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AN UPPER BOUND FOR THE FIRST NONZERO STEKLOV
EIGENVALUE

X1aoLoNG Li!, Kur WANG®* AND HAOTIAN WU?

Abstract. Let (M™,g) be a complete simply connected n-dimensional Riemannian manifold with
curvature bounds Secty < k for kK < 0 and Ricy > (n — 1)Kg for K < 0. We prove that for any
bounded domain Q@ C M™ with diameter d and Lipschitz boundary, if Q* is a geodesic ball in the
simply connected space form with constant sectional curvature x enclosing the same volume as €2, then
01(Q) < Co1(Q"), where 01(2) and 01(Q2") denote the first nonzero Steklov eigenvalues of Q and Q*
respectively, and C = C(n, k, K, d) is an explicit constant. When « = K, we have C' = 1 and recover the
Brock—Weinstock inequality, asserting that geodesic balls uniquely maximize the first nonzero Steklov
eigenvalue among domains of the same volume, in Euclidean space and the hyperbolic space.
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1. INTRODUCTION

Let (M™,g) be a complete Riemannian manifold of dimension n and 2 C M™ be a bounded domain with
Lipschitz boundary. The Steklov eigenvalue problem is to find a solution u of the boundary value problem

Au=0 in Q,
% =ou on 08,

where A denotes the Laplace—Beltrami operator, v denotes the outward unit normal to 0f2, and o is a real
number. This problem was first introduced by Steklov [1] in 1902 for bounded domains in the plane. The set of
eigenvalues for the Steklov problem is the same as that for the well-known Dirichlet-to-Neumann map, which
maps f € L%(99) to the normal derivative on the boundary of the harmonic extension of f inside Q. Since the
Dirichlet-to-Neumann map is a self-adjoint operator, it has a discrete spectrum given by

0= Uo(Q) < O'l(Q) < O’Q(Q) <-.- = 0.
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The eigenfunctions of oo () are the constant functions. The first nonzero eigenvalue o1 (f2) is characterized by
the following Rayleigh quotient

fQ |Vu|2 dpg
Joq u? dA,

where dji4 is the volume form of g and dA, is the induced measure on 9.

In 1954, Weinstock [2] showed that the round disk uniquely maximizes o1 (£2) among ’simply connected planar
domains with prescribed perimeter. This result was generalized to arbitrary compact Riemannian surfaces by
Fraser and Schoen [3] to obtain the upper bound o1(Q)|09| < 27(y + k) for a surface of genus v with k
boundary components. In higher dimensions, Bucur, Ferone, Nitsch and Trombetti [4] proved that the ball
uniquely maximizes o1(€2) among bounded open convex sets in R™ with prescribed perimeter. The convexity
assumption in the previous result is crucial. Indeed, for an annulus B;(0) \ B:(0) with e sufficiently small, its
first nonzero Steklov eigenvalue is strictly bigger than that of a ball with same volume, see [5]. Also, Fraser and
Schoen [6] have shown that the ball does not maximize o1 (£2) among contractible domains in R™ with prescribed
perimeter. Moreover, they have given an explicit upper bound on o1 (f2) for any smooth domain in R” in terms
of its boundary perimeter (cf. [6], Sect. 2).

When combined with the isoperimetric inequality, Weinstock’s theorem implies that the round disk uniquely
maximizes ¢1(2) among all simply connected planar domains with fixed area. In 2001, Brock [7] generalized
Weinstock’s result by removing any topological or dimensional restriction. As a result, we have the Brock—
Weinstock inequality, which asserts that among domains in R™ with the same volume, the ball maximizes
01(9), and the equality occurs if and only if Q is a ball. A sharp quantitative version of the Brock—Weinstock
inequality has been proved by Brasco, De Philippis and Ruffini [8].

The Brock—Weinstock inequality is related to two classic spectral inequalities: the Faber—-Krahn inequality,
which asserts that the ball uniquely minimizes the first Dirichlet eigenvalue among domains with the same
volume, and the Szego-Weinberger inequality stating that among domains with the same volume, the ball
uniquely maximizes the first nonzero Neumann eigenvalue. It is well-known that the Faber—Krahn inequality
holds in any Riemannian manifold in which the isoperimetric inequality holds, see [9]. Also, the Szegd-Weinberger
inequality holds for domains in the hemisphere and in the hyperbolic space [10]. Therefore, it is a natural question
to extend the Brock—Weinstock inequality to space forms and more general Riemannian manifolds.

