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Abstract—This paper aims to introduce research directions to
identify vulnerable communities during compound disasters, such
as the intersection of hurricanes and pandemics like COVID-
19. We suggest integrating mobility, socioeconomic, and geo-
graphic factors to develop a comprehensive vulnerability index.
By analyzing mobility data, U.S. Census socioeconomic data,
disaster data, pandemic data, and geographic data, we extract
information like hospital visits, business closures, increased travel
distances, decreased inbound movement to commercial census
block groups (CBGs), decreased outbound from home CBGs,
and changes in mobility trends to various categories of stores, to
develop a vulnerability index that integrates all of these factors.
This index aims to capture and analyze the unique impacts of
natural disasters on communities, especially those exacerbated by
simultaneous disaster scenarios. We also propose a model design
that can capture the spatial and temporal nature of the data and
can be trained to perform the dual task of vulnerability index
calculation in a disaster scenario along with predicting pandemic
growth features in case of a compound disaster.

Keywords— Machine Learning, Disaster Response, SafeGraph,
COVID-19, Compound Disasters, Community Support.

I. INTRODUCTION

Accurately identifying vulnerable communities during com-
pound disasters is critical for effective disaster response and
resource allocation. Traditional approaches often need to catch
up, relying heavily on news data, calls to emergency services,
and hospital admits data, which can lead to delays and
inaccuracies in identifying those who need more help. We
used real-time mobility data, particularly from SafeGraph [1],
along with socioeconomic indicators, to pinpoint communities
at more risk.

Our aim is to integrate mobility patterns and socioeconomic
factors to identify real-time changes in community behavior
and needs. For instance, during disasters such as the COVID-
19 pandemic compounded with hurricanes, we observe that
communities forced to travel further for essential supplies due
to local store closures or gathered in shelters for safety, faced
increased risks of exposure to the virus.

The primary objective of this research is to develop method-
ologies to identify vulnerable communities during compound
disaster events, such as the concurrent occurrence of a pan-
demic and natural disasters. In this paper, we discuss move-
ment pattern shifts that can suggest vulnerability changes
after a disaster to create a comprehensive vulnerability index,

leveraging mobility data and socioeconomic indicators along
with disaster and pandemic data to analyze the compounded
effects.

We propose a framework that identifies vulnerable Point
Of Interest (POIs) based on the people’s demographics and
the number of people visiting the commercial CBGs. The
framework is designed to both predict the vulnerability index
of areas during a disaster and forecast the pandemic spread
throughout the region due to its effect. It is meant to be capable
of detecting heavy fluctuations in movement within specific
areas by employing a Graph Attention Network (GATs) [2],
[3] along with a Long Term Short Memory network (LSTM)
[4] for the dual purpose of detection and forecasting. We show
that a model designed for and trained on data of disaster
timeframes can be effectively used to give indication of areas
that would be effected the most by a disaster along with
forecasting spread of viruses for a better preparation.

This identification enables targeted interventions and effi-
cient allocation of resources, helping authorities to mitigate the
effects of disasters more effectively [5]-[9]. Additionally, since
the framework seeks to forecast how pandemics might spread
through these vulnerable areas, it provides valuable insights
for better preparation and response strategies. By predicting
potential transmission pathways, public health officials can im-
plement preventive measures to control the spread of diseases.
Ultimately, this approach enhances disaster preparedness and
public health responses by offering actionable insights, con-
tributing to the development of more resilient and responsive
communities.

The rest of this paper is organized as follows. Section 2
reviews the related work in vulnerability prediction, impact
analysis for disasters, pandemic spread, and disaster prepared-
ness. The data sources we studied and/or used, including
mobility data, disaster data, socioeconomic data, COVID-19
data, and geographic data are discussed in Section 3. Section
4 delves into our methodologies for detecting venerability
signals from changes in mobility patterns and how to combine
them into a unified vulnerability index. Section 5 presents our
model design for using the combined mobility, pandemic, and
disaster data for the dual task of vulnerability prediction and
pandemic growth forecasting. Finally, Section 6 provides the
conclusion of this paper.
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II. LITERATURE REVIEW

The CDC/ATSDR Social Vulnerability Index (SVI) provides
a comprehensive dataset that captures these socioeconomic
variables across the United States, as detailed in [10]. The
SVI is instrumental in identifying communities more suscep-
tible to harm during and after disasters, allowing for more
targeted and effective interventions. Further, the methodology
for assembling this socioeconomic dataset is elaborated in
[11]. The research outlines the processes and criteria used to
select and integrate various socioeconomic indicators, ensuring
that the index accurately reflects the vulnerability of different
communities. Though this vulnerability index is measured per
year, it is not as reliable for disasters such as hurricanes,
where vulnerability is determined foremost by the path of the
hurricane. However, it can be used as a feature in detecting
the degrees of vulnerability in a disaster scenario.

