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1 Introduction

Axion-like particles are well-motivated candidate degrees of freedom for the description of the
physics beyond the Standard Model. Thanks also to the radiative stability of their potential,
which is guaranteed by a softly broken shift symmetry, axions can play a significant role
in cosmology: axion-like fields are excellent inflaton candidates [1–5]; the QCD axion (or
more in general an axion-like particle with a su�ciently large mass) might constitute Dark
Matter [6–8]; last but not least, an axion-like degree of freedom with a mass of the order
of 10≠33 eV is a natural candidate for a dynamical explanation of the current accelerated
expansion of the Universe [9–11]. An arrangement of various axions might even play all of
these roles in the “axiverse” scenario [12, 13].

The interactions of cosmological axion-like degrees of freedom with other forms of matter
have been studied for several decades. In this work, we will be concerned with the fact that a
rolling homogeneous axion can provide a time-dependent background for other fields, thus
leading to amplification of their vacuum fluctuations. In this respect, the phenomenology of a
homogeneous axion coupled to gauge fields and rolling either during inflation (see e.g. [14] for
a review) or in the post-inflationary Universe (see e.g. [15–18]) has been studied in the detail.

More recently, several works, including [19–28], have focused on the fact that a homo-
geneous rolling axion can lead to matter production through a shift-symmetric coupling to
fermions. This coupling has received comparatively less interest than the coupling to gauge
fields, which can be attributed to the fact that, due to Pauli blocking, fermions do not achieve
the exponentially large occupation numbers obtained by vectors [29]. In the case of fermion
production, the limitations from Pauli blocking can however be overcome by filling the Fermi
sphere up to large momenta, leading to a phenomenology that is dramatically di�erent, as
one could expect, from that of vectors. In particular, the authors of [19–21, 23, 26] have
studied the production of fermions during inflation.1 The more recent papers [22, 25, 27, 28],
focus mostly on the e�ects of a rolling axion in the presence of a uniform electromagnetic

1
The work [24] studies an analogous process in the case in which the axion is coupled to a SU(2) gauge field.
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field. Nevertheless, they also contain analyses of fermion production by a rolling axion in
the absence of gauge fields, on a Minkowskian background (reference [28] also includes some
discussion of the system in an expanding Universe).

In the present work, we will consider fermion production by a time-dependent homoge-
neous2 axion in a general flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology. In
particular, after deriving the formulae controlling the evolution of the Bogolyubov coe�cients,
we will specialize to the case of axion-like fields oscillating in a radiation- and slowly rolling in
a matter-dominated background. We use these equations to provide simple general expressions
for the spectra of the fermions generated in this system. These spectra are obtained by
integrating analytically the equations for the Bogolyubov coe�cients in the regime in which
the occupation number is much smaller than unity. When the latter condition is not realized
we know that, due to Pauli blocking, the occupation number must be of the order of the unity.
We numerically check the validity of our analytical results. Throughout the paper we work in
the regime where we can ignore the backreaction of the evolving axion on the background
cosmology and of the produced fermions on the axion. At the end of the paper, we list a few
scenarios where these formulae (or their appropriate extensions) could be applied.

Our work is organized as follows. In section 2 we present our model and derive the
expressions of the Bogolyubov coe�cients and the equations that govern them in a general
flat FLRW space. In section 3 we solve numerically those equations for radiation-dominated
and matter-dominated backgrounds and present simple formulae for the scaling of the total
number of produced fermions as a function of the parameters of the model (in appendix A
we discuss the origin of an apparent discontinuity in one of the spectra found in section 3).
In section 4 we discuss some possible applications of the results presented in section 3 and
summarize our work. Estimating the fermion spectra requires analytical estimates of integrals
that have to be performed in di�erent regions of the parameter space. We review an example
of such calculations in appendix B.

2 Deriving the equation for Bogolyubov coe�cients
In this work we consider an axion-like field „ with axion constant f interacting with a fermion
Â through a dimension-five derivative coupling as well as a mass term with an exponential
dependence on “5 „. These two interaction terms come as a pair, as one can be converted into
the other by a redefinition of the fermion field (see below, right after eq. (2.3)). We work in a
flat FLRW Universe, with the scale factor denoted by a. The relevant part of our action is

S =
⁄

d
4
x a

4

5
Â̄

3
i
“

µ

a
ˆµ + 3

2 i
a

Õ

a2
“

0
≠ m e

2i“5 cm„/f + c5

“
µ

a
“5

ˆµ„

f

4
Â + 1

2ˆµ„ˆ
µ
„ ≠ V („)

6
,

(2.1)
where we use conformal time, which we denote by · , where “

µ are gamma matrices in
Minkowski spacetime in the chiral representation,

“
0 =

A
0 12

12 0

B

, “
i =

A
0 ‡i

≠‡i 0

B

, “5 = i“
0

“
1

“
2

“
3 =

A
≠12 0

0 12

B

, (2.2)

2
The assumption on the homogeneity of the axion is well justified because (i) during radiation domination

inhomogeneities do not grow, and (ii) during matter domination we will consider only a very light, quintessence-

like axion.
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(with 12 denoting the 2 ◊ 2 identity matrix), and where c5 and cm are dimensionless coupling
constants of the dimensionless axion „/f . Also, a prime denotes derivative with respect to · .
We simplify our notation by performing the substitutions c5

f
„ æ ◊5 and cm

f
„ æ ◊m.

The fermion equation of motion reads
3

i“
µ
ˆµ + 3

2 i
a

Õ

a
“

0
≠ m a e

2i“5◊m + “
µ
“5 ˆµ◊5

4
Â = 0 . (2.3)

Further substituting Â æ e
≠i“5◊5Â, Â æ a

≠3/2
Â and defining ◊5 + ◊m © ◊, the equation

of motion simplifies drastically to
1
i“

µ
ˆµ ≠ m a e

2i“5 ◊
2

Â = 0 . (2.4)

We wish to solve this equation for ◊ = ◊(·). To do so, we decompose the fermionic
field operator in Fourier modes as

Â(x, ·) ©

⁄
d

3k
(2fi)3/2

e
ik·x

Âk(·) =
⁄

d
3k

(2fi)3/2
e

ik·x ÿ

r=±

Ë
Ur(k, ·) âr(k) + Vr(≠k, ·) b̂

†
r(≠k)

