

1 **A Review of Paleomagnetic Studies from Northern Alaska and Yukon: Implications for**
2 **Terrane Reconstructions**

3

4 Joseph Biasi^{1*}, Justin V. Strauss²

5

6 ¹University of Wyoming, Department of Geology & Geophysics, Laramie, Wyoming, USA

7 ²Dartmouth College, Department of Earth Sciences, Hanover, New Hampshire, USA

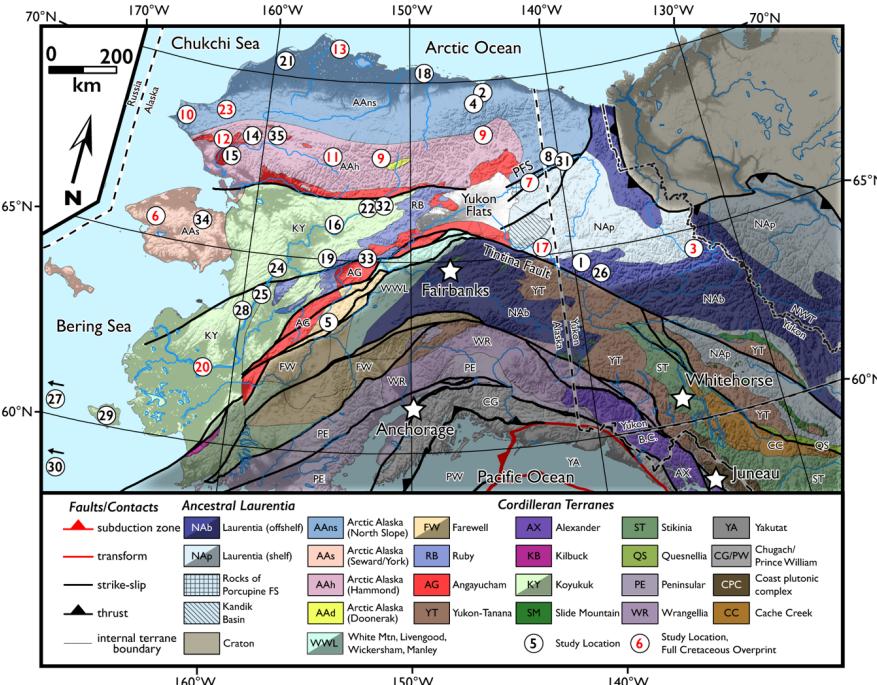
8 *Corresponding author: jbiasi@uwyo.edu

9

10 **Abstract**

11 Here we present a comprehensive overview of available paleomagnetic studies and
12 datasets from northern Alaska, USA, and Yukon, Canada. Most studies in this region were
13 conducted when our understanding of best-practices paleomagnetism was still developing; as a
14 result, many do not meet modern standards of data quality and many interpretations of the
15 paleomagnetic data – though valid at the time – are now also outdated. In this review, we assess
16 what data are reliable, what interpretations have stood the test of time, and what the existing data
17 can constrain about the tectonic history of this region. We find that although a Middle to Late
18 Cretaceous overprint pervades much of this area, many sites still retain primary remanence
19 directions, some dating as far back as the Neoproterozoic. Studies that found complete
20 overprinting in the Cretaceous also typically analyzed poor lithologic recorders of paleomagnetic
21 directions, such as carbonates. Based on our assessment of the most reliable data from the study
22 region, relative motion between the examined outboard terranes and Laurentia was not yet
23 complete by the Middle Cretaceous. We also find that ‘high latitude’ dinosaur fossil sites were
24 more northerly than today, confirming previous assumptions about the paleolatitudes at these
25 sites. Finally, we discuss how the widely cited Jurassic–Cretaceous counterclockwise rotation
26 hypothesis for the Arctic Alaska terrane is no longer supported by the existing paleomagnetic
27 data, and the validity of this hypothesis should be critically reexamined.

28


29 **Key Words:** Paleomagnetism, Tectonics, Yukon, Alaska, Brooks Range, Koyukuk, Farewell,
30 Cordillera, Arctic

31

32 **1. Introduction**

33 The tectonic history of the northernmost North American Cordillera and Arctic is still
34 mired in uncertainty (e.g. Lawyer and Scotese 1990, Johnston 2001, Colpron and Nelson 2009,
35 McClelland et al. 2021). One data type that is notably sparse in this region is paleomagnetic data.
36 Such data are key to tectonic reconstructions in most other regions of the world, as they can
37 determine the paleolatitude and rotation of a terrane with more precision than other techniques
38 (e.g. Van der Voo 1988, Tauxe et al. 2010). Furthermore, paleomagnetic datasets are abundant in
39 other regions of the Cordillera (e.g., the western United States), but they notably dwindle in
40 abundance above \sim 65°N latitude. Of the paleomagnetic data that is available from this region, it
41 is decidedly of mixed quality. Some studies were at the forefront of paleomagnetic
42 methodologies and techniques, were executed with great competence, and the data were
43 interpreted with significant care and thought. Their only flaw is that many of these studies were
44 conducted when our understanding of paleomagnetism was rapidly developing and our methods
45 to extract the best data possible were not yet optimized (e.g. Gubbins and Herrero-Bervera 2007,
46 Lowrie 2021). There are also numerous paleomagnetic studies from this region that are simply
47 lacking in major components, such as a small number of samples, incomplete data reporting,
48 and/or missing sample location data. There are useful data to be found in these studies, but care
49 must be taken to sort through the details.

50 In this study, we first briefly review how to evaluate the quality of paleomagnetic data
51 (Section 2). Then, we review all the known paleomagnetic data from the northernmost Cordillera
52 in Alaska and Yukon (Section 3). While doing so, we address several misconceptions involving
53 these data, re-assess their quality, and determine which data are usable. We also present new
54 paleomagnetic data from flood basalts in this region. Finally, we comment on how the existing
55 data supports or refutes current tectonic reconstructions and comment on opportunities for high-
56 impact studies in this region in the future (Section 4).

57

58 **Figure 1.** Simplified terrane map of Alaska and Yukon modified from the Yukon Geological
 59 Survey (2020). Dark-shaded area is outside the scope of this review. Numbered locations on the
 60 map correspond to locations described in Section 3. Previous studies found complete Cretaceous
 61 overprinting at the red-numbered locations. Koyukuk = combined Yukon-Koyukuk basin and
 62 Koyukuk arc.

Deleted: Middle

63 1.1 Scope of Review

64 The geographical boundaries of our review are shown in Figure 1. This encompasses
 65 most areas north of the Kaltag and Tintina fault systems and south of the Canada Basin of the
 66 Arctic Ocean. The units in this study area (debatably) share a common Mesozoic tectonic history
 67 associated with the onset of regional Cordilleran deformation (e.g. Nelson et al. 2013, Moore and
 68 Box 2016). Southern Alaska and Yukon are excluded from this review, as other paleomagnetic
 69 reviews of that region are already available (Coe et al. 1985, Harbert 1990, Enkin 2006). St.
 70 Matthew Island and the Pribilof Islands (Locations 27 & 30, Figure 1) are also included in this
 71 review, as they do not fall neatly into other review areas.

73 We cover studies that range from Quaternary unconsolidated sediment to Precambrian
74 crystalline rocks. Particular attention is paid to Mesozoic units due to active debates about their
75 tectonic history. We also include studies that were ‘published’ via conference abstracts because a
76 significant portion of the paleomagnetic data from this region only reached this stage. If we
77 restricted ourselves only to primary literature published datasets, this review would be
78 ineffectively brief. Critically, this is not a review of northern Cordilleran tectonics. The main
79 purpose of this review is to assemble all the available paleomagnetic studies into one manuscript
80 and present an assessment of the reliability and quality of these data. In doing so, we hope that
81 this study will be useful to geologists who may not be as familiar with paleomagnetic data and
82 for paleomagnetists who will see opportunities for further study.

83

84 **1.2 Geologic Background**

85 The study region broadly transitions westward from the autochthonous margin of
86 Laurentia into a variety of terranes now embedded within the northern Cordillera, including their
87 younger Cenozoic overlap assemblages (Figure 1). The primary examined terranes consist of the
88 Arctic Alaska, Angayucham/Tozitna, Ruby, Kilbuck, and Farewell terranes, as well as
89 allochthonous to parautochthonous rocks of the Porcupine River area. Note that some of these
90 areas have been referred to with other terrane nomenclature (e.g. Silberling et al. 1994). Several
91 review papers that cover the foundational geologic background of the study region are available
92 (Moore et al. 1994, Patton et al. 1994a, 1994b, Decker et al. 1994, Dover 1994, Hyndman et al.
93 2005, Nelson et al. 2013, Moore and Box 2016), but we will only cover the basic history here.

94 Precambrian rocks in this region are not well characterized west of the Yukon-Alaska
95 border area, partially due to a lack of study and partially due to the lack of abundant rocks of this
96 age throughout Alaska. The oldest known unit in Alaska is the Paleoproterozoic Idono Complex
97 of the Kilbuck terrane on the southeastern edge of the [Yukon-Koyukuk Basin](#), which is
98 correlative with the Kanektok Complex south of the study area (Figure 1; Miller et al. 1991). The
99 Idono Complex comprises a supracrustal succession of amphibolite and metasedimentary rocks
100 with minor orthogneiss bodies that have been dated to ca. 2.06 Ga, with similar ages reported
101 from the Kanektok Complex (Miller et al. 1991, Miller and Bundtzen 1994, Turner et al. 2009,
102 Bradley et al. 2014, Dumoulin et al. 2018a). The Farewell, Ruby, and Arctic Alaska terranes and
103 Porcupine River area all host younger Proterozoic basement complexes, (meta)sedimentary

Formatted: Not Highlight

104 successions, and/or (meta)igneous rocks (Patton et al. 1994b, Roeske et al. 1995, Amato et al.
105 2009, 2014, Bradley et al. 2014, Cox et al. 2015, Hoiland et al. 2018a, 2018b, Strauss et al.
106 2019b, 2019a, Faehnrich et al. 2021), the details of which are beyond the scope of this review.
107 Pertinent rocks related to this study are referenced in greater detail below.

108 In the autochthonous portion of Yukon, the oldest dated unit is the ca. 1.71 Ga Bonnet
109 Plume River intrusions and Slab volcanics in the Wernecke Mountains (Laughton et al. 2001,
110 Thorkelson et al. 2001, 2005), which are part of the Paleoproterozoic–Mesoproterozoic
111 Wernecke Supergroup (Delaney 1981, Furlanetto et al. 2016). Throughout the Ogilvie and
112 Wernecke Mountains and Yukon-Alaska border region, the Wernecke Supergroup is overlain by
113 a diverse assemblage of younger Mesoproterozoic and Neoproterozoic sedimentary and igneous
114 rocks of the Mackenzie Mountains and Windermere supergroups (Young 1982, MacDonald et al.
115 2011, MacDonald and Cohen 2011, Macdonald et al. 2012, Strauss et al. 2015, Cox et al. 2018).
116 These rocks are interpreted to record polyphase extension associated with the development of the
117 early Paleozoic passive margin of northwestern Laurentia (Macdonald et al. 2012, Moynihan et
118 al. 2019, Busch et al. 2021).

119 A more substantial portion of the study region is covered by diverse Paleozoic units of
120 both the Laurentian autochthon and adjacent accreted terranes. Paleozoic strata of the Laurentian
121 margin are distinguished by platformal and basinal sedimentary successions with minor volcanic
122 rocks that reflect maturation of the passive margin, including the development of the deeper-
123 water Selwyn basin and associated offshore region along the Yukon-Alaska border (Figure 1;
124 Morrow 1999, Pyle 2012 and references therein). The Farewell, Ruby, and Arctic Alaska
125 terranes (and potentially the Kilbuck terrane, Bradley et al. 2014) also host thick Paleozoic
126 successions characterized by fault-bounded platformal and basinal sedimentary rocks (e.g.
127 Decker et al. 1994, Roeske et al. 1995, Dumoulin et al. 2002, 2018b, 2018a, Strauss et al. 2013,
128 2019b, 2019a, Hoiland et al. 2018b). Many of these rocks are penetratively deformed and
129 metamorphosed, particularly in the Ruby and southern Arctic Alaska terranes. Polydeformed
130 Paleozoic sedimentary rocks along the Porcupine River area are likely fault slivers of both
131 allochthonous and paraautochthonous portions of the Laurentian margin (e.g. Faehnrich et al.
132 2021 and references therein). Discontinuous belts of Cambrian and Ordovician mafic volcanic
133 rocks are exposed in off-shelf areas of the autochthonous Laurentian margin (e.g. Goodfellow et
134 al. 1995). Early Paleozoic mafic intrusive rocks and volcanics are also located in various

135 locations throughout the Brooks Range of the Arctic Alaska terrane (Amato et al. 2014, Strauss
136 et al. 2017, Johnson et al. 2019 and references therein), in addition to widespread Middle to Late
137 Devonian mafic and felsic plutonic rocks (e.g. Moore et al. 1997, Ward et al. 2019 and
138 references therein). The lower thrust sheet of the allochthonous Angayucham terrane, a large
139 ophiolitic belt, also appears to be Paleozoic in age (Harris 2004, Fredriksson and Pease 2022).

140 Mesozoic units and associated terranes have received the most study, in part because of
141 their widespread exposure and economic value. Discontinuous exposures of Mesozoic
142 sedimentary successions in the autochthonous and paraautochthonous portions of northwestern
143 Laurentia broadly provide a record of Cordilleran orogenesis. Mesozoic sedimentary units of the
144 North Slope/Colville Basin on Arctic Alaska were deposited in the foreland basin of the Jurassic
145 to Cenozoic Brookian Orogeny (Lease et al. 2014, Moore et al. 2015, Hoiland et al. 2018b) and
146 are significant producers of oil and natural gas (Bird and Molenaar 1992). The Brookian
147 Orogeny is thought to result from collision of the Koyukuk arc with the passive margin of Arctic
148 Alaska, causing widespread compression and the creation of a fold-thrust belt. This collision
149 began during or before the middle Jurassic and metamorphism peaked (and therefore Arctic
150 Alaska and the Koyukuk arc were conjoined) by the Albian (e.g. Box and Patton 1989, Pallister
151 et al. 1989, Moore et al. 1993, Lawver et al. 2002, Biasi et al. 2020).

152 Only one location in this review (Location 16) is unambiguously part of the Koyukuk arc.
153 The remaining studies in the 'Koyukuk' area of Figure 1 were focused on Yukon-Koyukuk basin
154 units. Here we will typically focus on the history of the Yukon-Koyukuk basin, but when
155 referring to the combined arc and basin we will use the term 'Koyukuk terrane'. Eventually
156 contraction was replaced by widespread regional extension, exposing the metamorphic core of
157 the southern Brooks Range and leading to the opening of the Yukon-Koyukuk basin (e.g. Law et
158 al. 1994, Little et al. 1994).

Formatted: Not Highlight

159 By the early to middle Cenozoic, it appears that remnant Cordilleran contraction was
160 highly localized, northern and southern Alaska had been combined, and the strike-slip tectonic
161 regime that characterizes most of Alaska today became dominant (Redfield et al. 2007,
162 Haeussler 2008, Nelson et al. 2013). The magnitude of regional strike-slip offsets is one of the
163 most controversial topics in Cordilleran tectonics – some argue that many terranes have been
164 transported northward for thousands of kilometers based on paleomagnetic constraints (e.g.
165 Tikoff et al. 2023), while others argue that these terranes experienced minimal strike-slip

166 displacement based on other datasets (e.g. Dickinson and Snyder 1978, Humphreys 2009).
167 Given what we know (or do not know) about the geologic history of this region,
168 paleomagnetic data could help to resolve several ongoing debates, including:
169 • The paleolatitudes and relative positions of terranes prior to widespread Mesozoic and
170 Cenozoic deformation
171 • The possible rotation of the Arctic Alaska composite terrane
172 • The long-term behavior of the geomagnetic field at high latitudes
173 • The paleolatitude of various invertebrate and vertebrate fossil sites found in northern
174 Alaska
175 • The development and associated provenance of sedimentary basins in this region
176 After compiling all the available paleomagnetic information, we assess whether there is enough
177 reliable data to weigh in on any of these issues.

178

179 **2. Evaluating Paleomagnetic Data**

180 We assume here that the reader has a basic understanding of paleomagnetism as it applies to
181 tectonic reconstructions, and we devote most of this section to selected topics that are most
182 relevant to this review. Interested readers who need more background information are referred to
183 Butler (1992) for an introduction to paleomagnetism and Tauxe (2010) for more thorough
184 explanations of specific topics within the field.

185 There are several methods to assess paleomagnetic data, both informal (Table 1) and
186 formal (Table 2). Van der Voo (1990) introduced the ‘quality’ factor (Q), which grades a
187 paleomagnetic study on seven criteria, including the number of samples, field tests (Figure 2),
188 presence of reversals, and the existence of a well determined age. A study with a Q-score of zero
189 cannot be relied upon, while a study with a Q-score of seven is completely reliable. These
190 criteria have recently been updated by Meert et al. (2020) to form a new ‘reliability’ score (R).
191 Their criteria are similar to Van der Voo (1990) but more strict; again, the most reliable studies
192 have criteria with an R-score of seven.

193 None of the studies discussed in this review have a Q- or R-factor of seven and most have
194 low quality scores between one and four (Table 2). This does not mean that they are unreliable;
195 low Q- or R-factor scores are more common when dealing with terranes or continental/oceanic
196 fragments. Therefore, we also focus on more informal indicators of data reliability (Table 1).

197

198 **Table 1.** Informal indicators of paleomagnetic data quality.