PolicyMap [12] offers a robust mapping and visualization
tool that compiles and presents various layers of socioeco-
nomic data. These layers include demographic information,
income levels, housing conditions, quality of life, education,
and health indicators. Through PolicyMap, users can generate
detailed dashboards that aid policymakers and researchers in
identifying communities at risk. The platform’s visualizations
highlight areas with varying degrees of vulnerability, such as
regions with high levels of homelessness, enabling targeted
disaster preparedness and response strategies. However, while
PolicyMap effectively identifies vulnerable communities based
on static socioeconomic factors like income, age, and housing,
it does not account for effects of a disaster as when a
disaster strikes, communities exhibit specific shifts in mobility
patterns—changes that can serve as critical indicators of their
vulnerability.

The impact of dual crises, such as a volcanic eruption and
the COVID-19 pandemic, on food production and security in
a Small Island Developing State was systematically examined
in a recent study [13]. The research focused on how these
concurrent disasters affected local food systems, considering
variables such as food production methods, unemployment,
food insecurity, transportation, and work hours.

Another recent study [14] proposed a framework for real-
time nowcasting of human mobility during disasters, aiming
to enhance emergency response and resource allocation. The
researchers leveraged Twitter data with geolocations to capture
real-time sentiments and relate them to mobility of individuals
during crises.

Location intelligence offers valuable insights into hurricane
preparedness extent, timing, and spatial variation, as demon-
strated in a recent study [15]. The researchers utilized Safe-
Graph mobility data to monitor the behavior of CBGs leading
up to hurricanes, focusing on visits to essential establishments
such as gas stations, grocery stores, pharmacies, and home
improvement stores.

With the COVID-19 pandemic bringing in a new aspect to
be considered for disaster study and management,the authors
in [16] examined the impact of Hurricane Laura on COVID-
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19 spread, particularly in lower-income CBGs. By utilizing
mobility data, hospital locations, COVID-19 case counts, and
mobility to hospitals, the research demonstrated that the hur-
ricane disproportionately affected these lower-income CBGs,
leading to a higher spread of COVID-19.

Similarly, researchers investigated the intersection of hur-
ricane preparation and COVID-19 transmission in Harris
County, Texas, during Hurricane Harvey [17]. The authors
combined the population movement data, COVID-19 case
counts, and social vulnerability indices to model the impact of
hurricane-induced actions on virus spread. The study utilized
digital trace data and network analysis, offering a framework
for future risk assessments in multi-hazard scenarios and
providing valuable insights for disaster planning and urban
resilience.

In [18], how economic policies influenced consumer spend-
ing patterns was examined. It uses data from multiple sources,
including government reports, consumer surveys, and spending
data from financial institutions, to look at changes in spending
on various categories such as essentials (like groceries and
healthcare) and non-essentials (such as entertainment and
travel). [19] analyses the emergency transportation systems
during disasters, which involves examining the factors that
influence the extent of disruption and recovery. The study em-
phasizes three core components: preparedness, impact factor,
and recovery period.

The compounded effects of economic and environmental
disasters on mental health were studied in [20]. The research
reveals that the exposure to Hurricane Harvey, combined with
the income loss due to the COVID-19 pandemic, significantly
increases the likelihood of higher anxiety levels among indi-
viduals. The analysis indicates a cumulative effect, where the
combined impact of these events exacerbates mental health
issues.

A detailed analysis of COVID-19 spread in ten major
U.S. metropolitan areas using dynamic mobility networks is
presented in [21]. The study reveals that a small fraction
of “superspreader” POIs contributes disproportionately to the
infection spread. It also highlights that reopening strategies,
particularly in high-density POIs like restaurants and gyms,
could significantly increase infection rates if not coupled with
additional precautions. Furthermore, it underscores racial and
socioeconomic disparities, predicting higher infection rates in
disadvantaged neighborhoods due to higher mobility and more
crowded POlIs.

The concept of systemic impact, initially defined by Vu-
grin et al. [22], describes the difference between a targeted
system performance level and the actual system performance
following a disruptive event. In this study, systemic impact
values were determined as the lowest percentage change value
observed in each category following the landfall of Hurricane
Harvey.

