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Abstract

With the increasing amount and severity of environmental disasters, the importance of situational assessment and awareness for
human assistance and disaster response is critical. AQ1 During natural disasters in populated regions, proper assistance and
response efforts can only be planned and deployed effectively when the damage levels can be resolved promptly. Damage-level
assessment is aided by aerial imagery. While human labeling of images provides a measure of credibility, in the presence of a large
volume of image data, it takes a long time and great effort to achieve situational assessment and awareness which can significantly

hamper the operational response time. Recently, extreme computational power has Eenabled Deep Learning§ to analyze large images.

This paper presents an efficient and scalable humanitarian assistance and disaster response application for situational assessment
and awareness using a method called Image-based Pre- and Post-conditional Probability learning, whi
disaster images by effectively encoding one image that determines the damage levels through a ;
example scenarios of humanitarian assistance and disaster response applications are examined: (1) pixel-wise semantic

h matches the pre- and post-

segmentation, and (2) contrastive learning patch-based §damage classification; both showing promising results in the examined
scenarios which motivates the application of :
computational efficiency while maintaining classification accuracy.
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1. Introduction

To effectively deliver Human Assistance and Disaster Response (HADR) information requires efficient Situational Assessment and
Awareness (SAA) [ 1]. It remains a considerable challenge to develop HADR SAA since it is typically a disastrous event with extremely
few prior exemplars to resolve damage severity levels and even fewer near-real-time response recorded results. Usually, the HADR
situation includes a large urban area or an infrastructure of crucial importance demanding critical region inspection and checking,
prompt and accurate damage assessments (DA), resilient operating conditions analysis, and knowledge of highly hazardous and time-
sensitive scenarios. To conduct HADR Object of Interest (Ool) analysis, the community designates (1) inanimate static objects as
buildings, infrastructure, roads, and dwellings among others; (2) dynamic inanimate objects could be cars; and (3) dynamic animate
objects would be people and animals. In all these situations, manual evaluation by human experts for real-time or near-real-time
damage severity level assessments for all the Ools is nearly impossible and unscalable. More specifically, the labeled Ools are usually the
static objects mostly associated with urban settings. The manual annotation procedure is exceedingly labor-intensive and time-
consuming as each location of interest must be carefully inspected to make a call on the correct severity category where a great amount
of domain knowledge on the object types and damage severity levels are demanded. The situation is even more severe for major
disasters spanning a large region which slows down the HADR SAA endeavors. In response, (1) State-of-the-art hardware, such as GPU
and high-performance computing, and (2) current software, e.g., Artificial Intelligence iand Machine learning (Al/ML), and deep learning

(DL) in particular [2 ], sensor fusion [3 ] approaches, and architectures such as edge and fog computing, should be called upon [4].

In this study, the xView2 dataset (https://xview?2.org) is utilized. The xView?2 dataset contains a large set of annotated high-resolution
satellite images for building damage assessment. In the xView?2 dataset, polygons and damage scores for each building are carefully
annotated and reviewed by expert analysts. More than 850,000 building polygons from six different types of natural disasters, namely,
hurricanes, volcanoes, fire, tsunami, flooding, and earthquakes, around the world are made available, covering more than 45,000 square
kilometers in area. The ground truths of the xView2 dataset were carefully reviewed by experts for accuracy and utility for the specific
task of automated building localization and damage assessment with four different damage severity levels: no damage, minor, major,
and total damages, making it the premier source of high-quality labeled imagery for SAA and HADR. To ensure fair comparisons for
different methods, the official train and test dataset split is provided in the publicly available testbed, where the number of images in
train and test datasets is 2800 and 933 (with a ratio of 3 to 1), respectively. It must be pointed out that in the designated training
dataset, the foreground regions, namely, the buildings, only occupy 5.92% of the regions on average resulting in about 94.08% (94.15%)
of the image being background pixels. Furthermore, the four severity levels are not balanced with 4.37% (4.48%), 0.54% (0.49%), 0.68%
(0.57%), and 0.32% (0.31%), for no damage, minor, major, and total damage severity levels, in the train (test) datasets, respectively, with
most no damage regions and very few total damage regions. The unbalanced nature of different classes in the dataset calls for special
care in devising effective classifiers and data augmentation approaches.

Winning teams from the xView2 data challenges [ 5 ], along with advanced Al/ML methods [ 6 ], continue to expand the analysis of
overhead imagery exploitation. The advanced methods that offer computational and data efficiency should offer practical decision-
making utility for HADR operations. Future methods should be computationally and data-efficient because:

(1) Data Availability: DA and HADR applications operate on a generally small amount of data which challenges DL training from
scratch, and

(2) Personnel Availability: Most DA and HADR operators lack immense mobile computing power access to conduct on-site missions.

The Image-based Pre- and Post-conditional Probability Learning (IP2CL) encoding scheme effectively encodes Ools, e.g., DA-interested
regions/targets or HDAR buildings, in before- and after-disaster images that are to be used for damage level assessment. Two different

scenarios where IP2CL is demonstrated include: (1) pixel-wise semantic segmentation that determines a %damage-level classification; for

each Ool pixel, and (2) patch-based damage level classification that classifies a damage level as a small image patch centered around the
Ool. Both frameworks support DA and HADR where the former uses a wide span of regions to select the most urgent regions; whereas
the latter identifies one crucial Ool, e.g., a school or a hospital area, which requires immediate mission judgments to ensure a timely and
safe response.

