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1. Introduction

Fix a commutative ring k with unit. Given a representation U of a finite group G over k, there are two
natural kG-modules one can associate to U on which G acts trivially - the fixed space U% and the cofixed
space Ug. The fixed space is the largest k-submodule of U carrying trivial G-action, while the cofixed space
is the largest k-module quotient of U carrying trivial G-action. As k-modules, the fixed space and the
cofixed space are nearly dual to each other, with (Ug)* = (U*)¢ [1, Lemma 2.21]. The functors (—)¢ and
(=) on kG-modules form an adjoint pair.

When U is a k-algebra S and G acts on S by k-algebra automorphisms, an asymmetry between S¢ and
Sq is apparent. The fixed space S€ is itself a ring, called the ring of invariants, and its algebraic structure
has been a central object of study in commutative algebra and representation theory for many years. The
cofixed space, on the other hand, is not a ring, but it is a module over the ring of invariants.

The structure of the cofixed space as a module over S depends greatly on whether or not |G| is invertible
in k. In the nonmodular case, i.e. when |G| is a unit in k, the cofixed space is a free S“-module of rank one.
When |G| is not a unit, very little is known about Sg as an S“-module. In [9], Lewis, Reiner, and Stanton
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prove that S still has rank one over S¢, and they give conjectures for the Hilbert series of k|1, ..., z,]q,
for k a finite field, when G is GL, (k) or one of its parabolic subgroups.

In this paper, we study the S%module structure of Sg when S = k[zy,...,2,] and G = &, the
symmetric group on n letters, acting by variable permutation. For p a prime integer, we consider k = Z
and k = IF,,, where Z,) denotes the localization of Z at the prime ideal (p) and IF, = Z,/pZ ) is the finite
field with p elements. The action of &,, is modular for these k when n > p. It is well-known that regardless of
k, the ring of &, -invariants is a polynomial ring k[e1, . .., e,], where e; is the degree i elementary symmetric
polynomial in z1,...,z,. Our main theorem explicitly describes the structure of Sg as a module over this
polynomial ring when p <n < 2p.

Theorem 1.1 (Main theorem). Let p < n < 2p and let i = n — p. Then the cofized space Zy)[x1,. .., znls,

is isomorphic to the ideal J,, of Zyyler, ..., en] given by
Jn = (D, €1€p —€pi1, €26y — €pya, ..., €€y — Cpiiy Ciyl, €Ciy2y -y €p_1).
For n in this range, the generators of J, form a reqular sequence and have degrees 0,1,...,p—1 mod p.

We will show that J,, is exactly the ideal I¢ for G = &,,, where I¢ is the image of the transfer map,
denoted Tr®. This is a map of S¢-modules defined by

™e: 8 — §¢

F=Y"alh).

geG

The relationship between the cofixed space and the image of the transfer is explained in Section 3.2. The
image of the transfer map has been a longstanding object of interest in the study of modular invariant
theory; see [13] for background, and [5], [11], [12], [15] for work on the image of the transfer map for various
subgroups G of GL,, (k). This paper also serves to give a description of the image of the transfer map when
p<n<2p, G=G6,,and k = Z,),F,. To illustrate Theorem 1.1, we write the ideals ISn of Zsyler, - - -, en]
forp=>5and n € {5,6,7,8,9}:

5, e1, €2, €3, €4)

5, e1e5 — e, €2, €3, €4)

Ut

, €165 — €6, €265 — €7, €3, €4)

=

=
197 = {

= (5, e1e5 — g, €265 — €7, €365 — €8, €4)

= (5, e1e5 — g, €2e5 — €7, €365 — €8, €4€5 — €9).

The ideals I®» follow the pattern that I€»+i can be obtained from I®€»+i-1 by replacing the e;j generator
with eje, — e,4;. Since these ideals are generated by a regular sequence - in the same degrees mod p - their
minimal free resolutions' have the same structure, with graded Betti numbers being the same if one takes
degrees mod p. This stability in the module structure of Sg is trivially true when 0 < n < p: since Sg is
free of rank 1 over S€ in this case, the cofixed space has one S®-generator in degree 0, and no syzygies.

When n > 2p, the structure of I®» becomes more complicated, as IS~ is no longer generated by a

regular sequence. However, the stability of graded Betti numbers mod p persists. As an example for p = 2

1 See Appendix A for notes on why graded minimal free resolutions over the polynomial ring Z(p) le1, ..., en] are unique up to
isomorphism. This allows us to use the terms “minimal free resolution” and “graded Betti number” unambiguously.
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and n = 4,5, below we show the Betti tables for 194 (left) and I®5 (right) over Zle1,. .., e4] and
Za)ler, . .., es], respectively. Here, we follow the same convention as in Macaulay2, where the entry in row
j and column ¢ is the Betti number 5; ;. ;; for background on graded Betti numbers, see [14, 1.12]. One can
see from these tables that

Yoo BpIS) = > By (%)

j’=j mod 2 j'=j mod 2

for all homological degrees ¢ and for j = 0, 1.

0123
total: 57 41
0123 0: 1
total: 567 4 1 1: .1
0: 11 2: 11
1: 111 3: 1.1
2:121 4: 2
3:1111 5: 1
4: 11 6: .
5: . 1 T: .1
6: 1 8: 1.
9: 1
10: 1

Just as in the case that n < 2p, the minimal generators for these two ideals have the same degrees mod
2 (in fact, they are the same mod 4), and the degree shifts appearing in higher homological degree are also
the same mod 4. Along with more data to this effect, these findings suggest the following conjecture.

Conjecture 1.2. Let p < m,n < ({+1)p for ¢ > 0. Fiz a homological indexi > 0 and an integer 0 < j < p—1.
Then, working over base ring k = Z ), we have an equality of graded Betti numbers

S B = D B (ISm).

j'=j mod p j'=j mod p

1.1. Organization of paper

In Section 2, we discuss background on cofixed spaces of finite group representations and cite known
results on the S%-module structure of the cofixed space. In Section 3, we discuss the modular transfer
map and what is known about its image. We then relate the transfer map back to the cofixed space over
rings of characteristic 0 and prove a useful base change lemma (Lemma 3.8) which allows us to consider
characteristic p. Section 4 goes through the steps necessary to prove Theorem 1.1. Of particular importance
is a relationship between the structure of the Sylow p-subgroups of &,, and the stability in the ideals I®~;
this is the topic of Subsection 4.3. Theorem 1.1 is proven in Subsection 4.4. We discuss applications of
Theorem 1.1 to the cofixed space and the transfer map with I, coefficients in Section 5. In Section 6, we
provide data in support of Conjecture 1.2, which is restated more precisely as Conjecture 6.1. Appendix A
is dedicated to verifying that graded minimal free resolutions over polynomial rings with local coefficient
rings are unique up to isomorphism.
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2. Background on cofixed spaces
2.1. Cofized spaces of general representations

Definition 2.1. Let U be a finitely-generated free k-module and let G be a finite group acting on U via
k-linear automorphisms of U. We define the fized space U®, and the cofized space Ug, respectively, to be
the k-modules

UY :={uecU:g(u)=muforall g G},
Ug :=U/span {u —g(u) :u € U,g € G}.

The fixed and cofixed spaces satisfy the properties that U is the largest submodule of U on which G
acts trivially, and Ug is the largest quotient of U on which G acts trivially. They can also be defined as

UY = Homye(k,U), and
Uc =k ®ka U,

where k is the trivial kG-module. The group homology and group cohomology functors H;(G,—) and
H'(G, —), respectively, are the left- and right-derived functors of (—)g and (—)%. The fixed space is well-
studied due to its importance in the invariant theory of finite groups when U is a ring. The cofixed space
appears in relation to other mathematical objects, but its own internal structure is less well-understood.
See, e.g. [6, §3.1] for its role in defining the stability degree of an FI-module and [1, Ch.15] for its role in
defining the bosonic Fock functors. We now provide two specific examples of fixed and cofixed spaces so
that the reader can gain intuition.