È
,

(2.5)
where

Ur(k, ·) = 1
Ô

2

A
‰r(k̂) ur(k, ·)
r ‰r(k̂) vr(k, ·)

B

, Vr(≠k, t) = 1
Ô

2

A
‰r(k̂) wr(k, ·)
r ‰r(k̂) yr(k, ·)

B

, (2.6)

and with the spinors ‰r(k̂) defined as

‰r(k̂) = (1 + r ‡‡‡ · k̂)
Ò

2(1 + k̂3)
‰̄r, ‰̄+ =

A
1
0

B

, ‰̄≠ =
A

0
1

B

, (2.7)

that are orthonormal helicity eigenstates:

‡‡‡ · k̂ ‰r(k̂) = r ‰r(k̂) , ‰
†
r(k̂)‰s(k̂) = ”rs . (2.8)

Using these definitions and properties, we get the equations of motion for the functions
ur and vr as

i u
Õ
r + r k ur ≠ m a r e

2i◊
vr = 0 ,

i v
Õ
r ≠ r k vr ≠ m a r e

≠2i◊
ur = 0 , (2.9)

where the quantity |ur|
2 + |vr|

2 is a constant of motion that we normalize to |ur|
2 + |vr|

2 = 2.
The expression for wr and yr can be obtained by observing that, as a consequence of

the invariance of the system under charge conjugation, Vr(≠k) satisfies the same equation
as i“

0
“

2
Ūr(k)T . Then, using the properties i‡2 ‰

ú
r(k) = ≠r ‰≠r(k) = ≠e

≠ir„k‰r(k), with
e

i„k = k1+ik2Ô
k

2
1+k

2
2
, we can identify wr = ≠r v

ú
r and yr = r u

ú
r, up to the irrelevant constant

phase e
≠ir„k .
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The Bogolyubov coe�cients can be found by diagonalizing the Hamiltonian which, after
rotating away3

◊5, reads

Ĥ = i

⁄
d

3k Â
†
k Â

Õ
k , (2.10)

and that, after substituting the spinor decomposition (2.5) with (2.6), takes the form

Ĥ =
⁄

d
3k

1
â

†
r(k), b̂r(≠k)

2 A
Ar(k, ·) B

ú
r(k, ·)

Br(k, ·) ≠Ar(k, ·)

B A
âr(k)

b̂
†
r(≠k)

B

, (2.11)

where

Ar(k, ·) = r

2
Ë
≠k |ur|

2 + k |vr|
2 + m a e

2i◊
u

ú
r vr + m a e

≠2i◊
v

ú
r ur

È
,

Br(k, ·) = 1
2

Ë
2 k ur vr + m a e

≠2i◊
u

2

r ≠ m a e
2i◊

v
2

r

È
.

(2.12)

The fact that the Hamiltonian is not diagonal (i.e., that it includes terms proportional to,
e.g., â

†
r(k) b̂

†
r(≠k)) implies that in general the operators â

†
r(k) and b̂

†
r(k) cannot be interpreted

as creation operators of physical energy eigenstates. Physical creation/annihilation operators
are then found by diagonalizing the Hamiltonian.

A direct calculation shows that the eigenvalues of the 2 ◊ 2 matrix appearing in eq. (2.11)
are ±Êk(·), Êk(·) ©


k2 + m2 a(·)2, so that the diagonalization will be realized by finding

two functions –r(k, ·) and —r(k, ·) for which |–r|
2 + |—r|

2 = 1 and
A

Ar B
ú
r

Br ≠Ar

B

=
A

–
ú
r —

ú
r

≠—r –r

B A
Êk 0
0 ≠Êk

B A
–r ≠—

ú
r

—r –
ú
r

B

, (2.13)

that is,

|–r|
2

≠ |—r|
2 = Ar/Êk , 2 –r —r = ≠Br/Êk . (2.14)

This way, if one defines new creation/annihilation operators
A

Âr(k, ·)
B̂

†
r(≠k, ·)

B

©

A
–r(k, ·) ≠—

ú
r (k, ·)

—r(k, ·) –
ú
r(k, ·)

B A
âr(k)

b̂
†
r(≠k)

B

, (2.15)

the Hamiltonian takes the form

Ĥ =
⁄

d
3k Êk(·)

Ë
Â

†
r(k, ·)Âr(k, ·) ≠ B̂r(k, ·)B̂†

r(k, ·)
È

, (2.16)

so that we can interpret Â
†
r(k, ·) and B̂

†
r(k, ·) as creation operators for physical states

with energy Êk at time · . The number density of fermions with helicity r and momentum
k is then given by

È0|Â
†
r(k, ·)Âr(k, ·)|0Í

V
= |—r(k, ·)|2 , (2.17)

where V is the volume of space.
3
If we did not rotate away ◊5, the fermionic Hamiltonian would contain an extra term i

s
d3k Â†

k “5◊Õ
5Âk,

which originates from the fact that ˆµ◊5 ∏ „Õ
, which modifies the expression of the momentum conjugate to „.

Such a term is essential to keep the theory, including the evolution of the Bogolyubov coe�cients, invariant

under the symmetry Â ‘æ e≠i“5–Â, ◊5 ‘æ ◊5 ≠ –, ◊m ‘æ ◊m + –.
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The normalization condition |–r(k, ·)|2 + |—r(k, ·)|2 = 1 implies that both the âr, b̂r

and the Âr, B̂r operators satisfy canonical commutation relations. As a consequence, one
obtains the expression for the occupation number,

|—r(k, ·)|2 = 1
2 ≠

Ar(k, ·)
2 Êk

. (2.18)

Using eqs. (2.14) along with the normalization condition |–r|
2 + |—r|

2 = 1, we obtain

–r = r

2

Û

1 ≠ r
k

Êk

e
≠i◊

ur + 1
2

Û

1 + r
k

Êk

e
i◊

vr ,

—r = ≠
r

2

Û

1 + r
k

Êk

e
≠i◊

ur + 1
2

Û

1 ≠ r
k

Êk

e
i◊

vr .

(2.19)

Inserting the above expressions into the equations of motion (2.9) we obtain the equations
controlling the evolution of the Bogolyubov coe�cients

–
Õ
r = ≠i

3
Ê ≠ k r

◊
Õ

Ê

4
–r + m

3
≠k r

a
Õ

2 Ê2
+ i a

◊
Õ

Ê

4
—r ,

—
Õ
r = m

3
k r

a
Õ

2 Ê2
+ i a

◊
Õ

Ê

4
–r + i

3
Ê ≠ k r

◊
Õ

Ê

4
—r . (2.20)

Eqs. (2.20) show that no particle production occurs in the limit m æ 0, as the coe�cient
of –r in the equation for —

Õ
r vanishes in this limit. This is consistent with the fact that in

this limit all coupling to ◊m and ◊5 can be eliminated with a chiral transformation.