Current methods for HADR to encode the pre- and post-disaster information rely on contrastive learning (CL) methods as evidenced by
the fact that almost all the xView2 challenge winning methods are based on a CL approach because it is the only DL method that can
handle two images. However, as mentioned, the foreground regions only occupy about 5% of the area, and the crucial features learned
t to the background than the foreground; the CL's efficacy is thus seriously compromised as evidenced by

by CL are likely more rele

the low damag

level classification: performances of all winning methods.

the aforementioned issues, the objective of this work is to Eapply Machine learm‘ng§ deep learningé in particular,

techniques to develop a data and computing effective algorithm so that the situation before and after a certain event or action
can be encoded to be systematically analyzed and classified by the DL. The main contributions of this work are:

1. Data representation using IP2CL to encode the situation before and after events/actions for efficient analysis




o Data augmentation via generative adversarial network (GAN) to effectively combat the data imbalance problem

3. and contrastive learning for semantic segmentation based on IP2CL

4. Contrastive learning for%image-level classification using IP2CL

This chapter is organized as below: Sect. 2 presents related work; Sect. 3 expands on the new data representation IP2CL; Sect. 4
presents two important applications of the new IP2CL representation: Sect. 4.1 describes two generative approaches to tackle the data

unbalance problems; Sect. 4.2 presents the IP2CL-based pixel-wise semantic segmentation and the associated results; Sect. 4.3 details

the patch-based damage based on IP2CL and the corresponding experimental results; finally, we conclude this paper

with more remarks in Sect. 5.

2. Related Work in Machine Learning and Granular Computing
Framework

The work developed here is inspired by the combination of ipowerful machine learning: and ithe granular computing; framework. Our

method utilizes the emerging granular computing framework [ 7 ] as it deals with considerably different granular levels o

the hierarchical problem-solving process [ 10 ] with useful applications in image processing and pattern recognition. More systematic

studies of this valuable granular computing; framework and its broad array of applications can be found in [ 11 ]. With the granular

computing framework, in pixel-wise building segmentation, the pixels in the overhead images with granules of the lowest level are used
to classify the local damage levels of buildings, which is a large cluster of semantically related pixels in the overhead images. The
granules of much higher semantic level, by using DL techniques such nd U-Net can provide knowledge of the

ramework in real-world applications.

Besides granular computing framework, Machine ELearning, Deep Ieamingg in particular, is the enabling theme of this chapter, which has

been widely employed in HADR. In [ 12 ], the authors used the xBD dataset to compare the performance of Siamese neural networks
with the classical encoder-decoder architecture to achieve damage assessment from satellite images and find that the Siamese

architecture outperforms the classical approach, especially for %damage classification. The authors compared different encoders and
decoders, including ResNet-18, -34, -50, -101, DenseNet-169, -201, SE-ResNext-50, and Inception-v4, and discovered the optimal model
architecture. They also explored different loss functions, such as cross-entropy loss and weighted cross-entropy loss, to address the

challenge of class imbalance in the damage detection task. Image augmentations, including spatial and color augmentations, were used
to improve model accuracy.

A two-stage method was developed in [ 13 ] combining modified YOLOv4 and support vector machine (SVM) for post-earthquake
building location and damage assessment using satellite remote sensing optical images. This method uses modified YOLOv4 for object
detection and an SVM for classification, resulting in high accuracy in a binary damage assessment.

Due to the challenge of obtaining the pre- and post-disaster pair event images, some researchers turn to post-event only damage
detection. A deep-learning framework called BDD-Net++ was developed in [ 14 ] for post-event-only building damage detection, which

combines convolution blocks and transformer blocks. BDD-Net+ + utilizes multiscale residual convolution blocks and self-attention

blocks to improve performance. The framewo alidated on two real-world datasets (the Haiti earthquake and the Bata explosion)

and demonstrates high accuracy in

Some researchers used more complicated architectures in damage assessment. For example, an architecture combining incremental

Jearning, transfer Iearning?, fusion learning, and generative adversarial learning was introduced in [ 15 ] to identify collapsed buildings in

natural disasters. They use DREAM-B+, which is expanded from DREAM-B and xBD, and the translated images from them to train model,
with an adaptive learning rate. On the other hand, they use CycleGAN [ 16 ] to translate images for incremental learning. The CycleGAN
approach is validated by the Haiti earthquake and the Nepal earthquake data set. Due to the training data labels being modified
significantly, whether this architecture can be generalized is still to be confirmed.

HADR and SAA approaches require effective designs of which the Dynamic Data Driven Applications Systems (DDDAS) paradigm
construct has shown great promise (Fig. 1). o2 DDDAS [17] has demonstrated the ability to leverage DL for near-real-time situations

in which the original DL-trained model is updated from continuous learning to support the effective labeling of SAA updates. SAA
requires analysis from a variety of sensors such as wide-area motion imagery.

Fig. 1

The DDDAS diagrammatic chart
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An unfortunately common problem, typically in HADR and SAA applications, is the lack of balanced labeled data. A recently popularized

solution within the DL framework is through Generative Adversarial Networks (GAN), which is often used to address issues of unlabeled
data, limited and unbalanced examples, and plausible scenarios. The Pix2Pix conditional GAN framework was proposed as a general
approach for image-to-image translation [ 18 ] that can considerably increase images of similar statistical distributions.