Example 2.2. When U = k[z1,...,2,] and G is a subgroup of &,, which acts by permuting variables, then
U% and Ug are isomorphic free k-modules, with k-bases

UY = spany, Z I ANEA Y,
c€G/Gx

Ug = spany {F:)\ S A}

where A is a complete set of G-orbit representatives of monomials in U and G, denotes the stabilizer
subgroup of the monomial z*. That is, the fixed space has a k-basis of orbit sums of monomials, while the
cofixed space has a k-basis of orbit representatives of monomials. When G = &,,, the set A can be taken to
be all integer vectors (A1,...,A,) with Ay > -+ >\, > 0.

While it is often true that U® and Ug are isomorphic as k-modules, this is not always the case, as we
show in the example below.

Example 2.3. Let V = F3[z,y] and let G = GL2(F3) act by ring automorphisms of V' induced from the
action of G on the F3-vector space with basis x,y. The action of G preserves the standard grading on V.
We consider U = Vj, the F3-span of the degree 4 elements in V', which is generated as an Fs-vector space
by all monomials of degree 4. For convenience, we list a generating set for G:

SRS RS S F |



A. Pevzner / Journal of Pure and Applied Algebra 228 (2024) 107537 5

Any element in U must lie in the Fz-span of {*, 2y2 y*} in order to be invariant under A and B, and
furthermore must be in the Fs-span of {z* + y*, 22y} to be invariant under C. One can directly show that
any [F3-linear combination a(x* + y*) + b(x?y?) which is invariant under D must satisfy a = b = 0. Hence,
U =0.

On the other hand, Ug is a 1-dimensional F3-vector space. The matrices A and B give the relations
223y = 0 and 22y® = 0 in Ug. The matrix C gives the relation 2* —y* = 0, and combining with y* = (z+y)*
gives x* = y* = 0. However, all generating matrices and their inverses applied to 22y? induce the trivial
relation z2y? — 22y? = 0 in Ug after quotienting by the relations involving the other monomials. We will
see in Proposition 2.4 that it is enough to check the image of z2y? on the generators of the group and their
inverses. Hence Ug is 1-dimensional, spanned over F3 by the image of z2y2.

2.2. The cofixed space as a module over the ring of invariants

When U is a k-algebra S and G acts by k-algebra automorphisms, the invariant space S¢ is a subring of
S, which we call the ring of invariants or the invariant ring. The multiplication action of S¢ on S descends
to the quotient Sg, since given r € S¢, f € S, and g € G, we have

r(f —g(f)) =rf—rg(f) =rf—g(rf).

The cofixed space is therefore a module over the ring of invariants. The following proposition, found in [9,
Proposition 5.1], outlines some basic information on generating Sg over S¢. From this it follows that Sg is
a finitely generated S¢-module, since S is finitely generated over S¢ [3, Theorem 1.3.1].

Proposition 2.4. Let M be a module over a k-algebra R, and let G be a finite group acting on M by R-
module automorphisms. Write Mg = M /N, where N = span,{m — g(m) : g € G,m € M}. Suppose that
{m; i eI} C M generates M as an R-module and that {g; : j € J} C G generates G as a group. Then,

(i) the images {m; : i € I} generate Mg as an R-module, and
(ii) the set {m; — g;j(m;), m; — gj_l(mi) :i€1,j € J} generates N as an R-module.

Aside from finite generation of Sg over S¢, the rank of Sg as an S¢-module is also known, due to Lewis,
Reiner, and Stanton [9, Proposition 5.7].

Proposition 2.5. Let S be a k-algebra and an integral domain on which a finite group G acts by k-algebra
automorphisms. Then the cofixed space Sg has rank one as a module over the ring of invariants.

The structure of Sg over S becomes very simple when |G| is a unit in k. To see this, we use the Reynolds
operator 7¢ : § — S, defined by

1
=(f) = @l > 9lh).

geG

The Reynolds operator is a map of S¢-modules, and it is a projection onto the ring of invariants whenever
it is defined.

Proposition 2.6. Suppose |G| is a unit in k and that G acts on a k-algebra S which is an integral domain
as in Proposition 2.5. Then the cofized space Sg is a free S¢-module of rank one.
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Proof. The map 7¢ factors through Sg since any two elements of S in the same G-orbit have the same
image under 7¢. The induced map Sg — S¢ remains surjective. The map is also injective, since given
f € S¢, any two preimages h,h’ € S of f under 7% must be in the same G-orbit, hence equal in Sg¢. O

Remark 2.7. Aguiar and Mahajan note in [1, Lemma 2.20] that S¢ is also a free rank one S“-module when
S is a flat kG-module; in this case the map |G|7¢ (the transfer map) is an isomorphism.

When |G| is not invertible in k and S is not flat over kG, there is very little known about the structure
of Sg as a module over S¢. To give the reader a sense of how the S¢ action can be nontrivial when |G| is
not invertible in k, we work out an example below.

Example 2.8. Let S = Fy[z1, 22, 23] and let G = &3 act by variable permutation. The invariant ring is a
polynomial ring Fa[eq, eo, e3], where e; is the degree i elementary symmetric polynomial. By Proposition 2.4,
a generating set for S over S%3 descends to a generating set for Sg, over S¥3. One well-known basis for S
over S©2 is the set of “sub-staircase” monomials, also known as the Artin basis [2]; these are the monomials
xi‘laé‘%gg which satisfy 0 < \; < 3—1 for all 7. Because all monomials in the same G3-orbit are equal in the
cofixed space, it suffices to take such monomials with weakly decreasing exponent vectors. This means that
the images of {1, 2,22, 2172, 2375} generate the cofixed space over S®3. This is not a minimal generating

set; notice that
e1- 1 =71+ T3 + T3 = 371 = 71,

so 77 is redundant. One can similarly show that Z;73 = ey - 1 and 22 = €% - 1. However, x2z5 is a minimal
generator, as any degree three monomial in ey, ez, e3 has an even number of terms in the G3-orbit of x2x5.

Hence, {1, 7225} is a minimal generating set for Sg, over S©3. One can compute that Annge, (1) = (e1ez +

e3), and that z2x, generates a free S©3-submodule of Se,. Hence, the cofixed space has a decomposition

~ Fale1, e2, €3]

Folx1, 22, T3]e, = Terea T o) ® (erea + e3)

as a module over Fy[eq, ez, e3]. This decomposition will also follow from Theorem 5.2.

In the next section, we focus on the case when G acts on a polynomial ring S by permuting variables.
In this case, we can use the transfer map, a multiple of the Reynolds operator which is defined for all k, to
study S¢ as an S¢-module. Significantly more is known about the image of the transfer map when G is a
permutation group, and this is closely related to the study of the cofixed space.

3. The cofixed space of a permutation representation
3.1. The transfer map

We specialize to the case when S = k[z1,...,z,] for the remainder of the paper. We give S the standard
grading with deg(z;) = 1 for all ¢ and consider group actions which preserve the graded structure. In other
words, G is a subgroup of GL(V) acting on a vector space V = k™ with basis x1,...,x,, and this action

extends to Sym(V) = S.

Definition 3.1. With G, S as above, define the transfer map Trf : 8 — 8¢ by

T () = 9(f).

geG
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Because Trf is a map of S%-modules, its image is an ideal of S, which we denote by IE . When k is clear
from context, we may drop the subscript and denote the transfer map by Tr¢ and its image by I¢.

Remark 3.2. The transfer map descends to the quotient Sg. It also can be defined in greater generality for
G any finite group and U a representation of G over k. This gives a natural map Hy(G,U) — H°(G,U),
sometimes called the norm map, and it is used in the study of Tate cohomology; see [4, §6.4].

Unlike the Reynolds operator, the transfer map is defined for k of arbitrary characteristic. When
char(k) = 0 but |G| ¢ kX, it is easy to see that I is a proper, nonzero ideal of S¢; namely 1 ¢ I¢
but |G| € I®. When k is a field of characteristic p, it is more subtle to see this fact; the proof in [15,
Theorem 2.2] requires the assumption that the action of G on S comes from a faithful representation
G — GL(V).

