat, then the universal cover of M is
isometric to CP™ x CP™? in part (2) and CH™' x CH™? in part (3), up to scaling.

Our investigation of the curvature operator of the second kind on product man-
ifolds is motivated not only by the above mentioned optimal rigidity results but
also by the fact that the spectrum of R is known only for a few examples: space
forms with constant sectional curvature, Kihler and quaternion-Ké&hler space forms
[Bourguignon and Karcher 1978], S? x S? [Cao et al. 2023], S~ x R [Li 2024],
S? x §7 [Nienhaus et al. 2023b]. We determine the spectrum of R for a class of
product manifolds by proving the following theorem.

Theorem 1.8. Let (M;, g;) be an n;-dimensional Einstein manifold with Ric(g;) =
pig andn; > 1fori =1,2. Denote by R; the curvature operator of the second kind
of M; fori =1, 2, and R the curvature operator of the second kind of the product
manifold

(M™% g) = (M} x M}?, g1 @ g2).

Then the eigenvalues of R are precisely those of Ry and R,, and 0 with multiplicity

nip2+nypi

i with multiplicity one.

niny, and —

Theorem 1.8 enables us to determine the spectrum of the curvature operator of
the second kind on (M1, g1) X (M>, g2), with (M;, g;) being either a space form
with constant sectional curvature or a Kihler space form with constant holomorphic
sectional curvature for i = 1, 2. Examples are listed at the end of Section 2. More
generally, Theorem 1.8 can be applied repeatedly to calculate the spectrum of R
for product manifolds of the form (M, g1) x --- x (Mg, gk), provided that each
(M;, g;) is Einstein and the eigenvalues of the curvature operator of the second
kind are known on M;.

Let’s discuss the strategy of our proofs. The key idea to prove Theorems 1.2,
1.5 and 1.7 is to use the corresponding borderline example, such as $"~! x R,
§™M x §" or CP™ x CP™2, as a model space and apply R to the eigenvectors
of the curvature operator of the second kind on the model space. This idea has
been successfully employed in [Li 2022] with CP? and S? x R as model spaces,
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in [Li 2023b] with S* x S? as the model space and in [Li 2023a] with CP"" and
CP™~! x CP! as model spaces. With the right choice of model space, this strategy
leads to optimal results as the inequalities are all achieved as equalities on the model
space. Theorem 1.6 is essentially a consequence of Theorems 1.2 and 1.5. The proof
of Theorem 1.3 uses Berger’s classification of restricted holonomy groups, together
with Propositions 3.1 and 4.1, and results in [Li 2023a] and [Nienhaus et al. 2023b].
The proof of Theorem 1.8 relies on the fact that when both factors are Einstein, we
can choose an orthonormal basis of the space of traceless symmetric two-tensors
that diagonalizes the curvature operator of the second kind on the product manifold.

At last, we emphasize that our approach is pointwise, and, therefore, many of our
results are of a pointwise nature, and the completeness of the metric is not required.
Another feature is that our proofs are purely algebraic and work equally well for
nonpositivity conditions on R.

The article is organized as follows. In Section 2, we study the curvature operator
of the second kind on product Riemannian manifolds and prove Theorem 1.8. We
present the proofs of Theorems 1.2 and 1.4 in Section 3. The proofs of Theorems 1.5
and 1.6 are given in Section 4. In Section 5, we prove Theorem 1.3. Section 6 is
devoted to the proof of Theorem 1.7.

2. Product manifolds

We study the curvature operator of the second kind on product Riemannian manifolds
and prove Theorem 1.8.

Recall that for Riemannian manifolds (M, g;) and (M>, g2), the product metric
g1 g» on M| x M> is defined by

gX1+ X2, Y1+ 1) =g1(X1, Y1)+ g2(X2, 12)
for X;, Y; € T, M; under the natural identification
Tpy,pyy (M1 X M2) =Tp My @ Tp, M.

Let R denote the Riemann curvature tensor of M = M; x M, and Ry and R, denote
the Riemann curvature tensor of M| and M», respectively. Then one can relate R,
R and R; by

R(X1+Xo, Y1+Y2, Z1+2Z, Wi+ W) =R (X1, Y1, Z1, W)+ Ro (X2, Yo, Zr, Wa),

where X;,Y;, Z;, W; e TM, for i =1, 2. As the reader will see, the above equation,
which is a consequence of the product structure, plays a significant role in this
section.
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From now on, let’s focus on a single point in a product manifold and work in
a purely algebraic way. For i =1, 2, let (V;, g;) be a Euclidean vector space of
dimension n; > 1. The product space V = V| x V, will be naturally identified with
V1 @ V; via the isomorphism (X, X;) — X| + X, for X; € V;. The product metric
on V, denoted by g = g1 @ g», is defined by

(2-D gX1+ X2, Y1+ 1) =g1(X1, Y1) + g(X2, 12)

for X;,Y; € V;.

Denote by S% (A?V) the space of algebraic curvature operators on (V, g). That is
tosay, R € S%;(A2V) is a symmetric two-tensor on the space of two-forms A2V on
V and R also satisfies the first Bianchi identity. Given R; € S% (A%V;) fori=1,2,
we define R € S;‘; (A%V) by

(2-2) RX1+Xo. Y1+, Z1+2Zy, Wi+ W)

=Ri(X1, Y1, Z1, W) + Ry(X2, Yo, Z, Wa),
for X;, Y;, Z;, W; € V;. Throughout this paper, we simply write

R=R ® R

whenever R, R and R, are related by (2-2). We denote by Ii’, Ii’l and Ii’z the associ-
ated curvature operator of the second kind for R = R; @ R,, R; and R», respectively.
The key result of this section is the following proposition.