Concerning the previous question, only a few results are known. In 1999, Escobar [11] generalized Weinstock’s
theorem by proving that in a complete simply connected two-dimensional manifold with constant Gaussian
curvature, geodesic balls maximize 01(Q2) among bounded simply connected domains with fixed area. In the
same paper, the author obtained the more general eigenvalue comparison result: o1(€2) of any bounded simply
connected domain in a complete simply connected non-positively curved two-manifold is no larger than that of a
ball in R? with the same area, and equality holds only when the domain is isometric to the round disk. In 2014,
Binoy and Santhanam [12] proved that in non-compact rank one symmetric spaces (including Euclidean space
and hyperbolic space), geodesic balls maximize o1(2) among bounded domains of the same volume. Recently,
a stability result for the theorem of Binoy and Santhanam has been proved by Castillon and Ruffini [13].

The main purpose of this paper is to give an upper bound for the first nonzero Steklov eigenvalue of a
bounded domain in a simply connected Riemannian manifold (M™, g) with non-positive sectional curvatures.
Throughout the paper, the function sn, is defined by

01(Q) = mf{ cu e WH2(Q)\ {0}, /mu dA, = o} , (1.1)

ﬁ sin(v/kt), if kK >0,
sn(t) := < t, if k=0, (1.2)
\/%7 sinh (v/—kt), if K <O0.

We denote by Sect, and Ric, the sectional curvature and the Ricci curvature of g respectively, and by diam(2)
the diameter of Q C M™.



AN UPPER BOUND FOR THE FIRST NONZERO STEKLOV EIGENVALUE 3

The main theorem of this paper states the following.

Theorem 1.1. Let (M™, g) be a complete simply connected Riemannian manifold of dimension n, and Q C M™
be a bounded domain with Lipschitz boundary. Let M, be the n-dimensional simply connected space form of
constant sectional curvature K, and §* be a geodesic ball in M, having the same volume as Q. If Secty < k for
k <0, and Ricg > (n —1)Kg for K <0, then

SIIK(d) 2n—2 .
al<m<(snm<d)) o (), (1.3)

where d = diam(€2).

In Euclidean space or hyperbolic space, we have k = K and the constant factor in (1.3) is 1. So Theorem 1.1
recovers the Brock—Weinstock inequality proved by Weinstock [2] and [7] for R™, and by Binoy and Santhanam
[12] for H™.

Corollary 1.2. In Fuclidean space and hyperbolic space, geodesic balls uniquely mazimize the first nonzero
Steklov eigenvalue among bounded Lipschitz domains with the same volume.

We note that Corollary 1.2 has been generalized to the Robin eigenvalues of the Laplacian in non-positively
curved space forms by the authors [14].

On manifolds whose sectional curvatures are bounded from above by k, where x < 0, Binoy and Santhanam
obtained a result (cf. [12], Thm. 1.2) similar to Theorem 1.1. The constant in their inequality depends on the
manifold and the space form in comparison, although in a rather non-transparent way. In contrast, the constant
in our inequality (1.3) reveals the explicit dependency on the geometries.

When k = 0, it is well-known that

o= (i)

where w,, is volume of the unit ball in R™. Then Theorem 1.1 gives the following explicit estimate in a
Cartan—Hadamard manifold, i.e., a complete simply connected Riemannian manifold with non-positive sectional
curvature.

Corollary 1.3. Let (M™,g) be a Cartan—Hadamard manifold of dimension n, and Q& C M™ be a bounded
domain with Lipschitz boundary. If Ricy > (n — 1)Kg for K <0, then

1(2) Vol()1/™ < wp/™ (SHZM))QM, (1.4)

where d = diam(€).

To conclude this section, we mention several other aspects of the first nonzero Steklov eigenvalue o1 ().
First of all, the question of finding a metric on 2 maximizing o1 (02)|0€| has received considerable attention in
recent years since the remarkable paper by Fraser and Schoen [15], in which the authors developed the theory
of extremal metrics for Steklov eigenvalues wvia its connection to the free boundary minimal surfaces. Secondly,
finding a lower bound for o1(Q2) in terms of the geometric data of € is also an interesting question. In this
direction, Escobar [16] proved that for an n-dimensional (n > 3) compact smooth Riemannian manifold with
boundary, which has non-negative Ricci curvature and the principal curvatures of the boundary bounded below
by ¢ > 0, the first nonzero Steklov eigenvalue is greater than or equal to ¢/2. Escobar then conjectured in [11]
that the sharp lower bound is ¢ with the equality being true only on isometrically Euclidean balls with radius
1/c. Recently, Xia and Xiong [17] settled Escobar’s conjecture under the stronger assumption of non-negative
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sectional curvature. Lastly, o1(Q) is closely related to the first nonzero Laplace eigenvalue of 9. We refer
the reader to the papers by Wang and Xia [18], Karpukhin [19], Xiong [20], Xia and Xiong [17] for recent
developments.