The image of a single element f under the transfer map is equal to |G¢|(3_ ;e er f"), where Gy is the
stabilizer of f. For further background on the transfer map in the context of finite group invariant theory,
we refer the reader to [13] or [16].

When G is a permutation group, a characteristic-free generating set for the image of the transfer map
was given by Neusel in [12]. The generating set involves the so-called special monomials, which we define
below.

Definition 3.3. Let a = (a1,...,a,) € N™ be an exponent vector for a monomial z® in k[z1, ..., x,]. Define
A(@) to be the weakly decreasing rearrangement of a. We call 2% a special monomial if A(«) satisfies

(i) AM(a), =0, and
(i) Ma); — A(a)j+1 €{0,1} foreach 1 <j <mn—1.

Theorem 3.4. [12, Theorem 1.1] Let G be a finite group acting on K[x1,...,x,] by variable permutation.
Then the image of the transfer map is generated by the transfers of special monomials.

Remark 3.5. Neusel proves Theorem 3.4 in the case that k is a field of arbitrary characteristic using an
induction on dominance order on partitions. This same argument works for any commutative ring k, hence
is stated in this generality here.

Example 3.6. The special monomials of k[z1, z2, x3] are

2 2 2 2 2 2
]-a :L'la .’E27 :I:Sa .1‘1332, $1$37 .T2$37 x1$27 m1x37 SUl.'L'Q, $2$37 $1x3, $2$3.

When z* and zf are in the same G-orbit, then Tr®(z®) = Tr%(2#). Hence when G = &,,, the image
of Tr®" is generated by transfers of special monomials with weakly decreasing exponent vector, which we
sometimes call a special partition. When working over &,,, a special monomial will refer to one with a weakly
decreasing exponent vector.

A different generating set for the image of the transfer when k has positive characteristic was given by
Campbell, Hughes, Shank, and Wehlau in [5, Theorem 9.18], using the theory of block bases. This generating
set also consists of transfers of certain monomials, and in general is not a minimal generating set. We will
see in Section 4.1 that the minimal generating set of Theorem 1.1 is not given by transfers of monomials.
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3.2. Relating the cofixed space to the transfer map

Proposition 3.7. Assume that k is a commutative ring of characteristic zero. Let G be a finite group acting on
S =XK[x1,...,x,] by permuting variables. Then the cofized space is isomorphic to the image of the transfer
map as an ideal of SC.

Proof. We show that the transfer map Tr¢ : S — SC is injective. Since S has a k-basis of monomials, the
ring of invariants has a k-basis of orbit sums of monomials, i.e. a basis of the form

my = Z ¥ NEAN
z*€Gz*

where A is a complete, irredundant set of G-orbit representatives of the set of monomials in S, and Gz
denotes the set of all elements in the G-orbit of 2*. On the other hand, the cofixed space is a free k-module
with k-basis {z* : A € A}, where f denotes the image of f in Sg. The transfer map sends x> to |Gx|my,
where G is the stabilizer of z*. The image of 2> under the transfer map is not zero since k has characteristic
zero. Hence, the images of the z* are k-linearly independent in S, from which it follows that the transfer
map Sg — S is injective. O

The transfer map is a very useful tool to study the cofixed space when char(k) = 0. However, we are
also interested in the case that k has positive characteristic. In Lemma 3.8 below, we show that taking the
cofixed space commutes with base change. This allows us to work over k = Z (or k = Z,)) before changing
our coefficient ring to, e.g., k = F,,. The next lemma was observed and proven by Katthén [8]. For notes on
base change, see [17, 10.14]. The reader should keep in mind that we intend to apply the following to the
case when A =7Z or A= Z,), R=kle1,...,en], M = k[z1,...,7,], and B =TF,.

Lemma 3.8 (Base change lemma). Let p : A — R, ¢ : A — B be homomorphisms of commutative rings.
We view 1 : A — B as the base change map. Let M be a left AG-module and an R-module such that the
actions of R and AG commute. Since A is commutative, view M as an (AG, A)-bimodule. Then

(A®ac M)®4B=ARsc (M ®4 B)
as R ®4 B-modules; in other words, Mg ® 4 B = (M ®4 B)g as R ®4 B-modules.

Proof. By associativity of tensor product, there is a natural map a : (A Qa6 M) ®4 B = A®ac (M ®4 B)
which is well-defined and is an isomorphism of both A-modules and AG-modules [17, 10.12]. It remains to
check that this map preserves the (R ® 4 B)-module structure on the source and the target. We show how
an element r ® y of R ® 4 B acts on simple tensors, where zg € A, mg € M, yo € B:

(r®y) - ((zo @mo) ®@yo) :=r(zo ®mo) ® yyo
= (20 ® M) @ YYo,

(r®y) - (zo® (mo ®yo)) =20 @ ((r@y) - (mo ®yo))
=0 ® (rmo ® yyo)-

Hence the natural map a is also a map of R ® 4 B-modules, as claimed. O

Remark 3.9. In the setting of Lemma 3.8, we would like to let R be the ring of G-invariants inside
k[x1,...,x,] for some group G. In general, it is not true that (R®y B)¢ = R®®y B for a base change ring B,
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and Lemma 3.8 would not give information on the structure of (M ®y B)g as a module over B[z, ..., z,]¢
In the case of G = &,, with its standard action on the polynomial ring, however, the ring of invariants has
the same presentation over any base ring.

Lemma 3.8 shows that we can understand M = F,[x1,..., 2], as a module over F,leq,...,e,] by
first computing IZG" C Zles,...,e,) and then taking IZG”/pIZG" = IZG" ®gz Z/pZ. The ideals IZG" can be
very complicated, as the stabilizers of monomials 2* become large. Instead, we work over k = L(py; in
this case, the ideals IZ6 " become much simpler (and more interesting, as Theorem 1.1 and Conjecture 1.2

p
demonstrate), while we can deduce information about M in the same way.
4. Proof of main theorem

We specialize further to the case when S = k[xy, ..., z,] and G = &,,. Here, the ring of invariants S¢ is a
polynomial algebra ke, . . ., e,], where e; denotes the i*"" elementary symmetric polynomial in the variables
T1,-..,%Tn. We fix k = Z,) for the remainder of the section; all instances of the transfer map and of its
image are over this base ring unless otherwise stated. We restate our main theorem here, which is proved
in this section.

Theorem 1.1 (Main theorem). Let p < n < 2p and let i = n — p. Then the cofized space Zy)[x1,. .., 2nls,

is isomorphic to the ideal J,, of Zyyle, ..., en] given by
Jn = (D, €16p — €pi1, €2€p — €pia, ..y €i€p — €piiy Citly €ig2, ooy Cpo1)-
For n in this range, the generators of J, form a regular sequence and have degrees 0,1,...,p —1 mod p.

Because of Proposition 3.7, we will prove Theorem 1.1 by showing that J,, = I®" for p < n < 2p. We will
first show that there is a containment J,, C I®» and that the theorem holds when n = p. We will then use a
stability present in the p-Sylow subgroups P, of &,,, along with a result of Shank and Wehlau [15] relating
ht(IS») and ht(I™), to deduce the height of I®~. This deduction will be key in proving the theorem.

Remark 4.1. One can readily see via the Jacobi-Trudi identities that each generator e,e; — e, of the ideal
Jy, is the skew-Schur polynomial associated to the two-column ribbon shape, with the first column having j
boxes and the second column having p boxes. For example, the generator eses — e5 is the Schur polynomial
for the skew shape [J.

Replacing the generator e; with eje, — ep4; when moving from n =p+ j — 1 to n = p + j corresponds
to appending a column of length p to a single-column ribbon diagram.

4.1. Containment of J, in IS~
Proposition 4.2. Given n =p+1i with 1 <i < p— 1, the ideal J,, of Theorem 1.1 is contained in IS .