Proposition 2.1. Let R; € S%(AZV,-)fori = 1,2 with dim(V;) = n; > 1 and let
R =R ® Ry. If Ric(R;) = p;g; fori =1, 2, then the eigenvalues ofl% are precisely
those of Ry and R, together with 0 with multiplicity nin, and —"221—2;‘” with
multiplicity one.

In the rest of this section, R acts on the space of symmetric two-tensors S2(V) via

n
19"(90)1'1 = Z Rikij®ri-
k=1

Note that the curvature operator of the second kind (defined as a symmetric bilinear
form in the Introduction) is equivalent to the symmetric bilinear form associated
with the self-adjoint operator 7 o R: S%(V) — S%(V), where 77 : S2(V) — Sg(V)
is the projection map. This can be seen as

R(p, ¥) = (R(9), ¥) = ((r 0 R)(9), ¥) = (m o R) (9, ¥)

for g, ¥ € Sg(V). Thus, the spectrum of the curvature operator of the second kind R
(as a bilinear form) is the same as the spectrum of the self-adjoint operator 7 o R.



CURVATURE OPERATOR OF THE SECOND KIND 175

We will present the proof of Proposition 2.1 after we establish the following
three lemmas. First of all, standard calculations using (2-2) show that zero is an
eigenvalue of R with multiplicity (at least) nn;.

Lemma 2.2. Let R; € Sé(sz,-) for i = 1,2 with dim(V;) = n; > 1 and let
R = R ® Ry. Let E be the subspace of S(z)(Vl x V) given by

E=spanfuQu:ueVy, ve W},

where u ©v=u® v+ v Q u is the symmetric product. Then E lies in the kernel
of R. In particular, 0 is an eigenvalue ofI% with multiplicity (at least) nn,.

Proof. This is observed in [Nienhaus et al. 2023b, Lemma 2.1]. For the convenience
of the reader, we give a detailed proof below. We start by constructing an orthonor-
mal basis of E. Let {¢;}}., be an orthonormal basis of V| and {ei}?;:l”il
orthonormal basis of V5. Then {e,-}?;?” is an orthonormal basis of V = V; x V5.

Define

be an

1
quzﬁ

for 1 < p <njand n; +1 < g < n; +ny. Then one can verify that the §,,’s are

ep ey,

traceless symmetric two-tensors on V) x V; and they form an orthonormal basis
of E. In particular, dim(E) = nn,.
To prove that E lies in the kernel of I%, it suffices to show that I%(é pg) =0. We
first observe that (2-2) implies that
Rl(ei, €j, ek, el), I j, k, l e {1, ey l’ll},
(2-3) R(ei,ej, ex,e) = Raei, ej, e, e, i,j,k,le{n+1,...,n+ns},
0, otherwise.
We then compute, using (e, O e,)(e;, ex) = (8;84k + 848 pi), that

n

R(Epg)(eie) =D Rlei.ej, ex, e)épg(e;, ex)

jik=1

l n
= WG E R(ei, ej, ex, e)(8pjdqk + 3qjSpk)
k=1

1 <
=% Y (R(eirep.eq.e1) + Rlei, eq. ep. €))
jk=1

=0,
where the last step is because of (2-3) and the fact that 1 < p <njyandn; +1 <

q < ni+ny. Thus we have proved that O is an eigenvalue of R with multiplicity (at
least) nins. O
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Next, we show that the eigenvalues of R; and R; are also eigenvalues of R =
R| ® R», provided that both R; and R, are Einstein.

Lemma 2.3. Let R; € S%(AZW) for i = 1,2 with dim(V;) = n; > 1 and let
R = R; ® Ry. If Ry (respectively, R;) is Einstein, then the eigenvalues of 1021

(respectively, R>) are also eigenvalues of R.

Proof. 1t suffices to prove the statement for R;. Since R; is Einstein, we have that
Ri: Sg(Vl) — Sg(Vl) is a self-adjoint operator. We can then choose an orthonormal
basis {(,z)p}gl:l of Sg(Vl) such that

Icél ((pp) = )“p(pp’

(=D (m+2)
2

where N| = is the dimension of Sg(Vl). We may also view the ¢,,’s as

elements in Sg(Vl x V) via zero extension, namely,
ep(X14+ X0, Y14+ 12) =¢,(X1, Y1),
for X;, Y; € V;. Then we have

(pp(ejvek)? j,kE{l,...,l’ll},
2-4 ej,er) =
2-4) erlej. ) {0, otherwise,
where {e,-}?;{"z is the same basis of V in Lemma 2.2.

Next, we calculate using (2-4) that, for 1 <i,/ <ny,

ni+ny
R(pp)(eie) =Y Rleirej. ex. epple), ex)
jk=1
ni
= Z R(ei,ej, e, e)pple;, er)
jk=1
ni

= Z Ri(ei,ej, ex, e)pple;, ex)

jk=1
z)‘p(pp(eia el)a
and, forni +1<i,l <ni+ny,
ni+np
R(pp)(eie) =Y Rlei.ej. ex. eNpple). ex)
Jj.k=1

nj

= Z R(ei,ej, ex,e)pp(e;, ex)
k=1

=Appp(ei,er)

=0.
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Therefore, we have proved I%(gop) = Ap¢, for 1 < p < N;. Hence the eigenvalues
of R, are also eigenvalues of R with the same eigenvectors. U

Finally, we prove:

Lemma 24. Let R; € S3(A%V;) for i = 1,2 with dim(V;) = n; > 1 and let
R=R|®R,. If Ric(R;) = p;gi fori =1, 2, then —% is an eigenvalue of R
with eigenvector nyg; — nig;.