3 Calculations in radiation/matter dominated Universe

In this section, we provide solutions to the master equations (2.20) for the Bogolyubov
coe�cients to derive the total number of fermions produced in cosmological regimes —
radiation and matter domination — of physical interest.

3.1 Radiation domination

To start with, we assume that the Universe is radiation-dominated, denoting with a subscript
RD, end all quantities evaluated at the end of this period. In particular, HRD, end denotes
the value of the Hubble parameter at the end of the radiation-dominated regime, and we
set aRD, end = 1.

The scale factor is given by

a(·) = ·

·RD, end

= HRD, end · = (2 HRD, end t)1/2
, (3.1)

d–r

da
= ≠i

A

Ễ ≠ r
k̃

Ễ

d◊

da

B

–r + m̃

A

≠r
k̃

2 Ễ2
+ i

a

Ễ

d◊

da

B

—r ,

d—r

da
= m̃

A

r
k̃

2 Ễ2
+ i

a

Ễ

d◊

da

B

–r + i

A

Ễ ≠ r
k̃

Ễ

d◊

da

B

—r , (3.2)

– 5 –
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where all the tilded parameters correspond to dimensionful quantities measured in units of
HRD, end: m̃ © m/HRD, end, k̃ © k/HRD, end, Ễ © Ê/HRD, end.

Pauli blocking implies that |—r| Æ 1, and in important regions of the parameter space, the
stronger condition |—r| π 1 is satisfied, in which case one can neglect the terms proportional to
—r in the right hand sides of eqs. (3.2), so that the solution can be written as a single integral,

—r(a) ƒ m̃

⁄
a

0

da
Õ
A

r
k̃

2 Ễ2
+ i

a
Õ

Ễ

d◊

daÕ

B

e
≠i

s aÕ

0 da
ÕÕ

1
Ễ≠r

k̃
Ễ

d◊
daÕÕ

2

, |—r(a)| π 1 . (3.3)

For a massive axion-like field „ with mass µ, which we assume to be uniform in space,
the equation of motion in cosmic time t during radiation domination (H = (2 t)≠1) reads

d
2
„

dt2
+ 3

2 t

d„

dt
+ µ

2
„ = 0 , (3.4)

whose solution, converging to „0 as t æ 0, reads

„(t) = 21/4 �
35

4

4
„0

J1/4(µ t)
(µ t)1/4

=∆ ◊(a) = 21/2 �
35

4

4
◊0

J1/4(µ̃ a
2
/2)

µ̃1/4 a1/2
, (3.5)

where J‹(x) denotes the Bessel function of the first kind and where ◊0 © ◊(a æ 0).
Since the Hubble parameter at the end of the radiation-dominated regime is of the order

of 10≠27 eV, which is tiny compared to particle physics scales, we will study the parameter
space of the system in the regime µ̃ ∫ 1, m̃ ∫ 1.

Before performing our analysis, let us study the implications on our parameter space of
the assumption that the energy in the oscillating axion be subdominant with respect to the
background energy. Our axion starts oscillating when the Hubble parameter is of the order
of µ, and subsequently its energy density redshifts as matter. Therefore, the axion energy
density, compared to the background energy, increases linearly in the scale factor, or as the
square root of the inverse of the Hubble parameter. Requiring the axion energy density to
is subdominant all the way to a = aRD, end = 1, we get the constraint

µ . HRD, end

3
MP

f

44

, (3.6)

where we have set „0 = ◊0 f ¥ f with c5 ¥ cm ¥ 1. We see, therefore, that if f is close to
the Planck scale, then µ is very constrained, but by choosing f . 10≠10

MP we can have
a value of µ at the TeV scale or even larger.

We can find approximate formulae for the spectrum of produced fermions at the end of
the radiation-dominated period, a = 1, by estimating the integral (3.3). In appendix B, we
show an example (on a matter-dominated background) of the calculation leading to such
a spectrum. If the integral is of the order of unity or larger, we set |—r| ƒ 1. Due to the
large number of regimes of parameters to survey, we focus only on the case ◊0 = O(1),
even if ◊0 ∫ 1 is also possible.

– 6 –
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We first analyze the region of parameter space where 1 π m̃ π µ̃. In this regime we
obtain, at the end of the radiation-dominated regime, the approximate spectrum

|—r(1)|2 ƒ

Y
_________]

_________[

1, k̃ π
Ô

m̃ ,

1
4

m̃
2

k̃4

---e≠ik̃
2
/m̃

≠ 1 + e
≠ir◊0

---
2

,
Ô

m̃ π k̃ π
Ô

µ̃ ,

4 m̃
2

k̃ µ̃3/2
◊

2
0 �

1
5

4

22

,
Ô

µ̃ π k̃ π µ̃ ,

8
fi

m̃
2

µ̃
1/2

k̃4
◊

2
0 �

1
5

4

22

cos2

3
µ̃

2 + fi

8

4
, k̃ ∫ µ̃ .

(3.7)

The careful reader will notice a discontinuity in the spectra around k̃ ≥ µ̃. As we show
in more detail in appendix A, the spectrum is actually continuous, but its amplitude changes
rapidly in a region of width �k̃ ¥

Ô
µ̃ around k̃ ≥ µ̃.

There are two (non mutually exclusive) sources of particle production in our system:
fermions might be produced by the expansion of the Universe or by the oscillating axion.
We can determine which of those sources is dominant by inspecting the dependence of the
spectrum on the parameter ◊0. Since for momenta k̃ smaller than

Ô
µ̃ the spectrum does

not depend on the amplitude of the oscillating axion, fermions with longer wavelengths are
predominantly produced by the expansion of the Universe, whereas at larger momenta the
oscillating axion is the dominant source of matter production. Remembering that we are
assuming ◊0 = O(1), we will see (eq. (3.8) below) that the total number of produced fermions
is dominated by the modes amplified by the oscillating axion.