Proof. We separate the generators of .J,, into three types and show that each type of generator lies in 1n:

(i) p,
(ii) ej fori+1<j<p-—1,and
(iil) ejep —epyj for 1 < j <.
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It is immediate that p € I®» since
_bp _
Tr( ' )—n!Tr(l)—p

and X - is invertible in Z,) for n < 2p < p?. Writing Tr(z1 - -~ ;) = jl(p+i— j)'e;, it follows that e; € IS
ifandonly if j <p—1and p+i—j <p— 1. These are exactly the conditions needed for e; to lie in J,.

It is more complicated to show that eje, — e,4; is in the image of the transfer when 1 < j <. For any
partition A = (A1,...,A,), let ay be the order of the stabilizer of A in &,,, where &,, acts by coordinate
permutation. As we have seen, we can write Tr(2*) = aymy, where m) is the monomial symmetric polyno-
mial associated to A, that is, the sum of all distinct elements in the &,,-orbit of A\. The m) form a k-basis of
k[xy,...,2,]%", for any k, as \ runs over all weakly decreasing exponent vectors. Hence, for some by € Q
we can write

b
€j€p = Ep4j = thmk = Z ar Tro(x )

A

We will compute the coefficients by explicitly, then show that Z—i € Zp), that is, that Z—i has no powers
of p in the denominator when written in lowest terms. From this it follows that eje, — ep1; € IS". When
expanding eje, — €p4; in terms of monomial symmetric polynomials my, the partitions A appearing with
nonzero coefficient are of the form

AR — (Qk, 1P+jf2k’0i7j+k)

for 0 < k < j. We will consider the case k = 0 separately later in the proof. For now, assume that k£ > 1.

i inese. i p+j—2k
Then the coefficient by on myw) in eje, is equal to ( s )

. To see this, we can count how many times the
monomial x% . ~x%xk+1 - Tptj—k appears in eje,. In order to obtain such a monomial, one must choose
a term from e; divisible by 1 ---z, and a term from e, divisible by x; --- 2. It remains to choose the
variables Zx41,...,Zpt+ptj—2r (Which is a set of size p + j — 2k), and j — k of these must come from the e;
term. Since k > 1, this is also the coefficient of myw) in eje, — epy ;.

Since ay = kl(p+ 7 — 2k)!(i — j + k)!, we can write

b(ir+i) (179 J (H‘jfk) ()
o U)o S J= T A
€j€p — €ptj P ro (v )+z_:k;!(p+j—2k)!(i—j+k)! ro(z" )
_ b(1p+.7) T 1p+7 + i ]. TrQ(zA(k))'
a(1p+3) k:l — k)i —j+ k)!

Observe that in each coeflicient on TrQ(ac’\(k)), for k > 1, there are no factors of p in the denominator.
Hence these coefficients are elements of Z,. It remains to determine the coefficient of TrQ(x(lpﬂ)). Set
A = (1P17). We have by = (p+7) 1, since eje, gives (pﬂ) terms 1 - - - Zp4;, and epy; has exactly one term
of this form. Since A consists of p+ j 1’'s and p+1i — (p +7) 0’s, we have ay = (p+ j)!(¢ — j)!. Hence,

b ) -1 -l

ax  (p+NGE—35)!  pYlp+ )G —5)!

Now we can rewrite (p+ j)!=(p+7)(p+j—1)---p! and cancel a copy of p!, giving

b (e ti-1)--(p+1) -
ax  Jlp+)p+i—1-(hp-DG— )




A. Pevzner / Journal of Pure and Applied Algebra 228 (2024) 107537 11

Note that (p+j)(p+j5—1)---(p+1) = j! mod p, and it is strictly larger than p. Hence we can write
(p+7)(p+j—1) - (p+1) = j!4+¥p for some £ > 0. Moreover, there is only one factor of p in the denominator.
Hence we have

by jl+tp — 4! B 14
ax  Jp+7)-plo—-DIE=7) Gle+)p+1)E-D-)

| S Z(p). O

4.2. A base case
Proposition 4.3. When n = p, the image of the transfer map is equal to the ideal

Jp = {(p.e1,....ep_1) C Lpler,. .., ep).

Before proceeding with the proof of Proposition 4.3, we recall the definition of dominance order on
partitions. The technique of induction on (degree and) dominance order is similar to what is used in Neusel’s
proof of [12, Theorem 1.1].

Definition 4.4. Fix an integer m > 1 and let A = (A\1,...,\,), g = (41, .., 4n) be two integer partitions of
m, where the tuples A and p have weakly decreasing nonnegative coordinates. We say that A dominates p,
or A >gom K, if for each 1 < j <n, one has Ay + -+ Aj > pg + -+ + ;.

Proof of Proposition 4.3. By Proposition 4.2, there is a containment .J, C I®». To show that the generators
of J, also generate the image of the transfer, it is enough to show that the transfer of any special monomial
(see Definition 3.3) lies in J,,, by Theorem 3.4. We will use induction on degree and dominance order. Let
2> be a special monomial such that \; > 2. Set k := max{j : Aj # 0}. Since A is special and Ay > 2, we
have k € {2,...,p — 1} with A\ = 1. Define a new partition

A= ()\1—1,)\2—17...,)\]@,1—1,0,...,0)

obtained from X\ by subtracting 1 from all nonzero parts. Writing ey, 2> = Zl<i1<-~~<ik<p(mi1 g, ), we
can apply the transfer map to both sides and use its Z,)[e1, ..., e,]-linearity:

ek Tr(zx) = Z Tr(zy, - ~x¢k:cx). (1)

1<ii < <ip<p

A generic term of the right-hand side is of the form Tr(z®), where a = (a, ..., ap) is obtained from A by
adding 1 to exactly k of its entries. The term Tr(2*) appears only when a 1 is added to every nonzero entry
of \. Each nonzero entry of Y corresponds to an entry of A that is larger than 2. If X has ¢ nonzero entries,
then 1 < ¢ < k since A\ = 1. Hence the coefficient of Tr(z*) in (1) is (£:§)7 which is invertible in Z ). Now
given any term Tr(z®) in (1), let u be the weakly decreasing rearrangement of «. By construction, u; < A;
for each j < k, with equality occurring if and only if 4 = A. For 5 > k we have

pr oy <deg(@M) = A b A=A A

Hence, p <gom A. It follows that we can write

so by induction Tr(z}) € J,. O
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4.8. Using the p-Sylow subgroups of &,

To prove Theorem 1.1, we will make use of the fact that &y,1; and &yp4; have isomorphic p-Sylow
subgroups whenever 0 < 7,5 < p.

Lemma 4.5. Let n,m be positive integers such that fp < n <m < ({4 1)p for some positive integer £. Then
the p-Sylow subgroups of &, and &,, are isomorphic. Moreover, any given p-Sylow subgroup of &,, can be
embedded into a p-Sylow subgroup of &, via the natural inclusion S, — &,,.

Proof. Let P, be any p-Sylow subgroup of &,,. Then there is a subgroup P, of &,, which is obtained from
P,, by applying the map

G, — G,

[wi,...,wp] = [w1,...,wp,n+1,...,m]

where the permutations above are expressed in one-line notation. Then P, = P,, as groups. Because
n,m € {€p,...,(£+ 1)p — 1}, the orders of &,, and &,,, share the same number of factors of p. Hence, the
p-Sylow subgroups of &,, and &,, have the same order. Since we have exhibited a subgroup of &,, of the
correct order, it must be that all p-Sylow subgroups of &,,, are isomorphic to P,,. O

From now on, if n,m satisfy fp < n < m < (£ + 1)p for some ¢, we choose p-Sylow subgroups P,, P, of
G,, 6., respectively, so that P, is the image of P, under the natural inclusion ¢ : &,, — &,,, as in the
proof of Lemma 4.5. When P,, P,,, are chosen in this way, the variables z,11,...,2m € k[z1,...,2,] are
all invariant under the action of P,,. The simple corollary below follows.