This paper is organized as follows. In Section 2, we set up the notation and recall some facts on the
eigenfunctions for the first nonzero Steklov eigenvalue on space forms. Section 3 contains results on spherical
symmetrizations and the comparison of isoperimetric profiles. We prove Theorem 1.1 in Section 4.

2. PRELIMINARIES

Let (M™, g) be a complete simply connected Riemannian manifold of dimension n. For any bounded Lipschitz
domain Q C M := M™, we denote by || the n-dimensional volume of 2 and by |02 the (n — 1)-dimensional
Hausdorff measure of 92 respectively, both taken with respect to the Riemannian metric g on M. Let (M, g,)
denote the n-dimensional complete simply connected space form of constant sectional curvature x. Fix any
q € My, we define Qy to be a geodesic ball in M, centered at ¢ and satisfying [Q27]. = [€2], where Q] is the
n-dimensional volume of Q* with respect to g..

2.1. Steklov eigenfunctions on space forms

In this subsection, we collect some known facts on the Steklov eigenfunctions corresponding to oy (QZ) on
space forms. Let Rg be the radius of the geodesic ball 27 in M,;, and (r,0) be the polar coordinates centered at

q. By separation of variables, the eigenfunctions on (2 corresponding to o1(£2;) are given by

u;(r, 0) = F(r)y;(6), 1<i<n,
where 1;(6) are linear coordinate functions restricted to S*~1, satisfying
—Agn1hi(0) = (n = 1)1(0),
and F(r) solves the following ODE initial value problem

sn’ (1) n—1

K F/(T)

F'"(r) + (n—1) F(r)=0, re(0,Ry (2.1)

sn (1) B sn2(r)

with F'(0) = 0, and o1(Q;) = F'(Ro)/F(Ro) the minimal value of the quotient

foRO <¢/(T)2 + 7‘1*_11@) 302(7')) sn”~1(r) dr

snjy

Q(‘P) = @2(R0) sn’,lf‘l(Ro)

with ¢(0) =0,

see [21], Lemma 3. Moreover, if k < 0, we can extend F(r) for r > Ry via ODE (2.1). Using equation (2.1), we
calculate

(sn? ' F') =sn? U FY 4 (n — 1)sn? 2 s, FY
I F/ F !/ F/
=sn" t(n—1) (— i Ll + e )

SN, sn2 sn,
=(n—1)sn"3F

From this, we see that if F'(r) is positive (or negative) near zero, then F'(r) is positive (or negative) in (0, c0).
Thus the function F' does not change sign. Without lost of generality, we assume that F(r) > 0, then F’(r) > 0,
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implying F(r) > 0 or F(r) =0 in (0,00). Thus we conclude that F(r) > 0 and F'(r) > 0 in (0,00). In fact,
equation (2.1) is equivalent to

i
[sn;("fl)(r) ( anﬁl(r)F(r))'] =0,

and then up to a constant multiple, one gets the exact expression of F(r):

Jy (s ()" dt

P = ey

(2.2)

By calculating the first derivatives and using the differential equation (2.1), we have the following
monotonicity results.

Proposition 2.1. Let F(r) be the function defined in equation (2.1). Define

(n—1)sn/(r)

G(r) := (F2(r)) + 0 F2(r), (2.3)
H(r) := F'(r)? + SZ;(:) F2(r). (2.4)

Then G is non-negative and non-decreasing on [0,00) for all k € R, and H is non-negative and non-increasing
on [0,00) provided that k < 0.