III. DATA COLLECTION

In our research, we utilize a variety of datasets to gather
comprehensive information on mobility, socioeconomic fac-
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tors, and vulnerability indices to identify vulnerable com-
munities along with disaster and pandemic datasets. Each
dataset provides valuable insights for detecting vulnerable
communities and assessing the potential impact of disasters.
By combining mobility data with socioeconomic indicators
and vulnerability indices, we aim to create a comprehensive
vulnerability index that can better predict and prepare for
disasters.

A. Mobility Data

1) SafeGraph Mobility Data: The detailed mobility data
from SafeGraph [1] provides insights into population density,
movement patterns, and average distance traveled. This dataset
includes information at the Points of Interest (POI) and Census
Block Group (CBG) levels, offering granular details down
to specific tracts and block groups. The granularity of this
data is crucial for assessing localized movement patterns and
identifying potential vulnerabilities.

2) Google Mobility Data: Google offers county-level mo-
bility data that, while not as granular as the SafeGraph data,
still offers valuable insights into regional movement trends
and behaviors. This data helps provide a broader picture of
mobility patterns across different counties [23].

3) U.S. Department of Transportation Mobility Data:
Additional mobility data can be sourced from the U.S. De-
partment of Transportation, which provides county-based data
on changes in mobility, particularly during the COVID-19
pandemic. While lacking tract-level detail, this dataset offers
another perspective on mobility changes [24].

B. Disaster Data

1) Hurricane Path Visualizer Data: The National Oceanic
and Atmospheric Administration (NOAA) provides an interac-
tive map and API access for visualizing hurricane paths. This
tool is critical for understanding the historical and projected
paths of hurricanes, which can impact vulnerable communities
[25].

2) Hurricane Datasets from the U.S. Government: The U.S.
Government Data Catalog provides comprehensive hurricane
datasets compiled from various federal agencies, including
NOAA, FEMA, and NASA. These datasets include histori-
cal records of hurricanes and tropical storms, detailing their
paths, wind speeds, pressure, duration, and impact assess-
ments. The data encompasses information on storm surges,
rainfall, flooding events, and damage reports. Researchers and
policymakers can utilize this information to analyze patterns,
improve predictive models, assess risk areas, and develop
mitigation strategies for hurricane-prone regions. The datasets
are available in various formats such as GIS shapefiles, CSV
files, and KML, facilitating the integration with mapping tools
and statistical software [26].

3) Disaster Data by State: The Emergency Events
Database (EM-DAT), managed by the Centre for Research on
the Epidemiology of Disasters (CRED), offers detailed data on
various natural and technological disasters affecting different
states in the U.S [27]. This dataset includes comprehensive
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information on disaster types, dates, affected locations, human
impacts such as fatalities and injuries, and economic losses. It
is a valuable resource for analyzing historical disaster trends,
assessing state-level vulnerabilities, and informing disaster
preparedness and mitigation strategies.

C. Socioeconomic Data

1) FEMA Household Preparedness Data: The FEMA Na-
tional Household Survey (NHS) provides valuable insights
into the preparedness behaviors and attitudes of households
across the United States [28]. Conducted annually, the survey
collects data on topics such as emergency planning, disaster
supply kits, communication plans, evacuation readiness, and
awareness of local hazards. The dataset includes demographic
variables like age, income, education, and region, enabling
analysis of preparedness levels across different population
groups and geographic areas. This information helps emer-
gency management officials, policymakers, and community
organizations identify gaps in preparedness, tailor public out-
reach efforts, and enhance community resilience.

2) Social Vulnerability Index (SVI): The Social Vulnerabil-
ity Index (SVI) dataset [29], available from the Socioeconomic
Data and Applications Center (SEDAC), provides an index
that assesses the vulnerability of communities based on factors
such as age, income, and marital status. The dataset includes
maps in TIFF format showing the socioeconomic status of
people in different regions for the years 2000, 2010, 2014,
2016, 2018, and 2020. This index is crucial for predicting the
vulnerability of populations in specific areas.

3) Census Quick Facts: : The U.S. Census Bureau’s Quick-
Facts [30] provides essential demographic, economic, and
social statistics for all states, counties, cities, and towns with
populations of 5,000 or more. This tool offers quick access
to data on population size, age distribution, racial and ethnic
composition, housing characteristics, income levels, education
attainment, and business and industry statistics. These insights
are crucial for understanding community profiles, identifying
vulnerable populations, and planning resource allocation..