	Best	Better	Good	Fair	Poor
Data Availability	Measurement-level	Sample-level	Site-level	Study-level	Polarity Only
Methodology	Rock Magnetic Measurements	Multiple Demagnetizations	Thermal or AF Demagnetization	Chemical Demagnetization	No Demag.
Field Tests	Multiple passing tests	Single passing test	Mixed test results	Unclear test results	No field tests
Age of Magnetization	Known age of magnetization	Overprints determined	No age constraints		


AF = alternating field; Demag. = demagnetization

Formatted: Left

199

200 Of the criteria outlined in Table 1, the most important indicator of data reliability are the field
 201 tests. These tests, illustrated in Figure 2, attempt to constrain the age of magnetization. For
 202 example, magnetization that pre-dates folding will pass the fold test, while magnetization that
 203 was imparted after folding (and hence an overprint magnetization) will fail the fold test (Graham
 204 1949, McElhinny 1964). Most of the field tests were established early in the development of
 205 paleomagnetism, and modern field tests, such as the fold and reversal tests, must meet rigorous
 206 statistical standards (e.g. Enkin 2003, Heslop and Roberts 2018).

207 It is important to note that almost all the studies in this review lack sufficient samples to
 208 meet these modern standards of statistical significance (Watson and Enkin 1993, Enkin 2003).
 209 Therefore, we determine the ‘passing’ or ‘failing’ of a field test more informally in this review.
 210 To fully confirm if a field test is passed, any future studies of these same sites will need to collect
 211 many more samples. It is important to note that the criteria above, as well as the Q- and R-factors
 212 (Table 2), all attempt to determine if the data are reliable. They make no evaluation of whether
 213 the data are correctly interpreted.

214
215
216
217
218
219
220
221
222
223
224
225

Figure 2. Arrows symbolize measured paleomagnetic directions. Left column: examples of passing (also called ‘positive’) paleomagnetic tests. Right column: examples of failing (negative) paleomagnetic tests. A,B) The fold test is used to determine if magnetization occurred before or after deformation. C,D) The conglomerate test is used to determine if the magnetization is primary. E,F) The baked contact test is used to determine if an igneous intrusion has been reset. This test cannot determine if the wall-rock magnetization is primary. G,H) The reversal test is used to determine if a stratigraphic succession retains primary magnetization. Secondary remagnetization events typically impart only one polarity at the outcrop scale (Buchan et al. 1977, Dunlop and Buchan 1977), destroying reversal-stratigraphy in the process. Image credits: A,C,G: Wikipedia (public domain). E: J. Biasi.

226 **2.1 (Re-)Interpretations**

227 For each study in this review, we provide an interpretation that falls into one of three
228 categories:

229 • The original interpretation was correct at the time and remains valid today.
230 • The original interpretation is no longer valid due to advances in paleomagnetism.
231 • The original interpretations is no longer valid due to advances in local/regional geologic
232 knowledge.

233 The most common reason for invalidating an earlier interpretation involves how the position of
234 Laurentia, as constrained by more recent paleomagnetic studies, has changed over time. Great
235 efforts have been made to improve our understanding of the paleogeography of Laurentia, and
236 the apparent polar wander (APW) paths from the 1980s are significantly different from the APW
237 paths available today (e.g. Harrison and Lindh 1982, Torsvik et al. 2012). Most comparisons of
238 paleomagnetic poles to the earlier Laurentian APW paths have been reinterpreted in this review
239 using the most current APW paths for Laurentia (Beck and Housen 2003, Kent and Irving 2010,
240 Torsvik et al. 2012, Merdith et al. 2021, Müller et al. 2022).

241 Despite these advancements, there are still competing hypotheses in the paleomagnetic
242 literature about the position of Laurentia, particularly in the Triassic–Jurassic. Global plate
243 reconstructions require that Laurentia remains at high latitudes throughout the Mesozoic (Kent
244 and Irving 2010, Torsvik et al. 2012, Müller et al. 2022). In contrast, other models that only
245 consider data from Laurentia place the continent at lower latitudes until the middle-early
246 Cretaceous (e.g. Beck and Housen 2003). The disparity between these APW paths is as high as c.
247 1900 km in the middle Jurassic. However, all APW paths converge from 120 Ma – present, with
248 typical disparities between the paths being <300 km during this time.

249 All models agree that North America was at a ‘standstill’ in the Middle to Late
250 Cretaceous (Figures 4, 5, 6) and thus the APW paths do not show significant movement of
251 Laurentia during this time (Beck and Housen 2003, Kent and Irving 2010, Torsvik et al. 2012,
252 Müller et al. 2022). Most of the paleomagnetic controversies covered in this review concern this
253 younger time period when the paths are in general agreement. In this review, all rotation and
254 translation calculations will reference the APW path of Torsvik et al. (2012). The APW path of
255 Beck and Housen (2003) will also be included in some figures as a point of comparison. For
256 Precambrian units, we reference the paleolatitude constraints from Merdith et al. (2021), which

257 covers the last 1 Ga.

258 The paleolatitude of a terrane can have significant uncertainty due to the phenomenon of
259 *hemispheric ambiguity*. Rocks that are magnetized in the northern hemisphere during a normal
260 polarity period will have positive inclination. However, rocks that are magnetized in the southern
261 hemisphere during reversed polarity will also have a positive inclination. Unless the polarity of
262 the rock is already known, its paleolatitude is subject to this ambiguity (see Hillhouse (1977) and
263 Panuska & Stone (1981) for examples from southern Alaska). Large continental blocks or
264 cratons like Laurentia have a better constrained geologic and paleomagnetic history, and their
265 paleolatitude is therefore easier to determine using this additional context. Older, smaller, and
266 more far-travelled terranes are most susceptible to hemispheric ambiguity due to a relative lack
267 of supporting data (Butler 1992).

268 At the time that many of the studies in the northern Cordillera were conducted,
269 *inclination flattening* was not well understood. This phenomenon occurs in sedimentary rocks
270 where compaction during lithification can cause the magnetic minerals to record a lower
271 inclination than originally acquired (King 1955). The effect of inclination flattening is most
272 prominent when platy hematite is the main magnetic carrier (Kodama 2012). Sedimentary rocks
273 with equant magnetite grains are less susceptible to inclination flattening. The flattening effect is
274 most prominent at moderate inclinations (mid-latitudes) and less prominent at equatorial or high
275 latitudes (Tauxe 2005, Li and Kodama 2016). Inclination flattening generally produces ‘far-
276 sided’ poles, where the site artificially appears to have formed at a lower paleolatitude than
277 should be recorded.

278 Other common reasons for reinterpretation include better paleomagnetic statistics/pole
279 calculations, better age constraints on studied units, and a better understanding of the timing of
280 regional orogenesis. Overall, we found that almost all studies made the best interpretation that
281 they could at the time, but this does not mean that their interpretations should continue to be
282 trusted in perpetuity.

283

284 **2.3 Use of Paleomagnetic Data in the Northern Cordillera**

285 Apart from its remoteness, the main reason that paleomagnetic data is so sparse from this
286 region stems from a common misconception. Early paleomagnetic studies found pervasive
287 overprints with a steep-downward direction and no primary remanence directions (e.g. Newman

288 et al. 1977, Hillhouse et al. 1980, Hillhouse and Grommé 1983, 1988, Coe et al. 1985). This
 289 steep overprint was attributed to a widespread thermal resetting event in the Jurassic–Cretaceous
 290 Cordilleran Orogeny, and we agree about the general nature of this interpretation. Laurentia was
 291 at a high latitude at this time (e.g. Beck and Housen 2003, Kent and Irving 2010), which
 292 certainly accounts for the steepness of the overprint. However, this review shows that complete
 293 overprinting is not as common as initially suspected, and many sites retain primary remanence
 294 directions (black locations in Figure 1). Complete overprinting can happen to any rock type (e.g.
 295 Burmester et al. 2000), but is most easily accomplished in sedimentary rocks with weak
 296 paleomagnetic signals, such as carbonates (e.g. McNeill and Kirschvink 1993). In addition to
 297 widespread overprinting of the majority of carbonates from this region, coarse-grained
 298 sedimentary rocks - such as conglomerates and coarse-grained sandstones - are often also fully
 299 overprinted. In contrast, igneous units (intrusive or extrusive) and fine-grained sedimentary rocks
 300 (shales and siltstones) have generally escaped full resetting and often preserve primary
 301 remanence directions (Section 3).

302

303 3. Review of Previous Studies

304 Here we summarize previous paleomagnetic studies from the northern Cordillera and
 305 comment on the quality, quantity, reliability, and interpretation of the data. The studies are
 306 grouped by the age of the host lithologies (oldest to youngest), not the age of magnetization. The
 307 location numbers in Figure 1 correspond to the location numbers given below in Table 2.

Table 2: Summary of Available Paleomagnetic Data

Location	Data Source	Lithology	Unit Age	Fully Reset?	Q	R
<i>Precambrian</i>						
1	P, T	Mafic Volcanics	c. 720 Ma	No	6	6
2	New	Mafic Volcanics	c. 720 Ma	No	5	5
3	P	Dolostone, Sandstone	Ediacaran	Yes	2	2
<i>Camrian - Jurassic</i>						
3	P	Quartzite	Cambrian	Yes	4	3
4	A	Carbonates	Cambrian-Permian	No	2	2
5	T	Carbonates	Ordovician-Devonian	No	5	4
6	A	Carbonates	Ordovician-Silurian	Yes	2	2
7	P	Carbonates	Silurian-Permian?	Yes	2	2
8	P	Granitoid	Late Devonian	No	1	1
9	P	Conglomerate	Devonian-Mississippian	Yes	2	3
10	A	Sed. Rocks	Devonian-Triassic	Yes	1	1

11	P	Limestone	Mississippian	Yes	3	2
12	P	Zn-Pb Deposit	Carboniferous	Yes	4	2
13	P	Siliciclastics	Triassic	Yes	2	3
14	A	Mafic Volcanics	Middle Jurassic	No	1	1
15	P	Mafic Plutonic Rocks	Middle Jurassic	No	3	2
No Location	A	Carbonates	Unknown	No	2	2
<i>Cretaceous</i>						
16	P, T	Misc. Volcanics	Early Cretaceous	No	3	1
17	P	Argillite	Early Cretaceous	Yes	3	2
18	P	Siliciclastics	Early Cretaceous	No	5	5
19	P, T, A	Siliciclastics	Early-Middle Cretaceous	No	1	0
20	P	Mafic-Int. Tuffs	Hauterivian	Yes	4	4
21	Report	Siliciclastics	Early Cretaceous	No	4	4
22	P, T, A	Volcanics and Seds.	Middle Cretaceous	No	4	2
23	P, T	Siliciclastics	Albian	Yes	5	4
24	P, T, A	Volcanics and Seds.	Middle-Late Cretaceous	No	5	3
25	P, T, A	Siliciclastics	Late Cretaceous	No	4	2
26	P	Seyenite/Monzonite	Turonian	No	4	3
27	P, T	Misc. Igneous Rocks	Late Cret. to Paleogene	No	4	4
5	T	Granitoid	Maastrichtian	No	2	2
<i>Paleogene-Neogene</i>						
5	T	Mafic-Int. Volcanics	Late Cret. to Paleogene	No	4	3
28	P, T, A	Mafic-Int. Volcanics	early Paleogene	No	4	3
25	P, T, A	Misc. Igneous Rocks	early Eocene	No	4	3
7	P, A	Basalt and Tuff	Miocene	No	5	3
<i>Quaternary</i>						
20	P, T	Mafic Volcanics	<5 Ma	No	6	6
30	P	Mafic Volcanics	<2.2 Ma	No	6	6
31	P, A	Tephra and Sediments	<210 Ka	No	6	6
32	P	Old Crow Tephra	<210 Ka	No	3	3
33	P, A	Fluvial Sediments	<210 Ka	No	5	4
34	P, T	Lacustrine Sediments	<150 Ka	No	4	5
35	P, T, A	Lacustrine Sediments	<37 Ka	No	5	5
36	T, A	Lacustrine Sediments	<21 Ka	No	5	5

Note: Location column corresponds to Figure 1 and Section 3. Q = quality index of Van der Voo (1990); R = reliability index of Meert et al. (2020); P = publication; T = thesis; A = conference abstract; Ma = mega-annum; Ka = kilo-annum; Cret. = Cretaceous; Int. = intermediate

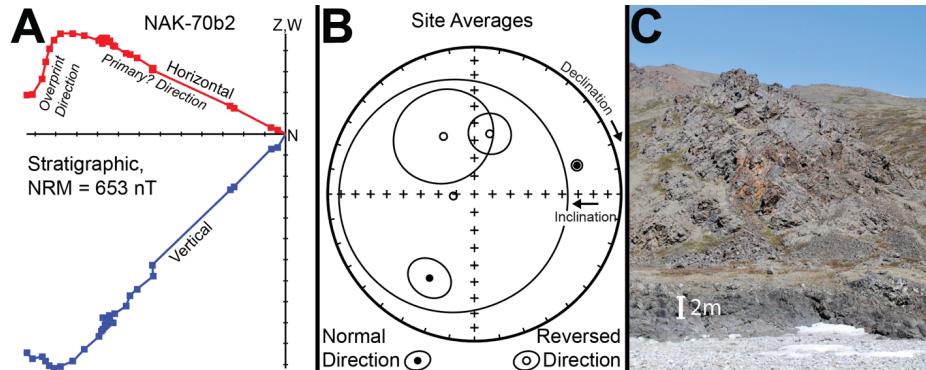
308

309 3.1 Precambrian

310

311 **Location 1** – Mount Harper Volcanics, Ogilvie Mountains, Yukon, Autochthonous Laurentia, publications and thesis – Mafic volcanic flows and tuff of the Mount Harper Volcanics are exposed ~60 km north of Dawson, Yukon, and are well-characterized paleomagnetically by

314 Brunet (1986), Park et al. (1992), and Eyster et al. (2017). The volcanics are bimodal in
315 composition and have been dated to ca. 719–717 Ma via U-Pb chemical abrasion-thermal
316 ionization mass spectrometry (CA-TIMS) on zircon (Macdonald et al. 2010, 2018), highlighting
317 an important link to the larger Franklin large igneous province (LIP) of northern Laurentia. Park
318 et al. (1992) collected block samples from hematized and non-hematized flows, as well as
319 samples from an interbedded siltstone unit, and paleomagnetic data were collected with a spinner
320 magnetometer. Samples were variably subjected to alternating field (AF), thermal, and chemical
321 demagnetization (acid-leaching). Later work by Eyster et al. (2017) used newer methodologies
322 (cryogenic magnetometer), more samples, and better sample statistics (Kirschvink 1980) on the
323 same units. Eyster et al. (2017) also conducted rock-magnetic experiments (hysteresis,
324 isothermal remanent magnetization (IRM) acquisition, thermal and AF demagnetization of
325 saturation IRM) and concluded that the primary carrier in most cases is pseudo-single-domain
326 magnetite. They found the same primary direction as Park et al. (1992) but with lower error.
327 They also identified three other overprints, at least one of which is due to Cretaceous
328 metamorphism. Results from both studies are in good agreement despite the differing
329 methodologies, and both concluded that this part of the Yukon block rotated ~50–60° clockwise
330 relative to the Mackenzie Mountains and Laurentia between the Neoproterozoic and today. The
331 timing of this rotation remains unknown, but overlying Neoproterozoic–Mesozoic strata are
332 unambiguously tied to the Laurentian margin (e.g. Norris 1997, Morrow 1999, Moynihan et al.
333 2019). The study by Eyster et al. (2017) fulfills six out of seven Q-factors of Van der Voo
334 (1990), while the study by Park et al. (1992) fulfills three of the Q-factors. These concurring
335 results illustrate how paleomagnetic studies that do not conform to modern standards (e.g. Park
336 et al. 1992) can be successfully reproduced and often contain data that should not be dismissed
337 (Beck et al. 2001).


Deleted: sIRM

339 **Location 2** – Kikiktat volcanic rocks, Sadlerochit Mountains, [Alaska](#), Arctic Alaska terrane, new
340 data – These preliminary data are from ca. 720 Ma Franklin LIP-associated lava flows in the
341 Sadlerochit Mountains of the northeastern Brooks Range, Arctic Alaska terrane ([Figure 1](#); [Cox et](#)
342 [al. 2015](#)). Full results will be reported in a future study, but preliminary results are shown here
343 for completeness of the review. Seventy samples were taken from 12 sites within a ~450 m thick
344 succession of flood basalt flows, breccias, and volcaniclastic strata. A volcaniclastic interval in

Deleted: AK,

347 the Kikiktat volcanics were dated with U-Pb zircon chemical abrasion-thermal ionization mass
 348 spectrometry (CA-TIMS) to 719.47 ± 0.29 Ma and are consistent with correlation with the
 349 Franklin LIP of northern Laurentia (Cox et al. 2015). Samples were measured using a 2G 755-
 350 4K superconducting rock magnetometer at Massachusetts Institute of Technology using both AF
 351 and thermal demagnetization. Directions were calculated using principal-component analyses
 352 best-fits (no origin, minimum four data points; Kirschvink 1980). While some sites did not yield
 353 meaningful directions, other sites yield coherent directions. Both reversed and normally
 354 magnetized sites were found, but there is currently insufficient data to pass a reversal test. There
 355 is considerable scatter of directions between sites (Figure 3), but not within many of the sites
 356 themselves. This is probably due to local rotations that have not been corrected for accurately in
 357 the preliminary dataset. Collection of rock-magnetic data is ongoing, but unblocking
 358 temperatures suggest that the primary carrier is magnetite. We suspect that the magnetization at
 359 some sites is primary but more data are needed to confirm this. The average paleolatitude from
 360 the reliable sites is $17.8^\circ \pm 15.5^\circ$, which is the expected paleolatitude of Laurentia and the
 361 North Slope subterrane of Arctic Alaska at ca. 720 Ma (Figure 4; Strauss et al. 2019a). Other
 362 components of this pole (latitude, longitude) should not be used given the uncertainty in local
 363 rotations.

364

365
 366 **Figure 3.** Preliminary unpublished results from the Kikiktat volcanics (Franklin LIP) in the
 367 Sadlerochit Mountains, Arctic Alaska terrane. A) Orthogonal projection showing a representative
 368 demagnetization result. B) Equal area projection showing site averages. C) Field photo showing
 369 a representative outcrop of the Kikiktat volcanics. Image Credit: J. Strauss.