In HADR, to classify buildings into different labels, the semantic segmentation technique is needed. U-Net [ 19 ] is a popularly used deep
network architecture for semantic segmentation that consists of a series of contracting/down-sampling processes via a series of
convolutional networks followed by an expansive/up-sampling process done by a de-convolution network, it has achieved great success
in a broad array of successes in scenarios such as medical image segmentationi, remote sensing applications in road detection, and 3D

object detection [ 20 ]. Valuable pixel-wise classification performance can be achieved with the U-Net framework.

Given the extremely large number of parameters in any deep neural network, it is infeasible to assemble adequate training data to

sufficiently estimate the huge volume of network iparameters. Transfer learning [ 21] effectively tackles the problem of limited training

data, where the reuse of a pre-trained network on a new problem takes advantage of the knowledge obtained from previous training

data to elucidate knowledge on new problems. There are two different types ‘

parameters of the pre-trained net are revised in the training process of the new training data; the other is feature extraction where the
pre-trained network serves as the feature generator: a representation vector is created by feeding the new training data to the old
model and a new fully-connected layer or a shallow convolutional network is trained over these feature vectors. By using transfer
learning, valuable knowledge from a large image set, e.g., ImageNet, in ResNet or VGG deep nets used in this work, and wiki in chatGPT

[22], can be effectively transferred to the new task, where the training data and computational resources are far less than those for the

pre-trained network. Within transfer learning is domain adaption, where the knowledge of one source data is utilized for target data

within the same domain, such as imagery collected in a region is learned and adapted to another region [ 23 ].

3. Materials and Methods for IP2CL

3.1. Dynamic Data-Driven Applications System Approach

To design effective data and computing efficient HADR SAA methods, this chapter applies the DDDAS approach combined with the
emerging utility

The overall chart of DDDAS is illustrated in Fig. 1 [24 ] wherein a standard signal processing of the instrumentation is augmented with
data from the simulation. The instrumentation reconfiguration loop contains normal methods including computer vision tracking,
internet of things processing, and environmental analysis where sensors are managed to understand the dynamic situation. The data
augmentation loop includes first-principle physics that affords simulations such as using computer-aided design models of buildings
to predict damage, weather predictions, and forecasting, as well as the movement of entities based on disaster evacuation scenarios.
Hence, the loop is “as-is” while the data augmentation loop is “what-if" analytics and the loop is essentially a predictive digital twin.

During the past decades, the resurgence of ML methodologies using the DL framework engendered the DDDAS framework through
powerful computers, copious amounts of data, and methods for training models for predictive analytics. For example, collecting a large
volume of data for training purposes gives rise to insights into the physical world. Under the HADR framework, the natural terrain
scene is modeled by the physical characteristics, and exploiting the prior knowledge analyzes a scene to be used to augment future
data. When a natural disaster presents itself, the previous models should be adapted to facilitate the scene variations, e.g., a destructed
building turns into a new scene, and demands evolved models within the framework of DDDAS. The common difficulty for DDDAS and
DL is to provide the ground truths for the parameters from which computing and data-efficient algorithms are required during time-
sensitive situations. Hence, as per the traditional definitions of a digital “twin”, there is the static model of the building, but also the

need for a real-time dynamic predictive model of the evolving damage from simulations (Fig. 2).




Fig. 2

The DDDAS concept integrating sensor measurements, model updates, and situation simulation augmented with Al/ML
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DDDAS methods utilize near-real-time simulations, where the original model trained by the DL process can be fine-tuned from
adaptive learning and the efficient annotation of SAA changes. DDDAS is thus a framework of crucial interest to attain HADR
objectives, which incorporates causal estimation analysis from both gathered data and data augmentation from models updated with

DL methods, as shown in Fig. 2. Figure 2 highlights that the feedback associated with sensing the current situation and upd h

knowledge based on the context affords three types of supporting data: ML run time analytics, Al batch learning such
methods, and situation simulations; that build a comprehensive model of the scenario. The ML analysis includes proven methods that
quickly process the incoming data such as using a principle component analysis. When there is collected data of representative
exemplars such as prior images from damaged buildings, then DL can be used to build a model where there are many unknown
parameters. Finally, as the heart of the DDDAS method, the situation simulation can utilize first-principle modeling to develop the
evolving analysis of such data as simulation methods. Contemporary example methods of each approach would be a feature-based
unscented Kalman filter for an ML approach, a convolutional neural network (CNN) or recurrent neural network (RNN) for a DL batch
analysis, or an Ensemble Kalman filter for data assimilation of the situation assimilation. The emerging challenge and opportunity is
how to effectively and efficiently use these different levels of data granularity techniques together for a near-real-time response,
especially for unknown dynamic scenarios.

3.2. Contrastive Learning Information Fusion Generative Adversarial Net (CLIFGAN)

Image damage level assessments taken by either satellites or airplanes, of the pre- and post-disaster/action for the Ool are normally
available and well registered and matched, such as the xView?2 dataset. In Fig. 3, a typical sample of the pre-, and post-disaster

("Hurricane Florence No. 409") and the damage levels (red: no damage, green: minor damage, blue: major damage) of the structures
and buildings from the training set are labeled and identified.