The total number density of fermions produced at the end of radiation domination is
then obtained by computing the integral NRD, end =

s
d

3k |—r(1)|2. Using the analytical
expression for the spectra given above, we obtain

NRD, end ƒ 20 m
2

Ò
µ HRD, end ◊

2

0 ,

(1 π m̃ π µ̃ , ◊0 = O(1)) (3.8)

where we have kept only the leading term in the 1 π m̃ π µ̃ limit.
The above result can be converted into dimensionless quantities by determining the

contribution to � by the produced fermions. Noticing that the main contribution to the
number density comes from modes with k ¥ µ ∫ m, we obtain

�Ferm

1πm̃πµ̃ Ã
m

2
µ

3/2

M
2

P
H

3/2

RD, end

¥
m

2
µ

3/2

(10≠5 GeV)7/2
, (3.9)

and one might be tempted to look for values of the parameters for which the abundance
of produced fermions is of the order of the unity, so that those particles could constitute
dark matter today. We note however that our analysis assumes that the backreaction of
the produced fermions is negligible, and the oscillating axion is a subdominant component
of the Universe energy budget. As a consequence, �Ferm = O(1) is outside of the regime
of validity of the approximations used in this paper.

– 7 –
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A similar analysis in the regime 1 π µ̃ π m̃ gives the approximate spectrum

|—r(1)|2 =

Y
__________]

__________[

1, k̃ π
Ô

m̃ ,

1
4

m̃
2

k̃4

---e≠ik̃
2
/m̃

≠ 1 ≠ e
≠ik̃

2
/2m̃

---
2

,
Ô

m̃ π k π m̃/
Ô

µ̃ ,

8
fi

µ̃
1/2

m̃

k̃3
◊

2
0 �2

1
5

4

2
cos2

A
µ̃ k̃

2

2 m̃2
+ fi

8

B

, m̃/
Ô

µ̃ π k̃ π m̃ ,

8
fi

µ̃
1/2

m̃
2

k̃4
◊

2
0 �2

1
5

4

2
cos2

3
µ̃

2 + fi

8

4
, k ∫ m̃ .

(3.10)

Again, axion-induced production dominates at larger momenta (k & m

Ò
HRD, end/µ, in

this case). Unlike what happens in the case 1 π m̃ π µ̃, however, the spectrum has a steep
slope at those large momenta. As a consequence, the total number of produced fermions is
dominated by gravitational e�ects. Keeping also the leading term proportional to ◊

2
0, the

total number of fermions is given by the formula

NRD, end ƒ .9 (m HRD, end)3/2 + 20 m

Ò
µ H

3

RD, end
◊

2

0 log
3Ò

m/µ/◊
2

0

4
,

(1 π µ̃ π m̃ , ◊0 = O(1)) . (3.11)

Again, the quantity NRD, end can be converted into a contribution to �. Since the total
number (3.11) is dominated by fermions with momenta k = O(


m HRD, end) π m, one has

�Ferm

1πµ̃πm̃ Ã
m

5/2

M
2

P
H

1/2

RD, end

¥

3
m

107 GeV

45/2

, (3.12)

that can be of the order of the unity if m ¥ 107 GeV. Note that if we want �Ferm
1πµ̃πm̃

= O(1),
we must require the Universe to be radiation dominated for values of the Hubble parameter
all the way up to 107 GeV, which corresponds to a very high reheating temperature of the
order of 1012 GeV. Scenarios in which dark matter is created gravitationally in the early
Universe date back to at least [30].

The behavior NRD, end Ã m
3/2 for the component of fermion production induced by the

expansion of the Universe can also be easily derived as follows. Dimensional analysis, and
the fact that fermions coupled to gravity only become conformal (and therefore insensitive
to the expansion of the Universe) in the massless limit, implies that fermions are produced
by the expanding Universe when the Hubble parameter is of the order of m. Since the only
relevant dimensionful quantity is m, the number density of the fermions at the time of their
production must scale as N(H = m) ƒ m

3. At later times (H < m), the fermions will just
be diluted by the expansion of the Universe:

N(H < m) ƒ m
3

3
a(H = m)

a(H)

43

. (3.13)

For radiation domination H Ã 1/a
2, so that a(H) Ã H

≠1/2. We thus obtain the result
N Ã m

3/2
H

3/2

RD, end
.

We have verified numerically the validity of the formulae given above for the occupation
number which is illustrated in figure 1. In the left panel, we show a log-log plot of the
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Figure 1. The total number density NRD, end of produced fermions with helicity r = +1 during
radiation domination. Left panel: the dependence of N/H

3
RD, end on µ/HRD, end for m = 10 HRD, end

and ◊0 = 1. Right panel: the dependence of N/H
3
RD, end on m/HRD, end for µ = 100 HRD, end and

(solid lines, bottom to top) for ◊0 = 1, 3, 5. The dashed lines, left to right, show the powers m̃
2, m̃

1,
m̃

3/2.

number of produced particles when a = 1 for m = 10 HRD, end, ◊0 = 1, and varying µ,
150 HRD, end Æ µ Æ 2500 HRD, end. We have checked that the slope of the line is 1/2 and
remains constant in the range m̃ π µ̃ at least in the regime 1 < ◊0 < 5.

The right panel shows the log-log plot of the number density of produced fermions,
as a function of the mass m and for fixed µ = 100 HRD, end, for values of ◊0 = 1, 3, 5. In
particular, this plot shows that in the region m̃ π µ̃ the number density of produced fermions
is proportional to m̃

2
◊

2
0. We also find an intermediate regime with moderately large m̃ & µ̃

where we reobtain the behavior NRD, end Ã m̃ ◊
2
0 shown in eq. (3.11). In this regime fermion

production is still dominated by the oscillations of the pseudoscalar (as opposed to be due
to the expansion of the Universe), and we see in fact that the number of produced fermions
is proportional to ◊

2
0. As a consequence, as we increase ◊0, the NRD, end Ã m̃

3/2 component
(which is also present in eq. (3.11)) starts dominating at increasingly higher values of m̃. For
instance, one cannot see the NRD, end Ã m̃

3/2 behavior in figure 1 for ◊0 = 3, 5, since this
behavior kicks in at values of m̃ that are too large to be covered by our numerical evaluations.

Finally, we note that the left- and right-handed fermions will be produced at a similar
rate. This is because the handedness of the produced fermions depends on the sign of d◊/da,
and, since its mass is very large, the axion oscillates at a fast rate, e�ectively canceling
any helicity dependence.