D. COVID-19 Data

1) CovidTracking.com: This source provides detailed data
on hospitalizations and vaccinations during the COVID-19
pandemic, including state-by-state breakdowns and historical
trends. The dataset encompasses testing numbers, confirmed
cases, deaths, and recovery rates, which are essential for
epidemiological studies and public health planning [31].

2) Google COVID-19 Data: Google’s COVID-19 Open
Data repository [32] aggregates a wide array of datasets
from authoritative sources, providing up-to-date statistics on
COVID-19 cases, deaths, testing, and vaccination rates world-
wide. The dataset also includes mobility reports, healthcare
infrastructure data, and demographic information. This com-
prehensive resource is valuable for researchers and policymak-
ers aiming to understand the pandemic’s progression, identify
hotspots, and develop data-driven strategies for mitigation and
recovery.
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3) Trips During COVID-19: The Bureau of Transportation
Statistics (BTS) provides detailed data on daily travel patterns
during the COVID-19 pandemic through its “Daily Travel”
dataset [33]. This includes information on the number of trips
taken by different transportation modes such as personal vehi-
cles, public transit, airlines, and rail—across various regions.
The dataset helps analyze how travel behaviors changed in
response to pandemic-related restrictions and health concerns,
which is essential for understanding the pandemic’s impact on
mobility and planning for future public health emergencies.

E. Geographic Data

Elevation and Weather Data: The Integrated Surface Dataset
(ISD) [34], accessible via the U.S. government’s data catalog,
provides comprehensive weather and elevation data from the
weather stations across the globe. The dataset includes hourly
observations of weather elements such as temperature, precip-
itation, wind speed and direction, and atmospheric pressure,
along with elevation information for each station. This data
is critical for analyzing how geographical and climatic factors
influence community vulnerability to disasters, weather-related
hazards, and climate change impacts. This dataset is helpful
in understanding geographical factors that may influence vul-
nerability.

IV. DETERMINING VULNERABILITY

Determining vulnerability after a disaster is a challenging
task due to many factors that need to be taken into account and
many different definitions and interpretations of vulnerability
that can be considered. Vulnerability can be affected by or even
defined as poor health, healthcare access, economic state, etc.

Here, we define vulnerability by considering what we can
derive from mobility data first and foremost. Human move-
ment can be viewed as a fundamental factor in determining
the well being of groups, in this case, people in the same
CGBs. We assume that as a disaster occurs, a very telling
factor that can be traced is movement - whether there is a
change (increase or decrease) in the movement pattern. In this
section, we explain the major ways in which the movement
pattern’s immediate change in a disaster scenario can be used
to derive a vulnerability index specific to that disaster.

A. High Visits to the Hospitals

According to [16], there is a notable correlation between
high hospital visits and increased COVID-19 spread. The
research indicates that the areas with higher rates of hospital
visits are more likely to experience rapid COVID-19 trans-
mission. This observation suggests that census block groups
(CBGs) with frequent visits to hospitals and pharmacies are
more vulnerable compared to others.

To quantify this vulnerability for the detection of CBGs
that are affected the most by disasters, we use a metric that
incorporates the following factors:

« Hospital Visits: the frequency of visits to hospitals and
pharmacies by residential CBGs;
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« Baseline Visits: the rate of hospital visits before a disaster
as a baseline measure;

« Population Density: the population density of the area,
which provides context for the volume of hospital visits
relative to the population.

An index is calculated based on these factors, with CBGs
exhibiting higher rates of hospital visits deemed more vulnera-
ble. This metric helps in understanding and predicting vulnera-
bility by linking hospital visit patterns to the affectedness by a
disaster, providing a basis for targeted public health responses
and resource allocation in the aftermath of a disaster.

(NHVpost — BHV e )

VI =
PDcgo

where:

VI = Vulnerability Index
NHV s = New Hospital Visits per Week After a Disaster
BHV,,. = Baseline Hospital Visits per Week
PDcpg = Population Density of Residential CBG

B. Closure of business

Inspired by the work in [35], the following methodology is
proposed as a factor in determining community vulnerability:

1) Calculate the Total Number of Businesses: Determine
the total number of businesses within the commercial
area of interest. This provides a baseline for assessing
the extent of business activity in the area.

Calculate the Number of Closed Businesses: Identify
and count the number of businesses that have been
closed within the same commercial area. This figure
reflects the impact of disruptions such as economic
downturns or pandemics.