Corollary 4.6. With n,m, P,,, P,, as above, K[x1,..., 2] ™ =k[z1,...,2,]" @1 K[Tpi1,- .., Tm], and there
is a natural inclusion k[xy,. .., 2, < k[z1,..., z0] .

Py

We may use Lemma 4.5 and Corollary 4.6 to deduce a relationship between the transfer ideals 7' and

I™+1 as long as n + 1 is not a multiple of p.

Lemma 4.7. Let n € {{p,...,({ + 1)p — 2} and let P,, P,i1 be p-Sylow subgroups of &,,&,11 satisfy-

ing t(P,) = Pny1. Let R, and R,y1 denote the P,- and P,y1-invariant subrings of k[z1,...,x,] and
k[z1,...,Tn11], respectively. Then, IT»+1 is the extension ideal R,yq - 7.
Proof. The ideal I™»+! is generated by the transfers of all monomials ¢ in k[zy,...,2,41]. Given such a

monomial, either x,; divides ¢ or it does not. If x,, 1 does not divide =, then

TePrtt (%) = TeP™ (%) € Ry - 11,

If 2,41 divides 2%, we can factor z® as 2% - 2% | with ged(z®, 2% ) = 1. Using the fact that z,41 is fixed

by P,+1 and the action of P, ;1 is multiplicative, we have

TePrst (22 = Z (wa®)(wal ;)

wWE Pp41

= Y (wa)al

wE Pp41

_ b a
=T, E wr

weL(Py)
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=2l T (2%) € Ryyr - I
We have shown the containment I+ C R, - I, To show the reverse containment, take f € R, 1 I
and write f =3, r; e (f;) for some 7; € Ry, 41 and f; € k[zy,...,2,]. Since the f; use only the variables

T1,...,Tn, We have TrP”(fj) = Tyfr+ (f;). Since Trln+1 is a map of R,41-modules and each r; € Ry41, it
follows that f = Trf»+ (ZJ T fj) c [P, O

Corollary 4.8. With I™» C R,, and ™"+ C R, 41 as before, ht(IT") = ht(IFn+1).

Proof. The extension of rings R, — R,y1 is flat, hence the going down theorem holds. Moreover, the
induced map Spec R,,y1 — Spec R,, is surjective. By [10, Theorem 19 (3)], the heights of I7» and its
extension ideal I™»+1 = R, 1 - I™* are equal. O

Now that we have related I”» and I"™+! we can compare the heights of I*» and I®». To do so, we
appeal to a corollary found in [15], restated slightly to accommodate the case that k is not a field.

Corollary 4.9. [15, Corollary 5.2] Assume that k is a commutative ring in which |S, : H| is invertible,
where H is a subgroup of &,, acting on S :=k[x1...,x,]. Then ht(I®») = ht(1H).

Proof. Under the assumption that |&,, : H| € kX, it follows from [15, Proposition 5.1], that I*! lies over
IS» in the integral ring extension S®» < S Since both S®» and S¥ are integral domains and S~ is
integrally closed,” the going down theorem holds for this extension of rings. By [10, Theorem 20 (3)], we
have ht(1°») = ht(I). 0O

4.4. Proof of Theorem 1.1

It remains to put together the content in the previous sections to prove our main theorem. We apply
Corollary 4.9 in the case that k = Z(,) and H = P,.

Proof of Theorem 1.1. Combining Corollary 4.8 with Corollary 4.9, we conclude that for any ¢p < n,m <
(£ + 1)p with ¢ > 1, we have

ht(197) = ht(I"") = ht(I") = ht(1°™).

When p < n < 2p, Proposition 4.3 shows that ht(I®#) = ht(I®») = p. Since ht(I®*) = p, we can find a
prime qy, of height p in Z,)[e1, ..., e,] such that IS C q,. On the other hand, Proposition 4.2 shows that
Jp, C IS, But J, is itself a prime ideal of height p, hence we have a containment

Jn C IO C qn,
with .J,, and q,, both primes of height p. From this we conclude that .J,, = I®» = q,,, proving the theorem. 0O

2 Whenk =7 ork = Z (p, the ring of invariants SS= is a polynomial ring over a UFD, hence is a UFD itself. For k a field, it is
well-known that any ring of invariants of a finite group is integrally closed; see §1.7 of [13].
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5. Applications
5.1. The cofized space with IF,, coefficients

By Lemma 3.8, we can deduce the structure of the cofixed space with k = [, from that of the cofixed
space with k = Z,); specifically, we study the [, [e1, ..., en]-module I6n /. F,. First, we prove a lemma
that we can apply to this tensor product.

Lemma 5.1. Let S be an A-algebra for some commutative ring A with unit and let A — B be a surjective ring
homomorphism. If M is an S-module, then every element of the S® 4 B-module M ® 4 B can be represented
by a simple tensor m ® 1 for some m € M.

Proof. Note that the map A — B being surjective implies that B is unital and 14 + 1. For any element
x € B, let T denote a preimage of z in A. Then any finite (S ® 4 B)-linear combination of simple tensors in
M ®4 B can be written as follows, where s; € S,m; € M, and z;,y; € B:

D@ a)(m @yi) =, simi @ iy = (D, simixy;) @ 1. O

Theorem 5.2. Let n = p+ 4 with 0 < i < p— 1. Then the cofized space F,[x1,...,x,]e, has the following

direct sum decomposition as a module over Fyleq, ..., ey]:
F,le en] =
plCly. -+ Cn
Fylas,... aols, & 12l el g 5 ®)
In
where J,, is the ideal (e1€p — €pt1, €26p — €pt2y - .-y €i€p — €piiy €it1, €42, - €p_1) Of Fpler, ..., ep].

Proof. We begin by setting up notation. Let S = Zy)[e1,...,e,] and let R =Fyle1,...,e,]. Let 7: S — R
denote the natural projection map which reduces coefficients mod p. Then J,, = 7(I®"),and R = S®gz o Fp
via an isomorphism f <+ f ®1, where f is any lift of f under 7. We move freely between elements of R and
elements of S ®Z ) [F, in this manner. All tensors in the proof will be taken over Z,. Let

I:= IZG(Z) = <pagla"'agp—1> - S7

where g; = eje, — epy; if j <iand g; = e; if j > 4. This is simply the generating set of Theorem 1.1.

By Lemma 3.8, the cofixed space Fy[z1,...,2,]s, is isomorphic to I ® F,, as an R-module. We will
prove the direct sum decomposition (2) by exhibiting a split surjection of R-modules ¢ : I ® F, — J,, with
ker(p) = R/ J,.

We begin by defining

p: I®F, — Tn
f@a—af
where f denotes the image of f in R. This map is Z(py-balanced on I x F), so is well-defined out of the

tensor product. It is a surjective map of R-modules, with g; € J,, having preimage g9; ® 1.
We now exhibit a right inverse for ¢. Define VR 5T ® F, by

~

Y(ej) =g, ®1,

where €; denotes the 7' standard R-basis element of the free R-module RP~!. Since J,, is generated by an
R-regular sequence, the map 1& descends to a map ¢ : J, = [ ® F, if
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Tk (ej) — g5 dler) =0
for all 1 < j,k < p—1. Note that g; acts on elements of S ® F,, via left multiplication by g; ® 1. This then
gives

~

Gr(ej) — gid(en) = (gr ®1)(g; ® 1) — (g, @ D (gp ® 1)
= (grg;) ®1— (g;95) ®1
0.

