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Given a representation of a finite group G over some commutative base ring k, the 
cofixed space is the largest quotient of the representation on which the group acts 
trivially. If G acts by k-algebra automorphisms, then the cofixed space is a module 
over the ring of G-invariants. When the order of G is not invertible in the base 
ring, little is known about this module structure. We study the cofixed space in 
the case that G is the symmetric group on n letters acting on a polynomial ring by 
permuting its variables. When k has characteristic 0, the cofixed space is isomorphic 
to an ideal of the ring of symmetric polynomials in n variables. Localizing k at a 
prime integer p while letting n vary reveals striking behavior in these ideals. As n
grows, the ideals stay stable in a sense, then jump in complexity each time n reaches 
a multiple of p.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Fix a commutative ring k with unit. Given a representation U of a finite group G over k, there are two 
natural kG-modules one can associate to U on which G acts trivially - the fixed space UG and the cofixed 
space UG. The fixed space is the largest k-submodule of U carrying trivial G-action, while the cofixed space 
is the largest k-module quotient of U carrying trivial G-action. As k-modules, the fixed space and the 
cofixed space are nearly dual to each other, with (UG)∗ ∼= (U∗)G [1, Lemma 2.21]. The functors (−)G and 
(−)G on kG-modules form an adjoint pair.

When U is a k-algebra S and G acts on S by k-algebra automorphisms, an asymmetry between SG and 
SG is apparent. The fixed space SG is itself a ring, called the ring of invariants, and its algebraic structure 
has been a central object of study in commutative algebra and representation theory for many years. The 
cofixed space, on the other hand, is not a ring, but it is a module over the ring of invariants.

The structure of the cofixed space as a module over SG depends greatly on whether or not |G| is invertible 
in k. In the nonmodular case, i.e. when |G| is a unit in k, the cofixed space is a free SG-module of rank one. 
When |G| is not a unit, very little is known about SG as an SG-module. In [9], Lewis, Reiner, and Stanton 
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prove that SG still has rank one over SG, and they give conjectures for the Hilbert series of k[x1, . . . , xn]G, 
for k a finite field, when G is GLn(k) or one of its parabolic subgroups.

In this paper, we study the SG-module structure of SG when S = k[x1, . . . , xn] and G = Sn, the 
symmetric group on n letters, acting by variable permutation. For p a prime integer, we consider k = Z(p)
and k = Fp, where Z(p) denotes the localization of Z at the prime ideal (p) and Fp = Z(p)/pZ(p) is the finite 
field with p elements. The action of Sn is modular for these k when n ≥ p. It is well-known that regardless of 
k, the ring of Sn-invariants is a polynomial ring k[e1, . . . , en], where ei is the degree i elementary symmetric 
polynomial in x1, . . . , xn. Our main theorem explicitly describes the structure of SG as a module over this 
polynomial ring when p ≤ n < 2p.

Theorem 1.1 (Main theorem). Let p ≤ n < 2p and let i = n − p. Then the cofixed space Z(p)[x1, . . . , xn]Sn

is isomorphic to the ideal Jn of Z(p)[e1, . . . , en] given by

Jn = 〈p, e1ep − ep+1, e2ep − ep+2, . . . , eiep − ep+i, ei+1, ei+2, . . . , ep−1〉.

For n in this range, the generators of Jn form a regular sequence and have degrees 0, 1, . . . , p − 1 mod p.

We will show that Jn is exactly the ideal IG for G = Sn, where IG is the image of the transfer map, 
denoted TrG. This is a map of SG-modules defined by

TrG : S −→ SG

f �→
∑
g∈G

g(f).

The relationship between the cofixed space and the image of the transfer is explained in Section 3.2. The 
image of the transfer map has been a longstanding object of interest in the study of modular invariant 
theory; see [13] for background, and [5], [11], [12], [15] for work on the image of the transfer map for various 
subgroups G of GLn(k). This paper also serves to give a description of the image of the transfer map when 
p ≤ n < 2p, G = Sn, and k = Z(p), Fp. To illustrate Theorem 1.1, we write the ideals ISn of Z(5)[e1, . . . , en]
for p = 5 and n ∈ {5, 6, 7, 8, 9}:

IS5 = 〈5, e1, e2, e3, e4〉
IS6 = 〈5, e1e5 − e6, e2, e3, e4〉
IS7 = 〈5, e1e5 − e6, e2e5 − e7, e3, e4〉
IS8 = 〈5, e1e5 − e6, e2e5 − e7, e3e5 − e8, e4〉
IS9 = 〈5, e1e5 − e6, e2e5 − e7, e3e5 − e8, e4e5 − e9〉.

The ideals ISn follow the pattern that ISp+j can be obtained from ISp+j−1 by replacing the ej generator 
with ejep − ep+j . Since these ideals are generated by a regular sequence - in the same degrees mod p - their 
minimal free resolutions1 have the same structure, with graded Betti numbers being the same if one takes 
degrees mod p. This stability in the module structure of SG is trivially true when 0 ≤ n < p: since SG is 
free of rank 1 over SG in this case, the cofixed space has one SG-generator in degree 0, and no syzygies.