Proof. The functions G and H are non-negative on [0, 00) since F is non-negative and increasing on [0, 00).
Using equation (2.1), we calculate on (0, 00) that

! " 2 Sn; / Sn;/ 2 ( 2
G'(r)=2FF" +2(F')’ + (n—1) (2= £FF 4+ —£F? - = F
Sn SNy snz
sn’ n—1
=2F(-(n-1)==F F | +2(F")?
(-t- 02 2t 4 20

S n

/ " 1\2
+(n-1) (QSD"‘FF’ S e (S10)° “2) F2>
SN, sny sn

—1)F?
=2(F')? + % (2 4 sn, snf, —(sn,)?)
sn2

(n—1)F?

2
sn2

where in the last equality we used the identity sn, sn” —(sn’.)?> = —1 for all x € R. Thus, G is non-decreasing

on (0, 00).
Likewise, we have on (0, c0) that

2(n—1)

FF’
sn2

i
H = 2F'F" —2(n — 1) £ F 4
sn3
n—1

2
i

e 2n—1
F) (- )2 20D g
sy N

/
= 2F <(n ) ey
sny
2n —1
_ A (snf sn2(F')* — 2sn, FF' +sn), F?)

3
sng.
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where in the first inequality we used sn/ (r) > 1 for k < 0. Thus, H is non-increasing on (0, 00). O

3. SPHERICAL SYMMETRIZATIONS AND ISOPERIMETRIC INEQUALITY

We recall the definitions of spherical symmetrizations. For any non-negative real-valued function f defined
on a bounded domain Q2 C M, the measure of the super-level sets of f is defined by

nr(t) == o € Q: f(2) > 1)1

Let rq(x) = distx(q, z) be the distance function on the space form M, and By(r) be the geodesic ball centered
at g with radius r in M,.

Definition 3.1. Let 2 C M be a bounded domain and f be a non-negative integrable real-valued function
defined on Q. The spherical decreasing and increasing symmetrizations of f, denoted by f*(x) and f.(x)
respectively, are radial functions defined on Q7 by

fr(@) = sup {t - pp(t) = [Bqy(rq(z))]s}

and

fo(x) = sup {t : ps(t) = [Qlx — [By(rq(z))lx }

where 7 is the geodesic ball in M, centered at ¢ satisfying [Q27[,. = [Q].
The L*-norm (s > 1) is invariant under spherical symmetrizations.

Proposition 3.2. For any s > 1, we have
f@)lze ) = [If"(@)Lz) = I1f+(@)]Ls@z)- (3.1)

Proof. See [22], Proposition 2.2. O

For any p € M, let ), : [0,00) — [0, 00) be the radial function defined by

1By (11p(r))l,. = |Bp(r)|- (3-2)

Clearly, 7, is monotone non-decreasing in r. The volume comparison theorem for Sect, < s implies that

np(r) > .
The spherical symmetrizations of monotone radial functions have the following properties.

Lemma 3.3. Assume f(r) is a non-negative function on [0, 00).

1. If f(r) is non-decreasing, then for y € Q0

(fomporp), (y) = frqe(y))- (3-3)
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2. If f(r) is non-increasing, then for y € Q0
(fompory) (y) < fre(y)). (3.4)
Proof. 1t follows from the definitions of 1, and spherical symmetrizations that
(fompory), () = flmp(r)), (3.5)

where 1 satisfies | By (r4(y))|x = |Bp(r1) Q| < |Bg(np(r1))]x- So then

rq(2) < p(r1),

which implies (3.3) since f is non-decreasing.
The proof of (3.4) is similar as that of (3.3) and we omit the details. O

We now prove a comparison result for isoperimetric profiles.

Lemma 3.4. Assume that (M", g) is complete simply connected with Secty < k for k < 0. For any firedp € M™
and any fized g € M, we define an isoperimetric profile Insp : [0,00) — R by

Inp(t) := [0By(r(1)]
where 7(t) is so defined that | B, (p)| = t, and similarly define Ins, 4 : [0,00) — RT by
Intq(t) := (0B (np (1))l
where |By(ny(r(t)))],, =t, cf. (3.2). Then
Ingp(t) > Ing, 4(2). (3.6)

Proof. Let r1 and ro satisfy

t:/ / J(r,@)drd@znwn/ Je(r) dr.
sn—1.Jo 0

Since Secty < &, we have the following comparisons

J(r0) i)

J(r,0) > Jo(r) and >

Then from the definitions of 1 and 72, we have r; < ro. By direct calculation,

Jo(r1)
I/ (t) = fSn71 J’(rlae) d9 fSn—l .]N(Tl)J(Tl,e) da _ J;(?"l)
" Jorma T(r1,0)d0 = Jgus J(r1,0) 6 (1)

> Jy.(r2)
r(T2

T (r2)’

where we used the comparison (3.7) in the first inequality and 71 < ry in the last inequality. Similar calculation
shows that
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Therefore, we have
Thip(®) = Thy, o) 2 0,
thus implying the lemma. O

The next lemma estimates the derivative of 7,(r) in terms of the curvatures and the diameter of Q.