Assess Vulnerability Based on Business Closure Per-
centage: Calculate the percentage of closed businesses
relative to the total number of businesses. The vulner-
ability of the commercial area is directly proportional
to the percentage of closures. A higher percentage
indicates greater economic distress and, consequently,
higher vulnerability.

Determine Vulnerability of Nearby Residential Areas:
Extend the assessment to nearby residential areas (home
CBGs) surrounding the commercial area. These areas
are also considered vulnerable if the commercial area
experiences a high rate of business closures. This is
based on the assumption that economic downturns in
commercial areas have ripple effects on adjacent resi-
dential communities.

2)

3)

4)

This methodology (as shown in Figure 1) helps in identi-
fying vulnerable areas by evaluating the impact of business
closures and assessing the broader implications for neighbor-
ing communities.

Bcpost

VIclmure =
TBregion
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where:

Vlosure = Vulnerability Index by business closure
BCpost = Total number of businesses closed after disaster

TBiegion = Total number of businesses in the region

Note: Business closure is determined if the business has no
visits after the disaster for the next 4 weeks. A total number
of businesses in the region includes only those businesses
which have a significantly large amount of visits. This is also
visualized in Figure 1.
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Fig. 1: Vulnerability by Business Closures

C. Increased Travel Distance to Stores

The increased travel to stores, particularly after a disaster
suggests the destruction of or inaccessibility nearby POIs.
The methodology involves identifying home CBGs that must
travel farther to access essential services, making them more
vulnerable to compound disasters such as hurricanes and
COVID-19. The methodology is visualized in Figure 2 and
described as follows.

1) Pre-disaster Data Collection: We collect data for one
month before the anticipated disaster, excluding the last
week as communities prepare for the disaster. This
leaves three weeks of data reflecting standard travel
patterns unaffected by the disaster. Next, we analyze the
pre-disaster data to identify POIs that are frequently vis-
ited by individuals traveling from more distant locations.
We then designate these POIs as distant commercial
POIs, indicating that they attract visitors from further
away, possibly due to a lack of nearby alternatives.
For each distant commercial POI identified, we track
the home CBGs of the visitors. Finally, we count the
occurrences to identify which common home CBGs are
visiting these distant POlIs.

Post-disaster Data Collection and Analysis: For after
the disaster, we collect data to identify changes in travel
patterns to distant commercial POIs for 4 weeks. Then

2)
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the identification (the same as the last step) is repeated
to determine which home CBGs are now traveling to
distant commercial POIs.

Vulnerability Index: At last, we subtract the list of
vulnerable home CBGs identified before the disaster
from those identified after the disaster. This comparison
highlights the additional home CBGs that have become
vulnerable post-disaster due to increased travel distances
for essential services, indicating a reduction in nearby
commercial POIs.

3)
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Fig. 2: Vulnerability by Travel Distance
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D. Decreased Inbound to Commercial CBGs and Decreased
Outbound from Home CBGs

Similarly, the vulnerability of communities is assessed by
analyzing changes in the inbound movement to commercial
CBGs and outbound movement from home CBGs before
and after a natural disaster, such as a hurricane. The focus
is identifying CBGs that experience significant changes in
mobility patterns, which may indicate issues such as road
blockages or evacuations. The methodology explained below
is designed to find these changes as they are shown in Figure
3.

1) Data Collection: First, data on the number of inbound
and outbound movements for each CBG over a specified
disaster period is collected. The data should cover at
least four weeks before the disaster and four weeks after
the disaster.

2) Calculation of Inbound and Outbound Movements:

a) Inbound to Commercial CBGs: Sum the total
weekly inbound movements to each commercial
CBG. Calculate the median inbound movements
for the period before the disaster (pre-disaster) and
after the disaster (post-disaster).
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b) Outbound from Home CBGs: Sum the total
number of outbound weekly movements from each
home CBG. Calculate the median outbound move-
ments for the pre-disaster and post-disaster periods.

3) Determination of Vulnerability:

a) Inbound Decrease to Commercial CBGs: If the
median inbound movements to a commercial CBG
significantly decrease after the disaster compared
to before the disaster, it may indicate road block-
ages or reduced accessibility to that CBG. This
CBG is labeled as vulnerable due to potential
disruptions in access to essential services.

b) Outbound Decrease from Home CBGs: If the
median outbound movements from home CBG sig-
nificantly decrease after the disaster, it may suggest
limitations to residents’ mobility. This home CBG
is labeled as vulnerable due to reduced connectiv-
ity.