370

371 **Location 3** – Risky Formation, Wernecke Mountains, Yukon, Autochthonous Laurentia,
372 publication – The late Ediacaran Risky Formation was studied by Park (1995) in the Wernecke
373 Mountains of eastern Yukon (Figure 1). Sampled lithologies include dolostones, dolomitic
374 sandstones, and quartz-rich sandstones, and a spinner magnetometer was used in conjunction
375 with both AF and thermal demagnetization. This study also employed magnetic anisotropy, and
376 susceptibility measurements to determine magnetic mineralogy. The fold tests were inconclusive
377 and several overprint directions were identified. ‘Component D’ in this study most likely
378 corresponds to the Cretaceous overprint. The dolostones yielded a 46 ± 16 °S paleolatitude,
379 which Park (1995) interpreted as primary; however, based on current low-latitude northerly
380 Ediacaran reconstructions of Laurentia (~9°N; Merdith et al. 2021), this is most likely an
381 overprint direction as well (Figure 4a). If hemisphere ambiguity is invoked (Section 2.1), the
382 paleolatitude is instead farther north than expected (Figure 4a). It appears that no primary
383 remanence directions were found in this study.

384

385 **3.2 Cambrian–Jurassic**

386 **Location 3** – Backbone Ranges Formation, Wernecke Mountains, Yukon, Autochthonous
387 Laurentia, publication – Quartzites of the early Cambrian (Terreneuvian) Backbone Ranges
388 Formation lie stratigraphically above the Risky Formation (see above) and were sampled at the
389 same location by Park (1992). Samples were measured using a spinner magnetometer and
390 demagnetized using a combination of AF, thermal, and chemical methods. Magnetic mineralogy
391 was characterized with optical microscopy and miscellaneous petrological techniques. Steep
392 inclinations were found after removing signals from abundant secondary hematite. This study
393 found one reversal high in the section, which appears to be robust. Park (1992) argued this area
394 had not rotated significantly because the data conforms with other age-equivalent paleomagnetic
395 data from the adjacent Mackenzie Mountains, suggesting that the arcuate geometry of
396 Proterozoic rocks in the Mackenzie and Wernecke Mountains is an inherited structure, not the
397 product of Cordilleran orocinal bending. The Backbone Ranges Formation passes the fold test in
398 this study, and Park (1992) concluded that this area was at 69 ± 11 °S during early Cambrian
399 sedimentation. Hemisphere ambiguity (Section 2.1) allows for the paleolatitude to instead be at
400 69 ± 11 °N (Figure 4b). Again, modern paleomagnetic reconstructions place this portion of the

Deleted: AMS

402 continent just south of the equator at this time (Figure 4b; Merdith et al. 2021), so the primary
403 direction in this study is probably another overprint; however, it is difficult to reconcile this
404 conclusion with the reversal and positive fold test that was found in this section, and a new study
405 of this unit is warranted.

406

407 **Location 4** – Lisburne and Nanook groups, Shublik and Sadlerochit Mountains, [Alaska](#), Arctic
408 Alaska terrane, abstracts – Multiple studies by Plumley and Tailleur (1985, 1986) are only
409 available in abstract form, so there are few details to assess the quality of these data. The authors
410 discuss paleomagnetic results from unknown carbonate outcrops of the Carboniferous Lisburne
411 Group and Cambrian–Ordovician Nanook Group. For the Lisburne Group, thermal
412 demagnetization yielded two components: a younger steep-down direction (probably
413 Cretaceous), and an older pre-folding reversed direction. It is unclear if the reversed direction is
414 the primary direction or a pre-folding overprint. No directional data were given in the abstract,
415 but the authors suggest that 40° of clockwise rotation could have occurred locally. We cannot
416 verify this without the data. Results from the Nanook Limestone (now Black Dog Formation of
417 the Nanook Group; Strauss et al. 2019b) also has a pre-folding component with shallow
418 inclination, although we cannot verify this without any data. Overall, this area of the Brooks
419 Range is promising for future paleomagnetic studies.

420

421 **Location 5** – Novi Mountain, Telsitna, and Whirlwind Creek formations, Mystery Mountains,
422 [Alaska](#), Farewell terrane, thesis – Plumley (1984) studied various carbonate units of the Nixon
423 Fork subterrane of the Farewell terrane as part of his PhD dissertation. Based on results from 558
424 paleomagnetic cores, these carbonates are among the oldest sedimentary rocks in this review that
425 still preserve a primary remanence direction (Dumoulin et al. 2018a). Samples were measured on
426 a spinner magnetometer and demagnetized with a combination of AF and thermal methods.
427 Lower Ordovician carbonates of the Novi Mountain Formation pass the fold test and have a
428 normal overprint that does not pass the fold test (probably Cretaceous). Plumley (1984)
429 identified a ‘secondary normal component’ in Middle and Upper Ordovician carbonates of the
430 Telsitna Formation, which we suspect might be a Cretaceous overprint. The ‘reversed
431 characteristic component’ seems to be a robust result that cannot be explained by Cretaceous
432 overprinting, and we suspect that primary normal polarities can also be found in this section;

Deleted: AK

Deleted: AK

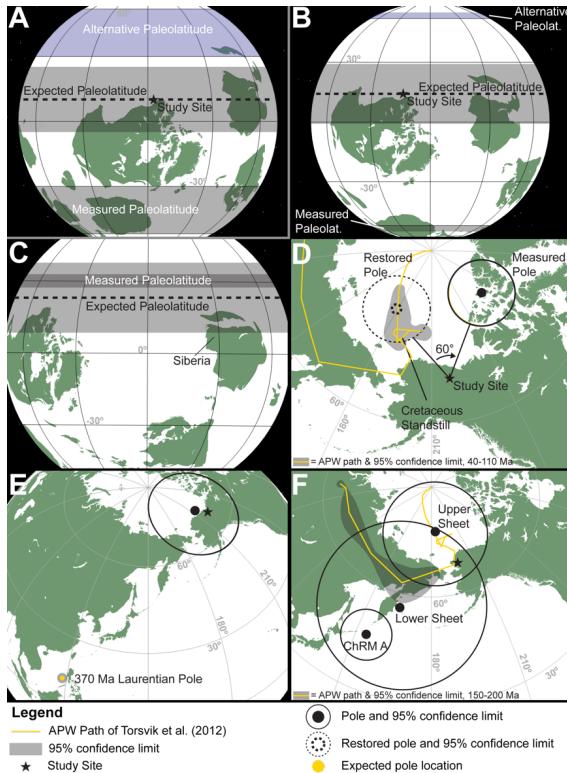
435 however, the pervasive Cretaceous normal overprint makes it difficult to distinguish this
436 direction. Note that these carbonates are magnetically weak, so measuring any primary
437 remanence (reversed directions) is evidence that these units did not experience significant
438 metamorphism, consistent with regional conodont alteration indices (Dumoulin et al. 2002,
439 2018b, 2018a). Silurian-Devonian dolostones of the Whirlwind Creek Formation do not pass the
440 fold test. Their overprint may be from a nearby Cretaceous pluton (Plumley 1984), but the
441 measured direction is not an expected Cretaceous direction. One explanation is that there could
442 be some unidentified local block rotations given that these sites are near the Iditarod-Nixon Fork
443 fault zone (Patton Jr. et al. 1980). The Ordovician carbonates yield a paleolatitude of $30 \pm 6^\circ\text{N}$,
444 which is the expected paleolatitude of the nearest portions of northeastern Laurentia (Figure 4c;
445 Müller et al. 2022), as well as very close to the projected paleolatitude of the Farewell terrane in
446 various tectonic reconstructions that place it between Siberia, Baltica, and Laurentia in the early
447 Paleozoic (Figure 4c; Dumoulin et al. 2002, 2018b, Colpron and Nelson 2009, McClelland et al.
448 2023).
449

450 **Location 6** – York succession, Seward Peninsula, [Alaska](#), Arctic Alaska terrane, abstract –
451 Ordovician-Silurian carbonates of the York succession in the northwestern corner of Seward
452 Peninsula were extensively sampled by Plumley and Reusing (1984). They collected 384
453 samples in total, the results of which are only available in a conference abstract. Plumley and
454 Reusing (1984) found a steep overprint (80° inclination, ‘south’ declination) that pervaded all the
455 samples with no preserved primary remanence magnetization, despite the fact that these rocks
456 record a low-temperature thermal history and are relatively well preserved (e.g. Dumoulin et al.
457 2014). Although the sampled sections experienced some post-Cretaceous deformation, Plumley
458 and Reusing (1984) suggested that their overprint data precluded any Cenozoic rotation of the
459 Seward Peninsula away from the Alaskan mainland.
460

461 **Location 7** – Salmontrout Limestone and various unnamed Paleozoic carbonates, Porcupine
462 River, [Alaska](#), Porcupine fault system, publication – Plumley et al. (1989) focused on the
463 paleomagnetism and structural history of various fault-bounded Paleozoic carbonates (Silurian–
464 Permian?; see Section 3.4) in the Porcupine fault system along the Yukon-Alaska border region
465 (Figure 1), which was previously considered part of the Porcupine terrane (Silberling et al.

468 1994). The samples were measured on a spinner magnetometer and demagnetized with a
469 combination of AF and thermal methods. Field tests (fold, conglomerate) from the Salmontrout
470 Limestone and various unnamed carbonate rocks all failed. Plumley et al. (1989) speculated that
471 their measured directions and overprints were imparted during Cretaceous reheating, and we
472 agree. Site 86P038 (Devonian? carbonate) may have a primary remanence since it has an extra
473 component with a shallower inclination. This would place this site at $\sim 20^{\circ}\text{N}$ latitude, which is
474 the expected paleolatitude for the northwestern (present coordinates) Laurentian platform
475 ($\sim 15^{\circ}\text{N}$) based on current reconstructions (Torsvik et al. 2012, Müller et al. 2022). All other
476 measured directions seem to postdate any local deformation and/or rotation between sites
477 because they are very similar across sites (steep inclinations, northeast declinations). Plumley et
478 al. (1989) interpreted a clockwise rotation for this part of the Porcupine fault system (since the
479 Cretaceous reheating event) based on a mismatch between the overprint directions and the
480 Laurentian APW path. Our reanalysis of the data based on the most recent Laurentian APW
481 paths (Beck and Housen 2003, Torsvik et al. 2012) confirms this and requires $58.0 \pm 17.7^{\circ}$ of
482 clockwise rotation since the terminal Cretaceous or early Paleogene (based on the methods of
483 Demarest (1983); Figure 4d). It is unclear if this rotation is regional or local in scale, but given
484 the scale and style of deformation in the Porcupine fault system (e.g. Faehnrich et al. 2021), a
485 local block rotation seems more likely. These data strongly suggest that this portion of the
486 Porcupine fault system remained active through much of the Cretaceous and early Paleogene and
487 perhaps much later into the Cenozoic. More paleomagnetic data from this region is needed to
488 confirm this hypothesis.

489
490 **Location 8** – Old Crow Batholith, Old Crow Range, Yukon, Arctic Alaska terrane and
491 Porcupine fault system, publication – Paleomagnetic examination by Park (1990) on Upper
492 Devonian granitoids of the Old Crow Batholith and nearby stocks in the Old Crow Range of
493 Yukon was done by spinner magnetometer and demagnetization by AF and thermal methods.
494 Notably, there were no constraints on tilting or original horizontality. The outlying stocks (Dave
495 Lord (now Nothla Hill), Mt. Fitton, Mt. Sedgwick, Ammerman Mt.) yielded better
496 paleomagnetic results, most likely due to more abundant magnetite in these magmas (Park 1990).
497 Park (1990) found Cretaceous or Cenozoic directions in the Old Crow Batholith, which he
498 interpreted as an overprint or possibly a record of the present-day field. Recent geochronological


499 datasets display complex zircon U-Pb systematics in the Old Crow Batholith with crystallization
500 ages ranging from ca. 367.5 to 375 Ma (Lane and Mortensen 2019, Ward et al. 2019). Our
501 reanalysis of the data confirms that these data likely do not reflect a primary Late Devonian
502 direction (Figure 4e), although the location of the Arctic Alaska terrane and/or complexly
503 deformed rocks of the Porcupine fault system is still poorly understood. One possibility is these
504 data reflect a Cretaceous overprint that underwent significant clockwise rotation and northward
505 translation post acquisition, supporting the data from Plumley et al. (1989) from the Porcupine
506 fault system described above. An unknown tilt has affected the data and cannot be corrected for
507 without further examination.

508

509 **Location 9** – Kanayut Conglomerate, Phillip Smith Mountains, [Alaska](#), Arctic Alaska terrane,
510 publications – Paleomagnetic results from the Upper Devonian-Lower Mississippian Kanayut
511 Conglomerate are reported in Hillhouse and Grommé (1980, 1983, 1988b). From 11 sites across
512 the Phillip Smith Mountains, 384 cores were taken and subject to AF and thermal
513 demagnetization. The type of magnetometer that was used was not specified. Hillhouse and
514 Grommé (1988b) present some rock-magnetic data (IRM acquisition; Dunlop and Özdemir
515 1997) and conclude that a mixture of magnetite and hematite carry the magnetic signal. The
516 Kanayut samples (siltstone and sandstone) conclusively failed a fold test, and all samples
517 displayed a steep-downward direction that is characteristic of the Cretaceous overprint that
518 pervades the Brooks Range. Hillhouse and Grommé (1980, 1983, 1988b) concluded that no
519 primary remanence remains in the samples, and we agree. These authors also speculated on a
520 potential regional heating event recorded in these rocks that never reached above 300°C but was
521 long-lived enough to remagnetize them. This remains a reasonable interpretation based on
522 subsequent work on Brookian regional metamorphic and thermochronological datasets (e.g.
523 [Hoiland et al. 2018](#), [Craddock et al. 2018](#), and references therein). The remagnetization must
524 have happened after most of the relative displacement had ceased, as the average of all sites
525 across a wide swath of the Brooks Range has a low uncertainty ($A_{95} = 12^\circ$).

526
527

Deleted: AK

529

530 **Figure 4.** Results from Precambrian-Jurassic units (see text for further discussion). All
 531 reconstructions are from Merdith et al. (2021), and all APW paths are from Torsvik et al. (2012).
 532 A) Paleolatitude results from upper Ediacaran dolostones of the Risky Formation in the
 533 Wernecke Mountains (Location 3) with reconstruction at ca. 565 Ma. The expected paleolatitude
 534 uncertainty is 15° or less. B) Paleolatitude results from Cambrian sandstones of the Backbone
 535 Ranges Formation in the Wernecke Mountains (Location 3) with reconstruction at ca. 535 Ma.
 536 C) Paleolatitude results from Ordovician carbonates of the Farewell terrane in the Mystery
 537 Mountains of west-central Alaska (Location 5) with reconstruction at ca. 465 Ma. D) Cretaceous
 538 overprint pole from Devonian-Mississippian carbonates in the Porcupine fault system along the
 539 Yukon-Alaska border area (Location 7). [A 60° rotation brings this pole in better alignment with](#)
 540 [the expected Cretaceous-Paleogene directions.](#) E) [Characteristic remanence \(ChRM\) pole from](#)
 541 the Upper Devonian Old Crow Batholith north of Old Crow, Yukon (Location 8). F) 'ChRM A'

Deleted: ChRM

543 from the Red Dog deposit (Location 12), and recalculated poles from the Asik massif,
544 Angayucham terrane (Location 15).

545

546 **Location 10** – Miscellaneous sedimentary units, North Slope and Brooks Range, [Alaska](#), Arctic
547 Alaska, abstract – The extended conference abstract of Newman et al. (1977) focused on Upper
548 Devonian, Mississippian, and Triassic sedimentary rocks throughout much of the Brooks Range
549 foothills and North Slope. The abstract provides no information on measurement techniques, data
550 evaluation, or field tests. They present a pole (graphically, no numbers are listed) from the
551 Mississippian units that is located near the modern-day equator, and the authors suggest that 70°
552 of counterclockwise rotation occurred post-deposition. A Triassic pole was also presented, also
553 near the equator, but received no further comment. Hillhouse and Grommé (1983) were allowed
554 to review the data and they concluded that all of the datasets failed the fold test (most likely due
555 to Cretaceous overprinting). This conclusion contrasts with the pole presented by Newman et al.
556 (1977), and without being able to evaluate the data ourselves, we are hesitant to make any
557 conclusions about the reliability of these data.

558

559 **Location 11** – Lisburne Group, Phillip Smith Mountains, [Alaska](#), Arctic Alaska terrane,
560 publications – Mississippian limestone of the Lisburne Group was also studied by Hillhouse and
561 Grommé (1980, 1983, 1988b) at four sites and on 103 samples (see Location 9 for methods).
562 Like data from the Kanayut Conglomerate, the Lisburne Group failed all field tests and was
563 pervasively overprinted during Cretaceous regional deformation. This is not surprising given that
564 carbonates are not as robust recorders of paleomagnetic directions as siliciclastic rocks (McNeill
565 and Kirschvink 1993). The authors specifically avoided sampling chert beds and nodules within
566 the carbonates. At the time, it was not known that the chert may have been more likely to
567 preserve a primary remanence.