Hence, 7,2 factors through J, to give a map ¢ : J, — I ® [, It is straightforward to verify that ¢ ¢ =1idj; .
Thus, the map ¢ is a split surjection, meaning that

18T, = ker(p) ® J,. (3)
It remains to show that ker(¢) = R/.J,,. We claim that ker(y) is the cyclic R-submodule of I ® F,, generated
by p® 1. By Lemma 5.1, it suffices to show that any simple tensor g ® 1 € ker(y) is an R-multiple of p ® 1.
But if (¢ ® 1) = g =0 in R, then p divides g in S, so

g1=¢gpal=¢(po1l)

for some ¢’ € S. Hence, ker(p) is generated by p ® 1. It remains to show that Anng(p ® 1) = .J,,. Certainly
Jn € Anng(p ® 1), since for any 1 < j < p — 1 one has

gilp@1l)=gjpel=g;@p=0,
where we may move the p across the tensor since g; € I. On the other hand, if fe Anng(p ® 1), then
fp®1 =0 for any lift f of f. Choosing such a lift, fp ® 1 = 0 implies that fp € pI. Since p is a non zero

divisor on S, we must have f € I, so f = n(f) € J,. Thus we conclude Anng(p ® 1) = .J,,, showing that
ker(p) = R/J,. Combining with (3) completes the proof. O

5.2. The image of the transfer map with F,, coefficients

Corollary 5.3. Let p < n < 2p. Then the image of the transfer map Tr]FGP" cFplze, .., xn] = Fpler, ... en

is equal to the ideal J,, of Theorem 5.2.

Proof. When G is a permutation group, one can verify using a monomial basis for the polynomial ring that

the square
r%(p)
Z(p)[xl, N ,.Z'n] E— Z(p)[xl, ceey mn]G
Lo,
Fplze,...,xn] —— Fplzq, ..., 2]
commutes. Since the map Z,)[1,...,2,] = Fylz1,...,2,] is surjective, the image of Tr?“ can found by
P
taking IZG(") of Theorem 1.1 and applying the natural surjection to F,[eq,...,e,]. This gives exactly the
P

ideal J,. O
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Corollary 5.3 is consistent with several other results on the image of the transfer map for modular
representations G < GL, (k), where k is a field of characteristic p > 0. Campbell, Hughes, Shank, and
Wehlau remark that the generating set for jp follows from [5, Theorem 9.18], where they give a block basis
for the image of Trf", which in general is a redundant generating set. Shank and Wehlau showed that IE
is radical when G acts by permutations [15, Theorem 6.1].

In [11, Corollary 2.5], Neusel showed that if G has a cyclic Sylow p-subgroup P which acts by permuta-
tions, then IE has height at most n — k, where k is the number of orbits of P acting on x1,...,x,. In the
case of G,,, the p-Sylow subgroups are cyclic of order p when p < n < 2p, having 1 orbit of size p and n — p
orbits of size 1. This gives the bound ht(I]FGP ") < p—1; Corollary 5.3 demonstrates that this bound is sharp.

6. A conjecture for larger n

Theorem 1.1 suggests a natural question regarding the cofixed spaces Z ) [x1, . .., ¥nle, =1 Sn forn > 2p.
Because the generators for IS form a regular sequence when p < n < 2p, the minimal free resolution of 1%~
over Zpyle1, .. ., en] is a Koszul complex. Moreover, since the generators always have degrees 0,1,...,p—1
mod p, taking all graded Betti numbers §; ; for fixed ¢ gives the same multiset mod p. Such stability in
the S®»-module structure is trivially true for n < p, since here Sg, is always a free S®»-module of rank
1. One may ask to what extent this phenomenon persists. The p-Sylow subgroups of &,, follow a similar
stability pattern for all n, and this structure was critical to the proof of Theorem 1.1. It is conceivable that
this phenomenon is present for all n. To this end we make the following conjecture.

Conjecture 6.1. Let {p < m,n < (£ + 1)p for positive integers £,m,n. For k = Z,) or k =T, let

M, =Kk[z1,...,2,]s,
M, = k[xla cee ?xm]6m7
viewed as modules over R, = Kle1,...,e,] and Ry, = Kleq, ..., en], respectively. Then for every homological

index i > 0 and for each 0 < j < p—1, one has an equality of graded Betti numbers

Sy = Y Bl (M)

7'=j mod p 7'=7 mod p

We now present some evidence for Conjecture 6.1, obtained from computations in Macaulay2. For a
Z-graded module M over a Z-graded ring R, define for each i > 0 the multiset AZ(M), which has j € Z
occurring exactly ij(M )-many times. In other words, AF(M) records the degrees of the free modules
appearing in the i*! homological position of a graded minimal free resolution of M.

In Fig. 1, we work over k = Z ) and consider p = 2 and n = 4,5. In the language of Conjecture 6.1,
¢ = 2. We list the elements of A;(My) = (fi1, fi2,---, fik,) in ascending order for each ¢, then we list
the elements of A;(Ms) = ({1, fi2,..-, fi},) in such an order so that f; ; = f;; mod 2 for all j. In fact,
something stronger can be done here: the sets 4;(M,) and A;(Ms) agree after taking elements mod 4, so we

can choose orderings with f; ; = mod 4 for all j. From this one can see that upon passing from n =4

/!
1,
to n =5, the degrees of free modulés in the resolution either stay the same or increase by 4; this is similar
to what happens in the £ = 1 case, where exactly one generator increases in degree while the others remain
the same. We draw the reader’s attention to the fact that the rightmost columns of both tables in Fig. 1
are identical.

For p = 3, k = 3, and ¢ = 2, data is available for n = 6,7. We again see that A;(Ms) and A;(M7) agree
after taking elements mod 6, with degrees of free modules either staying constant or increasing by 6 upon
passing from n = 6 to n = 7. This is shown in Fig. 2.
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010,5,23,10 0,1,2,3,2

1] 5,2,3,78,510 | 1,2,3,3,0,1,2
2 [ 7,8,5,10 3,0, 1,2

3 10 2

Fig. 1. Resolution data for p = 2, n = 4 (first table) and p = 2, n = 5 (second table).

5

0
1,
7?

14

i A (My) A;(M4) mod 4
01 0,1,2,3,6 0,1,

1] 1,2,3,3,4,56 | 1,2,3,3,0,1,2
2 | 3,4,5,6 3,0,

3|6 2

A;(Ms) A;(Mg) mod 6
,4,5,6,8,9,10 ,1,2,4 2,3,4
,4,5,5,6,6,6, ,2,3,4 0,0,0,
,9,10,10,11,13, ,2,3,3 5,1

3,5,6,6,7,7,8,9, 10,
10,11,11,13,14, 15

7,8,10,11,12,15

M}JWOT
oo
all= O

12

O|- P W = —o

17

16,11,17,19,14, 21

3 | 13,14,16,11,18,21

M:cncn
oo
o= o
=1

Wlw =

0,7,2,4,5,12, 14,9, 10 0,1,2,4,5,0,2,3,4
1] 7,2,9,4,5,11,6,12, 12, 1,2,3,4,5,5,0,0,0,
7,14,9,10, 16,17, 19, 1,2,3,3,4,4,5,1,
14 2
2 [ 9,11,6,12,7,13,14,9,16 | 3, 2,34
4
1
0

4 18

Fig. 2. Resolution data for p = 3, n = 6 (first table) and p = 3, n = 7 (second table).