Lemma 3.5. Assume that (M™, g) is complete simply connected with Secty < K for £ < 0 and Ricy > (n—1)Kyg
for K <0. Fiz any p € M™, then for all r € (0,d], where d = diam(2), we have

ny(r) > 1, (3.8)
sy S0 (mp(r)) sngc(d) )"
< . 3.9
ax {np(r)’ sny, (1) — \Usng(d) (3.9)
Proof. We suppress p to simplify our notaiton, e.g., we write 7, as n and B,(p) as B;.
Since 7' (r) = dlﬁf‘ Z‘"Ig)‘, we have
/ |0B,|
()= ——— -
mi, (mic' (| B:]))

where m,(r) = | B,|,. By the definition (3.2) of n(r), we see that n(r) = m_(|B,|). So then
my. (mi (| Br])) = mi(n(r)) = 0Byl

which gives

, |0B;|
n(r) = on—r
0B () |

Since Secty < k, then from the isoperimetric inequality (3.6), we deduce
‘837’/(7‘)'5 < |8Br‘a

thus proving (3.8).
Inequality (3.9) has been proven in [22], page 863. We give a different proof here. Since 7(r) > r, we have

, |08, | |0B,| _ |0B,|x sng(d)\"
(r 0By le — 10Br]s — 10B,]s — \ snu(d) ’ (3.10)

sng ()
sn,, (1)

where we have used the curvature condition Ric, > (n — 1)K g and the fact that is non-decreasing in 7.

Using the isoperimetric inequality (3.6), we estimate that

1

sn, (n(r)) <aBn(r)|H)"1 < ( 0B, | )

sne(r)  \|0B.]. 0B, .




AN UPPER BOUND FOR THE FIRST NONZERO STEKLOV EIGENVALUE 9

Since Ric, > (n — 1)Kg, we have |0B4| < |0B,|,. Therefore, we get

1
sny. (n(r)) < |O0Br| e\ "1 _ sng(r) < sng (d) (3.11)
sng(r)  — \|0B,|x sng(r) ~ sng(d) ’
where we have again used that % is non-decreasing in 7. Then (3.9) follows from (3.10) and (3.11).
Therefore, the lemma is proved. O

4. PROOF OF THEOREM 1.1
We first prove a center of mass result.

Lemma 4.1. Assume that (M™, g) is complete simply connected with Secty < K for k <0, and & C M™ is any
bounded domain. Then there exists a point p € hull(Q)), the closed geodesic convex hull of Q, such that

exp,, ! (x)

dA, =0,
p(7) 7

| Fonon)@

where F is defined in equation (2.1), rp(x) = disty(p, ), and exp,'(z) denotes the inverse of the exponential
map exp,, : T, M™ — M™.

Proof. The proof is similar to [22], Lemma 4.1. Define the vector field

exp;, ' (2)

Tp()

X(p) = /(9Q(Fo77p orp)(x) dAg.

Then the integral curves of X defines a mapping from hull(€2) to itself. Since hull(€?) is convex and contained
in the injectivity radius, hull(2) is a topological ball and thus X must have a zero by the Brouwer fixed point
theorem. 0

We divide the proof of Theorem 1.1 into four propositions, each of which gives a different upper bound for
01(Q) and might be of independent interest.
From here on, we fix p € hull(Q2) according to Lemma 4.1 so that

/ epr((x) (Fompor)(x) dAg =0. (4.1)
o Tp&

We denote by (r,6), where § € S*~!, the polar coordinates centered at p and by J(r, §)drdf the volume element
at (r,6). Then we have

exp,, ' (x)

p()

= (¢1(0)a¢2(0)a e a’l/}n(e))a

where 1;(6)’s are the restrictions of the linear coordinate functions on S*~1. We define

Then (4.1) is equivalent to
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Using v;’s as test functions for ¢1(€2), we obtain the following proposition.
Proposition 4.2. Assuming the hypotheses of Theorem 1.1, then

fQ (}F Mp (1)1, (7 | + Snz(r )F (Up(%))) dpg
- fag |F( np(rp))‘ dA, '

Proof. We write n, and r, as n and r for short.