568

569 **Location 12** – Kuna and Siksikpuk formations, Red Dog Zn-Pb Deposit, [Alaska](#), Arctic Alaska
570 terrane, publication – Lewchuk et al. (2004b) studied fine-grained siliciclastic rocks of the
571 Carboniferous Kuna & Siksikpuk formations, the Red Dog Zn-Pb ore body, and surrounding
572 host rocks (33 sites, 132 samples) in the western Brooks Range (Figure 1). Samples were
573 collected underground in the active mine; therefore, some structural complexities were difficult

577 to distinguish and correct for. Measurements were done on a cryogenic magnetometer and
578 demagnetization was done with AF and thermal methods. Rock-magnetic measurements were
579 also performed (IRM acquisition). The authors found two characteristic magnetization directions,
580 as well as more recent overprints, including ‘magnetization A’ carried by magnetite and
581 ‘magnetization B’ carried by pyrrhotite – this distinction was based on a decrease in sample
582 strength above 350°C (the Curie temperature of pyrrhotite, Schwarz and Vaughan 1972).
583 Magnetization A failed the fold test, while magnetization B produced inconclusive fold-test
584 results. Lewchuk et al. (2004b) argued that magnetization A was acquired during Cretaceous
585 metamorphism based on the steep inclinations, while magnetization B was considered
586 significantly older and carried by pyrrhotite. The inclination is shallower than anything expected
587 in the Mesozoic or Cenozoic (Beck and Housen 2003), and Red Dog mineralization (pyrrhotite)
588 occurred shortly after deposition (Lewchuk et al. 2004b). Based on the direction of their
589 magnetization A overprint, the authors concluded that a significant northward translation and
590 counterclockwise rotation of the Arctic Alaska terrane was necessary to explain the data.

591 While we believe that the data themselves are reliable, we disagree with the interpretation
592 of both magnetizations. For magnetization A, this direction lies significantly outside the expected
593 Cretaceous overprint direction in the Brooks Range (Figure 4f). Instead of invoking a
594 rotation/translation story, we believe it is simpler to hypothesize that some unknown amount of
595 tilting has occurred in this area post-folding, especially considering the lack of field context. For
596 example, an uncorrected tilt of ~10° to the northeast (perhaps in the Cenozoic) could have
597 brought this direction far out-of-line with other Cretaceous overprints in the Brooks Range.
598 Moreover, for the origin of magnetization B, it is not possible to completely reset magnetite (in
599 magnetization A) without also resetting pyrrhotite – pyrrhotite is a less stable magnetic carrier in
600 almost all conditions and has a lower Curie temperature (Dunlop et al. 2000); thus if the carrier is
601 indeed pyrrhotite, then it must have precipitated after Brookian resetting. Alternate carriers for
602 magnetization B, such as titanomagnetite, should also be considered, as they have similar
603 unblocking temperatures to pyrrhotite (Dunlop and Özdemir 1997). The anomalously low
604 inclination in magnetization B is interesting, but it could have also been imparted during a
605 transitional polarity period or a geomagnetic excursion. The metamorphic and deformational
606 history of the Red Dog deposit is complex (e.g. Moore et al. 1986, Ayuso et al. 2004, Slack et al.
607 2004), and the paleomagnetic data presented in Lewchuk et al. (2004b) need more detailed

608 mineralogical and structural characterization before they can be interpreted in a regional tectonic
609 context.

610

611 **Location 13** – Ivishak Formation, North Slope, [Alaska](#), Arctic Alaska terrane, publications – Deleted: AK

612 The Ivishak Formation (sandstone, conglomerate) was also studied by Hillhouse and Grommé
613 (1980, 1983, 1988b) in two wells near Utqiagvik (formerly Barrow). It is notoriously difficult to
614 assess the reliability of oriented core from oil wells or other large-scale drilling campaigns.
615 Inclination and polarity data tends to be reliable, but declination data commonly has errors of
616 $>20^\circ$ (Nelson et al. 1987, Scott and Berry 2004, Ma et al. 2016). Loss of any coherent orientation
617 data is also common and will depend on the coherency of the core, depth of the oriented section,
618 and a variety of other drilling-based factors. In this study, one well intercepted the Triassic
619 Ivishak Formation, where the samples yielded a very weak and inconsistent paleomagnetic
620 signal. Hillhouse and Grommé (1980, 1983, 1988b) posited that these strata were remagnetized
621 sometime post-deposition and we agree. A nearby well intercepted pre-Mississippian ‘argillitic
622 basement’ of unknown early Paleozoic age (probably Ordovician or Silurian based on nearby
623 collections of chitinozoans in similar strata; Carter and Laufeld 1975). Paleomagnetic directions
624 from this pre-Mississippian unit were more coherent but also probably reset by either early
625 Paleozoic orogenesis (Hillhouse and Grommé 1983) or Cretaceous Brookian deformation. Given
626 the lack of context, no field tests were performed and so the true age of magnetization is difficult
627 to constrain. Hillhouse and Grommé (1983) argued for Early Cretaceous counterclockwise
628 rotation of Arctic Alaska based on these data, but we are hesitant to make any interpretation
629 given the uncertain age and context of their magnetization.

630

631 **Location 14** – Misheguk massif, Misheguk Mountain, [Alaska](#), Angayucham terrane, abstract – Deleted: AK

632 The study by Harris et al. (1993) on mafic volcanic rocks of the ophiolitic Misheguk massif, a
633 klippe of the Angayucham terrane in the western Brooks Range (Figure 1), is only available as
634 an abstract. Few details are provided in the abstract, and the paleomagnetic data were mostly
635 used to constrain structural deformation. No directions or poles were reported in the abstract.

636

637 **Location 15** – Asik Mountain massif, Asik Mountain, [Alaska](#), Angayucham terrane, publication – Deleted: AK

638 Lewchuk et al. (2004a) conducted a focused paleomagnetic study on mafic volcanic rocks at

642 Asik Mountain in the western Brooks Range, another klippe of ophiolitic rocks of the
643 Angayucham terrane (Figure 1). Measurements were done on a cryogenic magnetometer and
644 demagnetization was done with AF and thermal methods. Magnetic susceptibility was also
645 measured. A fold test was inconclusive, but the characteristic directions are different from both
646 the steep Cretaceous overprint and modern-field directions. The authors argued that their
647 characteristic magnetizations were most likely primary, and we agree. They average all their
648 reliable sites together and argued for 50° of counterclockwise rotation or 11° of northward
649 translation since ophiolite cooling ([via crystallization or obduction](#)).

650 While this was a reasonable interpretation at the time, we can improve upon it here. We
651 now know that the Brooks Range ophiolite is composed of at least two major thrust sheets: the
652 Misheguk Mountain allochthon (Jurassic) and the Copter Peak allochthon (Triassic-Devonian?;
653 Harris 2004, Fredriksson and Pease 2019, 2022, Biasi et al. 2020). In addition to different ages,
654 these thrust sheets have different tectonic histories and should not be lumped together when
655 calculating an average direction. Sites 1-6 in Lewchuk et al. (2004a) are from the upper
656 (Misheguk) thrust sheet, and sites 7-15 are from the lower (Copter Peak) thrust sheet. The new
657 recalculated directions for both sheets are shown in Table 3 and Figure 4f. We performed a test
658 of mean directions (Fisher et al. 1993) and found that directions from the upper and lower sheets
659 have a 1.7% probability of being the same. Depending on the plate reconstruction that is used
660 (Torsvik et al. 2012, Müller et al. 2022), the upper sheet direction may be consistent with a Late
661 Jurassic age of magnetization; however, it is also consistent with a Cretaceous overprint (Fig.
662 4f). We suspect that the magnetization is Jurassic because several sites in the upper sheet gave
663 anomalous directions that were not consistent with a regional Cretaceous overprint. The upper
664 sheet, which has been interpreted as a forearc ophiolite (Harris 2004, Biasi et al. 2020), yields a
665 paleolatitude of 80 ± 14 °N, [This is a higher paleolatitude than today \(68°\), but the uncertainty](#)
666 [is too large to determine if this area was connected to Laurentia at the time](#) (Müller et al. 2022).
667 The lower sheet gives a direction that suggests its paleolatitude was 70 ± 23 °N. It is difficult to
668 interpret the lower sheet direction without knowing its exact age. Since it is an orphaned piece of
669 oceanic crust with large pole uncertainty (Harris 1998), it cannot be easily compared to any
670 continental APW path.

671
672 **No Location** – Upper Mississippian to Paleocene sedimentary units, North Slope and Brooks

Deleted: which is
Deleted: of an uncertainty
Deleted: or was not

676 Range, [Alaska](#), Arctic Alaska terrane, abstracts – Two studies by Van Alstine (1986) and Van
677 Alstine and Butterworth (1994) are available only in abstract form. Their samples are from
678 throughout the North Slope and Brooks Range (Lisburne Peninsula to Sadlerochit Mountains),
679 but no specific location data is provided. Despite this, they include enough data (596 samples) to
680 merit discussion here. AF, thermal, and chemical demagnetization were performed along with
681 IRM acquisition experiments. Interestingly, they find evidence for syn-folding magnetization in
682 some unspecified units. They also claim that samples from Cape Lisburne to the central Brooks
683 Range were normally remagnetized, while samples from the central Brooks Range to the
684 Sadlerochit Mountains were reversely remagnetized. This contrasts with other studies (e.g.
685 Hillhouse and Grommé 1983) that found only normal remagnetization in the Cretaceous
686 overprint. The authors invoke large-scale and long-lived orogenic fluid migration to explain their
687 results. We cannot assess the validity of these assertions without seeing more data than are
688 currently available.

Deleted: AK

689
690 **Table 3.** Directions that have been substantially recalculated in this review. Location column
691 corresponds to Figure 1. Vandamme (1994) iterative cutoff method used for all studies.

Location	Study	Pole	N	D (°)	I (°)	R ₁	k	a ₉₅ (°)	Pole Lat (°N)	Pole Lon (°E)	R ₂	K	A ₉₅ (°)
15	Lewchuk et al. 2004a	Upper Sheet	2	345	84.8	2.0	12323	7.1	77.1	185.8	2	322.4	14
15	Lewchuk et al. 2004a	Lower Sheet	9	248	80.1	8.5	16.54	13	56.3	165.2	7.5	5.5	24.2
19	Harris 1985	Kaltag Sites	5	348	76.5	4.8	16.73	19.3	85.1	153.9	4.4	6.7	32
19	Harris 1985	Melozitna Sites	4	352.3	80.3	4.0	446.7	4.1	83.3	183.4	4	131.5	8
28	Thrupp 1987	Blackburn Hills	>42	-	-	-	-	-	71.7	170.7	-	-	10.9
29	Johnson et al. 2008	Nunivak Island	51	2.8	75.1	50.1	53.9	2.7	79.8	194.2	48.5	20.2	4.5
30	Cox & Gordon 1984	Pribilof Islands	31	20.6	60.7	30.0	29.6	4.8	71.7	320.1	28.9	14.2	7.1

Note: N = number of sites; D = declination, I = inclination, R₁ = vector sum (direction), k = precision parameter, a₉₅ = 95% confidence interval, R₂ = vector sum (pole), K = precision parameter (pole), A₉₅ = 95% confidence interval (pole).

692

693 3.3 Cretaceous

694 **Location 16** – Yukon-Koyukuk volcanics, Isahultila Mountains, [Alaska](#), Koyukuk [arc](#),
695 publications and thesis – Lower Cretaceous volcanics of the [Koyukuk arc](#) (Figure 1) were

Deleted: AK

Deleted: terrane

Deleted: terrane

Formatted: Not Highlight

700 studied by Hillhouse and Grommé (1988a), Harris (1985), and Harris et al. (1985, 1987). The
701 exact overlap between these studies is not clear, but we suspect that sites 1, 5, and 6 in Hillhouse
702 and Grommé (1988a) correspond to sites 3, 6, and 7 in Harris (1985). This is the only
703 paleomagnetic study of Koyukuk arc rocks that we know of. All other studies in the 'Koyukuk'
704 region of Figure 1 are probably on Yukon-Koyukuk basin units.

705 Hillhouse and Grommé (1988a) used a cryogenic magnetometer in conjunction with AF ← Formatted: Indent: First line: 0.5"
706 and thermal demagnetization. They sampled a variety of volcanics, shallow intrusives, and
707 siliciclastic turbidites. The turbidites were all demonstrably reset by later overprinting, but the
708 igneous units yielded more reliable data. In these units, Hillhouse and Grommé (1988a) found
709 several overlapping overprints, likely middle-late Cretaceous in age, and used best-fit planes to
710 determine primary directions. Characteristic directions passed the fold test, but reversals in the
711 units were not antiparallel as would be expected from a long-term field average (Cox and Doell
712 1960). This might be due to local rotations or interference from incompletely demagnetized
713 overprints. The other studies (Harris 1985, Harris et al. 1985, 1987) used similar methods on the
714 same units but came to different conclusions. Based on a series of failed fold tests, Harris et al.
715 (1987) and Harris (1985) argued that most of the Cretaceous units in this area were reset in the
716 Paleogene from nearby intrusive rocks. We have reexamined data from all studies and argue that
717 the correct answer is probably somewhere in between. Several Cretaceous sites in Harris (1985)
718 seem to pass the fold test, while some of the best-fit planes for the sites presented in Hillhouse
719 and Grommé (1988a) are probably not meaningful. With the available data, we are unable to
720 determine which sites from this area have not been overprinted, but it is likely that a future
721 paleomagnetic study of this area could yield primary magnetization directions.
722

723 **Location 17** – Biederman Argillite, Kandik River, Alaska, Kandik Basin, publication – The Deleted: AK
724 paleomagnetism of the Lower Cretaceous Biederman Argillite was studied by Howell et al.
725 (1992), which mostly focused on the stratigraphy and structural geology of this area. Most details
726 concerning their paleomagnetic study are not given, but AF demagnetization was performed on
727 12 samples (up to 100 mT) and natural remanent magnetization measurements were conducted
728 on another ~90 samples, all of which were sandstones and argillites. Two stratigraphic sections
729 at different orientations were sampled to generate a regional fold test, and the paleomagnetic
730 results were similar between sections, thereby failing the fold test. The resultant direction is

732 consistent with a Cretaceous overprint direction, but no error on this direction was provided.

733

734 **Location 18** – Kuparuk River Formation, North Slope, [Alaska](#), Arctic Alaska terrane,
735 publication – This important and well-cited work on the Lower Cretaceous Kuparuk River
736 Formation was completed by Halgedahl and Jarrard (1987). The study provides the main
737 paleomagnetic evidence for the counterclockwise rotation hypothesis of Arctic Alaska (see
738 Section 4.2). Halgedahl and Jarrard (1987) examined siliciclastic rocks from three oriented drill
739 cores in the Kuparuk River oil field. As discussed above, oriented drill cores are difficult to work
740 with and can often provide misleading declination data; however, Halgedahl and Jarrard (1987)
741 went to great lengths in this study to explain their drill-core orienting protocol. Measurements
742 were made using a cryogenic magnetometer, and both AF and thermal demagnetization were
743 used. Rock-magnetic experiments (IRM acquisition, susceptibility) were also performed.
744 Conodont and vitrinite data suggest that these rocks did not experience elevated temperatures
745 (Halgedahl and Jarrard 1987), and the Cretaceous overprint is not obviously present here. Field
746 tests are difficult to assess in drill core, but reversals are preserved in the data. Overall, this study
747 is remarkably thorough and well done for the time.

748 The authors determined that their average paleomagnetic pole was ~2400 km south of the
749 study site, at ~49°N latitude. To reconcile this pole with the expected pole for a Laurentian site
750 of this age, the authors invoked a 70° counterclockwise rotation of the Arctic Alaska terrane
751 (about a pole of rotation in the Mackenzie Delta) after ~130 Ma. This interpretation sparked a
752 flurry of both support and skepticism (e.g. Embry 1990, Grantz et al. 1990, 1998, 2011, Lawver
753 and Scotese 1990, Lane 1997, Lawver et al. 2002, Lane et al. 2016, Hutchinson et al. 2017, Ilhan
754 and Coakley 2018, Mosher and Hutchinson 2019) towards the counterclockwise rotation
755 hypothesis. In Section 4.2, we provide an in-depth reinterpretation of these data based on a better
756 understanding of the position of Laurentia in the Cretaceous.

757

758 **Location 19** – Unnamed Cretaceous sedimentary units, Yukon and Melozitna rivers, [Alaska](#),
759 [Yukon-Koyukuk basin](#), publication, thesis, and abstract – In addition to Location 16 above,
760 Harris (1985), Harris et al. (1985), and Harris et al. (1987) sampled several other Cretaceous
761 sites in the [Yukon-Koyukuk basin](#). Similar methods were employed at all sites as described
762 above, including a cluster of Cretaceous siliciclastic units near Ruby, [Alaska](#). In this case, none

Deleted: AK

Deleted: AK

Deleted: terrane

Deleted: AK

767 of the sites passed any field tests. Harris (1985), Harris et al. (1985), and Harris et al. (1987)
768 concluded that all sites were reset sometime in the Late Cretaceous based on steep inclinations.
769 The sites near Ruby, Alaska yielded somewhat scattered overprint directions ($A_{95} = 32^\circ$; Figure
770 5a), probably due to local deformation associated with the Kaltag fault (Table 3) (Patton and
771 Hoare 1968). The sites to the north (along the Melozitna river) yielded a more coherent overprint
772 ($A_{95} = 8^\circ$; Table 3, Figure 5a).

Deleted: or early Paleogene
Deleted: and we agree
Deleted: along the Yukon River
Formatted: Subscript

773
774 **Location 20** – Unnamed Lower Cretaceous mafic-intermediate tuffs, Ohogamiut, Alaska,
775 Yukon-Koyukuk basin(?), publications – These ca. 128 Ma (Hauterivian) mafic-intermediate
776 tuffs (Patton 2006) were sampled by Globerman et al. (1983) and later discussed by Coe et al.
777 (1985) and Coe et al. (1989). One hundred and nine samples from 31 sites underwent AF and
778 thermal demagnetization, but the type of magnetometer was not specified. The samples failed a
779 fold test and were most likely reset in the Cretaceous, although remagnetization could have
780 occurred syn-folding. A few samples still preserved a reversed component that is distinct from
781 the normal overprint, so future paleomagnetic study of this area may be fruitful. The overprint
782 gives a far-sided pole that barely overlaps with the expected Cretaceous pole (after correction for
783 ~150 km of dextral displacement on the Kaltag fault, Figure 5b). Some amount of
784 counterclockwise rotation post-dating emplacement ($35.6 \pm 26.3^\circ$; Demarest 1983) would bring
785 this pole into better alignment with the Laurentian APW path (Figure 5b).