Fig. 3

Sample disaster images from the XView2 dataset, Object of Interest (Ool) mask and the corresponding IP2CL representations.
Row 1: one sample pair of pre-disaster image (left) and post-disaster image (right); Row 2: the ground truths of the damage
severity level, where the background is black, red is no damage, green and blue are minor and major damage (left), and IP2CL
(right) for the two images in Row 1
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Historically, the CCNY/Air Force Research Lab team led by Drs. Wei and Blasch developed the 2021 leading Overhead Imagery
Hackathon (OIH) approach by delivering the novel Contrastive Learning (CL) Information Fusion Generative Adversarial Net (CLIFGAN)

system [5] as depicted in Fig. 4. CLIFGAN has the following remarkable components:
Fig. 4

Flowchart of CLIFGAN
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(1) Providing imager reduced resolution from 1024 x 1024 pixels to 12 x 512 pixels to facilitate laptop computing;

(2) Innovating a generative adversarial network that enhances the training data by ~30%;

(3) Utilizing a CL-based classifier that highlights Siamese network differences in the pre- and post-disaster images; and

(4) Developing committee voting information fusion using the post-disaster images with transfer learning and DeeplLabV3Plus.
Among all the results and developments, the CLIFGAN system results in the highest F1 score of 0.674, whereas previous fusion
methods [25 ] only had an F1 score of 0.664. After comparing some of the submissions from the xView2 challenge winners [ 26 ], the

top score was F1 of 0.617. Thus, the CLIFGAN-based approach was superior to the previous methods when addressing OIH image

exploitation efficiency. After checking many of the XView2 submissions, CL [ 27 ] contributed to the exploitation methods with the two




matching images to label objects of Interest. For example, the disaster scene buildings are labeled for pre and post-disaster. As a
consequence, CLIFGAN ranked in the top three in the Overhead Imagery Challenge [ 28 1.

3.3. Contrastive Learning in HADR

CL seeks to label common data (e.g., imagery) with a similarity score while attributing higher weights for dissimilar identities. following

equation to define the contrastive loss function of a network [29 ]:

Lop =1 [y =) 10(z: — ) I
+1 [y # y| max (0,e — 16 (2 — ;) I

where 1[] is the normal indicator function, x; and X; are two samples with associated labels y; and Y that will be contrasted, 6 is the
encoding contrastive deep net, a 3-layer Convolutional Neural Network (CNN) in our work, and € is a hyper-parameter indicating the
lower-bound distance for samples from different classes.

For the given training datasets, similar samples are created by applying data augmentation, such as performing image translation,
flipping, shearing, rotation, and color jittering, to make more samples of the same label (y;'s) available, hence generating sufficient

training/testing data to achieve CL training effectively Th )
of the same labels closer while pushing away those of different labels. As an intuitive visualization illustrating the power of CL, in Fig. 5

, after training a 2-D embedding net the distances among 4 pairs of images are shown, where it can be observed that the distances of
different people in the first two columns have large distances; whereas the same people in the last two columns, even with glasses
(Column 3) and different orientations and shades (Column 4), can still yield a small distance of 0.10 and 0.11, respectively.

Fig. 5

High-dimensional data are embedded by contrastive learning (CL) to low-di

ensional data. The numbers in each column

in the first two columns with large distances, while the same persons shown in the last two columns have very small distances

distance: 6.69 distance: 2.75 distance: 0.10 distance: 0.11

CL can thus find a broad spectrum of applications. In our CLIFGAN system, the Siamese network architecture as shown in Fig. 6 was
employed. As is the case in Siamese networks, parameters of the same CNN are shared between the two branches. The features
extracted from pre- and post-images are concatenated for damage label prediction.

Fig. 6

Siamese network used in contrastive learning approach for pre- and post-disaster images
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The large scene covered by the XView2 imagery dataset challenges the CL which is commensurate for all HADR and DA SAA. For

example, when using techniques in [ 30 ], the Ool only accounts for a small fraction of the whole scene, where more than 90% of the




areas in the xView2 dataset are background pixels that do not contribute to the damage level assessment. Therefore, using CL may not
result in HADR/DA solutions that support the use needs.

Using the recently popularized DL attention mechanism [31 ], computing processing power focuses on relevant pixels in the scene of

interest. Transformers changed the field of Computer Vision and Natural Language Processing/Understanding [ 32 ]. Thus, there is a

being the best among all peers.

More and more research on damage assessment is based on synthetic aperture radar (SAR). In [ 33 ], the authors propose a statistical
texture feature, GO-para, for SAR building damage assessment in various polarization modes. It is based on the statistical distribution
of GO-para in SAR images to distinguish between collapsed and intact buildings. The proposed approach overcomes the limitations of
traditional texture features by considering the statistical distribution of speckles in SAR images.

To improve the performance of the damage detection, fusion, earning are used. Adriano et al. [ 34 ] provided a careful

analysis of the building damage severity level recognition using data fusion arning algorithms to achieve fast damage
mapping tasks. The authors investigated three robust ensemble learning classifiers to achieve building damage recognition from SAR
and optical remote sensing datasets. The proposed mapping framework successfully classified four levels of building damage with an
overall accuracy of over 90% and an average accuracy of over 67% on the data set of the 2018 Sulawesi earthquake and tsunami.
However, the paper does not provide detailed information about the data set and accessibility and what algorithms other than

canonical correlation forests are used i arning. Likewise, they do not define the overall accuracy and the average

accuracy.