Proof. As in the proof of Lemma 2.3, we may also view g| and g, as elements in
S2(Vy x V,) via zero extension. Clearly, tr(n,g, —ni1g2) = npyn; —ninp = 0. So
we have nyg1 —ni1gs € Sg(V] X VQ).
We then compute that
R(nagy —nig2) = naR(g1) —miR(g2)
=naR1(g1) — n1R2(g2)
= —ny Ric(R;) + n1 Ric(Ry)
= —nyp181 +n1p282,
where we have used I%,- (g;) = —Ric(R;) = —p;g; fori =1, 2.
Using
tr(—nzp181+n1p282) = —nin2(p1 — p2)

and I%(gi) = —p; g1 fori =1, 2, we then obtain that
(0 R)(nag1 — n1g2) = w(naR(g1) —n1R(g2))

= (nap181 +n10282)
—nina(p1 — p2)

=—n20181 +ni1p2g — ——— (g1 + &2)
ny+n;
ni(p1 — p2) na(p1 — p2)
T s AT
ny+np ny+np
nipz+nzp;
=—| ——— )(n2g1 —n1g2).
ny+np

Thus, we see that —% is an eigenvalue of R with eigenvector n,g; —n;g>.

The proof is now complete. O

Proof of Proposition 2.1. Let {e;}7"1" be an orthonormal basis of V, where
€1,....ep, €Viand e, 41, ..., €40, € Va. Let {gop}g‘:1 be an orthonormal basis
of Sg(Vl) such that R 1(¢p) =Ap), and {Y, ;Vil be an orthonormal basis of Sg(Vz)
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such that I%z(wq) = ug¥y, where the dimension of Sg(Vi) fori =1,21is N; =
("’*l)zﬂ We then define, on V, the traceless symmetric two-tensors

ep®eq

SP‘I:E

forl<p<njandn;+1<¢g <n;+ny, and

1

——————(n281 —N142).
vnina(ny +ny)

Then one can verify, via straightforward computations, that

{@p) L U W )o2 UlEpghi<pzny.mrizgzn +ny U L)

forms an orthonormal basis of SS(V).
According to Lemma 2.2, 2.3 and 2.4, the above basis diagonalizes R as

A

AN,

M1

MUN,

_ mpitnip O
ni+na

Theorem 1.8 now follows immediately from Proposition 2.1, since on a prod-
uct manifold the product metric satisfies (2-1) and the Riemann curvature tensor
satisfies (2-2).

Since the spectrum of R is known on space forms with constant sectional curva-
ture and Kéhler space forms with constant holomorphic sectional curvature, we can
use Theorem 1.8 or Proposition 2.1 to determine the eigenvalues of the curvature
operator of the second kind on their product.

In the rest of this section, we use the following notation:

e S"(k) and H"(—«), n > 2 and « > 0, denote the n-dimensional simply connected
space form with constant sectional curvature x and —«, respectively.
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o CP" (k) and CH" (—«), m > 1 and k > 0, denote the (complex) m-dimensional
simply connected Kéhler space form with constant holomorphic sectional curvature
4x and —4k, respectively.

Example 2.5. R = «idg on S"(k). R = —x idgp on H"(—x).

Example 2.6. R has two distinct eigenvalues on CP" (k): —2« with multiplicity
(m—1)(m—+1) and 4k with multiplicity m(m+1). R has two distinct eigenvalues on
CH™ (—«): 2« with multiplicity (m — 1)(m + 1) and —4« with multiplicity m(m+1).
See [Bourguignon and Karcher 1978].

Example 2.7. Let M = S"' (k1) x S$"2(ky). Then the curvature operator of the sec-

(=D +2)
2

ond kind of M has eigenvalues: k| with multiplicity , ko with multiplicity

o=V 10 with multiplicity nina and —"‘("zfl)zfizi("lflm with multiplicity

one.

Example 2.8. Let M = H"' (—«k) x H"2(—«y). Then the curvature operator of
the second kind of M has eigenvalues: —k| with multiplicity =D+

with multiplicity w, 0 with multiplicity n\n; and ”1("271)21;'2("‘71)“ with

_K2

multiplicity one.

Example 2.9. Let M = S"' (k1) x R"™. Then the curvature operator of the second
kind of M has eigenvalues: k| with multiplicity w, 0 with multiplicity

niny 4+ @200t gpg —% with multiplicity one.

Example 2.10. Let M =H"! (—«) x R"2. Then the curvature operator of the second

kind of M has eigenvalues: —k with multiplicity w, 0 with multiplicity

ny—1)(np+2 na(nyj—1)k
n1n2+(2 )2(2 )and 2(nll+n2)1

with multiplicity one.

Example 2.11. Let M = S" (k1) x H"2(—«y). Then the curvature operator of

the second kind of M has eigenvalues: k1 with multiplicity w —kp with

multiplicity w, 0 with multiplicity nin, and — "2 _21:,2“(2_”2’(' with

multiplicity one.

Example 2.12. Let M = CP"' (k1) x CP™ (k). Then the curvature operator of
the second kind of M has eigenvalues: —2i with multiplicity (m; — 1)(m; + 1),

—2kp with multiplicity (my — 1)(my+ 1), 4y with multiplicity mi(my+ 1), 4k, with
2my (ma+1)ko+2mo(m1+1)k
mi+my

multiplicity my(mo + 1), 0 with multiplicity 4mm,, and —
with multiplicity one.