When n ≥ 2p, the structure of ISn becomes more complicated, as ISn is no longer generated by a 
regular sequence. However, the stability of graded Betti numbers mod p persists. As an example for p = 2

1 See Appendix A for notes on why graded minimal free resolutions over the polynomial ring Z(p)[e1, . . . , en] are unique up to 
isomorphism. This allows us to use the terms “minimal free resolution” and “graded Betti number” unambiguously.
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and n = 4, 5, below we show the Betti tables for IS4 (left) and IS5 (right) over Z(2)[e1, . . . , e4] and 
Z(2)[e1, . . . , e5], respectively. Here, we follow the same convention as in Macaulay2, where the entry in row 
j and column i is the Betti number βi,i+j ; for background on graded Betti numbers, see [14, I.12]. One can 
see from these tables that

∑
j′≡j mod 2

βi,j′(IS4) =
∑

j′≡j mod 2
βi,j′(IS5)

for all homological degrees i and for j = 0, 1.

0 1 2 3
total: 5 7 4 1

0: 1 1 . .
1: 1 1 1 .
2: 1 2 1 .
3: 1 1 1 1
4: . 1 1 .
5: . 1 . .
6: 1 . . .

0 1 2 3
total: 5 7 4 1

0: 1 . . .
1: . 1 . .
2: 1 1 . .
3: 1 . 1 .
4: . 2 . .
5: 1 . 1 .
6: . 1 1 .
7: . 1 . 1
8: . . 1 .
9: . 1 . .
10: 1 . . .

Just as in the case that n < 2p, the minimal generators for these two ideals have the same degrees mod 
2 (in fact, they are the same mod 4), and the degree shifts appearing in higher homological degree are also 
the same mod 4. Along with more data to this effect, these findings suggest the following conjecture.

Conjecture 1.2. Let �p ≤ m, n < (� +1)p for � ≥ 0. Fix a homological index i ≥ 0 and an integer 0 ≤ j ≤ p −1. 
Then, working over base ring k = Z(p), we have an equality of graded Betti numbers

∑
j′≡j mod p

βi,j′(ISn) =
∑

j′≡j mod p

βi,j′(ISm).

1.1. Organization of paper

In Section 2, we discuss background on cofixed spaces of finite group representations and cite known 
results on the SG-module structure of the cofixed space. In Section 3, we discuss the modular transfer 
map and what is known about its image. We then relate the transfer map back to the cofixed space over 
rings of characteristic 0 and prove a useful base change lemma (Lemma 3.8) which allows us to consider 
characteristic p. Section 4 goes through the steps necessary to prove Theorem 1.1. Of particular importance 
is a relationship between the structure of the Sylow p-subgroups of Sn and the stability in the ideals ISn ; 
this is the topic of Subsection 4.3. Theorem 1.1 is proven in Subsection 4.4. We discuss applications of 
Theorem 1.1 to the cofixed space and the transfer map with Fp coefficients in Section 5. In Section 6, we 
provide data in support of Conjecture 1.2, which is restated more precisely as Conjecture 6.1. Appendix A
is dedicated to verifying that graded minimal free resolutions over polynomial rings with local coefficient 
rings are unique up to isomorphism.
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2. Background on cofixed spaces

2.1. Cofixed spaces of general representations

Definition 2.1. Let U be a finitely-generated free k-module and let G be a finite group acting on U via 
k-linear automorphisms of U . We define the fixed space UG, and the cofixed space UG, respectively, to be 
the k-modules

UG := {u ∈ U : g(u) = u for all g ∈ G} ,
UG := U/ spank {u− g(u) : u ∈ U, g ∈ G} .

The fixed and cofixed spaces satisfy the properties that UG is the largest submodule of U on which G
acts trivially, and UG is the largest quotient of U on which G acts trivially. They can also be defined as

UG = HomkG(k, U), and

UG = k ⊗kG U,

where k is the trivial kG-module. The group homology and group cohomology functors Hi(G, −) and 
Hi(G, −), respectively, are the left- and right-derived functors of (−)G and (−)G. The fixed space is well-
studied due to its importance in the invariant theory of finite groups when U is a ring. The cofixed space 
appears in relation to other mathematical objects, but its own internal structure is less well-understood. 
See, e.g. [6, §3.1] for its role in defining the stability degree of an FI-module and [1, Ch.15] for its role in 
defining the bosonic Fock functors. We now provide two specific examples of fixed and cofixed spaces so 
that the reader can gain intuition.

Example 2.2. When U = k[x1, . . . , xn] and G is a subgroup of Sn which acts by permuting variables, then 
UG and UG are isomorphic free k-modules, with k-bases

UG = spank

⎧⎨⎩ ∑
σ∈G/Gλ

xλ : λ ∈ Λ

⎫⎬⎭ ,

UG = spank

{
xλ : λ ∈ Λ

}
where Λ is a complete set of G-orbit representatives of monomials in U and Gλ denotes the stabilizer 
subgroup of the monomial xλ. That is, the fixed space has a k-basis of orbit sums of monomials, while the 
cofixed space has a k-basis of orbit representatives of monomials. When G = Sn, the set Λ can be taken to 
be all integer vectors (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0.

While it is often true that UG and UG are isomorphic as k-modules, this is not always the case, as we 
show in the example below.

Example 2.3. Let V = F3[x, y] and let G = GL2(F3) act by ring automorphisms of V induced from the 
action of G on the F3-vector space with basis x, y. The action of G preserves the standard grading on V . 
We consider U = V4, the F3-span of the degree 4 elements in V , which is generated as an F3-vector space 
by all monomials of degree 4. For convenience, we list a generating set for G:

A =
[
−1 0
0 1

]
, B =

[
1 0
0 −1

]
, C =

[
0 1
1 0

]
, D =

[
1 1
0 1

]
.
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Any element in UG must lie in the F3-span of {x4, x2y2, y4} in order to be invariant under A and B, and 
furthermore must be in the F3-span of {x4 + y4, x2y2} to be invariant under C. One can directly show that 
any F3-linear combination a(x4 + y4) + b(x2y2) which is invariant under D must satisfy a = b = 0. Hence, 
UG = 0.