3.4. Probabilistic Disaster Modeling: IP2CL

IP2CL utilizes an image Z from a pre-image X and a post-image Y, which are viewed as random variables in [ 35 ]. The relations

between the X and Y are captured by the conditional probability functions:

P (Zy| X0, Yp) =Yy

P(Zl‘Xl,y'l) = Norm(Y1 — Xl)

and by using an image indicator variable as subscript c: where 0 is for background and 1 for Ool; then X_ and Y, correspond to the pre-
and post-disaster image with values in the range of [0,1]. The new random variable Z_ takes its value from the same range of X and Y,
then Norm(w) is defined by the following equation:

w 4

Norm (w) =
(w) max (w) — min(w)

which normalizes w to the range of [0, 1]. The three steps as described in Egs. (2—-4) produce a new image Z with its background from
the post image and its Oolnormalized from the difference in the Ool region. Using the new image Z emphasizes the Ool pixel-wise
differences. As shown in Fig. 3, the lower right panel illustrating a sample IP2CL frame, we observe that the Ool regions, including the
buildings, are different from the background in terms of color variations. In summary, Z brings several benefits over the original signals
XandY:

) Efficiency in data and computing: reducing two color images that need to be processed to one significantly improves the
computation and storage efficiency. By contrast, the CL employed in CLIFGAN requires much more RAM and GPU time for
handling big sets of pre- and post-disaster images.

o) Flexibility in choosing DL methods: using the red, green, and blue (RGB channels, the data to be fed to the deep nets are ordinary
color images, thus more available deep nets trained on large data sets such as ImageNet and/or PASCAL visual objects can be

employed. By contrast, far fewer nets can readily facilitate 6-channel inputs for data classification! in both Eimage/object

(3) Saliency on Objects of Interest: as described in previous paragraphs, using Z stresses Ool regions with larger values and variances,
hence facilitating the training process.

(4) Emulative of human annotation: expert users manually label the pixel-wise difference in Ool for the damage level assessment.

(5) Effectively uses of the context information: post-disaster images present the crucial contextual information for Ool identification,
as suggested by Eg. (2). The situations after natural disasters normally contain more valuable information regarding the Ool

compared with those prior to the disasters. Directly using the pre-disaster image or removing the background, however,
produced much worse classifications in our study. Consequently, we should use the post-disaster/action information, as dictated
by Eq. (2), for valuable contextual information.

4. IP2CL Applications and Experimental Results




The IP2CL representation will be applied to two different scenarios of practical importance in this section: the first is to yield global
semantic segmentation as originally conducted for HADR applications: obtain the damage severity levels for the whole image for all

© in HADR
or DA-SAA, the Ools are of different importance, e.g., hospitals or schools in HADR applications in DA are obviously of more importance,

Ools thus helping responders to make responses relative to the damage estimate. The second is for Epatch-based classification:

the local damage severity level evaluation for these regions of special importance should be conducted early with desirable
performance. Before presenting the two approaches, the common problem of unbalanced data in the training set is tackled by two
generative algorithms.

4.1. Two Generative Adversarial Networks for HADR Applications

Pre- and post-disaster pictures are crucial in existing state-of-the-art models to estimate the infrastructure damage level from
overhead imagery. To remedy the class unbalance problem in the xView2 dataset, the pix2pix GAN is used. Given an input image, the
generator component of a GAN model generates a transformed version of the input image. On the other end, the discriminator
component in the GAN model, given an input image and a paired image (real or generated), determines whether the paired image is
authentic or false, yielding a generator model to fool the discriminator model and minimize the loss between the generated image and
the desired target image as well. The overall architecture permits the Pix2PixGAN to be trained over a diversified set of image-to-image
conversion tasks, e.g., creating a post-disaster image corresponding to a pre-disaster one. In our work, we developed two novel
Pix2PixGANs, named GAN-1 and GAN-2, to augment data with the desired size and nature.

Mask Controllable GAN: GAN-1

GAN-1 is a Pix2Pix GAN that takes a four-channel image as input and generates a post-disaster image as output. The four channels
include the red, green, and blue (RGB) channels of the pre-disaster image together with one additional channel with the post-disaster
labels. The GAN-1 outputs a generated post-disaster image with the RGB channels. GAN-1 can be used to produce as many post-
disaster images as desired to balance the class labels. Specifically, GAN-1 works as follows. First, GAN-1 was trained on the xView2
images, which were reduced to the size of 512 x 512. To accelerate the training process, the images were resized and normalized to
256 x 256 pixels during training. The GAN can facilitate varying scenarios of disaster types and damage levels, be it earthquakes, fire,
volcanos, hurricanes, etc. To augment data with desired labels and types, we use available pre-disaster images in the xView2 dataset
and the associated labels of post-disaster images as inputs. The labels were then adjusted to obtain the desired damage severity level
together with the pre-disaster images as input for the GANSs. Finally, the resultant images were fed to the GAN as inputs to produce the
post-disaster images of expected labels. The diagram of GAN-1 and 4 sample outputs corresponding to the 4 damage levels are
illustrated in Figs. 7 and 8, respectively, where it can be observed that the generated images are visibly similar to their assigned
labels. By using GAN-1, we can freely generate new pre- and post-disaster images as needed. For instance, in the original xView2
dataset, there are very few representations of “major” and “total” damages, by using GAN-1, we can simply generate more of them to
populate the training datasets such that the number of images for each of the four classes is roughly the same, thus effectively
resolving the data unbalance problem, which is common for most practical HADR tasks.