Example 2.13. Let M = CH™' (—«1) x CH™?(—x3). Then the curvature operator
of the second kind of M has eigenvalues: 2k with multiplicity (m;—1)(m+1), 2k>
with multiplicity (m, — 1)(my + 1), —4k; with multiplicity mi(m| + 1), —4x, with
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d 2my (ma+1Dko+2mo (m141)ky

multiplicity my(my + 1), 0 with multiplicity 4mim,, an P

with multiplicity one.

Example 2.14. Let M = CP"! (k1) x C™2. Then the curvature operator of the
second kind of M has eigenvalues: —2k1 with multiplicity (im; — 1)(m + 1), 4k

with multiplicity my(m + 1), O with multiplicity 4mmy 4+ 2my — 1)(my + 1), and
_ 2my(mi+Dky
mi+my

Example 2.15. Let M = CH™' (—«1) x C™2. Then the curvature operator of the
second kind of M has eigenvalues: 2k1 with multiplicity (my — 1)(m; + 1), —4«;
with multiplicity mi(m + 1), 0 with multiplicity 4mmy + 2my — 1)(my + 1), and
2my(mi+Dky
mi+my
Example 2.16. Let M = CP™! (k1) x CH™?(—k»). Then the curvature operator of
the second kind of M has eigenvalues: —2ik with multiplicity (m; — 1)(m; + 1),

4o with multiplicity mi(my + 1), 2kp with multiplicity (my — 1) (my+ 1), —4ky with
2mymy (k1 —k2)+2mok1 —2miky
mi-+my

with multiplicity one.

with multiplicity one.

multiplicity mo(my + 1), 0 with multiplicity 4mm,, and —
with multiplicity one.

In particular, we have the following observation, which will be needed later on.
Proposition 2.17. Forn;,n, > 2, m,my > 1, k1, k2 > 0, we have the following:

(1) S"'(k1) x S™ (k) has Ap, n,-nonnegative curvature operator of the second

kind if and only if k1 = kp > 0.

(2) H" (—«1) x H"2(—k2) has Ap, »,-nonpositive curvature operator of the second
kind if and only if k1 = kp > 0.

(3) CP"™ (k1) x CP" (k2) has By, m,-nonnegative curvature operator of the sec-
ond kind if and only if k1 =k > 0.

(4) CH™' (—«1) x CH™ (—k2) has By, m,-nonpositive curvature operator of the
second kind if and only if k1 = ko < O.

3. Rigidity of cylinders

We prove Theorem 1.2. The key result of this section is the following proposition.

Proposition 3.1. Let (V, g) be a Euclidean vector space of dimension n — 1 with
n>2andlet Ry € S5(A2V).

(1) Supposethat R=R,0¢€ Slzg (A2(V xR)) has (n—l—”n;z)-nonnegative curvature
operator of the second kind. Then R| has constant nonnegative sectional curvature.
(2) Supposethat R=R,®0¢€ S% (AZ(V xR)) has (n—l— "n;z)-nonpositive curvature
operator of the second kind. Then Ry has constant nonpositive sectional curvature.
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(3) Suppose that R=R;d0¢€ 5129 (A%(V x R)) has a-nonnegative or a-nonpositive
curvature operator of the second kind for some a < n + "n;z Then R is flat.

Proof. (1) Let {ei};’:—ll be an orthonormal basis of V and let ¢, be a unit vector in R.
Then {e;}!_, is an orthonormal basis of V x R=V @®R. Next, we define, on V ® R,
the symmetric two-tensors

1
& =—e€0e, forl<i<n-—1,

V2

1
o =—=eOe for 1l <k<l<n-1,

V2

—;<i Oep—(n—1De,© )
§—2m pZIep ep n e, Oey, .

One easily verifies that {S,-};:ll U{@ki}1<k<i<n—1 U {¢} forms an orthonormal subset
of S3(A*(V & R)).
Since R = R; @ 0, we have by (2-2) that

Ri(ei,ej e, e, i, j. k. lefl,....,n—1},

3—1 R i+ €, ’ =
(3-1) (ei, ej, ek, er) {0’ otherwise.

In particular, we have R,;,j =0for1 <j <n-—1.
Direct calculation using the identity

R(eiOej, ex ©er) = 2(Rij + Ringj)

shows that
R, E)=0 for 1 <i<n-—1,
R(put, o) = (R wana for 1 <k<l<n-—1,
deo=——L s,
¢, %) n—D!

where S| is the scalar curvature of R;. Note that S; > 0 since S is also equal to the
scalar curvature of R, which must be nonnegative since R has (n+ "%)—nonnegative
curvature operator of the second kind; see, e.g., [Li 2024, Proposition 4.1, part (1)].

Since R has (n + ”n;z)—nonnegative curvature operator of the second kind, we
get that, forany 1 <k <l <n-—1,

n—1
o o -2,
0<RC.O+Y RE. &)+ = Rpu, o)
i=1

1 n—2 n—2 S]
+ " (Rl)klkl:T Rkt — —————=2 )

N _n(n— I)S1

n—1)(n-2)
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Summing over 1 <k <[ <n —1 yields

S < Z (R1) kit -

1<k<l<n-—1
On the other hand,
S| = Z (R1) ki -

1<k<l<n-—1

Therefore, we must have (R})i = (n_lfw forall 1 <k <l <n-—1. Since
the orthonormal basis {ey, ..., e,—1} is arbitrary, we conclude that R; has constant

nonnegative sectional curvature.
(2) Apply (1) to —R.