O'l(Q)

(4.2)

We denote by V5" ™" the covariant derivative with respect to the standard metric on the unit sphere S*—1,
and by V the covariant derivative with respect to the metric g = dr? + g;;(r,0)d6?d6? on M. Using

Sowi=1 and Y[V =n-1,
=1 =1

we compute that

S [ vl g =32 [ 19 (F )P du
Z/%? )02 + zwmwwmﬂwg

Jn=1(r,6)

/ ’ 2 2 n—1
ZA{WUWﬁNﬂ+FWW»Nme}dM

! / 2 1
< [{IFaom @F + 2252000 | du, (1.3

where in the last step we used

J(r,0) > snz_1 (r),

which follows from the Rauch comparison theorem. We also have
Z/vd%fZ/ w)PE da, = [ PR da, (4.4)

So using the averaging of Rayleigh quotients for v;, (4.3) and (4.4), we obtain

@ < Z;ffz|vw|2 dpig . Jo (|F/(n( N ()| + an(T)FQ( (r ))> du
e ifagvfdAg - Joo [ (n(r))[? dA, '

This proves the proposition. O

Proposition 4.3. Assuming the hypotheses of Theorem 1.1, then for functions G and H defined in
Proposition 2.1, there holds

SnK(d))Qn_2 Jo H ( )) dys, (4.5)

“wgﬁmw [RECACLT

where d = diam(€2).
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Proof. We write n, and r, as n and r for short.
It follows from the definition (2.4) of H and the estimate (3.9) in Lemma 3.5 that

F )P 1)+ s P )
sn? (n(r 2 n— 5
< max {n’m?, H(Z()))} (10 + s P20t )
SDK<d) 2n—2
< () a0, (4.6)
We estimate the boundary integral.
F(n(r)) dA,
o0
2
>/3QF (n(r))(Vr,v)dA,
:/de (F2(n(r)Vr) dpg
= [ A ) )+ Fn(r) A dy
> [y aom e+ E2E 0 p i a,
Ly o DS s () snl ()
= [ oo+ O o T TS
ey (= D) o
> [y + E 2B p2 ),
— [ G duy, (47)

where the last equality follows from the definition (2.3) of G, in the first inequality we used |Vr| = 1, in the
second inequality we used the Laplacian comparison theorem for the distance function, and in the last inequality
we used 7/(r) > 1 from Lemma 3.5 and

which follows from 7n(r) > r and that :::E:g is monotonically decreasing in r.

The proposition follows by substituting (4.6) and (4.7) into (4.2). O

Let dup denote the volume form with respect to g, on the space form M,.

Proposition 4.4. Assuming the hypotheses of Theorem 1.1, then for functions g and h defined in
Proposition 2.1, there holds

2n—2 . H Tq d
SnK(d)) Jog ) (4.8)

"= (50) T
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Proof. Lemma 3.3 applies to functions g and h defined in Proposition 2.1. Setting f = G in inequality (3.3) and
f = H in inequality (3.4), and using Proposition 3.2, we obtain

/Honporpdug =/ (Honpory)" du< | H(rg)du (4.9)
@ a 2
and
/ Gonporpdug :/ (Gompory), du > G(rq) dp. (4.10)
Q o o
Assembling (4.5), (4.9) and (4.10) together, we conclude the proposition. O

Proposition 4.5. Assuming the hypotheses of Theorem 1.1, then

Jo. H(r
fQ; G(rq) dp

Proof. Recall that F(r)i;(0), 1 <i < n, are the eigenfunctions for o1 (€2}). It then follows that

o1(Qy) = (4.11)

Jo: (F/(rq)z Sng(:q)pz( )) i Jo. H(rg) dps
fé)Q* (?rq) dA fE)Q* (rq) dA’

where dA is the induced measure on 9€2;. Also recalling the definition (2.3) of G in Proposition 2.1, then we
have

/ F2(r,)dA = (F2(ry)Vry,v) dA
o o
:/ div (F?(rq)Vry) dp

(F?) + FQArq) dp

(
< n—l)snﬁF2> d
G(

Il

= (rq) dp.
Therefore, we have proved the proposition. ]
Proof of Theorem 1.1. Theorem 1.1 follows immediately from (4.8) and (4.11). O
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