Deleted: AK
Deleted: terrane
Deleted: Middle to Late
Deleted: or early Paleogene

786
787 **Location 21** – Nanushuk and Torok formations, North Slope, Alaska, Arctic Alaska terrane,
788 unpublished report – Paleomagnetic data reported in Stone and Witte (1983), which is cited in a
789 review paper by Stone (1989), is from an unpublished industry report generated for ARCO-
790 Alaska. We were unable to acquire a copy of this report, so we cannot comment on the data
791 quality. The analyzed samples are from an unoriented well core in the National Petroleum
792 Reserve, so only inclination data is reported. The sampled units include the Lower Cretaceous
793 Nanushuk and Torok formations. A reversal was found, indicating that the magnetization is most
794 likely primary. The inclinations imply a similar paleolatitude to that found by Witte et al. (1987),
795 which is described below at Location 23.

Deleted: AK

796
797 **Location 22** – Unnamed Middle Cretaceous volcanic and sedimentary rocks, Bettles, Alaska.

Deleted: AK

807 Yukon-Koyukuk basin, publication and thesis and abstract – Harris (1985), Harris et al. (1985),
808 and Harris et al. (1987) sampled unnamed Middle Cretaceous ‘volcanic turbidites’ and
809 graywacke near Bettles, Alaska. See Location 16 for a methods description. These units passed
810 fold and conglomerate tests (Figure 2), likely indicating that magnetization predates the
811 Cretaceous overprinting event that reset many other sites in this region; however, the matrix (a
812 coarse-grained sandstone) was determined to be a poor carrier of remanent magnetization by
813 Harris and was not used in subsequent calculations. We largely agree with this assessment, but
814 instead suggest that site 83-35 (graywacke) is a better recorder of paleomagnetic directions due
815 to a low α_{95} (6.6°) and reasonable paleolatitude (63.6° N) of its pole. We use this site when
816 calculating Yukon-Koyukuk average directions going forward.

Deleted: terrane

Deleted: AK

817
818 **Location 23** – Nanushuk Formation, North Slope, Alaska, Arctic Alaska terrane, publication and
819 thesis – The Albian Nanushuk Formation is the subject of an often-overlooked study by Witte
820 (1982) and Witte et al. (1987). A total of 116 samples from 13 sites were measured on an
821 unspecified magnetometer and demagnetized using thermal and AF techniques. The Nanushuk
822 strata are gently dipping, and one site passed a broad fold test while another failed (Figure 2).
823 Lewchuk et al. (2004a) reanalyzed these data and concluded that the magnetization was acquired
824 syn-folding. They determined that the pole from these data should be 69°N, 182°E, $A_{95}=11^\circ$
825 (Figure 5c; the original pole from this study is at 73.7°N, 150°E, $A_{95}=18^\circ$). We agree with
826 Lewchuk et al. (2004a) and will use these recalculated data moving forward.

Deleted: xyz

Formatted: Subscript

Deleted: terrane

Deleted: AK

827 All samples from this study have normal polarity, as is expected for most of the
828 Cretaceous (Yoshimura 2022). We assume a Middle to Late Cretaceous folding event, but the
829 exact age of deformation is not well constrained (Mull et al. 1997, Moore et al. 2004,
830 Houseknecht and Wartes 2013, Craddock et al. 2018). The paleolatitude of this site was $85.5 \pm$
831 8.1°N , which is the expected paleolatitude for this area of Arctic Alaska in the mid-late
832 Cretaceous (Beck and Housen 2003, Kent and Irving 2010, Torsvik et al. 2012, Müller et al.
833 2022).

Deleted: does not significantly impact the tectonic interpretation...

834
835 **Location 24** – Unnamed Cretaceous volcanic and sedimentary rocks, Nulato, Alaska, Yukon-
836 Koyukuk basin, publication, thesis, and abstract – This cluster of samples includes sites 83-10
837 through 20 and 82-6 through 8 in Harris (1985), Harris et al. (1985), and Harris et al. (1987).

Deleted: AK

Deleted: terrane

847 Sites 10 to 12 were sampled from unnamed Middle Cretaceous volcanics; sites 82-6 to 8, 83-13,
848 83-14, and 83-20 were collected from unnamed Middle Cretaceous siliciclastic rocks (mostly
849 siltstones and shales); and sites 83-15 to 19 were sampled from unnamed Upper Cretaceous
850 siliciclastic units. All these sites are north of the Kaltag fault, and see Location 16 for a methods
851 description. Harris (1985), Harris et al. (1985), and Harris et al. (1987) found that the Middle
852 Cretaceous volcanics failed both fold and baked-contact tests (Figure 2) and were probably
853 remagnetized later in the Cretaceous. The Middle to Upper Cretaceous sedimentary sites pass
854 fold and reversal tests (Figure 2), indicating that the magnetization was most likely primary.
855 Some of these sedimentary units may post-date regional metamorphism in the area, while some
856 may have escaped significant heating due to the heterogeneity of deformation in the Yukon-
857 Koyukuk basin (Harris et al. 1985). Poles from the Middle to Upper Cretaceous sedimentary
858 units are significantly far-sided in comparison to the expected poles from a stable Laurentian site
859 (Figure 5d; e.g. Torsvik et al. 2012). Harris (1985), Harris et al. (1985), and Harris et al. (1987)
860 invoked ~15-20° of northward transport to explain this discrepancy. Using the latest Laurentian
861 APW paths (e.g. Müller et al. 2022), we find that no degree of rotation can explain this far-
862 sidedness. An inclination flattening factor of 0.4 (Section 2.1) could bring the pole into
863 alignment with the Laurentian APW path, but these lithologies are not a good candidate for
864 flattening (magnetite is the primary magnetic carrier). If no inclination flattening is invoked, then
865 this portion of the Yukon-Koyukuk basin needed to travel ~1885±881 km northward (Demarest
866 1983) post-sedimentation (Figure 5d). See Location 27 for additional discussion.
867

868 **Location 25** – Unnamed Upper Cretaceous sedimentary rocks, Kaltag, Alaska, Yukon-Koyukuk
869 basin, publication, thesis, and abstract – This cluster of samples includes sites 83-21, 25, 28, 29,
870 and 30 in Harris (1985), Harris et al. (1985), and Harris et al. (1987). All sites are from unnamed
871 Upper Cretaceous siliciclastic rocks that are exposed south of the Kaltag fault. See Location 16
872 for a methods description. Sedimentary rocks in this region passed a conglomerate test according
873 to Harris (1985) but insufficient data was reported to calculate an average direction for these
874 sites (missing data from sites 83-21 and 25).

875
876 **Location 26** – Deadman Pluton, Dawson, Yukon, Autochthonous Laurentia, publication – The
877 ca. 91 Ma Deadman Pluton and surrounding host rock were studied by Symons et al. (2006).

Deleted: or Paleogene

Deleted: terrane

Deleted: terrane

Deleted: AK

Deleted: terrane

Deleted: appear to be less ideal recorders of paleomagnetic directions than equivalent units to the north.

Deleted: I

Deleted: by Harris (1985)

887 From 23 sites, 237 samples were collected and measured using a cryogenic magnetometer.
888 Thermal and AF demagnetization were employed, along with IRM rock-magnetic measurements.
889 A baked contact test (Figure 2) was attempted, but all the wall-rock sites were reset by the
890 pluton. Technically this is a failed baked-contact test, but it is possible that wall-rock at further
891 distances from the pluton would yield different directions. The paleomagnetic results were
892 consistent across all sites and yielded a different direction than expected from a stable Laurentian
893 site (Figure 5e) or from the present-day field. The Deadman Pluton pole is far-sided from the
894 expected Laurentian pole by 1282 ± 422 km (Demarest 1983), which is consistent with far-sided
895 poles of the ca. 75 Ma Carmacks Group to the south of the Tintina fault system (e.g. Wynne et
896 al. 1998). Symons et al. (2006) argued that the pluton was detached during north-vergent
897 Cordilleran deformation and tilted to the southeast, ultimately generating the anomalous
898 paleomagnetic direction. Regardless of the specific displacement mechanism, these results imply
899 that deformation in this area was ongoing after 91 Ma (Hayward 2019), and we agree with this
900 interpretation.

901
902 **Location 27** – Unnamed Cretaceous and Cenozoic volcanics, Saint Matthew Island, Bering Sea,
903 Alaska, Koyukuk terrane(?), publication and thesis – Unnamed Upper Cretaceous (ca. 70–79
904 Ma) and Cenozoic igneous rocks presumably of the Koyukuk terrane were studied from this
905 remote island by Wittbrodt (1985) and Wittbrodt et al. (1989). One hundred and twenty hand
906 samples were collected from 18 sites and samples were thermal and AF demagnetized and
907 measured using a cryogenic magnetometer. These data pass reversal and conglomerate tests
908 (Figure 2), and the characteristic magnetization is almost certainly primary. Data from several
909 intrusive rocks are presented, but it is unclear if the intrusions pre- or post-date tilting, so these
910 data should not be used to calculate primary directions. The Cretaceous units give a low-error
911 pole that requires $9.7 \pm 24.5^\circ$ of clockwise rotation and 1462 ± 1284 km of northward translation
912 post-emplacement in order to align with the Laurentian APW path (Demarest 1983). Wittbrodt et
913 al. (1989) argued that Saint Matthew Island is closely associated with the Yukon-Koyukuk basin,
914 and the required ca. 1500 km northward displacement of the pole is in agreement with results
915 from other parts of the Yukon-Koyukuk basin described above from Harris et al. (1987)
916 (Location 24). Here, however, inclination flattening cannot be invoked to explain the far-
917 sidedness of the pole since volcanic units were studied. The island also contains unnamed and

Commented [JB1]: Not sure if we should make a call
regarding Koyukuk Arc vs Basin here, the rocks are
younger than other Koyukuk arc rocks, but they aren't
sediments. I'm fine with leaving this vague "terrane"
given the uncertainty.

Deleted: AK

Deleted: terrane

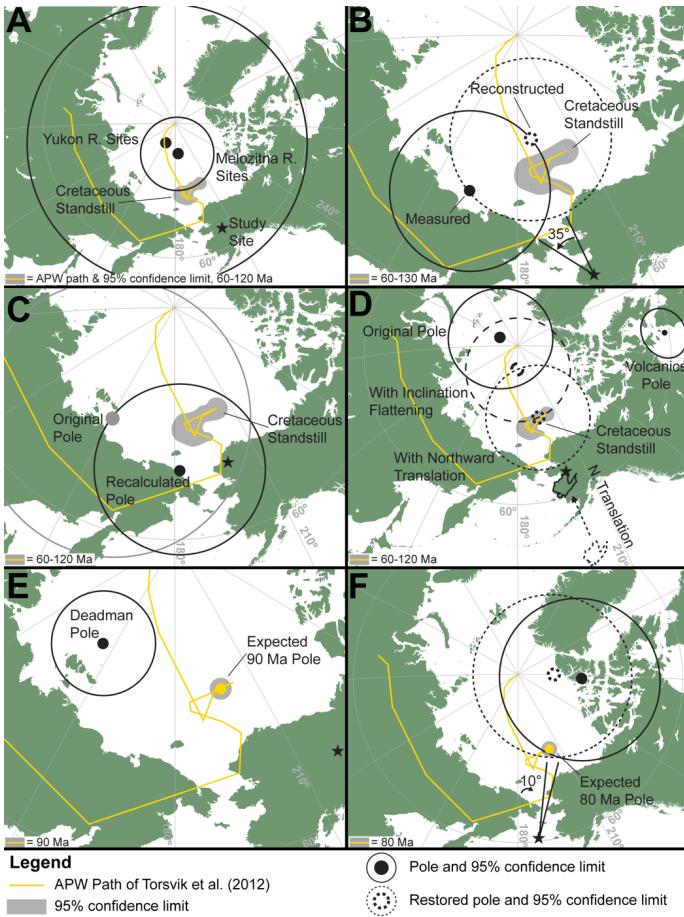
Deleted: terrane

921 poorly dated Cenozoic felsic tuffs and intrusive rocks, which yield a large-error pole that is in
922 agreement with the Laurentian APW path for the early Paleogene.

923

924 **Location 5** – Jumbo Peak Pluton, Medfra, Alaska, Farewell terrane, thesis – The ca. 70 Ma
925 Jumbo Peak pluton (Moll et al. 1980) was studied in Plumley's (1984) PhD thesis using similar
926 methods described from Location 5 in Section 3.2. Here, 29 samples from four sites yielded a
927 reversed direction; however, there are no constraints on original horizontality, so this direction
928 could be due to an uncorrected tilt. Without any structural corrections, the data from this pluton
929 cannot be fully interpreted.

930


Deleted: AK

Commented [JS2]: Having mid-K metamorphism on a
ca. 70 Ma pluton makes no sense

Commented [JB3R2]: I don't see anything in this
paragraph about mid-K metamorphism.

Commented [JB4R2]: The point is that without a
structural correction we can't interpret the data.

Deleted: , which could indicate that the magnetization is
primary...

934
935 **Figure 5.** Paleomagnetic results from selected Cretaceous units (see text for further discussion).
936 A) Cretaceous overprint poles from unnamed siliciclastic rocks near Ruby, Alaska (Location 19).
937 B) Cretaceous overprint pole from mafic to intermediate tuffs in the Yukon-Koyukuk basin
938 (Location 20). A 35° rotation brings this pole in better alignment with the expected Cretaceous
939 direction. C) Cretaceous syn-folding poles from the Nanushuk Formation, Arctic Alaska terrane
940 (Location 23). D) Middle-Late Cretaceous primary poles from unnamed siliciclastic rocks near
941 Nulato, Alaska (Location 24). Reconstructed flattening and northward translation poles assume
942 0.7 flattening factor or 1885 km of northward translation, respectively. E) Pole from the Upper

- Deleted: ; all APW paths are from Torsvik et al. (2012)
- Deleted: Middle
- Deleted: AK
- Formatted: Font: Not Italic
- Deleted: Middle
- Deleted: terrane
- Deleted: Middle
- Deleted: AK
- Formatted: Font: Not Italic

950 Cretaceous Deadman pluton in Yukon (Location 26). F) Late Cretaceous pole from volcanics on
951 Saint Matthew Island, [Alaska](#), (Location 27). A 10° rotation brings this pole in better alignment
952 with the expected 80 Ma pole.

Deleted: AK

Formatted: Font: Not Italic

953 3.4 Paleogene-Neogene

954 **Location 5** – Nowitna Volcanics, Page Mountain, [Alaska](#), Farewell/Innoko terrane, thesis –
955 Upper Cretaceous-Lower Paleogene (~70 Ma) mafic to intermediate volcanics were erupted atop
956 the Cretaceous Kuskokwim Group and lie between the Farewell and Innoko terranes. These
957 volcanics were studied by Plumley (1984), and see Location 5 in Section 3.2 for methods. Forty-
958 four samples were collected from seven flows and no field tests were performed on this unit.
959 Despite this, the young age and low degree of regional metamorphism implies that the
960 characteristic magnetization should be primary. Some of the cores were lightning-struck and
961 never yielded a coherent magnetization. The average pole from the remaining samples is
962 reversed and within error of the expected APW path for Laurentia at ca. 70 Ma, both before and
963 after accounting for potential right-lateral displacement on the Kaltag fault (Patton and Hoare
964 1968). However, the low number of usable sites and high error on the resultant pole makes this
965 conclusion uncertain. Future studies of these volcanics could produce useful paleomagnetic data.
966

Deleted: AK

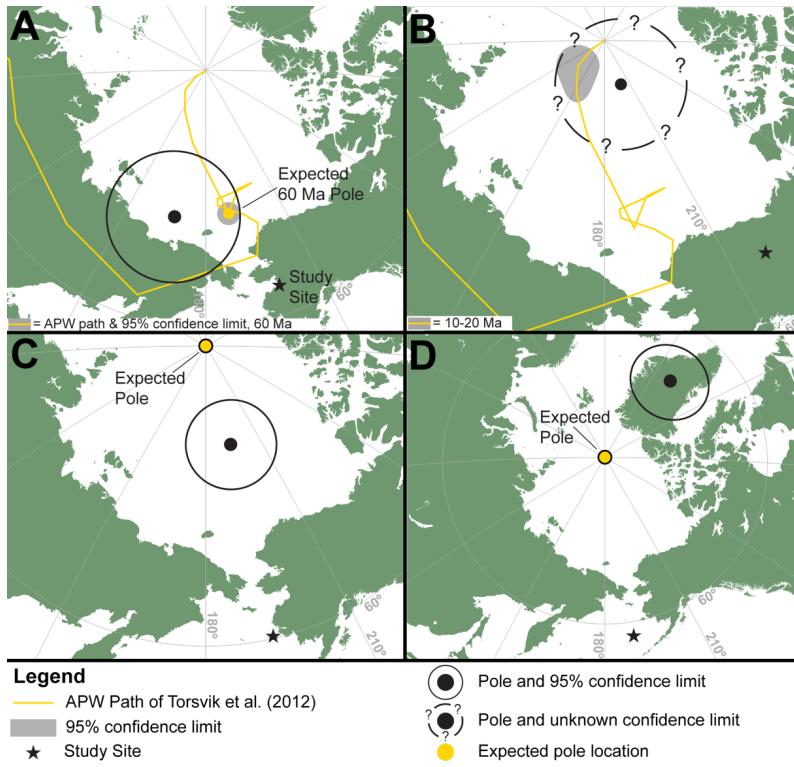
967 **Location 28** – Unnamed lower Paleogene mafic-intermediate volcanics, Blackburn Hills,
968 [Alaska](#), [Yukon](#)-Koyukuk basin, publication, thesis, and abstract – A suite of unnamed ca. 65 Ma
969 mafic-intermediate volcanics were studied by Thrupp and Coe (1986), Thrupp (1987), and Coe
970 et al. (1989). The main subject of these studies were samples from various southern Alaska
971 terranes, so few details were provided about the Blackburn Hills samples. An unknown number
972 of samples from at least 42 sites were demagnetized using AF and thermal methods. No details
973 were provided about field tests, but the authors suggested the characteristic remanences to be
974 primary. No table of directions was provided, but we were able to extract an average pole from
975 Figure 5 in Thrupp's (1987) thesis (71.7°N, 170.7°E, $A_{95} = 10.9^\circ$). This pole is within error of
976 the Laurentian APW path (Figure 6a).