(3) By (1) and (2), we have R = cI,—1 @& O for some ¢ € R, where I, is the
Riemann curvature tensor of S"~!. However, R = cI,,_; @ 0 has o-nonnegative or
«o-nonpositive curvature operator of the second kind for some o < n + ”n;z if and
only if ¢ = 0. Therefore, R is flat. ]

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. (1) Recall that we say that (M", g) is locally reducible if
there exists a nontrivial subspace of T, M which is invariant under the action of
the restricted holonomy group. By a theorem of de Rham, a complete Riemannian
manifold is locally reducible if and only if its universal cover is isometric to the
product of two Riemannian manifolds of lower dimension.

Denote by (M , &) the universal cover of M with the lifted metric g. Since M is
locally reducible, (1\71 , &) is isometric to a product of the form (M {‘ g1)x (M -k g2),
where 1 <k < 5. Note that k > 2 implies

n—2
k(n—k)y+1>n+——,
n

so M must be flat if k > 2, according to [Li 2024, Proposition 5.1] (or its improve-
ment Theorem 1.6). Thus we must have £k = 1 and M is isometric to N"~! x R.
By part (1) of Proposition 3.1, N has pointwise constant nonnegative sectional
curvature. Since n — 1 > 3, Schur’s lemma implies that N must have constant
nonnegative sectional curvature. Therefore, M is either flat or its universal cover is
isometric to $"~! x R up to scaling.

(2) This is similar to the proof of (1), by noticing that [Li 2024, Proposition 5.1]
is valid for the nonpositivity condition (alternatively, one can use Theorem 1.6). [J
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Proof of Theorem 1.4. Let (M", g) be a closed nonflat Riemannian manifold of
dimension n > 4 and suppose that M has 4%—nonnegative curvature operator of the
second kind. It was shown in [Li 2022] that one of the following statements holds:

(a) M is homeomorphic (diffeomorphic if » = 4 or n > 12) to a spherical
space form.

(b) n = 2m and the universal cover of M is a Kihler manifold biholomorphic
to CP™.

(c) n =4 and the universal cover of M is diffeomorphic to S3 x R.

(d) n>5and M is isometric to a quotient of a compact irreducible symmetric space.

By Theorem 1.2 in [Li 2023a], the Kihler manifold in part (2) is either flat or
isometric to CP? with the Fubini-Study metric, up to scaling. In part (c), the
manifold is reducible and we conclude using Theorem 1.2 that the universal cover
of M is isometric to S x R, up to scaling. Part (d) can be ruled out using [Nienhaus
et al. 2023a, Theorem B], as the manifold is either flat or a homology sphere. [J

4. Rigidity of product of spheres and hyperbolic spaces

We prove Theorem 1.5. The key result of this section is the following proposition.
In this section, I,, n > 2, denotes the Riemann curvature tensor of the n-sphere
with constant sectional curvature 1.

Proposition 4.1. Fori =1, 2, let (V;, g;) be a Euclidean vector space of dimension
n; withn; > 2. Let R; € S5(A*V;) and R = Ry ® Ry € S3(AX(V) x V2)).

(1) Suppose that R has A, »,-nonnegative curvature operator of the second kind.
Then R = c(1,, ® I,,) for some ¢ > 0.

(2) Suppose that R has Ay, »,-nonpositive curvature operator of the second kind.
Then R = c(1,, @ I,,,) for some ¢ <0.

(3) Suppose that R has o-nonnegative or a-nonpositive curvature operator of the
second kind for some o < A, ,,,. Then R is flat.

We need an elementary lemma, which can be found in [Li 2023a, Lemma 5.1].

Lemma 4.2. Let N be a positive integer and A be a collection of N real numbers.
Denote by a; the i-th smallest number in A for 1 <i < N. Define a function f (A, x)
by
Lx]
f(A, x)= Zai +(x = [xDajx+1,

i=1
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for x € [1, N]. Then we have
4-1) f(A, x) < xa,

ﬁ ZlN: | ai is the average of all numbers in A. The equality holds for

where a :=
some x €1, N) ifand only ifa; = a forall 1 <i < N.

Proof of Proposition 4.1. (1) Let {e,-}fil be an orthonormal basis of V| and let
{e,'}l'.’;;fﬁ] be an orthonormal basis of V». Then {¢;}' 7" is an orthonormal basis
OfV] X V2§V1€BV2.

We construct an orthonormal basis of Sg(Vl x V,) as follows. Choose an or-
thonormal basis {(p,-}fv ', of Sg(Vl) and an orthonormal basis {w,-}lN:zl of Sg(Vz),
where N; = dim(Sg(Vi)) = wz("’“) fori =1,2. Note that & € Sg(Vl) can be

identified with the element 7 */ in Sg(Vl x V,) via

(T*h) (X1 + X2, Y1 + Y2) = h(X1, X2),

where X;, Y; € V; fori =1, 2. We shall simply write 7*h as k. Similarly, Sg(Vz)
can be identified with a subspace of Sg(Vl x V). Next, we define, on Vi x V;, the
symmetric two-tensors

1
Skl:_ekGel forlfkfl’l],nl+1§l§nl+n2v
V2
1

————(n281 — Nn182).
Vnina(ny +nz)

One verifies that

N N
{@ifi 2 Ui}, 2, U i <k<ng 1 <1< 40 U {2}

forms an orthonormal basis of S&(Vl x V»). This corresponds to the orthogonal
decomposition

S3(Vi x Vo) = S3(V)) @ S3 (Vo) @ span{u Qv :u € Vi, v e Vo) ®RE.