3.2 Matter domination
For simplicity, in this subsection we ignore the existence of a dark energy-dominated epoch
and we assume that the Universe is matter-dominated from the time of matter-radiation
equality until the present time. Then, denoting by H0 the present value of the Hubble
parameter, the scale factor is given by

a(·) =
3

H0 ·

2

42

=∆ a(t) =
33

2 H0 t

42/3

, (3.14)

where we have set a = 1 at present. Also for a matter-dominated Universe, it is convenient
to write the equations of motion (2.20) for the Bogolyubov coe�cients using the scale factor
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a as the independent variable, which then read

d–r

da
= ≠i

A
Ễ

Ô
a

≠ r
k̃

Ễ

d◊

da

B

–r + m̃

A

≠r
k̃

2 Ễ2
+ i

a

Ễ

d◊

da

B

—r ,

d—r

da
= m̃

A

r
k̃

2 Ễ2
+ i

a

Ễ

d◊

da

B

–r + i

A
Ễ

Ô
a

≠ r
k̃

Ễ

d◊

da

B

—r , (3.15)

where all tilded quantities are understood to be the corresponding dimensionful quantities
measured in units of H0.

Similar to radiation domination, approximate solutions to (2.20) can be obtained in
the regime |—r| π 1. In this case we can ignore the terms proportional to —r on the right
hand sides of eqs. (3.15), and we obtain

—r(a) = m̃

⁄
a

0

da
Õ
A

r
k̃

2 Ễ2
+ i

a
Õ

Ễ

d◊

daÕ

B

e
≠i

s aÕ

0 da
ÕÕ
1

ỄÔ
aÕÕ ≠r

k̃
Ễ

d◊
daÕÕ

2

, |—r(a)| π 1 . (3.16)

For a massive axion-like field „ with mass µ, assuming that „ is uniform in space, the
equation of motion in cosmic time t during matter domination, H = 2/(3 t), reads

d
2
„

dt2
+ 2

t

d„

dt
+ µ

2
„

2 = 0 , (3.17)

whose solution, regular as t æ 0, reads

„(t) = „0

sin(µ t)
µ t

=∆ ◊(a) = ◊0

sin
1

2

3
µ̃ a

3/2

2

2

3
µ̃ a3/2

. (3.18)

The system thus depends on the dimensionless parameters m̃, µ̃ and ◊0. Given the
smallness of H0, the natural values for m̃ and µ̃ are many orders of magnitude larger than
unity. However, for µ̃ ∫ 1, most of the oscillations of the axion-like field will have taken place
during the radiation-dominated period. Only the relatively narrow window 1 π µ̃ . 103

corresponds to a regime in which oscillations, and consequently fermion production, take
place during matter domination. Given the smallness (on a log scale) of the size of this
window, we will neglect this possibility. We will focus instead on the phenomenologically
interesting situation in which the axionic field is slowly rolling today, considering the case in
which the axion is acting as dark energy. As we noted above, we assume that the Universe is
matter dominated all along, so this corresponds to the regime in which the axion-like dark
energy did not come to dominate the energy in the Universe yet.

Since the axion is slowly rolling, we can approximate µt π 1, leading to „(t) ƒ

„0

1
1 ≠

1

6
µ

2
t
2

2
, and the equation of state parameter

w(t) = „̇
2

≠ µ
2
„

2

„̇2 + µ2„2
ƒ ≠1 + 4

9µ
2

t
2

, (3.19)

which gives a current (i.e., at t = t0 = 2

3H0
) value of w0 = ≠1 + 16

81
µ̃

2. To fix ideas, we set
µ̃ = .7, which gives an equation of state parameter w0 ƒ ≠.9. In the following analytical
calculations, we will keep only the leading order terms in µ̃. In particular, we will set

◊(a) = ◊0

3
1 ≠

2
27 µ̃

2
a

3

4
. (3.20)
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Unlike the radiation-dominated case, in this subsection we will allow the quantity ◊0 to
be either of the order of unity or much larger than one. In fact, while the simplest expectation
for the axion-like dark energy field is a cosine potential V („) Ã cos(„/f), in which case ◊0 is
typically expected to be smaller than unity, in models with monodromy the axion potential
can extend on a range �„ ∫ f with a quadratic [31] or more complicated [32] potentials.

The integral (3.16) can be evaluated analytically to give the spectrum of produced
particles at the end of the matter domination period (a = 1). We will set |—r| ƒ 1 if the
integral is order of or larger than unity.

First, we focus on the region in parameter space where 1 . µ̃
2

◊0 π m̃. The approximate
spectrum in this region is found to be

|—r(1)|2 =

Y
___________]

___________[

1 , k̃ π m̃
1/3

,

1
4

m̃

k̃3
, m̃

1/3
π k̃ π

m̃

µ̃4/3 ◊
2/3

0

π m̃,

4
81

µ̃
4

◊
2
0

m̃2
, m̃

1/3
π

m̃

µ̃4/3 ◊
2/3

0

π k̃ π m̃,

4
81

m̃
2

µ̃
4

k̃4
◊

2
0, m̃ π k̃ .

(3.21)

These expressions show that for momenta smaller than m H
4/3

0
/(µ4/3

◊
2/3

0
) the fermions

are predominantly produced by gravitational e�ects, whereas in the regime of larger momen-
tum the slow rolling axions enhances the production of fermions.

Our analytical expressions for the spectra can be used to give the total number density
of fermions produced by computing N0 =

s
d

3k |—r(1)|2. To leading order, the number
density reads

N0 ƒ .2 m µ
4

H
2
0

◊
2

0 ,

(1 . µ̃
2

◊0 π m̃) . (3.22)

In the regime 1 π m̃ π µ̃
2

◊0, instead, we obtain the following approximate spectra:

|—r(1)|2 ƒ

Y
______]

______[

1, k̃ π m̃ ,

m̃
2

k̃2

1 + r

2 + Max
I

18 fi

5
m̃

2

µ̃2 ◊0

, 1
J

◊
1 ≠ r

2 , m̃ π k̃ π µ̃
2

◊0,

4
81

m̃
2

µ̃
4

k̃4
◊

2
0, k̃ ∫ µ̃

2
◊0 .