On the other hand, UG is a 1-dimensional F3-vector space. The matrices A and B give the relations 
2x3y = 0 and 2xy3 = 0 in UG. The matrix C gives the relation x4−y4 = 0, and combining with y4 = (x +y)4
gives x4 = y4 = 0. However, all generating matrices and their inverses applied to x2y2 induce the trivial 
relation x2y2 − x2y2 = 0 in UG after quotienting by the relations involving the other monomials. We will 
see in Proposition 2.4 that it is enough to check the image of x2y2 on the generators of the group and their 
inverses. Hence UG is 1-dimensional, spanned over F3 by the image of x2y2.

2.2. The cofixed space as a module over the ring of invariants

When U is a k-algebra S and G acts by k-algebra automorphisms, the invariant space SG is a subring of 
S, which we call the ring of invariants or the invariant ring. The multiplication action of SG on S descends 
to the quotient SG, since given r ∈ SG, f ∈ S, and g ∈ G, we have

r(f − g(f)) = rf − rg(f) = rf − g(rf).

The cofixed space is therefore a module over the ring of invariants. The following proposition, found in [9, 
Proposition 5.1], outlines some basic information on generating SG over SG. From this it follows that SG is 
a finitely generated SG-module, since S is finitely generated over SG [3, Theorem 1.3.1].

Proposition 2.4. Let M be a module over a k-algebra R, and let G be a finite group acting on M by R-
module automorphisms. Write MG = M/N , where N = spank{m − g(m) : g ∈ G, m ∈ M}. Suppose that 
{mi : i ∈ I} ⊆ M generates M as an R-module and that {gj : j ∈ J} ⊆ G generates G as a group. Then,

(i) the images {mi : i ∈ I} generate MG as an R-module, and
(ii) the set {mi − gj(mi), mi − g−1

j (mi) : i ∈ I, j ∈ J} generates N as an R-module.

Aside from finite generation of SG over SG, the rank of SG as an SG-module is also known, due to Lewis, 
Reiner, and Stanton [9, Proposition 5.7].

Proposition 2.5. Let S be a k-algebra and an integral domain on which a finite group G acts by k-algebra 
automorphisms. Then the cofixed space SG has rank one as a module over the ring of invariants.

The structure of SG over SG becomes very simple when |G| is a unit in k. To see this, we use the Reynolds 
operator πG : S → SG, defined by

πG(f) = 1
|G|

∑
g∈G

g(f).

The Reynolds operator is a map of SG-modules, and it is a projection onto the ring of invariants whenever 
it is defined.

Proposition 2.6. Suppose |G| is a unit in k and that G acts on a k-algebra S which is an integral domain 
as in Proposition 2.5. Then the cofixed space SG is a free SG-module of rank one.
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Proof. The map πG factors through SG since any two elements of S in the same G-orbit have the same 
image under πG. The induced map SG → SG remains surjective. The map is also injective, since given 
f ∈ SG, any two preimages h, h′ ∈ S of f under πG must be in the same G-orbit, hence equal in SG. �
Remark 2.7. Aguiar and Mahajan note in [1, Lemma 2.20] that SG is also a free rank one SG-module when 
S is a flat kG-module; in this case the map |G|πG (the transfer map) is an isomorphism.

When |G| is not invertible in k and S is not flat over kG, there is very little known about the structure 
of SG as a module over SG. To give the reader a sense of how the SG action can be nontrivial when |G| is 
not invertible in k, we work out an example below.

Example 2.8. Let S = F2[x1, x2, x3] and let G = S3 act by variable permutation. The invariant ring is a 
polynomial ring F2[e1, e2, e3], where ei is the degree i elementary symmetric polynomial. By Proposition 2.4, 
a generating set for S over SS3 descends to a generating set for SS3 over SS3 . One well-known basis for S
over SS3 is the set of “sub-staircase” monomials, also known as the Artin basis [2]; these are the monomials 
xλ1

1 xλ2
2 xλ3

3 which satisfy 0 ≤ λi ≤ 3 − i for all i. Because all monomials in the same S3-orbit are equal in the 
cofixed space, it suffices to take such monomials with weakly decreasing exponent vectors. This means that 
the images of {1, x1, x2

1, x1x2, x2
1x2} generate the cofixed space over SS3 . This is not a minimal generating 

set; notice that

e1 · 1 = x1 + x2 + x3 = 3x1 = x1,

so x1 is redundant. One can similarly show that x1x2 = e2 · 1 and x2
1 = e2

1 · 1. However, x2
1x2 is a minimal 

generator, as any degree three monomial in e1, e2, e3 has an even number of terms in the S3-orbit of x2
1x2. 

Hence, {1, x2
1x2} is a minimal generating set for SS3 over SS3 . One can compute that AnnSS3 (1) = 〈e1e2 +

e3〉, and that x2
1x2 generates a free SS3-submodule of SS3 . Hence, the cofixed space has a decomposition

F2[x1, x2, x3]S3
∼= F2[e1, e2, e3]

〈e1e2 + e3〉
⊕ 〈e1e2 + e3〉

as a module over F2[e1, e2, e3]. This decomposition will also follow from Theorem 5.2.