The next step is to calculate some diagonal elements of the matrix representing
R with respect to the above basis. Since R = R; & R;, we have by (2-2) that

Ri(ei,ej,ex,e), 1,j,k,lefl,...,n},
(4-2) R(ei,ej,ex,e)) = Raei,ej,ex,e), i,j,kle{ni+1,...,n+ns},
0, otherwise.

In particular, we have Ry =0if 1 <k <nj and ny <I <n;+n;. Using the identity

R(e; Oej, e O e) = 2(Risj + Riky).
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we get
(4-3) > REw&D= Y., Ruu=0.
1<k<n 1<k<n,
n+1<l<nj+ny n+1<l<nj+ny
We also calculate
o 1 o o o
R, )= ———————3R(g1, 81) +nIR(g2, g2) +2n1n2R (g1, £2))

niny(ny +no)
258 28
=—  (n5R s +niR )
n1n2(n1+n2)( 5R1(g1, 81) +n1R2(g2, 82))
_ n%S] —I-n%Sz
nina(ny +nz)’

where S; denotes the scalar curvature of R; fori =1, 2.

Let A be the collection of the values of I%((p,-, @;) for 1 <i < Nj and let B be
the collection of the values of R (Y, ;) for 1 <i < N;. Denote by a and b the
average of all numbers in A and B, respectively. Then

1 1 S S

o o 1
— E R(p;, ;) = — E R Q) = ——,
Nl £ ((Pt (pl) Nl ~ 1((/)1 (Pt) nl(nl _ 1)

a

1 & 1 S
_ . o 2
b=—)> RWi,Vi)=—) R ¥i)=—"--—,
N2§ o Nzg U na(np — 1)
where we have used
Ny N>
o n+2 o ny+2
Y R, ¥ = S and Y Ry(Yi, i) = S5.
i=1 2m i=1 2n2
For simplicity, we write
—1 —1
A = na(ny —1) and Ay — ni(ny )'
ny+np ny+np

Notice that we have A| < Nj, A» < N and
4-4) Apiny =1+niny+ Ay + As.
Also, the expression for I%({, £) can be written as

(4-5) R(¢,0)=—Aa— Asb.
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Since R has A, »,-nonnegative curvature operator of the second kind, we get
using (4-3), (4-4) and (4-5) that
(4-6) —R(£.0) < f(A, LAl + f(B, Al + Ay — | A1)
< [Ar)a+ (A + A2 — A1 )b
= A1d+ Ash + (A1 = LA (b - ),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 in
estimating f. Similarly, we also have

4-7) —R(Z,0) < f(A, A1+ Ay — [A2]) + f(B, [A2)),
< (A1+ Ay — [Az])a + | A2 ))b
= Aya+ Asb+ (A — | A ]) (@ — b).

Therefore, by (4-5), we get from (4-6) if @ > b and from (4-7) if a < b that
Aja+ Ayb=—R(¢, ) < Aja+ Asb.

This implies that, either in (4-6) or (4-7), we must have equalities in the inequalities
used for f. We then get from Lemma 4.2, that all the values in A are equal to a and
all the values in B are equal to b. Hence, both R; and R, have constant sectional
curvature, that is to say, R = c11,, @ c21,, for ¢j, c2 € R.

Finally, we must have ¢c; = ¢ >0, as R = c1 1, ® c21,, has A, »,-nonnegative
curvature operator of the second kind if and only if ¢; = ¢, > 0 by Proposition 2.17.

(2) Apply (1) to —R.

(3) This follows from the fact that R = c¢(I,, ® I,,) has «-nonnegative or «-

nonpositive curvature operator of the second kind for some o < A, ,, if and

only if ¢ =0. ([
At last, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. (1) This is an immediate consequence of part (3) of
Proposition 4.1.

(2) Let (p1, p2) € M| x M,. By part (2) of Proposition 4.1, we have

R(p1, p2) =c(p1, p2)Un, @ 1)

with c(p1, p2) = 0. If both n| and n, are at least 3, then Schur’s lemma implies that
c(p1, p2) =c > 0. Below we provide an argument that works whenever ny, ny > 2.

Note that both (M1, g1) and (M5, g») have pointwise constant sectional curvature.

By Proposition 2.1, the eigenvalues of R at ( P1, p2) are given by % with multi-

(=D @m1+2)  p2(p2)
2 > np—1

plicity with multiplicity 2=2"2%2) "0 with multiplicity nn.,
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n201(p1)+n102(p2)
ny+na

M; at p;,i.e., Ric(g;)(pi) = pi(pi)gi at p; for i =1, 2. Using the assumption that
M| x M, has A, ,,-nonnegative curvature operator of the second kind, we obtain

and — with multiplicity one. Here p; (p;) is the Einstein constant of

_mpi(p) +nipa(p2) n ni(ny—1)+na(mi—1) p1(p1) -
ni+ny ni+ny np—17

0

and
_mapi(p1) +n1p2(p2) n ni(ny —1)+na(ny —1) p2(p2) -

ni+ny ni+ny np—17

0.

The two inequalities force

(n2 — Dp1(p1) = (n1 — Dp2(p2).