(3.23)

The fact that ◊
Õ has a definite sign leads to a breaking of parity, so that the number of

left-handed and of right-handed fermions will be di�erent. In fact, the spectrum has di�erent
scaling depending on whether r = 1 or r = ≠1. To leading order the total number density reads

NMD, end ƒ

Y
____]

____[

5.
m

2
µ

2

H0

◊0

1 + r

2 + 50. ◊
m

2
µ

4

H
3
0

◊
2
0

1 ≠ r

2 , 1 π m̃ π m̃
2

π µ̃
2

◊0 ,

5.
m

2
µ

2

H0

◊0
1+r

2
+ .3 µ

6

H
3
0

◊
3
0

1 ≠ r

2 , 1 π m̃ π µ̃
2

◊0 π m̃
2

,

(3.24)
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103 104 105 106
θ0

104

108

1012

1016

N/H03

10 102 103 104 105 106
m/H0

107

109

1011

N/H03

Figure 2. The final number density of r = ≠1 (top, short dashed curves) and r = +1 (bottom, solid
curves) produced fermions, in the case of a slowly-rolling axion-like field with mass µ = .7 H0. Left
panel: the dependence on ◊0 for fixed m = 100 H0. The long dashed lines indicate the scalings Ã ◊

3
0

(left), Ã ◊
2
0 (top right) and Ã ◊0 (bottom right). Right panel: the dependence on m/H0 for fixed

◊0 = 104. The long dashed lines in the right panel show the powers m̃
2 (left), and m̃

1 (right).

We have checked numerically the validity of the scalings in eqs. (3.22) and (3.24). The left
panel of figure 2 shows that the number density of the fermions with helicity that are produced
most e�ciently scales as ◊

3
0 for m̃ . µ̃

2
◊0 . m̃

2 and as ◊
2
0 for m̃ . m̃

2 . µ̃
2

◊0, whereas the
number density of the fermions of the other helicity is subdominant and proportional to ◊0,
which is consistent with the behavior found in eq. (3.24). The right panel shows a log-log
plot of the total number density of fermions, as a function for m/H0, obtained at a = 1
for ◊0 = 104. Consistently with eq. (3.24), the total number of produced fermions of both
helicities is proportional to m̃

2 in the regime m̃ π µ̃
2

◊0 and, consistently with eq. (3.22),
it is proportional to m̃ for m̃ ∫ µ̃

2
◊0.

The above quantities can be easily converted into current abundances. Here we focus
only on the total number of particles produced, irrespective of their helicities. Observing
that the number of fermions produced is dominated by modes with k ¥ m, and remembering
that µ = O(H0), we get

�Ferm
Ã

Y
________]

________[

m
3

M
2

P
H0

„
2
0

f3 , m π H0

Û
„0

f
,

m H0

M
2

P

„
3
0

f3
, m π H0

Û
„0

f
π

m
2

H0

,

m
2

M
2

P

„
2
0

f2
, m ∫

„0 H0

f
.

(3.25)

4 Applications and summary
In this work we have presented, for the first time, the equations controlling the generation of
fermions due to their coupling to a time-dependent axion, eqs. (2.20). From these equations,
we have found approximate analytical expressions for the spectra of the produced fermions
in the case of an axion performing many oscillations in a radiation-dominated Universe and
for a slowly rolling axion in a matter-dominated Universe. Here we discuss some possible
applications and extensions of our work.

A possible extension of this setup concerns the possibility of modifying the cosmological
constraint on f = fQCD axion in the case where the axion is the QCD axion. In this case, if the
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standard misalignment mechanism (where „ starts oscillating with an amplitude of the order
of fQCD axion) is realized, then the oscillating axion will overclose the Universe if fQCD axion

is larger than 1012 GeV or so. This constraint, about 4 orders of magnitude tighter than the
“natural” value obtained for the axion decay constants in UV-complete theories [33], might
then be modified if fermion production drains energy from the oscillating axion. A similar idea
has been explored, in the case in which vectors are produced by the rolling axion, in [15, 16].
The produced fermions, which are not necessarily Standard Model particles, might then decay
into light Standard Model degrees of freedom that will thermalize, e�ectively disappearing
from our spectrum. This analysis requires the study of the evolution of the axionic condensate
in the strong backreaction regime, which we have not considered in the present paper and
that, similarly to what happened in [15, 16], is likely to require numerical work.

Moving to the more recent, matter-dominated Universe, one might wonder whether in the
scenario considered in section 3.2 the produced fermions might be identified with Standard
Model neutrinos. In this case, neutrino production would occur e�ciently well after Big
Bang Nucleosynthesis and the decoupling era. More in general, one might wonder if axionic
quintessence might generate a sizable amount of nonrelativistic fermions in the late Universe,
similarly to the scenario discussed in [18]. In particular, in the expression in the last line
of eq. (3.25) the quantity „0 can be as large MP , so that the contribution to � from the
produced fermions could be of the order of m

2
/f

2, which can be sizable if m is close to f .
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A Discontinuity in the spectra for m̃ π µ̃ in radiation domination

In eq. (3.7) one can notice that |—(1)|2 appears to be discontinuous when k̃ crosses µ̃. In this
appendix we give an explanation for this discontinuity. When one calculates —r(1) in the
regime m̃ π k̃ π µ̃ the dominant integral takes (ignoring the tildas) the form

—r(1) ƒ
23/2

i µ
1/4

Ô
fi k

m ◊0 �(5/4)
⁄

1

1/
Ô

µ

da
Ô

a cos
A

µ a
2

2 + fi

8

B

e
≠i k a≠i r ◊0

ƒ
21/2

i µ
1/4

Ô
fi k5/2

m ◊0 �(5/4)
⁄

k

k/
Ô

µ

dx
Ô

x e
i

µ x2
2 k2 ≠i x

e
≠i (fi/8≠r ◊0)

ƒ
21/2

i
Ô

fi k3/2 µ1/4
m ◊0 �(5/4) e

i
fi
8 ≠i

k2
µ ≠i r ◊0

⁄
k

k/
Ô

µ

dx e

i
2

1
x≠ k2

µ

22
µ

k2
, (A.1)

where in going from the first to the second line we have changed integration variable from
a to x/k and we have kept the part of the cosine that, together with the phase e

≠ix can
give a stationary phase withing the domain of integration. The third line of eq. (A.1) is
then obtained by replacing the integrand with its approximation in saddle point. This is
the expression that has been used to compute the third line of equation (3.7). The validity
of saddle point approximation requires that the phase performs many oscillations within
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the domain of integration. In our case, this condition reads (k ≠
k