4) Vulnerability Index Calculation: The vulnerability in-
dex for each CBG is calculated based on the magnitude
of changes in inbound and outbound movements.

a) The more significant decrease in inbound move-
ments to commercial CBGs, the higher the vulnera-
bility index, indicating more severe road blockages
or access issues.

b) Similarly, the more significant decrease in out-
bound movements from home CBGs, the higher
the vulnerability index, indicating more significant
impacts from evacuations or mobility restrictions.
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Fig. 3: vulnerability by changes in inbound and outbound

E. Change in Mobility Trends to Various Places

The change in the trend to visit various categories of stores

signals about the vulnerability of the community.

o Data Collection: Data on mobility patterns from different
CBGs and store categories is collected. This includes visit
patterns to other locations before and after a compound
disaster event.

o Trend Analysis: The outbound mobility trends to dif-
ferent place categories are analyzed, noting how the visit
patterns change over time. Specifically, the weekly trends
leading up to and following the disaster can be observed
to change.

o Matrix Construction: The Matrix consists of the out-
bound from each CBG to the categories of POIs, where
the POI categories are taken from the SafeGraph dataset.

ZiEPOIj Vi
Di]‘ = 7P

where:
— Dyj is the normalized outbound visit frequency to
POI category j from CBG 1.
- ZZEPOI?, V; is the total visit frequency from CBG i
to all points of interest (POIs) in category j.
— P, is the population density of CBG <.

o Distance Measurement: We first take the median of
all the weeks before the disaster and after the disaster.
Then we compute the Euclidean distance between each
location’s pre-disaster and post-disaster vectors. This dis-
tance helps quantify the magnitude of changes in mobility
patterns. The Euclidean distance d; for each CBG i is
calculated as:

where:

« D} is the normalized outbound visit frequency to POI

category j from CBG ¢ before the disaster.

o DI is the normalized outbound visit frequency to POI

category j from CBG ¢ after the disaster.

We can determine how mobility patterns shift in response
to compound disasters by analyzing the distance matrix and
the Euclidean distances. Large changes in the matrix values
indicate significant deviations in mobility, potentially reflect-
ing areas of increased vulnerability. The results can be used to
identify those regions that are more affected by the compound
disasters, providing valuable insights for emergency response
and resource allocation.

FE. Combining Signals Into A Unified Index

In each of the previous subsections, we calculated a measure
of changes in movements before and after a disaster. For each
of these, if we consider the set of results for all CBGs, we can
assume that they follow an almost normal distribution. While
we cannot take each of these alone as a measure of vulner-
ability necessarily (unless only considering the most extreme
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outliers), we can consider their combination. By standardizing
all of these measures, we can combine them into a unified
index. This index describes an aggregated standardized change
in mobility of each CBG. Therefore in a disaster scenario, the
outliers can be considered as having been impacted the most
by the aforementioned disaster. The process can be described
as follows.

where:

e Zj is the standardized distribution of mobility changes
for the kth measure. x, is the actual distribution, pj and
oy, are the mean and standard deviation.

This can be used as a priority tier list. The most extreme tier
includes those with the highest thresholds, are experiencing the
largest change in movements across all categories, and will
therefore need the most immediate attention. The threshold
can be dynamically chosen to accommodate each scenario and
region.

| Zavg| > T

where:

e Zug is the aggregated standardized vulnerability index
and T is the actual the threshold.

While this index is calculated by incorporating the data from
aftermath of a disaster as well as before the disaster, we need
a way to predict this index for future disasters by noticing
the first changes of movements that happen in the week that
the disaster hits a region. Therefore in the next section, we
propose to train a model on the past and during the disaster
data, in order to recognize the shift in the mobility pattern and
predict the CBG level vulnerability index.

V. MODEL DESIGN

The proposed model (as shown in Figure 4) is designed
to perform dual tasks on spatio-temporal data of the CBGs.
Given the complexity of the data, which consists of both
spatial relationships among CBGs and temporal dependencies
over time, the model is designed using a combination of
a Graph Attention Network (GAT) and a Long Short-Term
Memory (LSTM) component tailored to temporal dynamics.
This architecture leverages the inherent structure of the data by
processing the spatial aspect of the data first, then the temporal
aspect of the processed features at each node, and finally using
the acquired state to perform the dual tasks of predicting the
vulnerability index and forecasting pandemic growth in the
next few weeks.
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Fig. 4: Model Design

A. Spatial Component: Deep Graph Attention Network

The spatial component of the model uses a graph-based
structure where each CBG is represented as a node containing
the feature vector of that CBG, and the edges connecting nodes
that are geologically connected, such as proximity or shared
characteristics. To capture the complex spatial dependencies,
we use a GAT network. The attention mechanism in a GAT
allows the model to weigh the importance of neighboring
CBGs dynamically, enabling it to learn which neighbors
contribute most to the classification decision for a given
CBG. This adaptability makes the GAT suitable for handling
varying degrees of influence across CBGs, making the spatial
dependencies non-uniform and context-dependent.