Fixing p; while letting p, vary in M, shows that p,(p>) is independent of p,.
Similarly, p1 (p1) is independent of p;. Since p; (p;) = (n; —)c(p1, p2) fori =1, 2,
we conclude that c¢(py, p2) = ¢ > 0. Therefore, both (M1, g1) and (M>, g») have
constant sectional curvature ¢ > 0.

If M is further assumed to be complete, then M is either flat or the universal
cover of M is isometric to S"' x §"2, up to scaling.

(3) Similar to the proof of (2). U

Proof of Theorem 1.6. Suppose that (M", g) splits locally near g € M as a Riemann-
ian product (MF x Mé”k , 81 ® g2) with 1 <k < 3. Then the Riemann curvature
tensor R of M satisfies R = R| @ R near g, where R; denotes the Riemann curvature
tensor of M; fori =1, 2.

By part (3) of Proposition 3.1 if k = 1 and part (3) of Proposition 4.1if 2 <k < 7,
the assumption

2k(n — k)
a<k(n—k + "
n

implies that M must be flat near ¢q. Since the restricted holonomy does not depend
on g € M, we conclude that M is flat. ([

5. Holonomy restriction

Proof of Theorem 1.3. Suppose that (M", g) splits locally near ¢ € M as a Riemann-
ian product (M{c X Mg_k , 81D gry) with2 <k < % Then the Riemann curvature
tensor R of M satisfies R = R &® R; near g, where R; denotes the Riemann curvature
tensor of M; fori =1, 2.

Noticing that

-2 2k(n—k
ot<n—i-n—SAk’n,k:k(n—k)—i-L
n n
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for any 1 < k < 7, we conclude from part (3) of Propositions 3.1 if k = 1 and
part (3) of Proposition 4.1 if 2 < k < 7 that M is locally flat. Since the restricted
holonomy does not depend on g € M, we conclude that M is flat. Therefore, M is
either locally irreducible or flat.

If n = 3, then the holonomy of M must be SO(3) as M is locally irreducible. So
we may assume n > 4 below.

If M is an irreducible locally symmetric space, then it is Finstein. Since
n=2 _3nn+2

— 2 n+4

for any n > 4, we get from [Nienhaus et al. 2023b, Theorem B] that either M is flat
or the restricted holonomy of M is SO(n).

oa<n—+

So we may assume that M is not locally symmetric with irreducible holonomy
representation. Then the restricted holonomy of M is contained in Berger’s list of
holonomy groups [1955]: SO(n), U(%), SU(5). Sp(%)Sp(1), Sp(%), G2 and Spin(7).
Note that if its restricted holonomy is SU('zl), Sp(%), Gy or Spin(7), then M must
be Ricci flat and thus flat.

If the restricted holonomy of M is Sp(%)Sp(1), then M is quaternion-Kéhler and
it is also Einstein in this case. Thus, either the restricted holonomy of M is SO(n)
or M is flat by [Nienhaus et al. 2023b, Theorem B].

If the restricted holonomy of M is U(%), then M is Kihler. Noticing that

2
n-2_3 (n_ . 1)
—2\4
for any n > 4, M must be flat by [Li 2023a, Therorem 1.2].
Overall, either the restricted holonomy of M is SO(n) or M is flat. U

o<n+

6. Kihler manifolds

We prove Theorem 1.7. The proof shares the same idea as in Section 4, but we use
the orthonormal basis of the space of traceless symmetric two-tensors on a complex
Euclidean space constructed in [Li 2023a].

In the following, B, m, is the expression defined in (1-3) and Rep» denotes the
Riemann curvature tensor of the complex projective space with constant holomor-
phic sectional curvature 4. We establish the following proposition.

Proposition 6.1. Fori=1, 2, let (V;, gi, J;) be a complex Euclidean vector space of
complex dimensionm; > 1. Let R; € S5(A*V;) and R= R ® R, € S5(A%(V) x V2)).

(1) Suppose that R has By, ,,-nonnegative curvature operator of the second kind.
Then R = c(Repm @ Repmz2) for some ¢ > 0.
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(2) Suppose that R has By, m,-nonpositive curvature operator of the second kind.
Then R = c(Repm @ Repmz2) for some ¢ < 0.

(3) Suppose that R has a-nonnegative or a-nonpositive curvature operator of the
second kind for some o < By, m,. Then R is flat.

Proof. (1) Let
{ela "'7emlv‘llela"'a'lleml}

be an orthonormal basis of (Vy, g1, J;) and

{eml+]v st em1+m27 J23m1+1, e J26m1+mz}

be an orthonormal basis of (V;, g2, J2).
As in Section 4, we have the orthogonal decomposition

S§(Vi x Vo) = S5(V1) @ S5 (Vo) @ span{u @ v :u € Vi, v € Va} @ Re,

where
1

— 2mymy(my +my)

The same computation as in Section 4 gives that

(mag1 —m182).

m%Sl —|—m%S2
2mimy(my +my)’

(6-1) R, 0)=-

where S; denotes the scalar curvature of R; fori =1, 2.

By Lemma 2.2, the subspace span{u © v : u € Vi, v € V,} lies in the kernel of R
and its real dimension is 4mm>.