2
µ

)2 µ

k2 ∫ 1, which implies
k π µ ≠

Ô
µ. In the regime µ & k > µ ≠

Ô
µ, we must compute the full integral given by

the second line of eq. (A.1), obtaining

|—r(1)| ƒ
m

k1/2 µ3/4
◊0 �(5/4)

-----erfc
A

e
≠i

fi
4 (k ≠ µ)
Ô

2µ

B----- . (A.2)

Now, we have erfc(e≠ifi/4
x) æ e

ix
2
+ifi/4

/(x
Ô

fi) for x æ +Œ and erfc(e≠ifi/4
x) æ 2 for

x æ ≠Œ, so that the expression (A.2) interpolates between the value Ã
m ◊0

k1/2 µ3/4 ¥
m ◊0
µ5/4

when k . µ ≠
Ô

µ and the value Ã
m ◊0

k1/2 (k≠µ) µ1/4 ¥
m ◊0
µ7/4 when k ƒ µ, which explains the

jump seen between the third and the fourth line of eq. (3.7) when one sets k ƒ µ in those
equations. We have ignored this e�ect in the final spectrum presented in the main text as
µ ≠

Ô
µ is of the order µ for µ ∫ 1.

B Derivation of the fermion spectrum for 1 π m̃ π µ̃2 ◊0 in
matter-domination

In this appendix we show the main steps leading to the spectrum of particles in matter
domination given by eq. (3.23), limiting ourselves to the regime m̃ π µ̃

2
◊0. The remaining

spectra presented in the main body of the paper are obtained using similar techniques.
It turns out that to compute the integral (3.16) it is necessary to distinguish the regimes

m̃ π µ̃
2

◊0 π m̃
2 and m̃ π m̃

2
π µ̃

2
◊0 (remember that m̃ ∫ 1). However, we find that the

spectra look the same in both regimes, except for one di�erence that we will highlight below.
For this reason, here we will show the derivation when m̃ π µ̃

2
◊0 π m̃

2.
Using

d◊

da
= ≠

2
9 µ̃

2
◊0 a

2
, (B.1)

the integrand (3.16) can be approximated as

m̃

A

r
k̃

2 Ễ2
+ i

a
Õ

Ễ

d◊

daÕ

B

e
≠i

s aÕ

0 da
ÕÕ
1

ỄÔ
aÕÕ ≠r

k̃
Ễ

d◊
daÕÕ

2

ƒ

Y
___]

___[

m̃

k̃

3
r

2 ≠ i �0 a
Õ3

4
e

≠i(2k̃

Ô
aÕ+ r

3 �0 a
Õ3)

, 0 < a
Õ
π k̃/m̃ ,

A
r̃ k

2 m̃ aÕ2 ≠ i �0 a
Õ2

B

e
≠i

1
2
3 m̃ a

Õ3/2
+

r
2 �0 k̃

m̃ a
Õ2

2

, k̃/m̃ π a
Õ
< 1 ,

(B.2)

where we have defined

�0 ©
2
9 µ̃

2
◊0 , (B.3)

and where the second approximation can be realized only for k̃ π m̃.
Next we observe that in the case a

Õ
π k̃/m̃ the first term in the exponent dominates

over the second for a
Õ

π (k/�0)2/5, whereas in the case k̃/m̃ π a
Õ

< 1 the first term in
the exponent dominates over the second for a

Õ
π m̃

4
/(k̃2 �2

0). These two values of the
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scale factor cross a
Õ = k̃/m̃ when k̃ ƒ m̃

5/3
/�2/3

0
. Remembering that we are assuming

m̃ π �0 π m̃
2, we have the hierarchy

m̃
1/3

π
m̃

5/3

�2/3

0

π m̃ π �0 π m̃
2 (B.4)

For values of k within the intervals determined by the inequalities above the functions
appearing in the integral can be simplified as follows:

1: k̃ π m̃1/3 π m̃5/3

�2/3
0

π m̃ π �0 π m̃2. The integral can be written as:

—r(1) ƒ
m̃

k̃

⁄
k̃/m̃

0

da

3
r

2 ≠ i �0 a
3

4
e

≠2ik̃
Ô

a +
⁄

m̃
4
/k̃

2
◊

2
0

k̃/m̃

da

A
r k̃

2 m̃ a2
≠ i �0 a

2

B

e
≠ 2

3 im̃ a
3/2

+
⁄

1

m̃4/k̃2�2
0

da

A
r k̃

2 m̃ a2
≠ i �0 a

2

B

e
≠ir

k̃ �0 a2
2 m̃ , (B.5)

where the exponent in the first integral is smaller than 2 k̃
3/2

/m̃
1/2 which is much smaller

than unity. As a consequence the first term in the first integral evaluates to

m̃

k̃

⁄
k̃/m̃

0

da
r

2 e
≠2ik̃

Ô
a

ƒ
m̃

k̃

⁄
k̃/m̃

0

da
r

2 = r

2 , (B.6)

which is O(1). Since we do not expect the other terms to cancel the first one (particles are
generally not reabsorbed by the axion condensate after being created), we can stop evaluating
our integral here and declare that in this region of parameter space |—r| = O(1).

2: m̃1/3 π k̃ π m̃5/3

�2/3
0

π m̃ π �0 π m̃2. The integral takes the same form as in
eq. (B.5) above, but we cannot assume the first phase to be negligible anymore. However,
by substituting 2

3
m̃ a

3/2
© x in the second term in the second integral, we get

≠ i �0

⁄
m̃

4
/k̃

2
◊

2
0

k̃/m̃

da a
2

e
≠ 2

3 im̃ a
3/2 = ≠

3
2 i

�0

m̃2

⁄ 2
3 m̃

7
/(k̃ �0)

3

2
3 k̃3/2/m̃1/2

dx x e
≠ix

ƒ
m̃

5

k̃3 �2
0

e
≠i

2
3

m̃7
k̃3◊3

0 , (B.7)

where in the last step we have used the fact that the integral is dominated by the upper limit
which, since m̃

2
∫ �0, is much larger than unity. In this region of parameter space, then,

this contribution of the integral to |—r| is much greater than unity. Occupation numbers much
larger than unity are forbidden by Pauli blocking, so this result shows that our approximation
|—r| π 1 is violated in this regime. We will therefore set |—r| = O(1) also in this portion
of the parameter space.