Fig. 7

Flowchart of the GAN used to improve the data balance in the training dataset
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Left column: original images; Middle column: controllable masks, regions in red, green, blue and yellow color correspond to
infrastructures with no-, minor-, major- and total- damage, respectively, caused by the disaster; Right column: images generated
by GAN-1
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Random Disaster Creator GAN: GAN-2

GAN-2 is a Pix2Pix GAN similar to GAN-1 with the flowchart shown in Fig. 7, it differs from GAN-1 only in the input masks: GAN-2 uses
pre-disaster images and randomized damage-level masks as input, and outputs post-disaster masks and images. The generator of
GAN-2 takes as input a four-channel image consisting of a pre-disaster image, combined with a randomly drawn post-disaster mask
with an arbitrary severity level. It then generates a four-channel image output, containing a three-channel RGB post-disaster image and
its corresponding post-disaster mask. GAN-2 shares a similar pipeline with GAN-1 with some differences. It starts with a pre-processing
stage that is the same as GAN-1. The Pix2Pix part of GAN-2 was trained by a four-channel image consisting of a pre-disaster image
and its real post-disaster mask and generating an output four-channel image made up of a post-disaster image and the associated
post-disaster mask. After training the Pix2Pix generator, similar to GAN-1, we developed a function to vary the severity level of the pre-
disaster masks. Next, a damage severity level was randomly drawn to yield a new post-disaster mask label, and the label was combined
with its pre-disaster image to give rise to the input images. After the input four-channel image was generated, it was given to the
Pix2Pix GAN-2 generator to generate an output four-channel image, which can be split into a generated mask as well as its
corresponding post-disaster image of randomized damage level. Two sample masks and images generated by GAN-2 are illustrated in
Fig. 9, as can be observed that the randomly generated images and masks are visually similar to the real ones. We developed GAN-2

to ensure the randomness of the GAN-generated images. The crucial difference between GAN-1 shown in Fig. 8 and GAN-1 in Fig. 9
is that: the masks in GAN-1 (middle column of Fig. 8) are provided by a human operator, whereas the masks of GAN-2 (columns 2 and
4 of Fig. 9) are randomly generated by the deep net.

Fig. 9

Two Masks (same color code as Fig. 2) and images (Right column) generated by GAN-2

GAN-2 mask Generated image GAN-2 mask Generated image

4.2. IP2CL in Semantic Segmentation




To handle images that cover a wide expanse (e.g., the leftmost panel of Fig. 8), we need to use a semantic segmentation algorithm to
create dense damage labels for each pixel. It is nontrivial, however, to choose a single best segmentation algorithm. A strategy to

address this issue is through robust fusion of multiple algorithms [ 6 ]. In our study, we found that the U-Net combined

as reviewed in Sect. 2, yields exceedingly ibowerful image segmentation.

In addition to CL, we observed that the combination of U-N d transfer Iearning% serves as another effective method to achieve data
and computation-efficient classification for the HADR classification; task in this work.

Using Matlab©'s segnetLayers methods or Python’s segmentation models over the xView2 dataset, the recent DeepLab v3+ network
generates competitive performance. The backbone of this U-Net-based architecture is chosen to the ImageNet-trained Resnet or VGG,
where the crucial visual knowledge gathered from the large ImageNet could be handily migrated to the HADR images in the xView2
dataset. Within this U-Net architecture based on DeeplLabv3+ and DL, depth separable convolutions are employed in the Atrous spatial
pyramid pooling and decoding sub-nets. For data augmentation, we used various popular operations during training including scaling,
rotations, flipping, and shearing.

Equipped with the aforementioned IP2CL techniques, the data fed to a deep net are essentially a set of normal color images
highlighting the Ools. Leveraging transfer learning methods using pre-trained deep nets, e.g., ResNet, AlexNet, and VGG, as feature
generators, and exploiting DeepLabV3+ as the backbone for U-net-based pixel-wise segmentation, we conducted a dense pixel-wise
semantic segmentation to assign all pixels in the HADR images to different labels. Table 1 presents the semantic segmentation
performances resulting from our 2021 Overhead Imagery Challenge submission as well as the new IP2CL-based method. To paint a
relatively complete picture of each method, the Precision, Recall, and F1 scores are provided. Furthermore, the processing time in terms
of milliseconds (ms) of one image taken by each method is also reported, which is measured in a computer with an Intel i9-12,900 CPU,
64 GB RAM, and NVIDIA RTX 3090 GPU. The size of each net is also given. The IP2CL expressed more Ool information than post-only
(with F1 of 66.4): just using the post-disaster images as inputs to Ethe transfer Iearning§ and Deeplab v3+ based U-Net, and CL (with F1
of 67.4), resulting in better classification performance (0.697) at about the same runtime.

Table 1

Performance of pixel-wise segmentation: precision, recall and F1 scores, run time (ms: millisecond), and net size (MB: Mega Bytes)

Algorithm Method 1 Post-only CCNY CL 1P2CL
Precision 64.2 65.6 67.2 69.1
Recall 59.3 67.2 67.6 70.4
F1score 61.7 66.4 67.4 69.7
Run time (ms) 660.9 102.6 520.4 103.2
Net size (MB) 441 9.7 40 9.7

Furthermore, as the IP2CL is only an ordinary color image, like the post-only algorithm, the deep nets are considerably smaller than the
CL-based method, i.e., 9.7 MB versus 40 MB. Method 1 is the result of reproducing the winning method in the original xView2
challenge. In consequence, the IP2CL-based segmentation method is more efficient in terms of net size and computational demands

than our original methods. Two segmentation results are depicted in Fig. 10, the F1 scores of which are respectively 0.87 and 0.79.
Fig. 10