Formally, let the graph be represented as G = (V, E), where
V is the set of nodes (CBGs) and E the set of edges between
them. Each node v; in V contains features representing the
characteristics of a CBG. The GAT layer computes a node
embedding h; for each v;, based on both its own features and
the features of its neighboring nodes, weighted by the learned
attention coefficients a;; that reflect the importance of node
v;’s contribution to node v;.

B. Temporal Component: Long Short-Term Memory

For capturing the temporal dependencies, the model lever-
ages an LSTM network which is well-suited for modeling
sequential data and learning long-range dependencies in time
series. Each CBG evolves over time, and the LSTM is tasked
with learning the patterns of changes across different time
steps. By utilizing the memory cells within the LSTM archi-
tecture, the model is capable of retaining important temporal
information while filtering out irrelevant data, ensuring that
the classification decision is informed by both short-term
fluctuations and long-term trends. In our scenario, we want
to capture the short term fluctuation while considering the
impact and contrast it has with the previous small fluctuations
happening in a larger period.

Given a sequence of temporal data X = x1, xo, ..., 1, where
each x, represents the features of CBGs at time ¢, the LSTM
processes the sequence to generate a hidden representation at
each time step. The final hidden state of the LSTM captures the
aggregated temporal information, representing the temporal
evolution of a CBG’s features over time. By using multiple lay-
ers, the model can learn the longer range dependencies better
and perform the forecasting task more efficiently. Therefore,
the last hidden state of the first layer’s output will be used for
the vulnerability index prediction and the final layer’s output
will be used to forecast the pandemic spread features.
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C. Dual-Purpose Output

To address the dual objectives of predicting a continuous
float-type index and forecasting an input feature for each CBG,
the model employs separate output layers that both utilize the
final hidden state from the LSTM. This approach allows the
model to leverage the shared spatio-temporal representations
while specializing in each task.

The prediction of the continuous float-type index Zavg for
each node v; is performed by passing the final hidden state
of the first layer of the LSTM network to a Fully Connected
Network (FCN) with ReL.U activation function between layers,
so that the entirety of the feature set of the hidden state
can be leveraged and distilled into a single number. The way
the hidden state is passed to each input node of the FCN is
described as follows.

C=w, h{})

+ b, (1)

where: C; is the value passed to the /-th FCN input node.
w, € RH is a learnable weight vector. b, € R is a bias term.
H is the dimensionality of the LSTM hidden state. hg}% is the
hidden state itself. This network with non-linear activations
effectively maps the spatio-temporal features captured in the
LSTM’s hidden state to the continuous index prediction.

As mentioned before, to enhance the model’s forecasting
capability, we employ multiple layers in the LSTM network
and utilize the final hidden state of this layer that has richer
temporal information, rather than relying on the first layer’s
final hidden state. This allows the model to capture stronger
temporal dynamics over the entire sequence, which is partic-
ularly suitable for forecasting tasks.

Let the LSTM consist of L layers. The output of the I-th
LSTM layer at time step ¢ for node v; is denoted as hilz The
final (last) LSTM layer produces a sequence of hidden states
for each time step:

H = [0y @

(L)
AN N
For forecasting the input feature fi,T_H at the next time step
T + 1, the model again leverages the final hidden state hELT>

firs1 = WfThE:,LT) +bf )

where:

Wi € R is a learnable weight vector. by € R is a bias
term. If multiple features are to be forecasted simultaneously,
the equation generalizes to:

firy = thz(-? +b; €

where:

fi,T+1 € RF is the vector of forecasted features. W, €
RP*H js a learnable weight matrix. by € R is a bias vector.
F' is the number of features to forecast. This output layer
enables the model to predict future feature values based on
learned spatio-temporal patterns.
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D. Loss Function and Optimization

To train the model for both tasks simultaneously, a com-
bined loss function is defined, capturing the errors in both the
index prediction and feature forecasting.