AI(MG,) Al(Mg) mod 2 A,L(MG) mod 4 A,L(MG) mod 6
0,1,3,5,6,6,7,8,10,15 0°,1° 02%,12,2% 33 0%,12%,2,32,4,5
1,3,4,5,6,6,6,7,7,8,8,9, 10, 9 110 4 14 55 o6 4 44 02 o3 43 g3
10 11,11, 12,13, 15 0°,1 04,14,25,3 04,14,22,33, 43,5
4,6,7,8,9,9,10,10,11, 11,12, s 17 4 13 04 o4 3 12 52 93 43 g2
15.18,14. 15 08,1 04,123,243 0%,12,22,3% 43 5
9,10,12,14,15,15 03,13 0,1,22,32 0,2,3%,4
15 1 3 3

Fig. 3. Degree shifts appearing in the Fzleq, ..., eg]-resolution of Fa[z1, ..., z¢]s,-

fleg) =

Construction 6.2. Let p +1 < n < 2p. Consider the rings R = Z)[e1, ..
Define a homomorphism of Z,-algebras f : R — S by

€j

ifj#mn

€n—pp —€n—p 1L j=n

01 0,3,5,6,7,9,10,12, 14,21 0°,1° 02,183,233 0%,1,2,3%,4,5
3,5,6,7,8,9,9,10,11,12,12, 9 410 14 16 o5 o4 3 13 63 qd4 43 £3
L 13,14,14,16,17, 19, 21 0%1 0%, 17%,2%3 0%,1%,2%,3%,4%,5
8,9,10,11,12,13,14, 14,15 8 47 4 14 54 o3 2 12 53 o3 43 £2
2| 16.16,17, 18, 19,21 08,1 0%,14,24,3 0%,12,23,3% 4% 5
3 | 14,15,16,18,21,21 02,13 0,12,22,3 0,2,3%,4
4 21 1 1 3
Fig. 4. Degree shifts appearing in the Faley, ..., e7]-resolution of Fa[z1, ..., z7]s,.

.,en] and S = Z(p)[el,..

Figs. 1 and 2 suggest that something stronger than Conjecture 6.1 may hold, namely that Af" (M,,) and
AlRm(Mm) are the same mod 2p when 2p < n,m < 3p. So far, no counterexample to this claim has been
found. One may hope that more generally, if £p < m,n < (¢ + 1)p, then A% (M,,) and A% (M,,) are the
same mod ¢p. However, the data in Figs. 3 and 4 shows that for p = 2, the multisets A;(Ms) and A;(My)
do not agree mod 6 or mod 4 (but they still agree mod 2). In Figs. 3 and 4, the entries j* indicate that j
appears in the multiset k times. The elements of A;(Ms) and A;(My) are listed in ascending order, with no
attempt at “matching” degrees mod 2, as was done in Figs. 1 and 2.

Conjecture 6.1 is purely a numerical statement, but from Theorem 1.1 it is clear that the resolutions of
M, =1 2”') are related algebraically. We exhibit this relationship via a change of rings.
p

.y en_l].
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We give R and S a (Z/pZ)-grading by setting deg(e;) =4 mod p. Then f is homogeneous with respect to
this grading and f(IS~) = I®»-1. We give S an R-module structure via the multiplication map

RxS—S, (rs)— f(r)s.
In particular, the top-degree generator e,_,e, — e, of I®" acts on an element s € S as

(en—pep —€n) s = f(en—pep — €n)S = €n_ps. (4)

Let K, be the Koszul complex which resolves R/I®» over R. By (4), the differentials in the complex of
S-modules K, ®p S are obtained from K, by replacing all matrix entries e,_,e, — e, with e,_,; in other
words, K, ®r S is a Koszul complex of S-modules on the generators of IS»-1. Because the generators of
IS»—1 form an S-regular sequence, the complex K, ®x S remains exact; moreover it resolves S/I®»-1 over

S.

Question 6.3. Let {p +1 < n < ({ + 1)p and let Co be a minimal free resolution of R/IS" over
R = Zyler, ..., en]. Does there exist a map of Z/pZ-graded Z,)-algebras f: R — S = Zyler, . .., en—1]
such that Cy @ S resolves S/IS7—1 over S?
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Appendix A. Minimal free resolutions with local coefficient rings

In this section, we verify that minimal free resolutions over the ring Z,le1, ..., e,] are unique up to
isomorphism. We closely follow the structure of the proof of this fact for polynomial rings k[z1, ..., z,],
where k is a field, found in [14]. We modify the arguments taking inspiration from proofs involving the local
case (see, e.g., [10]).

Let (A, a, K) be a Noetherian local ring. Consider the polynomial ring R = A[zy, ..., 2,], which we make
a graded A-algebra by setting deg(a) = 0 for all a € A and deg(z;) = d; > 0 for all 1 < i < n. Set
m=aR+ (z1,...,2,)R C R. This is the unique homogeneous maximal ideal of R.

Lemma A.1 (Generalized graded Nakayama lemma). Let U be a finitely generated graded R-module and let
J C R be a proper homogeneous ideal. Then the following hold:

(1) of JU=U thenU =0, and
(2) if W C U is a graded R-submodule with U =W + JU, then U = W.
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Proof. First we show (1). Assume that JU = U and U is nonzero. Fix a finite system G of homogeneous
minimal R-module generators for U. Let m be an element of G of minimal degree. Then U; = 0 for
j < deg(m). Every element of JU is either of larger degree than deg(m), or, since J is a proper ideal, must
lie in (JU)deg(m) = Jo * Udeg(m) C 0 - Udeg(m)- By assumption, m € JU, hence m € aR - Ugeg(m)- Fix a
subset G’ of G that minimally generates Ujeg(m)- Then we can write m = > g/ amm’, where a,,/ € a.
Since m is a minimal generator, it must appear on the right-hand side with nonzero coefficient, hence we

have
m— Gmm = g Gy
m#m’€eg’
(1 —ap)m = E At
m#m’€eg’

But a,, € a = rad(A), hence 1 — a,, is a unit in A, and consequently is also a unit in R. This contradicts
minimality of m as a generator of U, hence U = 0.
(2) follows by applying (1) to the graded R-module U/W. 0O

Theorem A.2 (Analogue to foundational Theorem 2.12 in [14]). Let U be a finitely generated graded R-
module and set U := U/mU. Then U is a finite dimensional graded K -vector space. Let p = dimg U.

(1) Let {@i,...,u,} be a homogeneous basis for U. For each 1 < i < p, choose a homogeneous preimage
u; € U of w;. Then {u1,...,up} is a minimal homogeneous system of generators for U.

(2) Every minimal system of homogeneous generators of U is obtained as in (1).

(3) Every minimal system of homogeneous generators of U has p elements. Set ¢; = dimg (U;) for each i.
Then every minimal system of homogeneous generators of U contains q; elements of degree i.

(4) Let {u1,...,up} and {v1,...,v,} be two minimal systems of homogeneous generators of U, and let
Vg = Zj rjsu; with vjs € R for each s. For all s,j set cjs to be the homogeneous component of
rjs of degree deg(vs) — deg(u;). Then the following three properties hold: vs = Zj ¢jsu;y for all s,
det([c;s]) € A%, and [c;s] is an invertible matriz with homogeneous entries.

Proof. To show (1), first note that U = mU + Ru; + -+ + Ru,. By Lemma A.1 (2), we have that U =
Ruq + - - - + Ruy, hence {uq, ..., u,} generates U. If this is not a minimal generating set, then there is some
relation (possibly after renumbering) of the form u; = asus +- - -+ apuy, for a; € R. Descending to U gives
a relation Uy = @tz + - - - + QpUyp, where oy is the image of o; in U. This contradicts that {@, ... ,Up} is a
K-basis over U, hence {u1,...,u,} must minimally generate U.

To prove (2), assume that {us1,...,u,} is a minimal system of homogeneous generators of U. Then
{t1,...,7,} generates U. If there is a linear dependence among {7y, . . . ,TUp}, then choose a proper subset
{w;,,...,u;,} that is a K-basis of U. By (1), the preimages {u;,,...,u;,} generate U as an R-module,
contradicting minimality of the generating set {u1,...,u,}. Hence {%1,...,%,} must be a K-basis for U.

Statement (3) follows from (1) and (2).