In the next section, we focus on the case when G acts on a polynomial ring S by permuting variables. 
In this case, we can use the transfer map, a multiple of the Reynolds operator which is defined for all k, to 
study SG as an SG-module. Significantly more is known about the image of the transfer map when G is a 
permutation group, and this is closely related to the study of the cofixed space.

3. The cofixed space of a permutation representation

3.1. The transfer map

We specialize to the case when S = k[x1, . . . , xn] for the remainder of the paper. We give S the standard 
grading with deg(xi) = 1 for all i and consider group actions which preserve the graded structure. In other 
words, G is a subgroup of GL(V ) acting on a vector space V ∼= kn with basis x1, . . . , xn, and this action 
extends to Sym(V ) ∼= S.

Definition 3.1. With G, S as above, define the transfer map TrGk : S → SG by

TrGk (f) =
∑

g(f).

g∈G
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Because TrGk is a map of SG-modules, its image is an ideal of SG, which we denote by IGk . When k is clear 
from context, we may drop the subscript and denote the transfer map by TrG and its image by IG.

Remark 3.2. The transfer map descends to the quotient SG. It also can be defined in greater generality for 
G any finite group and U a representation of G over k. This gives a natural map H0(G, U) → H0(G, U), 
sometimes called the norm map, and it is used in the study of Tate cohomology; see [4, §6.4].

Unlike the Reynolds operator, the transfer map is defined for k of arbitrary characteristic. When 
char(k) = 0 but |G| /∈ k×, it is easy to see that IG is a proper, nonzero ideal of SG; namely 1 /∈ IG

but |G| ∈ IG. When k is a field of characteristic p, it is more subtle to see this fact; the proof in [15, 
Theorem 2.2] requires the assumption that the action of G on S comes from a faithful representation 
G ↪→ GL(V ).

The image of a single element f under the transfer map is equal to |Gf |(
∑

f ′∈G/Gf
f ′), where Gf is the 

stabilizer of f . For further background on the transfer map in the context of finite group invariant theory, 
we refer the reader to [13] or [16].

When G is a permutation group, a characteristic-free generating set for the image of the transfer map 
was given by Neusel in [12]. The generating set involves the so-called special monomials, which we define 
below.

Definition 3.3. Let α = (α1, . . . , αn) ∈ Nn be an exponent vector for a monomial xα in k[x1, . . . , xn]. Define 
λ(α) to be the weakly decreasing rearrangement of α. We call xα a special monomial if λ(α) satisfies

(i) λ(α)n = 0, and
(ii) λ(α)j − λ(α)j+1 ∈ {0, 1} for each 1 ≤ j ≤ n − 1.

Theorem 3.4. [12, Theorem 1.1] Let G be a finite group acting on k[x1, . . . , xn] by variable permutation. 
Then the image of the transfer map is generated by the transfers of special monomials.

Remark 3.5. Neusel proves Theorem 3.4 in the case that k is a field of arbitrary characteristic using an 
induction on dominance order on partitions. This same argument works for any commutative ring k, hence 
is stated in this generality here.

Example 3.6. The special monomials of k[x1, x2, x3] are

1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1x2, x

2
1x3, x1x

2
2, x

2
2x3, x1x

2
3, x2x

2
3.

When xα and xβ are in the same G-orbit, then TrG(xα) = TrG(xβ). Hence when G = Sn, the image 
of TrSn is generated by transfers of special monomials with weakly decreasing exponent vector, which we 
sometimes call a special partition. When working over Sn, a special monomial will refer to one with a weakly 
decreasing exponent vector.

A different generating set for the image of the transfer when k has positive characteristic was given by 
Campbell, Hughes, Shank, and Wehlau in [5, Theorem 9.18], using the theory of block bases. This generating 
set also consists of transfers of certain monomials, and in general is not a minimal generating set. We will 
see in Section 4.1 that the minimal generating set of Theorem 1.1 is not given by transfers of monomials.
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3.2. Relating the cofixed space to the transfer map

Proposition 3.7. Assume that k is a commutative ring of characteristic zero. Let G be a finite group acting on 
S = k[x1, . . . , xn] by permuting variables. Then the cofixed space is isomorphic to the image of the transfer 
map as an ideal of SG.

Proof. We show that the transfer map TrG : SG → SG is injective. Since S has a k-basis of monomials, the 
ring of invariants has a k-basis of orbit sums of monomials, i.e. a basis of the form⎧⎨⎩mλ :=

∑
xα∈Gxλ

xα : λ ∈ Λ

⎫⎬⎭ ,

where Λ is a complete, irredundant set of G-orbit representatives of the set of monomials in S, and Gxλ

denotes the set of all elements in the G-orbit of xλ. On the other hand, the cofixed space is a free k-module 
with k-basis {xλ : λ ∈ Λ}, where f denotes the image of f in SG. The transfer map sends xλ to |Gλ|mλ, 
where Gλ is the stabilizer of xλ. The image of xλ under the transfer map is not zero since k has characteristic 
zero. Hence, the images of the xλ are k-linearly independent in SG, from which it follows that the transfer 
map SG → SG is injective. �

The transfer map is a very useful tool to study the cofixed space when char(k) = 0. However, we are 
also interested in the case that k has positive characteristic. In Lemma 3.8 below, we show that taking the 
cofixed space commutes with base change. This allows us to work over k = Z (or k = Z(p)) before changing 
our coefficient ring to, e.g., k = Fp. The next lemma was observed and proven by Katthän [8]. For notes on 
base change, see [17, 10.14]. The reader should keep in mind that we intend to apply the following to the 
case when A = Z or A = Z(p), R = k[e1, . . . , en], M = k[x1, . . . , xn], and B = Fp.