1) Mean Squared Error (MSE) for Index Prediction: The
loss for predicting the float-type index is calculated using the
Mean Squared Error (MSE):

1 )
NZ(yi_yi)

i=1

Lindex = Q)
where:

y; is the true float-type index for node v;. g; is the predicted
index. N is the number of nodes.

2) MSE for Feature Forecasting: Similarly, the loss for
feature forecasting is computed as:

N

%Z (fi,T+1 - fz’,T+1)2

i=1

‘Cforecast = (6)
where:

fi, 741 is the true feature value at time 7"+ 1 for node v;.
ﬁ;,TH is the forecasted feature value.

3) Total Loss Function: The total loss function combines
the two losses with weighting factors Aingex and Agorecast tO
balance the importance of each task:

L= )\index»cindex + )\forecast»cforecast (7)

where:

Aindex and Aforecast are hyperparameters that control the trade-
off between the two tasks.

The model parameters are optimized by minimizing the total
loss L using gradient-based optimization methods such as the
Adam optimizer. During training, errors are backpropagated
through the output layers, the FCN network, the LSTM net-
work, and the GAT layers to update all learnable parameters.

E. Capabilities and Limitations

The model design suggested in this section offers several
advantages that make it well-suited for the disaster effect
prediction tasks:

o The unique combination of GAT and LSTM networks
allows the model to effectively handle the dual tasks in a
single framework by capturing complex spatio-temporal
dependencies.

« Utilizing the final LSTM hidden state of different lay-
ers for dual tasks leverages different temporal features,
enhancing learning efficiency and performance.

o Separate output layers for index prediction and feature
forecasting enables the model to specialize in each task
without mutual interference.

o The combined loss function ensures simultaneous op-
timization of both tasks, potentially improving overall
model performance due to shared learning. Handling
two tasks within a single model reduces computational
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resources and training time compared to training separate
models for each task.

o The ability to adjust the hyperparameters Aingex and
Aforecast @llows practitioners to control the focus on each
task based on specific application needs or priorities.

o The model can be extended to forecast multiple features
or adapted to different types of spatio-temporal data,
demonstrating its scalability and flexibility.

By combining these strengths, the proposed model pro-
vides a robust framework for spatio-temporal prediction and
forecasting, making it a valuable tool for analyzing complex
datasets with spatio-temporal nature for various tasks.

However there are possible considerations and limitations to
this design as well. While the model’s design offers a substan-
tial opportunity for dual-purpose training, there is a risk that
performance may decline compared to a model solely focused
on each task individually. The reasoning is that both tasks
benefit from shared spatio-temporal features, with dedicated
output layers fine-tuned for their specific goals. However, one
could argue that the early layers might be better optimized for
one task over the other. To fully understand the effectiveness
of this dual-purpose design, an in-depth analysis and ablation
study are necessary, testing various hyperparameters Ajpgex and
Aforecast 1O assess its performance.

Another consideration is the hyperparameters of each com-
ponent of the model, which could severely effect the training
results and can also be a factor to consider for the effectiveness
of the dual purpose output layers of the model. Further study
and experimentation are required to determine to what extent
the model can be pushed in terms of the size in either direction
and its effect of accuracy and adaptability to larger and more
diverse datasets for different disasters.

VI. CONCLUSION

In this paper, we introduced a comprehensive framework
for identifying vulnerable communities during compound dis-
asters by integrating mobility data, socioeconomic indicators,
and advanced machine learning techniques. By leveraging real-
time mobility patterns from SafeGraph data and socioeco-
nomic factors from various sources, we developed a vulnera-
bility index that captures the multifaceted impacts of disasters
on different communities.

Our proposed model combines GATs and LSTM networks
to effectively capture the spatial and temporal dependencies
inherent in the data. This dual-purpose model not only predicts
a continuous vulnerability index but also forecasts pandemic
spread, enabling timely and informed decision-making during
emergencies.

The methodology emphasizes the importance of understand-
ing the changes in mobility trends, hospital visits, business clo-
sures, and other critical factors that contribute to community
vulnerability. By standardizing and aggregating these signals
into a unified index, we provide a robust tool for prioritizing
resource allocation and emergency response efforts.

Future work includes validating the model with real-world
data from past disasters, refining the model’s predictive capa-
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bilities, and exploring the integration of additional data sources
such as real-time spending data or social media analytics. The
framework has the potential to significantly enhance disaster
preparedness and resilience by providing actionable insights
to policymakers, emergency responders, and community orga-
nizations.
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