Deleted: AK

Deleted: terrane

977
978 **Location 25** – Unnamed Eocene volcanics and intrusives, Kaltag, [Alaska](#), [Yukon](#)-Koyukuk
979 basin, publication, thesis, and abstract – This cluster of samples includes sites 22, 23, 24, 26, 27,
980 31, and 32 in Harris (1985), Harris et al. (1985), and Harris et al. (1987). All sites are composed

Deleted: AK


Deleted: terrane

987 of early Eocene (49-55 Ma) lavas, tuffs, and shallow intrusive rocks, and are all south of the
988 Kaltag fault. See Location 16 in section 3.3 for a methods description. These units almost
989 universally have poor horizontal controls, with unknown degrees of local tilt or rotation. No field
990 tests were performed, but the different sites have significantly different directions, indicating that
991 these units have escaped a regional remagnetization event. However, Harris (1985) found
992 evidence for ongoing deformation in these units until ca. 50 Ma, so given the lack of horizontal
993 control they cannot be used in tectonic reconstructions or further analysis.

Deleted: T

994
995 **Location 7** – Unnamed Miocene basalt and tuff, Porcupine fault system, Alaska, publications
996 and abstract – Unnamed and reportedly undeformed Miocene volcanic units were studied by
997 Plumley and Vance (1988), Plumley et al. (1989), and Kunk et al. (1994). See Location 7 in
998 Section 3.2 for methods. The Miocene basalts were dated to ca. 14.4-15.7 Ma and yielded both
999 normal and reversed polarity. A nearby 6.57 Ma tuff near Canyon Village was also reversed. The
1000 basalts were assigned to Chrons 5Br and 5Adn, which is still consistent with the updated polarity
1001 time scale of Ogg (2020). The tuff was assigned to Chron 3Ar, but the associated radiometric age
1002 now overlaps with a normal chron (C3An.2n). Chron 3Ar is still the closest reversed chron to the
1003 determined age (Ogg 2020). Kunk et al. (1994) did not provide any directional data or
1004 paleomagnetic results besides polarity. They cited an “in preparation” manuscript when
1005 discussing their paleomagnetic results, but no such manuscript was published. A conference
1006 abstract by Plumley and Vance (1988) provided a pole from the same basalts (Figure 6b; 86°N,
1007 201°E, N=17, no error is given). This pole agrees with Kunk et al.’s (1994) assertions that the
1008 basalts give an expected Miocene direction for a stable Laurentian site. This suggests that they
1009 have not been rotated or displaced post-emplacement, which is consistent with the reported lack
1010 of deformation in these units.

Deleted: AK

1014

1015 **Figure 6.** Results from Cenozoic units in the study area (see text for further discussion); all
 1016 reconstructions and APW paths are from Müller et al. (2022). A) Early Paleogene pole from
 1017 unnamed volcanics in the Blackburn Hills of the Yukon-Koyukuk basin (Location 28). B)
 1018 Miocene (ca. 15 Ma) pole from unnamed basalts in the Porcupine fault system (Location 7). No
 1019 error on the pole was given, so the error envelope is shown with question marks. C) Pole from
 1020 Quaternary unnamed volcanics on Nunivak Island (outliers removed, Location 29), note the
 1021 near-sidedness of the pole, which is too young to be explained by tectonic motion. D) Pole from
 1022 Quaternary volcanics on the Pribilof islands (Location 30), which again are too young to be
 1023 displaced by tectonic motion.

1024

1025 3.5 Quaternary

1026 **Location 29** – Unnamed mafic volcanics, Nunivak Island, Bering Sea, Alaska publications and

Deleted: terrane

Deleted: AK

1029 thesis – Data from unnamed mafic volcanics on Nunivak Island, [Alaska](#), have been the subject of
1030 several studies (Cox and Dalrymple 1967, Hoare et al. 1968, Cox and Gordon 1984, Coe et al.
1031 2000, Johnson et al. 2008) and are instrumental in global geomagnetic field models (e.g.
1032 Thébault et al. 2015, Cromwell et al. 2018, Alken et al. 2021). High-latitude volcanic sites from
1033 the last 5 Ma are rare outside of Iceland, which is why the original study of these volcanics by
1034 Cox and Dalrymple (1967) has received occasional revision and reanalysis (e.g. Johnson et al.
1035 2008). The original measurements were completed with a spinner magnetometer and AF
1036 demagnetization (Cox and Dalrymple 1967, Hoare et al. 1968), while later measurements using a
1037 cryogenic magnetometer yielded similar results (Beck et al. 2001, Johnson et al. 2008). Several
1038 reversals or excursions were found in the volcanic stratigraphy, but no other field tests were done
1039 due to a lack of deformation and availability of conglomerates or baked contacts. Despite
1040 capturing a long-term average of the geomagnetic field, the average pole from all sites does not
1041 overlap with the geographic north pole (76.0°N , 191.9°E , $A_{95}=5.6^{\circ}$, Table 3). After we remove
1042 any low-latitude poles that may be associated with excursions, we find that the resultant pole is
1043 still near-sided (79.8°N , 194.2°E , $A_{95}=4.5^{\circ}$, Table 3) (Figure 6c). These volcanics are likely too
1044 young (<5 Ma; Johnson et al. 2008) for any tectonic rotation or translation to displace the pole [to](#)
1045 [such a degree](#). A persistent low-inclination anomaly in the geomagnetic field is found today at
1046 high latitudes, but the longevity of such anomalies is controversial (Lawrence et al. 2009,
1047 Cromwell et al. 2018, de Oliveira et al. 2024). These results from Nunivak Island support a
1048 longer-lived inclination anomaly, at least covering the last ~5 Ma at high latitudes.
1049

Deleted: AK

1050 **Location 30** – Unnamed mafic volcanics, Pribilof Islands, Bering Sea, [Alaska](#), publications –
1051 Unnamed mafic volcanic rocks on these young volcanic islands (~2.2 Ma - present) were studied
1052 by Cox et al. (1966) and Cox and Gordon (1984). Measurements were made using a spinner
1053 magnetometer or fluxgate magnetometer in the field. AF demagnetization was rare, and only
1054 went up to 10 mT. Nevertheless, positive baked contact and reversals tests (Figure 2) indicate
1055 that the magnetization is primary. Cox et al. (1966) and Cox and Gordon (1984) found the
1056 Olduvai normal event (1.93 Ma; Ogg 2020) in their magnetostratigraphic sections, in addition to
1057 Brunhes- and Matuyama-age lavas. We have calculated the average direction of the data (Figure
1058 6d, Table 3) and the [resultant](#) pole is too low latitude like the Nunivak Island results (see
1059 Location 29 for discussion). This pole is even farther (1518 ± 630 km; Demarest 1983) from the

Deleted: AK

1062 expected pole for North America, and we cannot easily explain why this is the case.

1063

1064 **Location 31** – Old Crow Tephra and associated sediments, Porcupine River, Yukon,
1065 publications and abstracts – This area has received extensive paleomagnetic study by multiple
1066 groups (Pearce et al. 1982, Westgate et al. 1983, 1985, 1995, 2013, Hedlin and Evans 1987,
1067 Evans et al. 1989, Gillen and Evans 1989, Evans and Wang 1994), and these studies employed a
1068 variety of paleomagnetic techniques (Table 1). The Old Crow Tephra is a common marker bed
1069 throughout the northern Cordillera, and the glaciolacustrine sediments often host extensive fossil
1070 assemblages (Westgate et al. 2013). A paleomagnetic anomaly/excursion is often found
1071 immediately below the Old Crow Tephra. Early researchers assigned this anomaly to the 114 Ka
1072 Blake event (Figure 7; Singer 2014), which was later shown to be an incorrect correlation. Later
1073 work by Jensen et al. (2013) in the Yukon-Koyukuk basin found the true Blake event (see
1074 Location 33). Recent dating of the Old Crow Tephra provides a revised age of 207 Ka (Burgess
1075 et al. 2019, 2021). This age is controversial because the previous age estimate was 155-163 Ka
1076 (Reyes et al. 2022). If the new 207 Ka age is correct, then the excursion below the Tephra is
1077 probably the 212 Ka Pringle Falls excursion. If the previous 159 Ka age is correct, then the 188
1078 Ka Iceland Basin excursion is probably below the Old Crow Tephra (Ogg 2020).

1079

1080 **Location 32** – Old Crow Tephra, Allakaket, Alaska, publications – This exposure of the Old
1081 Crow Tephra was studied by Westgate et al. (1983) and Westgate et al. (1985). No
1082 paleomagnetic data was presented from this locality in these studies, except that the lacustrine
1083 beds have apparent normal polarity.

1084

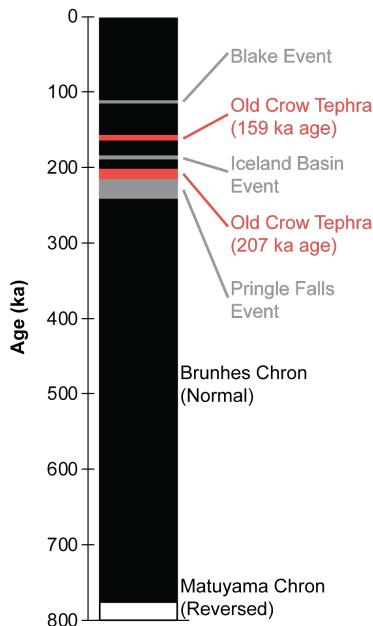
1085 **Location 33** – Unnamed Quaternary sediments, The Palisades, Yukon River, Alaska, publication
1086 and abstract – This prominent exposure of Quaternary sediments along the Yukon River was
1087 studied by Opalka et al. (2004) and Jensen et al. (2013). Measurements were made using a
1088 cryogenic magnetometer and AF demagnetization, and all samples had normal polarity. Jensen et
1089 al. (2013) found an excursion above the Old Crow Tephra and argued that this was the Blake
1090 event (Figure 7). Earlier studies in Alaska and Yukon that claim to have found the Blake event
1091 underneath the Old Crow Tephra are most likely mistaken given recent geochronological data
1092 (see Location 31 for discussion).

Deleted: ..

Deleted: AK

Deleted: AK

Commented [JS5]: Field tests?


Commented [JB6R5]: Field tests are almost never done on Quaternary sediments, the magnetization is assumed to be primary.

1096

1097 **Location 34** – Quaternary to Recent lacustrine sediments, Imuruk and Whitefish Lakes, Seward
1098 Peninsula, [Alaska](#), publication and thesis– This study by Marino (1977) and Marino and Ellwood
1099 (1978) focused on recent geomagnetic excursions in ~150 Ka to present lake sediments.

Deleted: AK

1100 Measurements were made on a cryogenic magnetometer using AF demagnetization methods.
1101 One of the ‘excursions’ that was found was incorrectly attributed to the Blake Event (see
1102 Location 31 and 33 for discussion). The original Marino (1977) study was called into question by
1103 Marino and Ellwood (1978), who speculated that some of the ‘excursions’ that they measured
1104 could actually be due to slumping and other soft-sediment deformation. If an older excursion
1105 than the Blake Event was measured, their age model must be incorrect since all older excursions
1106 predate 150 Ka (Figure 7).

1107

1108 **Figure 7.** Geomagnetic polarity time scale for the last 800 kyr. Geomagnetic excursions ([grey](#))
1109 or reversals are shown (Ogg 2020), along with proposed ages for the Old Crow tephra ([red](#), see
1110 Location 31).

Deleted: AK

1111 **Location 35** – Quaternary to Recent lacustrine sediments, Burial Lake, North Slope, [Alaska](#).

1114 publication, thesis, and abstract – Burial Lake was the subject of a series of recent paleomagnetic
1115 studies (Dorfman et al. 2011, 2012, 2015, Dorfman 2013, Finkenbinder et al. 2014). These
1116 studies meet modern standards ([Table 1](#)), including extensive rock-magnetic characterization.
1117 Sediments from this lake cover the last ~37 Ka, and the studies were focused on determining
1118 various environmental conditions over this time.

1119

1120 **Location 36** – Quaternary to Recent lacustrine sediments, Cascade and Shainin Lakes, central
1121 Brooks Range, [Alaska](#), thesis and abstract – The lacustrine sediments of Cascade Lake were
1122 studied by Steen et al. (2015) and Steen (2016). These studies meet modern standards ([Table 1](#)),
1123 including extensive rock-magnetic characterization. The sediments in Cascade Lake cover ~21
1124 Ka to present, but the interpretation of the paleomagnetic results were complicated by the variety
1125 of sediment inputs into the lake; as a result, the correlations with local environmental conditions
1126 were not straightforward. Another lake ~150 km to the east – Shainin Lake – was also studied
1127 with similar methods. This lake yielded shallower inclinations than expected, which Steen et al.
1128 (2015) attribute to inclination flattening.

1129

1130 **4. Discussion**

1131 **4.1 Overprints**

1132 As highlighted by previous researchers (e.g. [Hillhouse and Grommé 1983](#), [Coe et al.](#)
1133 [1985](#), [Stone 1989](#)), the most common paleomagnetic signal in the study area is a prominent
1134 Mesozoic–Cenozoic overprint developed during Cordilleran deformation and metamorphism.
1135 This distinctly steep overprint is found from Yukon (Location 1, Mount Harper) to the Bering
1136 Sea (Location 6, Seward Peninsula). [However, many sites that are Middle Cretaceous or older](#)
1137 [still retain some primary magnetization and were not completely reset during the Cordilleran](#)
1138 [Orogeny. For example, our oldest igneous sites are Neoproterozoic \(Franklin LIP, Locations 1](#)
1139 [and 2\), and one of our oldest sedimentary sites is Cambrian \(Location 5\), all of which retain](#)
1140 [some primary remanent magnetization. Units farther to the north in the study area \(e.g.,](#)
1141 [Sadlerochit Mountains, North Slope, Arctic Alaska terrane\) appear to have experienced less](#)
1142 [severe overprinting, but other portions of the Arctic Alaska terrane and Yukon-Koyukuk basin](#)
1143 [also evaded complete resetting during this event. This may be due to structural position within](#)
1144 [the Cordilleran orogen \(e.g. Location 15, Asik Mountain\) or more random ‘thermal windows’](#)

Deleted: AK

1146 (Harris et al. 1985) associated with less severe plutonism, fluid flow, or other tectonic processes
1147 (e.g. Location 24, Nulato sedimentary rocks). Thus, future paleomagnetic studies in this region,
1148 if carefully designed, could be highly informative for paleogeographic and tectonic
1149 reconstructions.

1150 **4.1.1 Timing of Overprinting**

1151 The exact age of the overprint is difficult to determine and could be diachronous between
1152 different terranes (Figure 1). The steep-downward direction of the overprint precludes an
1153 overprinting age prior to the Middle Cretaceous, when expected overprint directions would have
1154 been more shallow (Beck and Housen 2003, Torsvik et al. 2012). Several Late Cretaceous to
1155 Cenozoic units discussed in this review (Locations 25, 27, 28, 5, and younger sites) retain
1156 primary magnetization, indicating that widespread overprinting was probably complete by the
1157 early Paleogene. Based on these constraints, the timing of overprinting was restricted to the
1158 Middle to Late Cretaceous.

1159 Thermochronological data can provide additional constraints on the timing of
1160 overprinting. Most $^{40}\text{Ar}/^{39}\text{Ar}$ cooling ages from the Arctic Alaska and Ruby terranes range from
1161 ~120–100 Ma (e.g. Dillon et al. 1985, Roeske et al. 1995, Blythe et al. 1996, Vogl et al. 2002,
1162 Wildgoose 2013, O’Brien and Grove 2022), in agreement with metamorphic zircon overgrowth
1163 ages from the central Brooks Range (Hoiland et al. 2018). K-Ar cooling ages from the Yukon-
1164 Koyukuk basin typically yield ages of ca. 110–90 Ma (e.g. Harris 1985, Harris et al. 1987, Miller
1165 and Bundtzen 1994). Apatite and zircon fission track and (U-Th)/He ages range more widely in
1166 the Brooks Range and Seward Peninsula, from ca. 100–20 Ma with prominent cooling ages in
1167 the Cenozoic (Blythe et al. 1997, O’Sullivan et al. 1997, McDannell 2011, Craddock et al. 2018).
1168 Apatite and zircon fission track and (U-Th)/He ages from the Northern Richardson Mountains,
1169 Yukon yield similar age constraints of ca. 120–20 Ma (O’Sullivan and Lane 1997, McKay et al.
1170 2021)

1171 Given that the closure temperatures of these various thermochronological systems (~70°C
1172 to ~550°C; Reiners and Brandon 2006, Chew and Spikings 2015) overlaps with the temperatures
1173 that paleomagnetic directions are acquired (>100 °C to ~600 °C; Pullaiah et al. 1975, Dunlop and
1174 Özdemir 1997), we can assume that the strong overprints in the study area likely occurred in the
1175 Middle to Late Cretaceous with some overprints potentially being acquired in the Paleogene.
1176 However, the field tests performed on Paleogene sites (Locations 25+) suggest that any resetting

Formatted: Font: Bold

Deleted: ↗, but t

Deleted: and

Deleted: terrane

Deleted: directions

Deleted: even later

1182 in the Cenozoic was probably highly localized and not regional in nature. This is supported by
1183 the preservation of Paleozoic and Precambrian remanence directions in the northeastern Brooks
1184 Range (Locations 2 and 4) despite also preserving Cenozoic Apatite and Zircon fission track
1185 ages (Craddock et al. 2018)

1186 It is also important to note that there is probably some diachroneity in the timing of
1187 overprint acquisition in this region. 'The overprint' may consist of several temporally distinct
1188 overprints, imparted in different terranes at slightly different times, that have amalgamated in
1189 this region. However, we lack sufficient data to determine the timing, magnitude, or areal
1190 distribution of this diachroneity.