Lemma 3.8 (Base change lemma). Let ϕ : A → R, ψ : A → B be homomorphisms of commutative rings. 
We view ψ : A → B as the base change map. Let M be a left AG-module and an R-module such that the 
actions of R and AG commute. Since A is commutative, view M as an (AG, A)-bimodule. Then

(A⊗AG M) ⊗A B ∼= A⊗AG (M ⊗A B)

as R⊗A B-modules; in other words, MG ⊗A B ∼= (M ⊗A B)G as R⊗A B-modules.

Proof. By associativity of tensor product, there is a natural map a : (A ⊗AG M) ⊗A B → A ⊗AG (M ⊗A B)
which is well-defined and is an isomorphism of both A-modules and AG-modules [17, 10.12]. It remains to 
check that this map preserves the (R⊗A B)-module structure on the source and the target. We show how 
an element r ⊗ y of R⊗A B acts on simple tensors, where x0 ∈ A, m0 ∈ M , y0 ∈ B:

(r ⊗ y) · ((x0 ⊗m0) ⊗ y0) := r(x0 ⊗m0) ⊗ yy0

= (x0 ⊗ rm0) ⊗ yy0,

(r ⊗ y) · (x0 ⊗ (m0 ⊗ y0)) := x0 ⊗ ((r ⊗ y) · (m0 ⊗ y0))

= x0 ⊗ (rm0 ⊗ yy0).

Hence the natural map a is also a map of R⊗A B-modules, as claimed. �
Remark 3.9. In the setting of Lemma 3.8, we would like to let R be the ring of G-invariants inside 
k[x1, . . . , xn] for some group G. In general, it is not true that (R⊗kB)G = RG⊗kB for a base change ring B, 
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and Lemma 3.8 would not give information on the structure of (M⊗kB)G as a module over B[x1, . . . , xn]G. 
In the case of G = Sn with its standard action on the polynomial ring, however, the ring of invariants has 
the same presentation over any base ring.

Lemma 3.8 shows that we can understand M = Fp[x1, . . . , xn]Sn
as a module over Fp[e1, . . . , en] by 

first computing ISn

Z ⊂ Z[e1, . . . , en] and then taking ISn

Z /pISn

Z
∼= ISn

Z ⊗Z Z/pZ. The ideals ISn

Z can be 
very complicated, as the stabilizers of monomials xλ become large. Instead, we work over k = Z(p); in 
this case, the ideals ISn

Z(p)
become much simpler (and more interesting, as Theorem 1.1 and Conjecture 1.2

demonstrate), while we can deduce information about M in the same way.

4. Proof of main theorem

We specialize further to the case when S = k[x1, . . . , xn] and G = Sn. Here, the ring of invariants SG is a 
polynomial algebra k[e1, . . . , en], where ei denotes the ith elementary symmetric polynomial in the variables 
x1, . . . , xn. We fix k = Z(p) for the remainder of the section; all instances of the transfer map and of its 
image are over this base ring unless otherwise stated. We restate our main theorem here, which is proved 
in this section.

Theorem 1.1 (Main theorem). Let p ≤ n < 2p and let i = n − p. Then the cofixed space Z(p)[x1, . . . , xn]Sn

is isomorphic to the ideal Jn of Z(p)[e1, . . . , en] given by

Jn = 〈p, e1ep − ep+1, e2ep − ep+2, . . . , eiep − ep+i, ei+1, ei+2, . . . , ep−1〉.

For n in this range, the generators of Jn form a regular sequence and have degrees 0, 1, . . . , p − 1 mod p.

Because of Proposition 3.7, we will prove Theorem 1.1 by showing that Jn = ISn for p ≤ n < 2p. We will 
first show that there is a containment Jn ⊆ ISn and that the theorem holds when n = p. We will then use a 
stability present in the p-Sylow subgroups Pn of Sn, along with a result of Shank and Wehlau [15] relating 
ht(ISn) and ht(IPn), to deduce the height of ISn . This deduction will be key in proving the theorem.

Remark 4.1. One can readily see via the Jacobi–Trudi identities that each generator epej − ep+j of the ideal 
Jn is the skew-Schur polynomial associated to the two-column ribbon shape, with the first column having j
boxes and the second column having p boxes. For example, the generator e2e3 − e5 is the Schur polynomial 
for the skew shape .

Replacing the generator ej with ejep − ep+j when moving from n = p + j − 1 to n = p + j corresponds 
to appending a column of length p to a single-column ribbon diagram.

4.1. Containment of Jn in ISn

Proposition 4.2. Given n = p + i with 1 ≤ i ≤ p − 1, the ideal Jn of Theorem 1.1 is contained in ISn .

Proof. We separate the generators of Jn into three types and show that each type of generator lies in ISn:

(i) p,
(ii) ej for i + 1 ≤ j ≤ p − 1, and
(iii) ejep − ep+j for 1 ≤ j ≤ i.
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It is immediate that p ∈ ISn , since

Tr
( p

n! · 1
)

= p

n! Tr(1) = p

and n!
p is invertible in Z(p) for n < 2p ≤ p2. Writing Tr(x1 · · ·xj) = j!(p + i − j)!ej , it follows that ej ∈ ISn

if and only if j ≤ p − 1 and p + i − j ≤ p − 1. These are exactly the conditions needed for ej to lie in Jn.
It is more complicated to show that ejep − ep+j is in the image of the transfer when 1 ≤ j ≤ i. For any 

partition λ = (λ1, . . . , λn), let aλ be the order of the stabilizer of λ in Sn, where Sn acts by coordinate 
permutation. As we have seen, we can write Tr(xλ) = aλmλ, where mλ is the monomial symmetric polyno-
mial associated to λ, that is, the sum of all distinct elements in the Sn-orbit of λ. The mλ form a k-basis of 
k[x1, . . . , xn]Sn , for any k, as λ runs over all weakly decreasing exponent vectors. Hence, for some bλ ∈ Q

we can write

ejep − ep+j =
∑
λ

bλmλ =
∑
λ

bλ
aλ

TrQ(xλ).