3: m̃1/3 π m̃5/3

�2/3
0

π k̃ π m̃ π �0 π m̃2. In this case the integral takes the ap-
proximate form

—r(1) ƒ
m̃

k̃

⁄
(k̃/�0)

2/5

0

3
r

2 ≠ i �0 a
3

4
e

≠2ik̃
Ô

a + m̃

k̃

⁄
k̃/m̃

(k̃/�0)2/5

3
r

2 ≠ i �0 a
3

4
e

≠i
r
3 �0 a

3

+
⁄

1

k̃/m̃

A

r
k̃

2 m̃ a2
≠ i �0 a

2

B

e
≠i

r
2 �0 k̃

m̃ a
2

. (B.8)
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Again, let us just consider the second part of the second integral. We can write it as

≠i
m̃

k̃
�0

⁄
k̃/m̃

(k̃/�0)2/5
a

3
e

≠i
r
3 �0 a

3 = ≠i
m̃

k̃

3 3
�0

41/3 ⁄ �0
3 (k̃/m̃)

3

�0
3 (k̃/�0)6/5

dx x
1/3

e
≠i r x (B.9)

that is, again dominated by its upper end, which is much larger than unity in the portion
of parameter space we are exploring. We thus obtain

≠i
m̃

k̃
�0

⁄
k̃/m̃

(k̃/�0)2/5
a

3
e

≠i
r
3 �0 a

3
ƒ r e

≠ir
�0
3

k3
m3 = O(1) , (B.10)

so that, also in this regime, we can set |—r| = O(1).

4: m̃1/3 π m̃5/3

�2/3
0

π m̃ π k̃ π �0 π m̃2. Since k̃ > m̃, we can find a unique
approximate form for the integrand in the entire range 0 < a < 1:

—r ƒ
m̃

k̃

⁄
1

0

da

3
r

2 ≠ i �0 a
3

4
e

≠2ik̃
Ô

a≠i
r
3 �0 a

3
. (B.11)

For r = ≠1 we can estimate this integral using the saddle point approximation. The phase
is „(a) = 2k̃

Ô
a ≠

�0
3

a
3 with saddle point at aS = (k̃/�0)2/5. Since the integral runs between

0 and 1, the saddle point contributes to the integral only if k̃ < �0. On the saddle, the phase
reads, „(aS) = 5

3
m̃

6/5
/�1/5

0
and its second derivative is „

ÕÕ(aS) = ≠
5

2
k̃

2/5 �3/5

0
∫ 1. We also

note that �0 a
3

S
= k̃

6/5
/�1/5

0
. Since k̃ ∫ m̃, this implies that �0 a

3

S
∫ m̃

6/5
/�1/5

0
∫ �2/5

0
& 1.

As a consequence, the term proportional to ≠i�0 a
3 in the integral dominates over that

proportional to r/2. By performing the Gaussian integral we then obtain

m̃

k̃

⁄
1

0

da

3
r

2 ≠ i �0 a
3

4
e

≠2ik̃
Ô

a≠i
r
3 �0 a

3
-----
r=≠1

ƒ ≠i

Ú
4 fi

5
m̃

Ô
�0

e
≠i

5
3 k̃

6/5
/�

1/5
0 ≠ifi/4

. (B.12)

Once again, this is in modulus much larger than unity, so in this region of parameter
space we set again |—≠1| = O(1). This result is essentially the same also in the regime
m̃

2
π �0. In that case, however, the value of |—≠1| is much smaller than 1, so we maintain

the expression —≠1 given by eq. (B.12).
For r = +1 the saddle would be at negative values of a, which are not sampled by our

integral, so we cannot use the saddle point approximation. To find the leading behavior
of the integral it is convenient to split it as

—+1(1) ƒ
m̃

k̃

⁄
(k̃/�0)

2/5

0

da

31
2 ≠ i�0 a

3

4
e

≠2ik̃
Ô

a + m̃

k̃

⁄
1

(k̃/�0)2/5
da

31
2 ≠ i�0 a

3

4
e

≠ i
3 �0 a

3
.

(B.13)

The biggest contribution comes from the second part of the second integral above. This
is the same integral as the one in eq. (B.10), only with a di�erent upper limit, so we can
evaluate it using the same technique. We thus obtain

—+1 ƒ
m̃

k̃
e

≠i�0/3
, (B.14)

whose absolute value is much smaller than unity. We thus see that in this regime there is
a di�erence in the chirality of the produced fermions.
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0.001
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Figure 3. Spectra of the r = ≠1 (top, dotted curve) and r = +1 (bottom, solid curve) produced
fermions, in the case of a slowly-rolling axion-like field with mass µ = .7 H0, m = 103

H0 and ◊0 = 104.5.
The darker dashed segments correspond to the approximate expression (B.17) for the same choice of
parameters, the thinner one for r = ≠1 and the thicker one for r = +1.

5: m̃1/3 π m̃5/3

�2/3
0

π m̃ π �0 π k̃. In this final region the integral reads approximately

—r(1) ƒ
m̃

k̃

⁄
1

0

da

3
r

2 ≠ i �0 a
3

4
e

≠2ik̃
Ô

a
, (B.15)

where the largest contribution comes from the second term. We can use the familiar
tricks to get

—r(1) ƒ
m̃

k̃2
�0 (B.16)

in the entire regime k̃ ∫ �0.
To sum up, we obtain the following approximate spectra:

(i) for m̃ π µ̃
2

◊0 π m̃
2,

|—r(1)|2 ƒ

Y
_____]

_____[

1, k̃ π m̃

m̃
2

k̃2

1 + r

2 + 1 ≠ r

2 , m̃ π k̃ π µ̃
2

◊0,

4
81

m̃
2

µ̃
4

k̃4
◊

2
0, k̃ ∫ µ̃

2
◊0 ;

(B.17)

(ii) for m̃ π m̃
2

π µ̃
2

◊0,

|—r(1)|2 ƒ

Y
_____]

_____[

1, k̃ π m̃

m̃
2

k̃2

1 + r

2 + 18 fi

5
m̃

2

µ̃2◊0

1 ≠ r

2 , m̃ π k̃ π µ̃
2

◊0,

4
81

m̃
2

µ̃
4

k̃4
◊

2
0, k̃ ∫ µ̃

2
◊0 .

(B.18)

We show in figure 3 the comparison between the spectra obtained by solving numerically
the eqs. (3.15) and the approximate expressions (B.17). As the figure shows, the approximate
spectra match the exact ones up to O(1) factors.
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