1191

1192 4.2 Overprint Interpretation

1193 Several older sites experienced complete paleomagnetic resetting despite never reaching
1194 temperatures above $\sim 300^{\circ}\text{C}$, while the nominal temperature needed to fully reset magnetite is
1195 $\sim 580^{\circ}\text{C}$ (Dunlop and Özdemir 1997). The most likely explanation for this is protracted heating at
1196 moderate temperatures, which can reset paleomagnetic directions as effectively as short intervals
1197 at high temperatures (Pullaiah et al. 1975). We can use the long-lived nature of this overprinting
1198 to our advantage – because the overprints may have taken thousands or millions of years to
1199 impart, they could represent a long-term average of the geomagnetic field at the time. A
1200 compilation of the overprints is given in Figure 8a and Table 4. The average overprints from this
1201 region show some scatter, which is to be expected from an area with significant structural
1202 complexity between sites and terranes and with the added uncertainty of potential younger
1203 Paleogene resetting in some areas.

1204 It is also useful to compare the Middle to Late Cretaceous overprint directions to
1205 Cretaceous primary directions from the same terranes. In Arctic Alaska, there is only one
1206 Cretaceous study site that was not reset during the Brookian orogeny and that is the Kuparuk
1207 River Formation (Halgedahl and Jarrard 1987). The resultant pole from this study is contentious
1208 and the subject of its own section below (Section 4.2). In the Yukon-Koyukuk basin, three
1209 primary Cretaceous directions are available (Figure 8b). These primary directions show some
1210 disagreement with the average overprint direction from the Yukon-Koyukuk basin; all the
1211 primary poles have a consistent paleolatitude of $\sim 59\text{--}62^{\circ}\text{N}$, which is slightly lower than the
1212 paleolatitude of the overprint pole at $65.6 \pm 8.2^{\circ}\text{N}$ (Table 4). In addition, the primary poles from

Formatted: Font: Bold

Deleted: Most examined Late Cretaceous and younger sites (Locations 25+) appear to have avoided significant metamorphic overprinting, which suggests the regional Cordilleran thermal event was potentially complete by the terminal Cretaceous.

Deleted: terrane

Deleted: terrane

1220 Sites 24 and 27 seem to be rotated relative to the overprint pole (Figure 8b). This could be
 1221 explained by tectonic deformation. It is not clear to what degree the shape of the Yukon-
 1222 Koyukuk basin is original versus modified by oroclinal bending (e.g. Patton and Box 1989,
 1223 Johnston 2001). The consistent paleolatitude, in combination with inconsistent degrees of
 1224 rotation, suggests that oroclinal bending may have significantly rotated the paleomagnetic
 1225 directions post-deposition. Alternatively, the results from Locations 24 and 27 may represent an
 1226 incomplete record of the long-term average magnetic field. Further paleomagnetic study will be
 1227 needed to resolve these issues. Regardless, a paleolatitude of ~60–65°N in the Middle to Late
 1228 Cretaceous seems to be a consistent result from previous studies (Locations 16, 19, 20, 22) in the
 1229 Yukon-Koyukuk basin (Table 4).
 1230

Deleted: terrane

Formatted: Not Highlight

1231 **Table 4.** Cretaceous overprint directions. Location numbers correspond to Figure 1. See Table
 1232 3 for explanation of symbols. All averages calculated using the cutoff method of Vandamme
 1233 (1994).

Location	Study	Unit or Pole	N	D (°)	I (°)	R	k	a95 (°)	Pole Lat (°N)	Pole Lon (°E)	R	K	A95 (°)	Paleo-lat. (°N)
1, Laurentia	Park 1992	Mt. Harper Volcanics (HvC)	8	1.3	79.1	7.5	15.1	14.7	83.5	223.4	6.8	5.7	25.3	69.0
1, Laurentia	Park 1992	Mt. Harper Volcanics (HSc)	4	334.0	80.5	4.0	383.6	4.7	78.3	177.0	4.0	106.8	8.9	71.5
1, Laurentia	Eyster et al. 2017	Mt Harper Volcanics (MT)	8	345.4	82.2	7.9	79.7	6.2	77.9	202.0	7.7	27.1	10.8	74.8
3, Laurentia	Park 1995	Risky Fm. Component D	7	347.6	75.0	7.0	161.8	4.8	83.9	117.6	6.9	53.6	8.3	61.7
7, Laurentia	Plumley et al. 1989	Porcupine Carbonates	26	28.8	81.2	25.7	82.7	3.1	78.7	260.6	25.0	25.4	5.7	72.9
17, Laurentia	Howell et al. 1992	Argillite	2	315.2	80.3	2.0	528.5	10.9	72.9	166.8	2.0	155.8	20.1	71.1
8, Laurentia	Park 1990	Batholith & Stocks	9	336.1	87.2	8.8	37.1	8.6	72.0	213.8	8.3	11.1	16.2	84.4
9, Arctic Alaska	Hillhouse & Grommé 1988b	Kanayut Conglomerate	11	213.2	84.9	10.8	50.8	6.5	59.4	197.1	10.4	16.0	11.8	79.8
23, Arctic Alaska	Lewchuk 2004a	Nanushuk Fm.	13	298.4	87.1	12.9	99.3	4.2	70.9	179.7	12.6	27.4	8.1	84.1
11, Arctic Alaska	Hillhouse & Grommé 1988b	Lisburne Group	2	202.9	55.5	1.8	5.3	164.7	22.0	183.0	1.7	3.9	70.6	36.0
13, Arctic Alaska	Hillhouse & Grommé 1983	Argillitic Basement	1	263.3	77.0	1.0	--	--	57.4	154.7	1.0	--	--	65.2
16, Koyukuk	Hillhouse & Grommé 1988a	Volcanics near Hughes, AK	30	24.3	74.5	19.6	2.8	19.5	86.3	237.6	14.3	1.8	28.3	61.0
16, Koyukuk	Harris 1985	Volcanics near Hughes, AK	3	313.8	82.3	2.9	16.3	31.6	72.6	166.3	2.6	5.1	61.1	74.8
19, Koyukuk	Harris 1985	Seds. along Melozitna R.	4	352.3	80.3	4.0	446.7	4.4	83.3	183.4	4.0	131.5	8.0	71.1
19, Koyukuk	Harris 1985	Seds. near Ruby, AK	5	348.0	76.5	4.8	16.7	19.3	85.1	153.9	4.4	6.7	32.0	64.3
20, Koyukuk	Globerman et al. 1983	Tuffs near Ohogamiut, AK	17	316.1	79.6	16.7	54.5	4.9	71.7	162.8	16.0	16.7	9.0	69.8
22, Koyukuk	Harris 1985	Seds. near Wiseman, AK	2	41.5	67.5	2.0	1435.8	6.6	63.6	317.8	2.0	749.9	9.1	50.4
5, Farewell	Plumley 1984	Telsitna Fm.	35	322.1	62.8	33.6	24.5	5.0	62.6	92.4	32.5	13.4	6.9	44.2
5, Farewell	Plumley 1984	Whirlwind Creek Fm.	39	35.9	47.2	38.3	53.6	3.2	48.5	333.9	38.1	41.7	3.6	28.4
Average Laurentia			56	9.8	80.5	55.0	53.9	2.6	82.6	239.2	53.1	18.7	4.5	71.4
Average Arctic Alaska			26	248.4	86.1	25.6	64.1	3.6	65.1	186.0	24.6	18.5	6.8	82.3

Formatted: Font: (Default) Arial, 6.5 pt

Average Koyukuk	54	282.6	77.2	50.5	15.2	5.1	61.0	153.1	45.8	6.5	8.2	65.6
Average Farewell	74	11.6	59.6	67.3	11.0	5.2	68.2	6.6	62.1	6.1	7.3	40.4

1235

1236 Regardless of the paleomagnetic reconstruction that is used (Figure 9; Beck and Housen
 1237 2003, Kent and Irving 2010, Torsvik et al. 2012, Merdith et al. 2021, Müller et al. 2022), the low
 1238 paleolatitude for the Yukon-Koyukuk basin is at odds with the Laurentian pole in the Middle–
 1239 Late Cretaceous. Based on the methods of Demarest (1983), up to 1032 ± 742 km of northward
 1240 displacement and up to $58 \pm 19.2^\circ$ of counterclockwise rotation of the Yukon-Koyukuk basin is
 1241 needed since the Late Cretaceous in order to bring this terrane into its current position relative to
 1242 Laurentia. Reconstructions with greater translation require less rotation, and vice versa (Figure
 1243 9b). Regardless, it is clear from the overprint data that the Yukon-Koyukuk basin originated
 1244 farther south (relative to Laurentia) than today. This lower paleolatitude permits a variety of
 1245 reconstructions for the position of the Yukon-Koyukuk basin during Cordilleran orogenesis at ca.
 1246 90 to 120 Ma (Figure 9b).

1247 The Arctic Alaska overprint pole shows a different history. This pole has a high
 1248 paleolatitude of $82 \pm 6.8^\circ\text{N}$, in slight disagreement with the expected paleolatitude of $75\text{--}80^\circ\text{N}$
 1249 for Laurentia (Figure 9c; Beck and Housen 2003, Kent and Irving 2010, Torsvik et al. 2012,
 1250 Müller et al. 2022). Based on our calculations, 46 ± 613 km of southward displacement or $60 \pm$
 1251 35° of counterclockwise rotation is needed to bring this overprint pole into alignment with the
 1252 Laurentian APW path. We note here that the timing of overprint acquisition (Middle Cretaceous–
 1253 Paleogene) postdates the proposed timing of counterclockwise rotation of the Arctic Alaska
 1254 terrane (~ 130 Ma, see Section 4.2 and Location 18), and therefore the Arctic Alaska overprint
 1255 pole does not support the original rotation hypothesis. A variety of reconstructions for Arctic
 1256 Alaska are possible (Figure 9c), but based on geological evidence, we strongly favor a
 1257 reconstruction that places it at the expected paleolatitude (75 -- 80 $^\circ\text{N}$) or farther to the north (see
 1258 Section 4.2; e.g. McClelland et al. 2021).

1259 Although the Brookian orogeny began in the Middle to Late Jurassic with the collision of
 1260 the Yukon-Koyukuk basin and Arctic Alaska terrane (e.g. Moore et al. 1994, Moore and Box
 1261 2016), the overprint data clearly shows that some relative motion between these terranes
 1262 continued after the Early to Middle Cretaceous. The specific magnitude and mechanisms of
 1263 northward transport of the Koyukuk terrane (and/or southward transport of the Arctic Alaska
 1264 terrane) are not clear. The Yukon-Koyukuk is fault-bounded on all sides, so its displacement

Deleted: terrane

Deleted: terrane

Formatted: Not Highlight

Deleted: terrane

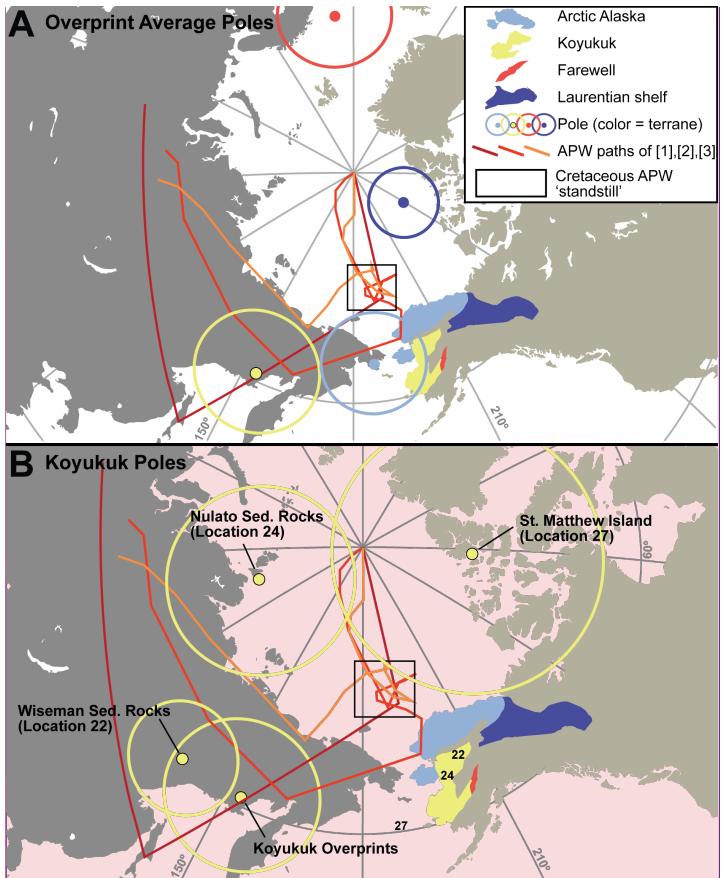
Formatted: Not Highlight

Deleted: terrane

Deleted: 100

Deleted: , but a reconstruction that places the terrane closer to Laurentia is the most plausible.

Deleted: s


Deleted: The Cretaceous was a period of subduction and contractional tectonics in the study area (e.g. Miller and Hudson 1991, Till 2016), and additional northward transport could have been accommodated by strike-slip faults that were active in the Cenozoic through today – Kaltag, Tintina, Denali, etc. (e.g. Patton and Hoare 1968, Till et al. 2007, Waldien et al. 2023, Drooff and Freymueller 2023) but large-scale northward displacement along western Laurentia remains a contentious topic (e.g. Tikoff et al. 2023).

1282 relative to Arctic Alaska since the Middle to Late Cretaceous isn't necessarily a surprising result.
1283 The total displacements on the Kaltag, Kobuk, Iditarod-Nixon Fork, and Kugruk fault zones are
1284 not well constrained, particularly if these are inherited or reactivated fault systems (Patton and
1285 Hoare 1968, Patton and Box 1989, Ayé Lallemand et al. 1998, Miller et al. 2002, Till et al. 2007,
1286 Waldien et al. 2023, Drooff and Freymueller 2023). Debris from the Brooks Range contributed
1287 to Yukon-Koyukuk sedimentary deposits (e.g. Fredriksson and Pease 2019, 2022), but otherwise
1288 the magnitude of displacement on these faults (particularly prior to Cenozoic strike-slip
1289 tectonics) is poorly constrained.

Formatted: Font color: Auto

1290 While the available data suggest an interesting paleogeographic history for these terranes,
1291 there is insufficient high-resolution and reliable data to make any definitive conclusions about
1292 orocinal bending, rotations, or large-scale displacements, particularly for terranes with complex
1293 internal deformation. Arctic Alaska, for example, only has a few reliable directions or overprints
1294 for an area the size of California, and it is demonstrably a composite terrane with a polyphase
1295 accretion and deformation history (e.g. Strauss et al. 2013). Additional paleomagnetic studies
1296 will be needed to resolve the tectonic history of this region.

1297

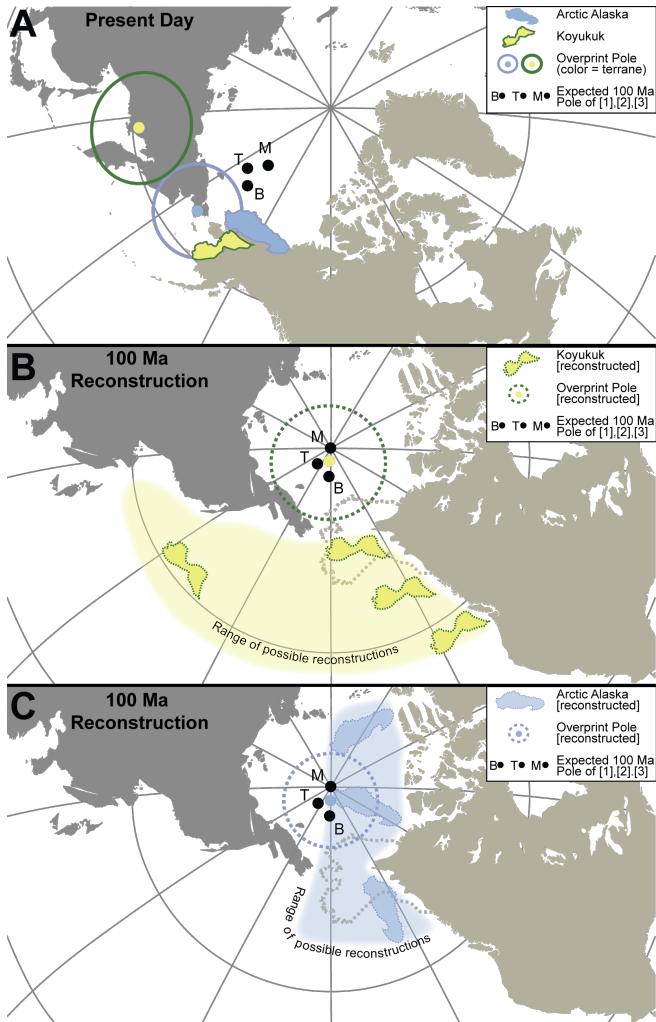

1298
1299
1300
1301
1302
1303
1304

Figure 8. A) Compilation of average overprint poles for individual terranes. APW paths of [1] Beck & Housen (2003), [2] Torsvik et al. (2012), and [3] Müller et al. (2022) are shown for reference. Outlier poles were excluded from averages using the method of Vandamme (1994). B) Koyukuk average overprint pole shown with primary (non-overprinted) poles from Cretaceous units in the Yukon-Koyukuk basin and St. Matthew Island. The expected pole for a stable Laurentian site is within the 'APW standstill' box.

Commented [JS7]: It is super hard to tell the difference in the APW paths with the line dashes...maybe consider another way to show (or different colors)? You could also make the legend bigger?