To show (4), let {u1,...,u,} and {v1,...,v,} be two minimal sets of homogeneous R-module generators
of U. Assume that the generators in each set are ordered in increasing degree. By homogeneity, we know
that vg = Zj ¢jsu; for all s. Let C' be the matrix with entries c;s. For each i, let B; denote the ¢; x g; block
on the diagonal of C' corresponding to the generators of degree i. Then deg(u;) > deg(vs) for j > s, hence
cjs = 0if j > s and ¢ is outside the block Bgeg(y,)- The entries in the blocks B; are of degree 0, hence
they lie in A, and det(C) = [, det(B;). Let C denote the matrix with entries ¢;5, where ¢;, is the image of
¢js in K = R/m. Then C is a matrix with its only nonzero entries appearing in the blocks B;. Note that
Ty = 3. ; ¢jsu; for all s, s0 C' is a change of basis matrix for K. Tt follows that C is invertible and det(C) is
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a unit. Because det(C) = [, det(B;) lies in A, we have det(C) = det(C) + a, where a € a. Since det(C) is
a unit, then so is det(C) since a € rad(4). O

Definition A.3. A complex of the form
0— R(—p) 5 R(—p) > 0

is called a short trivial complex. A direct sum of short trivial complexes, possibly placed in different homo-
logical degrees, is called a trivial complez.

Theorem A.4 (Analogue to Theorem 7.5(2) of [14]). Let U be a finitely generated graded R-module. Let F
be a minimal graded free resolution of U, and let G be a graded free resolution of U. Then G 2 F & T as
complezes, where T is some trivial complex.

Proof. By [14, Lemma 6.7], the identity map idy : U — U induces graded maps of complexes ¢ : F — G
and ¥ : G — F having degree 0. Moreover, there exists a graded homotopy h of internal degree 0 such that

id; =i = diy1hs + hiads - Fy — F

for each i. Since F is minimal, we can repeatedly apply the fact that Im(d;) C mF;_; for each i to obtain

Choose a homogeneous basis for F;, ordering it so that the degrees of the basis elements increase. Let
C = [¢r;] be the matrix of ¢;p; with respect to this ordered basis. Then C has square blocks B; along the
diagonal with entries in A, and all entries below the blocks are zero. The matrix of id; —;p; is E — C,
where E is the identity matrix of the correct dimension. Since Im(id; —v¢;¢;) € mF;, the matrix E — C
has entries in m. Thus, since the diagonal entries of E are 1, the diagonal entries of C' must also be 1.
The remaining entries in the blocks B; must lie in a, else £ — C' would have entries that are units in R.
We have det(C) = []; det(B;). Modding out by m, we have that C must be the identity matrix, hence
has determinant 1. But det(C') = ][, det(B;), so each B; has determinant a nonzero element of K. Hence,
det(C) = [];(det(B;) + a;), where a; € a, so this is invertible in A C R. Thus, ¢ : F — F is an
isomorphism. Let £ : F — F be its inverse. Then

FAGHF

is a splitting. Write T = ker(&+). Then G = ¢(F) @ T as graded modules. It remains to show that this is
an isomorphism of chain complexes and that T is a trivial complex. The rest of the proof (see [14, p.37])
does not depend on the coefficient ring of R, hence we omit it. O

References

[1] Marcelo Aguiar, Swapneel Mahajan, Monoidal Functors, Species and Hopf Algebras, CRM Monograph Series, vol. 29,
American Mathematical Society, Providence, RI, 2010, with forewords by Kenneth Brown and Stephen Chase and André
Joyal.

[2] Emil Artin, Galois Theory, second ed., Notre Dame Mathematical Lectures, vol. 2, University of Notre Dame, Notre Dame,
Ind., 1944.

[3] D.J. Benson, Polynomial Invariants of Finite Groups, London Mathematical Society Lecture Note Series, vol. 190, Cam-
bridge University Press, Cambridge, 1993.

[4] Kenneth S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin,
1982.

[5] H.E.A. Campbell, I.P. Hughes, R.J. Shank, D.L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (4) (1996)
307-336.

[6] Thomas Church, Jordan S. Ellenberg, Benson Farb, FI-modules and stability for representations of symmetric groups,

Duke Math. J. 164 (9) (2015) 1833-1910.


http://refhub.elsevier.com/S0022-4049(23)00219-0/bib1FEAF35021C21EB18F108F5C3A3DD9E0s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib1FEAF35021C21EB18F108F5C3A3DD9E0s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib1FEAF35021C21EB18F108F5C3A3DD9E0s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibB6F100F62577F410EF3968E7882680C5s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibB6F100F62577F410EF3968E7882680C5s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib01B67735B6FDDE43DD638C907C90E5BBs1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib01B67735B6FDDE43DD638C907C90E5BBs1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibED63FC91500594C3086714F86B3001E4s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibED63FC91500594C3086714F86B3001E4s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibDBE73535F328A021A765E9ADEBD445EDs1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibDBE73535F328A021A765E9ADEBD445EDs1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib13BF8A083DF3FDAC8452281655903CE3s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib13BF8A083DF3FDAC8452281655903CE3s1

A. Pevzner / Journal of Pure and Applied Algebra 228 (2024) 107537 21

[7] Daniel R. Grayson, Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at
http://www.math.uiuc.edu/Macaulay2/.

[8] Lukas Katthédn, Unpublished notes, 2017.

[9] J. Lewis, V. Reiner, D. Stanton, Invariants of GL,(F,;) in polynomials modulo Frobenius powers, Proc. R. Soc. Edinb.,
Sect. A 147 (4) (2017) 831-873.

[10] Hideyuki Matsumura, Commutative Algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings
Publishing Co., Inc., Reading, Mass., 1980.

[11] Mara D. Neusel, The transfer in the invariant theory of modular permutation representations, Pac. J. Math. 199 (1) (2001)
121-135.

[12] Mara D. Neusel, The transfer in the invariant theory of modular permutation representations. II, Can. Math. Bull. 45 (2)
(2002) 272-283.

[13] Mara D. Neusel, Larry Smith, Invariant Theory of Finite Groups, Mathematical Surveys and Monographs, vol. 94, Amer-
ican Mathematical Society, Providence, RI, 2002.

[14] Irena Peeva, Graded Syzygies, Algebra and Applications, vol. 14, Springer-Verlag London, Ltd., London, 2011.

[15] R. James Shank, David L. Wehlau, The transfer in modular invariant theory, J. Pure Appl. Algebra 142 (1) (1999) 63-77.

[16] Larry Smith, Polynomial Invariants of Finite Groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley,
MA, 1995.

[17] The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu, 2022.


http://www.math.uiuc.edu/Macaulay2/
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib58E1EAFACD2C191F2791A45E01146F35s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib58E1EAFACD2C191F2791A45E01146F35s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib12A82D53A7D39791D4A45E2A9C301E28s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib12A82D53A7D39791D4A45E2A9C301E28s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibD7D1BF012ACDC4FC788B239F4D709D0Ds1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibD7D1BF012ACDC4FC788B239F4D709D0Ds1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib6488F62D159AFC241068BED03BDB3F93s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib6488F62D159AFC241068BED03BDB3F93s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib7BADAE548BEC771C8CD776BF5FDE8596s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bib7BADAE548BEC771C8CD776BF5FDE8596s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibBFB0F595F4B3B921BFD3EA5F3FB0EC04s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibD69BD1B205491C82E7E4A7823FF24933s1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibFA96BE6C1B67ED9A69F7D9675F9D67DDs1
http://refhub.elsevier.com/S0022-4049(23)00219-0/bibFA96BE6C1B67ED9A69F7D9675F9D67DDs1
https://stacks.math.columbia.edu

	Symmetric group fixed quotients of polynomial rings
	1 Introduction
	1.1 Organization of paper

	2 Background on cofixed spaces
	2.1 Cofixed spaces of general representations
	2.2 The cofixed space as a module over the ring of invariants

	3 The cofixed space of a permutation representation
	3.1 The transfer map
	3.2 Relating the cofixed space to the transfer map

	4 Proof of main theorem
	4.1 Containment of Jn in ISn
	4.2 A base case
	4.3 Using the p-Sylow subgroups of Sn
	4.4 Proof of Theorem 1.1

	5 Applications
	5.1 The cofixed space with Fp coefficients
	5.2 The image of the transfer map with Fp coefficients

	6 A conjecture for larger n
	Declaration of competing interest
	Acknowledgements
	Appendix A Minimal free resolutions with local coefficient rings
	References