For Sg(Vl) and Sg(Vz), we use the orthonormal bases constructed in Section 4
of [Li 2023a]. More precisely, the following traceless symmetric two-tensors form
an orthonormal basis of Sg(Vl):

(pilj’i:%(e,-@ej:FJlei@Jlej) for 1 <i < j<my,
wli ;(e,QJle]:tjlelG)e]) for 1 <i < j<my,

1

1
o = ——
i 2\/§

1
a1 = —=(e O Jiei) for I =i =my,

mi+i \/i
_ k
= Rk

(e ©Oe; —Jie; O Je;) for 1 <i <my,

(ex+1 O epy1+ J1ext1 © Ji€ps1)

1

WZ@, Qe+ Jie© Jie) for 1<k <my—1.
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Similarly, the traceless symmetric two-tensors

o= %(e@q;]zei@hej) for mi+1 =i < j<mi+my,
wzzj’i:%(e@]zejifzei@ej) for mi+l =i < j=mitm,
1
ai2: 2ﬁ(€i®ei—J1€i®Jei) for mi+1 <i <mi+my,
1
) .
ol = T(ei@-]lei) for mi+1 <i <m|+my,
2
k
2
N = ——=—=——=(es+10es11+2er+10J2€541)
8k(k+T1)
] k
- Z(eiQei—l—Jze,-@Jzei) for mi+1 <k <mi+my—1
VB (k+1) =

form an orthonormal basis for S§(V2). Here the superscripts 1 and 2 indicate that
these are quantities associated with the space V| and V>, respectively.
By Lemma 4.3 in [Li 2023a], we have

mi—1
o _ _ o _ _ o m;—1
62 > (R(pi @iy )+ RO ¥y D+ Y ROmem) = ———$1
1<i<j<m k=1
and
mi+mo—1
(6-3) Yo R@TO R YTN+ D ROwm)
mi+1<i<j<mi+m; k=m+1
—1
L
2mo

Let A be the collection of the values I%(oel.l, al) for 1 <i <2my, I%((pilfr, (pi1]?+)

and I%(wilj.’+, wilj’Jr) for 1 <i < j <m. By Lemma 4.3 in [Li 2023a], we know that
A contains two copies of R(e;, Jie;, e;, Jie;) for each 1 <i <m; and two copies
of 2R(e;, Jie;, ej, Jiej) for each 1 <i < j < m. Therefore, the sum of all values
in A is equal to Sy, the scalar curvature of Ry, and a, the average of all values in A,
is given by

S1
mi(m;+1)

Let B be the collection of the values I%(oziz, oziZ) form;+1<i <m|+2my,
I%(gol.zj’Jr, (pi2j’+) and I%(g[/izj’Jr, wl.zj’+) form;+1<i<j<m;+m,. ByLemma 4.3
in [Li 2023a], we know that B contains two copies of R(e;, Joe;, e;, Joe;) for
each m; +1 < i < mj + my and two copies of 2R(e;, Jre;, e}, Joe;) for each

a=
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mi;+1<i < j <my+ m,. Therefore, the sum of all values in B is equal to S,,
the scalar curvature of R,, and b, the average of all values in B, is given by

AY)
ma(my+1)
Combining (6-1), (6-2) and (6-3) together yields

> (R e )+ RO 0))

1<i<j<m

b=

+ Y R@Ee)HRWETYE)

mi+1<i<j<mi+m;

mp—1 mi+mo—1
+ Y Ropend+ Y R m)+R(&, )
k=1 k=m+1

m;—1 my—1 o
S > S+ R(,¢)
%)
m%Sl—i-m%Sg

2mimay(my +mo)

1 _ —
= —E(m% —Da-— E(mg — Db —

= —Bja — Byb,
where we have introduced
mi+1)m my+1)m
Bl:l(m%_le and Bz:l(mg_le
2 2(mq +my) 2 2(my 4+ my)

for simplicity of notation. Note that —Ba — Bb is the sum of
14 4mymy + (m3 — 1) 4 (m3 — 1)

many diagonal elements of the matrix representation of R with respect to the
orthonormal basis of Sg(Vl x V») constructed above (here one can pick any or-
thonormal basis for the subspace span{u ® v : u € Vi, v € V,} as it is in the kernel
of R).

Noticing that

By my = 14 (m3 — 1)+ (m3 — 1) +4mymy + By + By,

the assumption R has B,,, »,-nonnegative curvature operator of the second kind
implies that
(6-4) Bia+ Byb < f(A, |Bi])+ f(B, Bi+ B, — | B1])

< |BiJa+(Bi+ B, — |Bi))b

= Bia+ Bob+ (B — | B1))(b—a)
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and

(6-5) B1a+ Byb < f(A, Bi+ By — | B2]) + f(B, | B2])
< (Bi+ By~ |B2))a+ | B.]b
= Bja+ Byb+ (B, — | B2])(a — b),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 to
estimate f. So we get from (6-4) if a > b and from (6-5) if a < b that

Ba + B,b < Bia + Byb.

Therefore, either in (6-4) or (6-5), we must have equalities in the inequalities used
for f. By Lemma 4.2, we get that all the values in A are equal to a and all the
values in B are equal to b. Hence, both R; and R, have constant holomorphic
sectional curvature, that is to say, R = c¢; Rgpmi @ ¢y Repm for cq, ¢p € R.

Finally, we must have ¢; = ¢ > 0, as R = ¢;Recpmi @ caRepr2 has By, m,-
nonnegative curvature operator of the second kind if and only if ¢; = ¢, > 0 by
Proposition 2.17.

(2) Apply (1) to —R.

(3) This follows from the fact that R = c(Rgpm @ Rcpm) has a-nonnegative or
a-nonpositive curvature operator of the second kind for some o < B,,, ., if and

only if ¢ =0. ([

Proof of Theorem 1.7. Once we have Proposition 6.1, this is similar to the proof of

Theorem 1.5 and we omit the details. ]
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