Two sample results of dense segmentation for each image pixels using IP2CL. Left column: IP2CL image; Middle column: pixel-
wise labels predicted by IP2CL semantic segmentation; Right column: Ground truths (the color code scheme: red: no damage,
green: minor damage, blue: major damage, yellow: total damage). The F1 scores by IP2CL-based segmentation algorithm for the
first and second row are 0.87 and 0.79, respectively
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A unique benefit of this transfer Iearning§ and information fusion method is its robustness to the size and behavior of the train data,
while all other methods we have tried cannot effectively deal with small training data sizes and data augmented by GAN-1 and GAN-2.
The two reproduced xView2 methods and our own CLIFGAN methods yielded considerably worse performance in these cases, the

overall F1 scores were all reduced to less than 0.5, which were likely due to the use of Siamese nets that are seriously impacted by the
even slight difference in GAN data and the inadequate training size. More investigations on the robust use of CL will be thoroughly
investigated in the future. However, the transfer and fusion method demonstrated desirable resilience by yielding acceptable results. To

stress-test the behavior of transfer learning, as shown in Table 2, with 10% of the xView2 training data, namely, merely 280 training

overhead images are used to fine-tune the deep net, our methods can still deliver fairly valuable segmentation

performances. When using GAN-1 data to augment double the number of training sets to 560 images, the classification F1 score for
10% of data is improved by 2-3%. The results demonstrated that GAN-1 can help better increase the size of the training data. Also,
note that a user of the CLIFGAN system can command the damage severity labels in GAN-1 to tackle the serious class unbalance
trouble. The data created by GAN-2 does not seem to come from the same statistical dataset, thus when doubling the training set by
adding 280 GAN-2 images reduces the performance. It can also be observed that although GAN-2 indeed creates visually relevant, or

novel, images as shown in Fig. 11, these images enriched the overhead imagery dataset; however, its blind use
problematic, as summarized in Table 2.

Table 2

Performances (precision, recall, and F1 scores) of cases with reduced data size and augmented samples (doubling the original training data
size) by GAN-1 and GAN-2

CCNY CL 1P2CL
Precision Precision
Full data 67.2 67.6 67.4 69.4 70.1 69.7
10% data 55.9 58.1 57.0 56.8 60.5 58.6
10% data + GAN-1 59.2 60.4 59.8 61.0 61.6 61.3
10% data + GAN-2 53.9 48.9 51.3 55.4 45.2 49.8
Fig. 11

Four sample patches generated by our procedure used to train the CL net: Left two panels: without damage; Right two panels:
with damage

damage patch No-damage patch with-damage patch with-damage patch




4.3. Patch-Based Damage Level Classification

Since the pixel-wise dense Edamage classification presented in Sect. 3 was designed for large-area images, there is a need to develop

methods that focus on a smaller area (i.e., patch). Examples of HADR/DA applications where a relatively small region requires more
accurate results include responding to a school or a hospital, and whether it is damaged and demands prompt assistance. In these
important first-responder scenarios, the damage severity level classification for each pixel, which is generally of relatively poor
performance (with F1 < 0.7 with all state-of-the-art methods), can be discarded; conversely, where the Ool is located only one damage

severity designation should be provided for the whole patch, where performances are demanded and could be

achieved if proper method is applied.

There are four different damage severity labels in the xView2 dataset. A major reason for the underperformance of existing
classification performances is due to the considerably unbalanced nature of these labels: on average about 95% are background pixels,
while for regions with damages, again ~74% are "no damage” (label 1), only ~5% with “total damage”. Many image augmentation
techniques were explored, e.g., GAN [ 36 ], different class importance, in an effort to reduce the data imbalance, but in vain. The IP2CL

best F1 score by IP2CL is still at 0.70. Using the patch-based method can considerably boost

(1) Instead of categorizing damage severity levels from "minor” to “total", a binary label “no damage" and “with damage” is
adequate, which avoids challenges associated with an exceedingly small number of “major” and “total” damage levels.

(2) When creating patches with "no damage” labels and “with damage” labels, we collected the statistics of different labels by
varying the patch size in the range of 128 x 128, 100 x 100, 64 x 64, etc., and different Ool types, based on which the two
thresholds (&, &,) are obtained to determine the “with damage” and "no damage” types.

For a patch p, the “no damage” or "with damage” class label is decided if its maximal Ool has a size larger than &,/6, respectively,
afterward the Ool regions in this patch belonging to the other class are eliminated to make sure the current patch only has one the
unique label—the winning label to be identified—or else the Ool of the other class inside patch will confuse the upcoming training
procedure, thus boosting the classification performance. The patch-based method generates patches with the "with damage” and “no

damage” types that are roughly similar in size to nurture more effective classification in the future [7]. Figure 11 showcases two

generated sample patches. After intensive offline processing of the xView2 datasets, with 64 x 64 patches and setting (&, &,) to (0.12,
0.04), 21 k and 20 k training patches resulted for the two damage class type sets, as well as a test set for the two classes of 7.1 k and
6.8 k resulting a balanced data set.