We will compute the coefficients bλ explicitly, then show that bλaλ
∈ Z(p), that is, that bλaλ

has no powers 
of p in the denominator when written in lowest terms. From this it follows that ejep − ep+j ∈ ISn . When 
expanding ejep − ep+j in terms of monomial symmetric polynomials mλ, the partitions λ appearing with 
nonzero coefficient are of the form

λ(k) = (2k, 1p+j−2k, 0i−j+k)

for 0 ≤ k ≤ j. We will consider the case k = 0 separately later in the proof. For now, assume that k ≥ 1. 
Then the coefficient bλ(k) on mλ(k) in ejep is equal to 

(
p+j−2k

j−k

)
. To see this, we can count how many times the 

monomial x2
1 · · ·x2

kxk+1 · · ·xp+j−k appears in ejep. In order to obtain such a monomial, one must choose 
a term from ej divisible by x1 · · ·xk and a term from ep divisible by x1 · · ·xk. It remains to choose the 
variables xk+1, . . . , xk+p+j−2k (which is a set of size p + j − 2k), and j − k of these must come from the ej
term. Since k ≥ 1, this is also the coefficient of mλ(k) in ejep − ep+j .

Since aλ = k!(p + j − 2k)!(i − j + k)!, we can write

ejep − ep+j =
b(1p+j)

a(1p+j)
TrQ(x(1p+j)) +

j∑
k=1

(
p+j−2k

j−k

)
k!(p + j − 2k)!(i− j + k)! TrQ(xλ(k)

)

=
b(1p+j)

a(1p+j)
TrQ(x(1p+j)) +

j∑
k=1

1
(j − k)!(p− k)!k!(i− j + k)! TrQ(xλ(k)

).

Observe that in each coefficient on TrQ(xλ(k)), for k ≥ 1, there are no factors of p in the denominator. 
Hence these coefficients are elements of Z(p). It remains to determine the coefficient of TrQ(x(1p+j)). Set 
λ = (1p+j). We have bλ =

(
p+j
j

)
− 1, since ejep gives 

(
p+j
j

)
terms x1 · · ·xp+j , and ep+j has exactly one term 

of this form. Since λ consists of p + j 1’s and p + i − (p + j) 0’s, we have aλ = (p + j)!(i − j)!. Hence,

bλ
aλ

=
(
p+j
j

)
− 1

(p + j)!(i− j)! = (p + j)! − p!j!
p!j!(p + j)!(i− j)! .

Now we can rewrite (p + j)! = (p + j)(p + j − 1) · · · p! and cancel a copy of p!, giving

bλ = (p + j)(p + j − 1) · · · (p + 1) − j!
.

aλ j!(p + j)(p + j − 1) · · · (p)(p− 1)!(i− j)!
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Note that (p + j)(p + j − 1) · · · (p + 1) ≡ j! mod p, and it is strictly larger than p. Hence we can write 
(p +j)(p +j−1) · · · (p +1) = j! +�p for some � > 0. Moreover, there is only one factor of p in the denominator. 
Hence we have

bλ
aλ

= j! + �p− j!
j!(p + j) · · · p(p− 1)!(i− j)! = �

j!(p + j) · · · (p + 1)(p− 1)!(i− j)! ∈ Z(p). �
4.2. A base case

Proposition 4.3. When n = p, the image of the transfer map is equal to the ideal

Jp = 〈p, e1, . . . , ep−1〉 ⊂ Z(p)[e1, . . . , ep].

Before proceeding with the proof of Proposition 4.3, we recall the definition of dominance order on 
partitions. The technique of induction on (degree and) dominance order is similar to what is used in Neusel’s 
proof of [12, Theorem 1.1].

Definition 4.4. Fix an integer m ≥ 1 and let λ = (λ1, . . . , λn), μ = (μ1, . . . , μn) be two integer partitions of 
m, where the tuples λ and μ have weakly decreasing nonnegative coordinates. We say that λ dominates μ, 
or λ ≥dom μ, if for each 1 ≤ j ≤ n, one has λ1 + · · · + λj ≥ μ1 + · · · + μj .