Commented [JB8R7]: I've replaced all the problematic colors in the next few figures, using Illustrator's colorblind simulator.

Deleted: terrane

1307
1308
1309
1310
1311
1312
1313

Figure 9. A) Early Late Cretaceous overprint poles from the Yukon-Koyukuk basin and Arctic Alaska terrane, which do not overlap the expected ca. 90-120 Ma poles of [1] Beck & Housen (2003), [2] Torsvik et al. (2012), and [3] Merdith et al. (2021) for a stable Laurentian site. Outlier data were excluded from averages using the method of Vandamme (1994). B) Possible Yukon-Koyukuk basin reconstructions at c. 90-120 Ma based on Cretaceous overprint data alone. C) Possible Arctic Alaska terrane reconstructions at c. 90-120 Ma based on Cretaceous overprint

Deleted: s
Deleted: 100

Deleted: terrane
Deleted: 100
Deleted: 100

1319 data alone (see also Figure 10 and Section 4.2).

1320 Formatted: Normal, Widow/Orphan control, Hyphenate

1321 **4.2 Arctic Alaska (non-)Rotation**

1322 Only one primary Cretaceous direction from the Arctic Alaska terrane has been published
1323 (Location 18; Halgedahl and Jarrard 1987). Since that time, however, our understanding of the
1324 position of Laurentia during the Early Cretaceous has improved significantly (e.g. Beck and
1325 Housen 2003, Müller et al. 2022). The expected pole position for a Hauterivian (ca. 130 Ma) site
1326 is now 1487 ± 515 km closer to the Kuparuk River Formation study site than previously
1327 estimated (Harrison and Lindh 1982, Demarest 1983). The Kuparuk River pole has a
1328 paleolatitude of $68.5 \pm 5^\circ\text{N}$, while the expected paleolatitude for a stable North American site at
1329 this location is now $\sim 84^\circ$ (Beck and Housen 2003, Kent and Irving 2010, Torsvik et al. 2012,
1330 Müller et al. 2022). No amount of rotation can bring the Kuparuk River pole in alignment with
1331 the rest of Laurentia (Figure 10a), regardless of the reconstruction that is used.

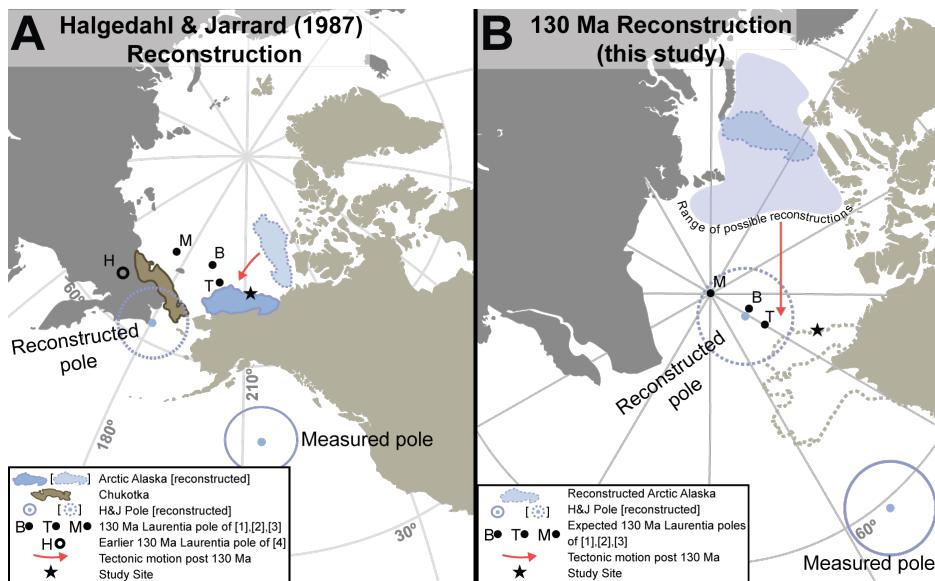
1332 The Kuparuk River pole could be moved much closer to the study site if inclination
1333 flattening is invoked, but this unit is not a good candidate for large degrees of flattening because
1334 hematite is not particularly abundant in the measured samples (Halgedahl and Jarrard 1987).
1335 Although some inclination flattening is still possible, it would likely not be profound enough to
1336 ‘shorten’ the pole to a degree necessary to support the counterclockwise rotation tectonic model.
1337 The Kuparuk pole could also be brought closer to the study site using geographic directions
1338 instead of the tilt-corrected directions. This would require an interpretation that the Kuparuk
1339 River locality was completely remagnetized post-folding; however, the reversals found in the
1340 examined core preclude any significant post-deformation remagnetization, as reversal
1341 stratigraphy is never created during regional metamorphism on this small of a scale.
1342 Alternatively, the regional tilt of the beds could have been accounted for incompletely; however,
1343 the Kuparuk River Formation is very gently folded at this distance from the Brookian
1344 deformation front, so any unaccounted-for dip correction would be quite minor.

1345 Although the inclination data (and therefore paleolatitude + reversals) may be reliable in
1346 the Halgedahl and Jarrard (1987) dataset, declination issues are common during oriented drilling.
1347 For example, one can resolve the large-rotation disparity if we assume that during drilling, the
1348 cores became misoriented. The counterclockwise rotation hypothesis is dependent on accurate
1349 declination data, which is the most suspect portion of the paleomagnetic signal during oriented

1350 vertical drilling. However, Halgedahl and Jarrard (1987) went to great efforts to address this,
1351 including noting that the data from two separate wells were in agreement and noting that the
1352 likelihood that both cores were misoriented to the same degree during drilling (probably $\sim 180^\circ$)
1353 is low. Thus, we conclude that the declination and inclination data are probably still reliable in
1354 this dataset.

1355 Another possible explanation is that the Arctic Alaska terrane experienced significant
1356 translation instead of rotation during the opening of the Canada Basin. The implied paleolatitude
1357 of this terrane is $68.5 \pm 5^\circ\text{N}$, and it could have traversed over the north pole into its current
1358 position (Figure 10b). Arctic Alaska continued to experience contraction until at least ca. 105 Ma
1359 (e.g. Till 2016), so when combined with the Hauterivian age of Kuparuk River Formation
1360 sedimentation, we calculate that the terrane would need to move 1925 ± 454 km in ~ 25 Myr, a
1361 rate of 77 ± 18 km/Myr or 7.7 ± 1.8 cm/yr (Demarest 1983). Such convergence rates are
1362 plausible (Kreemer et al. 2014), and so a ‘polar traverse’ model (Figure 10b) is consistent with
1363 the results of Halgedahl and Jarrard (1987). The timing of this event and the convergence
1364 directions are also in general agreement with southward convergence of Chukotka against other
1365 eastern Siberian terranes at this time (Figure 10b; e.g. Amato et al. 2014, 2015). This tectonic
1366 reorganization may explain how the provenance of detrital material entering the Colville basin
1367 changed from Chukotka-derived to Chukotka + Arctic Alaska-derived in the Albian (Moore et al.
1368 2015).

1369 In general, this model is also in agreement with the average overprint directions from the
1370 Arctic Alaska terrane and Yukon-Koyukuk basin (Figure 9). It is widely agreed upon that the
1371 Brookian orogeny was caused by the collision between Arctic Alaska and the Koyukuk arc
1372 starting in the Middle to Late Jurassic (e.g. Moore et al. 1994, 2015), so there must be some
1373 coherence among Cretaceous paleomagnetic directions in both terranes following the onset of
1374 this collision, even if the exact shortening/collisional history is still poorly constrained.


1375 Currently, most of the Cretaceous overprint poles are north of $\sim 70^\circ\text{N}$, along with the syn-folding
1376 pole of Witte et al. (1987) (present coordinates; Figure 9), while the Kuparuk River Formation
1377 pole is located at $\sim 50^\circ\text{N}$ (Figure 10a); thus, based on these data, there is no geologically
1378 plausible way for both the counterclockwise rotation hypothesis and overprint data from all other
1379 sites to be in agreement. Note that small degrees of counterclockwise rotation ($< 30^\circ$) are still
1380 permissible under this model, but at the moment, we cannot build a more geologically definitive

Deleted: terranes

Deleted: these other

1383 reconstruction without additional paleomagnetic data.

1384

1385
1386 **Figure 10.** Reinterpretation of the Lower Cretaceous Kuparuk River Formation pole from
1387 Halgedahl and Jarrard (1987) (H&J). A) Original interpretation from 1987, which is no longer
1388 compatible with the APW paths of [1] Beck & Housen (2003) (B), [2] Torsvik et al. (2012) (T),
1389 or [3] Merdith et al. (2021) (M). [4] Earlier 130 Ma pole of Harrison & Lindh (1982). B) A
1390 ‘polar traverse’ model for Arctic Alaska. Note the similarities between this reconstruction and
1391 the one shown in Figure 9c. The exact position of Chukotka at 130 Ma is not well constrained
1392 (Merdith et al. 2021).
1393

1394 **4.3 Other Tectonic and Paleobiogeographic Implications**

1395 Several other interesting tectonic observations result from this data compilation. First, it
1396 is clear that paleomagnetic data from Paleozoic carbonate rocks in the Porcupine fault system
1397 have an overprint that is significantly displaced from the Laurentian APW path (Plumley et al.
1398 1989), which suggests $58.0 \pm 17.7^\circ$ of clockwise rotation since the Middle–Late Cretaceous
1399 (Figure 4d). This supports a model in which the fault system was active through the Cenozoic,
1400 perhaps even post-dating the current Miocene constraint if the assumption that these younger

1401 rocks are not deformed is incorrect (e.g., Kunk et al. 1994). Second, the paleolatitude of the
1402 Farewell terrane, as determined by primary data from Ordovician–Devonian carbonates (Plumley
1403 1984), would suggest that it was most likely not part of the Laurentian passive margin. The
1404 calculated paleolatitude makes it a possible candidate for originating as part of or adjacent to the
1405 Siberian and Laurentian passive margins at this time (Figure 4c; Müller et al. 2022), a conclusion
1406 that is supported by the Siberian paleobiogeographic aspect of the Paleozoic faunas in these
1407 strata (e.g. Dumoulin et al. 2002, Blodgett et al. 2002, Bradley et al. 2003, Johnston 2008,
1408 Hudson et al. 2023). Third, calculated poles from several Paleozoic and Mesozoic sites in this
1409 review (e.g. Farewell terrane average overprint, Figure 8a) require various degrees of northward
1410 translation or (counter) clockwise rotation in order to align with the Laurentian APW path. For
1411 most of these studies, it is not clear how reliable the data truly are, or how well they capture a
1412 long-term average of the field, but more detailed study at any location that has already yielded
1413 primary magnetizations would be highly informative.

1414 In addition to these tectonic implications, it is also worth noting that numerous
1415 Cretaceous units in northern Alaska contain dinosaur fossil or footprint sites (e.g. Brouwers et al.
1416 1987, Druckenmiller et al. 2021). The discovery of these high-latitude dinosaurs sparked
1417 numerous subsequent studies, including abundant theories on dinosaur migration patterns and
1418 adaptations (Fiorillo and Parrish 2004, Brown and Druckenmiller 2011, Erickson and
1419 Druckenmiller 2011, Fiorillo et al. 2024). However, the high-latitude nature of these sites was
1420 often taken for granted, without any paleomagnetic confirmation of their primary paleolatitude.
1421 Although the various poles from Arctic Alaska often do not overlap, they do suggest a
1422 consistently high paleolatitude ($\sim 80^\circ\text{N}$) during the Cretaceous (Table 4). Regardless of any
1423 tectonic details that have yet to be resolved about the movement of Arctic Alaska, this
1424 consistently high paleolatitude places northern Alaska even farther to the north during the
1425 Cretaceous than it is today, thereby confirming that these dinosaurs were indeed ‘polar’, or
1426 nearly so.

1427

1428 **4.5 Future Work**

1429 Perhaps the most intriguing finding of this compilation is the recognition that there is
1430 significant room for future improvement of paleomagnetic constraints on northern Cordilleran
1431 tectonics. Large portion of this region have limited to no paleomagnetic data, including St.

1432 Lawrence Island, the eastern Brooks Range, the Farewell terrane, most of the Angayucham
1433 terrane and various smaller terranes surrounding the Tintina fault system, and the central North
1434 Slope. Highways that cut through this region (e.g., the Dalton and Dempster highways) also
1435 traverse through units with no paleomagnetic data, and these units could be sampled easily
1436 compared to most of this region. While some of these areas will be completely overprinted, our
1437 review has shown that many areas in the northern Cordillera are not reset and could yield useful
1438 data. Even additional work on characterizing the age and nature of the Cretaceous overprint
1439 would be highly informative. A focus on targeting volcanic lithologies would be key to avoiding
1440 complete resetting of primary directions. In this regard, volcanics of the Koyukuk arc and
1441 Angayucham terrane, are probably the most promising units for future study. Sedimentary units
1442 can also yield non-overprinted data, but care must be taken to select fine-grained strata in the
1443 least-metamorphosed regions. The Sadlerochit and Shublik Mountains of the northeastern
1444 Brooks Range are the most promising in this regard, along with the identified thermal windows
1445 in the Yukon-Koyukuk basin (Harris et al. 1985). Finally, our review shows that better
1446 constraints on the paleolatitudes of Arctic Alaska, Koyukuk, and Angayucham terranes prior to
1447 the Middle–Late Cretaceous are feasible. Careful site selection and study design is key to future
1448 success in this region, but new paleomagnetic data would be a valuable contribution to refining
1449 our understanding of the paleogeographic and tectonic history of the northern Cordillera.
1450

1451 **5. Conclusions**

1452 Here, we have compiled and re-assessed the quality of all available paleomagnetic studies in
1453 northern Alaska and Yukon north of the Tintina fault system (Figure 1). Based on our assessment
1454 of these datasets, we conclude the following:

- 1455 1. Primary remanence directions from Neoproterozoic igneous rocks (Locations 1 and 2)
1456 and Cambrian, Ordovician, Devonian, and Carboniferous sedimentary rocks (Location 5)
1457 can be found in this region despite previous assumptions that all pre-Cretaceous rocks
1458 were overprinted (Figure 1).
- 1459 2. Many previous studies that found complete paleomagnetic resetting suffered from poor
1460 lithology selection – avoidance of carbonates and coarse-grained siliciclastics is key to
1461 any future paleomagnetic study design in this region.
- 1462 3. Due to revisions in the Cretaceous poles for Laurentia, the counterclockwise rotation

Deleted: –Paleogene

Deleted: s

Deleted: the

1466 hypothesis for Arctic Alaska is no longer supported by the paleomagnetic data presented
1467 by Halgedahl and Jarrard (1987). We instead favor hybrid translation of the Arctic Alaska
1468 terrane during the opening of the Canada basin with smaller degrees of counterclockwise
1469 rotation still being permissible.

1470 4. Large-scale relative motion between the Arctic Alaska terrane and Yukon-Koyukuk basin
1471 and Laurentia was probably still incomplete by the Late Cretaceous. The precise
1472 mechanisms and timing of post-Albian deformation in this area are not yet clear.
1473 5. The offset between Middle to Late Cretaceous overprint directions in Paleozoic
1474 carbonates in the Porcupine fault system and age-equivalent rocks in Laurentia suggests
1475 that this fault system was likely active through the Cenozoic.
1476 6. ‘High-latitude’ dinosaur fossil sites in northern Alaska are confirmed; the paleolatitudes
1477 of some fossil-bearing strata were even more northerly than today.
1478 7. Almost all paleomagnetic studies in this region do not meet modern paleomagnetic
1479 quality standards and merit revision of some kind. However, the few places where repeat
1480 studies were done (Location 1) indicate that some of the data and their interpretations will
1481 likely stand the test of time.

Deleted: terranes

1482 **Acknowledgements**

1484 Support for this work was provided by National Science Foundation awards EAR-2052963,
1485 EAR-2333180, and EAR-2317732 to J. Biasi and EAR-1624131, EAR-1947074, and EAR-
1486 2314532 to J.V. Strauss, as well as a GSA John T. Dillon Alaska Research Award to J. Biasi.
1487 This work benefitted from numerous discussions with other northern Cordilleran researchers,
1488 including but not limited to Bill McClelland, Chris Connors, Marwan Wartes, Maurice Colpron,
1489 Don Murphy, Tom Moore, Elizabeth Miller, Sarah Roeske, Dwight Bradley, Gil Mull, David
1490 Houseknecht, Julie Dumoulin, Richard Lease, Jamey Jones, Trystan Herriot, Bob Gillis, Ben
1491 Johnson, Eric Gottlieb, Carl Hoiland, Bernie Coakley, Jaime Toro, Jonathan Caine, David
1492 Moynihan, Rosie Cobbett, Athena Eyster, Francis Macdonald, and David Stone. Thanks to Tim
1493 Gibson and Esther Kennedy for assistance with fieldwork in the Shublik and Sadlerochit
1494 Mountains, as well as to Heather Bartlett and Maria Berkeland at the US Fish and Wildlife
1495 Service for arranging permission to work in Arctic National Wildlife Refuge. Thanks to
1496 Benjamin Weiss and Roger Fu for use of the paleomagnetics laboratory at Massachusetts

1498 Institute of Technology to acquire preliminary data from the Kikiktat volcanics.

1499

1500 The authors declare no conflicts of interest. Author contributions: JB – Conceptualization, data
1501 curation, formal analysis, funding acquisition, investigation, project administration, resources,
1502 validation, visualization, writing - original draft, writing – review and editing. JS –
1503 Conceptualization, data curation, funding acquisition, methodology, resources, validation,
1504 writing - review and editing.

1505

1506 **Data Availability**

1507 New data from the Kikiktat Volcanics are still being collected and will be made available in a
1508 later manuscript. All other data in this review are available in previously published studies
1509 (referenced below).

1510

1511 **References**

1512 Automatic citation updates are disabled. To see the bibliography, click Refresh in the Zotero tab.