After this processing, each IP2CL patch is an ordinary 64 x 64 color image with two labels: with damage or without damage. Since the
patches in the same class look alike, while those in different classes are supposed to be very different, CL as introduced at length in

Sect. 2 can be exploited to encode patches of the same class to a low-dimensional space in close vicinity, and distance those of
differing labels. In our simple Siamese network, the share CNN is composed of merely three convolution layers followed by a fully
connected layer to encode each 64 x 64 x 3 color image into a2D space by minimizing the contrastive loss dictated by Eq. (1) and
illustrated in Fig. 12, the hyper—parameter is set at 2. To facilitate balanced training of the CLnet, each training data pair (x, y;) and X

) as illustrated in Fig. 12 is drawn with probability 0.5 to come from the training set with y;=y; or y;#y; so that the pulling same labels

and pushing of dissimilar labels are performed with roughly the same epochs.
Fig. 12

Diagram of the training process of the contrastive learning: for training pairs (x; y;), (x; y;), the 64 x 64 x 3 image data x are
encoded by the siamese CNN to 2-D data the loss function used to re-adjust the CNN differs according to the labels y

(xf,JJi) —-—p\—; Bx;

> O(x)
The optimizer used in our work is Adam with a learning rate of 5e-4. After training the CL by 50 epochs, which is observed to be

adequately stabilized, the trained CNN @ is then employed to encode all training data x's to a 2D space, subsequently a simple Support
Vector Machine (SVM) was trained to be the resultant classifier in the training phase, that is,

oo~ )1,
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For the given training datasets and the CL net shown in Fig. 4, the predicted label for each patch x; of the testing dataset can be

0.98 0.02
obtained from Eq. (5). The resultant F1 score for the testing dataset is 95.9 with the confusion matrix <0 06 0 94) .

As illustrated in Fig. 13, the two different damage classes in the test dataset are partitioned distinctly into mostly separated regions by

the CL. We also tested different embedding? space dimensionality different from 2, e.g., ranging from 3 to 10, the achieved

performances were all not as good as the simple 2-D space by a large margin.

Fig. 13

The 2D embeddingf chieved by the contrastive learning method for IP2CL-based patches, “no damage” are shown as red points
(left) and “with damage” green ones (right)
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have used more than 10 different nets from Pytorch’s torchvision models in our experimental studies, and six of them can deliver F1
scores above 0.90, as listed in Table 3. CL combined with IP2CL stands out as it not only yields the best F1 score (95.9%): better than
the attention-based visual transformer by about 1 percentage (95.0%), and all is achieved by a net with a significantly smaller size: 9.5
versus 343 MB. The results are produced by using the fine-tuning option, not feature-extraction, which yields far worse
performances by more than 10%, likely since the IP2CL is considerably different from the images seen in ImageNet, where the features
learned from ImageNet are of subpar performances. The Run time of each net to process one test image is also reported, based on the

same computer for Table 1. Besides being able to deliver the best performance, it can be observed that the CL-based method delivers

the second lowest run time (7.6 ms) only slightly longer than AlexNet (7.1 ms). It is thus a computing efficient approach as well.

Table 3

Patch-based damage severity classification performances, measured by the precision, recall, and F1 scores, using IP2CL, the processing time of
one test image, and the net size

Algorithms Precision Recall F1 score :{nl::)time :\l“:;)size
Contrastive learning 95.7 96.1 95.9 7.6 8.6
Visual transformer 95.0 95.1 95.0 42.6 343
VGG19 94.2 94.3 94.2 26.5 558
ResNet152 93.0 93.0 93.0 322 233
ResNet 101 92.6 92.8 92.7 24.2 170
Inception v3 90.3 90.7 90.5 253 101
GoogleNet 90.2 90.4 90.3 1.2 23
VGG16 89.9 89.9 89.9 22.8 537
ResNet 18 89.6 89.9 89.8 8.4 45
AlexNet 89.6 89.8 89.7 71 229
mobileNet-v3 89.4 89.2 89.3 9.7 6.2
efficientNet-b7 84.3 84.7 84.5 M7 258




CL together with IP2CL, therefore, delivered exceptionally valuable data and computing efficacy with excellent performances in this

patch-based Eglobal image classification: task, because the IP2CL intentionally changes the data representation and puts the analysis

attention to the regions of special interest to take advantage of the great discrimination prowess of CL in content-based feature
extractions.

5. Conclusion and Future Works

This chapter presents a new method within ithe machine Iearningggand granular computingg framework using image-based pre- and post-

conditional probability learning (IP2CL) to emphasize the changes in the object of interest (Ool) Enhanced performance was shown on

the xView2 dataset using pixel-wise damage classification based on semantic segmer

ased sdamage classification.
methods, such as contrastive

IP2CL combined with various dynamic data-driven applications systems augmente

learning, generative adversarial network, U-Net, iand transfer learning; achieved data as well as computationally efficient Situational

Awareness and Assessment for Humanitarian Assistance and Disaster Response and Damage Assessment (HADR/DA) applications in
both civilian and commercial applications.

In this work, the publicly available dataset xView?2 dataset was used to validate our new representation and the corresponding deep-

learning approaches in segmentation and classification tasks. At present, the fusion-based transfer Iearning§ method for the semantic

segmentation case cannot deliver computational and data-efficient results yet. In the future, we will investigate more methods to

achieve a more efficient and robust use of icontrastive deep Iearning?. Furthermore, other deep nets such as vision transformers [ 37 ] and

the more recent attention-based nets, Eself-supervised representation Iearning§ methods [38 ] in contrastive, generative, and contrastive

learning approaches, will also be examined to improve the computing and data efficiency. In addition, more re-adjustments and
revisions will be examined to expand our method to more applications of crucial and practical importance to HADR and DA [39,40].
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