Proof of Proposition 4.3. By Proposition 4.2, there is a containment Jp ⊆ ISp . To show that the generators 
of Jp also generate the image of the transfer, it is enough to show that the transfer of any special monomial 
(see Definition 3.3) lies in Jp, by Theorem 3.4. We will use induction on degree and dominance order. Let 
xλ be a special monomial such that λ1 ≥ 2. Set k := max{j : λj �= 0}. Since λ is special and λ1 ≥ 2, we 
have k ∈ {2, . . . , p − 1} with λk = 1. Define a new partition

λ̃ := (λ1 − 1, λ2 − 1, . . . , λk−1 − 1, 0, . . . , 0)

obtained from λ by subtracting 1 from all nonzero parts. Writing ek xλ̃ =
∑

1≤i1<···<ik≤p(xi1 · · ·xikx
λ̃), we 

can apply the transfer map to both sides and use its Z(p)[e1, . . . , ep]-linearity:

ek Tr(xλ̃) =
∑

1≤i1<···<ik≤p

Tr(xi1 · · ·xikx
λ̃). (1)

A generic term of the right-hand side is of the form Tr(xα), where α = (α1, . . . , αp) is obtained from λ̃ by 
adding 1 to exactly k of its entries. The term Tr(xλ) appears only when a 1 is added to every nonzero entry 
of λ̃. Each nonzero entry of λ̃ corresponds to an entry of λ that is larger than 2. If λ̃ has � nonzero entries, 
then 1 ≤ � < k since λk = 1. Hence the coefficient of Tr(xλ) in (1) is 

(
p−�
k−�

)
, which is invertible in Z(p). Now 

given any term Tr(xα) in (1), let μ be the weakly decreasing rearrangement of α. By construction, μj ≤ λj

for each j ≤ k, with equality occurring if and only if μ = λ. For j > k we have

μ1 + · · · + μj ≤ deg(xλ) = λ1 + · · · + λk = λ1 + · · · + λj .

Hence, μ ≤dom λ. It follows that we can write

Tr(xλ) = 1(
p−�
k−�

)
⎛⎝ek Tr(xλ̃) +

∑
μ<domλ

cμ Tr(xμ)

⎞⎠ ,

so by induction Tr(xλ) ∈ Jp. �
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4.3. Using the p-Sylow subgroups of Sn

To prove Theorem 1.1, we will make use of the fact that S�p+i and S�p+j have isomorphic p-Sylow 
subgroups whenever 0 ≤ i, j < p.

Lemma 4.5. Let n, m be positive integers such that �p ≤ n < m < (� + 1)p for some positive integer �. Then 
the p-Sylow subgroups of Sn and Sm are isomorphic. Moreover, any given p-Sylow subgroup of Sn can be 
embedded into a p-Sylow subgroup of Sm via the natural inclusion Sn ↪→ Sm.

Proof. Let Pn be any p-Sylow subgroup of Sn. Then there is a subgroup Pm of Sm which is obtained from 
Pn by applying the map

Sn −→ Sm,

[w1, . . . , wn] �→ [w1, . . . , wn, n + 1, . . . ,m]

where the permutations above are expressed in one-line notation. Then Pn
∼= Pm as groups. Because 

n, m ∈ {�p, . . . , (� + 1)p − 1}, the orders of Sn and Sm share the same number of factors of p. Hence, the 
p-Sylow subgroups of Sn and Sm have the same order. Since we have exhibited a subgroup of Sm of the 
correct order, it must be that all p-Sylow subgroups of Sm are isomorphic to Pm. �

From now on, if n, m satisfy �p ≤ n < m < (� + 1)p for some �, we choose p-Sylow subgroups Pn, Pm of 
Sn, Sm, respectively, so that Pm is the image of Pn under the natural inclusion ι : Sn ↪→ Sm, as in the 
proof of Lemma 4.5. When Pn, Pm are chosen in this way, the variables xn+1, . . . , xm ∈ k[x1, . . . , xm] are 
all invariant under the action of Pm. The simple corollary below follows.

Corollary 4.6. With n, m, Pn, Pm as above, k[x1, . . . , xm]Pm = k[x1, . . . , xn]Pn ⊗kk[xn+1, . . . , xm], and there 
is a natural inclusion k[x1, . . . , xn]Pn ↪→ k[x1, . . . , xm]Pm .

We may use Lemma 4.5 and Corollary 4.6 to deduce a relationship between the transfer ideals IPn and 
IPn+1 , as long as n + 1 is not a multiple of p.

Lemma 4.7. Let n ∈ {�p, . . . , (� + 1)p − 2} and let Pn, Pn+1 be p-Sylow subgroups of Sn, Sn+1 satisfy-
ing ι(Pn) = Pn+1. Let Rn and Rn+1 denote the Pn- and Pn+1-invariant subrings of k[x1, . . . , xn] and 
k[x1, . . . , xn+1], respectively. Then, IPn+1 is the extension ideal Rn+1 · IPn .

Proof. The ideal IPn+1 is generated by the transfers of all monomials xα in k[x1, . . . , xn+1]. Given such a 
monomial, either xn+1 divides xα or it does not. If xn+1 does not divide xα, then

TrPn+1(xα) = TrPn(xα) ∈ Rn+1 · IPn .

If xn+1 divides xα, we can factor xα as xα̃ · xb
n+1 with gcd(xα̃, xb

n+1) = 1. Using the fact that xn+1 is fixed 
by Pn+1 and the action of Pn+1 is multiplicative, we have

TrPn+1(xα) =
∑

w∈Pn+1

(wxα̃)(wxb
n+1)

=
∑

w∈Pn+1

(wxα̃)xb
n+1

= xb
n+1

∑
wxα̃
w∈ι(Pn)
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= xb
n+1 TrPn(xα̃) ∈ Rn+1 · IPn .

We have shown the containment IPn+1 ⊆ Rn+1 · IPn . To show the reverse containment, take f ∈ Rn+1 · IPn

and write f =
∑

j rj TrPn(fj) for some rj ∈ Rn+1 and fj ∈ k[x1, . . . , xn]. Since the fj use only the variables 
x1, . . . , xn, we have TrPn(fj) = TrPn+1(fj). Since TrPn+1 is a map of Rn+1-modules and each rj ∈ Rn+1, it 
follows that f = TrPn+1

(∑
j rj · fj

)
∈ IPn+1 . �

Corollary 4.8. With IPn ⊂ Rn and IPn+1 ⊂ Rn+1 as before, ht(IPn) = ht(IPn+1).

Proof. The extension of rings Rn ↪→ Rn+1 is flat, hence the going down theorem holds. Moreover, the 
induced map SpecRn+1 → SpecRn is surjective. By [10, Theorem 19 (3)], the heights of IPn and its 
extension ideal IPn+1 = Rn+1 · IPn are equal. �

Now that we have related IPn and IPn+1 , we can compare the heights of IPn and ISn . To do so, we 
appeal to a corollary found in [15], restated slightly to accommodate the case that k is not a field.

Corollary 4.9. [15, Corollary 5.2] Assume that k is a commutative ring in which |Sn : H| is invertible, 
where H is a subgroup of Sn acting on S := k[x1 . . . , xn]. Then ht(ISn) = ht(IH).

Proof. Under the assumption that |Sn : H| ∈ k×, it follows from [15, Proposition 5.1], that IH lies over 
ISn in the integral ring extension SSn ↪→ SH . Since both SSn and SH are integral domains and SSn is 
integrally closed,2 the going down theorem holds for this extension of rings. By [10, Theorem 20 (3)], we 
have ht(ISn) = ht(IH). �
4.4. Proof of Theorem 1.1

It remains to put together the content in the previous sections to prove our main theorem. We apply 
Corollary 4.9 in the case that k = Z(p) and H = Pn.

Proof of Theorem 1.1. Combining Corollary 4.8 with Corollary 4.9, we conclude that for any �p ≤ n, m <
(� + 1)p with � ≥ 1, we have

ht(ISn) = ht(IPn) = ht(IPm) = ht(ISm).

When p ≤ n < 2p, Proposition 4.3 shows that ht(ISn) = ht(ISp) = p. Since ht(ISn) = p, we can find a 
prime qn of height p in Z(p)[e1, . . . , en] such that ISn ⊆ qn. On the other hand, Proposition 4.2 shows that 
Jn ⊆ ISn . But Jn is itself a prime ideal of height p, hence we have a containment

Jn ⊆ ISn ⊆ qn,

with Jn and qn both primes of height p. From this we conclude that Jn = ISn = qn, proving the theorem. �
2 When k = Z or k = Z(p), the ring of invariants SSn is a polynomial ring over a UFD, hence is a UFD itself. For k a field, it is 

well-known that any ring of invariants of a finite group is integrally closed; see §1.7 of [13].



14 A. Pevzner / Journal of Pure and Applied Algebra 228 (2024) 107537
5. Applications

5.1. The cofixed space with Fp coefficients

By Lemma 3.8, we can deduce the structure of the cofixed space with k = Fp from that of the cofixed 
space with k = Z(p); specifically, we study the Fp[e1, . . . , en]-module ISn ⊗Z(p) Fp. First, we prove a lemma 
that we can apply to this tensor product.

Lemma 5.1. Let S be an A-algebra for some commutative ring A with unit and let A → B be a surjective ring 
homomorphism. If M is an S-module, then every element of the S⊗AB-module M ⊗AB can be represented 
by a simple tensor m ⊗ 1 for some m ∈ M .

Proof. Note that the map A → B being surjective implies that B is unital and 1A �→ 1B . For any element 
x ∈ B, let x̃ denote a preimage of x in A. Then any finite (S ⊗A B)-linear combination of simple tensors in 
M ⊗A B can be written as follows, where si ∈ S, mi ∈ M , and xi, yi ∈ B:∑

i(si ⊗ xi)(mi ⊗ yi) =
∑

i simi ⊗ xiyi = (
∑

i simix̃iyi) ⊗ 1. �
Theorem 5.2. Let n = p + i with 0 ≤ i ≤ p − 1. Then the cofixed space Fp[x1, . . . , xn]Sn

has the following 
direct sum decomposition as a module over Fp[e1, . . . , en]:

Fp[x1, . . . , xn]Sn
∼= Fp[e1, . . . , en]

J̄n
⊕ J̄n (2)

where J̄n is the ideal 〈e1ep − ep+1, e2ep − ep+2, . . . , eiep − ep+i, ei+1, ei+2, . . . , ep−1〉 of Fp[e1, . . . , en].

Proof. We begin by setting up notation. Let S = Z(p)[e1, . . . , en] and let R = Fp[e1, . . . , en]. Let π : S → R

denote the natural projection map which reduces coefficients mod p. Then J̄n = π(ISn), and R ∼= S⊗Z(p) Fp

via an isomorphism f̄ ↔ f ⊗ 1, where f is any lift of f̄ under π. We move freely between elements of R and 
elements of S ⊗Z(p) Fp in this manner. All tensors in the proof will be taken over Z(p). Let

I := ISn

Z(p)
= 〈p, g1, . . . , gp−1〉 ⊂ S,

where gj = ejep − ep+j if j ≤ i and gj = ej if j > i. This is simply the generating set of Theorem 1.1.
By Lemma 3.8, the cofixed space Fp[x1, . . . , xn]Sn

is isomorphic to I ⊗ Fp as an R-module. We will 
prove the direct sum decomposition (2) by exhibiting a split surjection of R-modules ϕ : I ⊗ Fp → J̄n with 
ker(ϕ) ∼= R/J̄n.

We begin by defining

ϕ : I ⊗ Fp −→ J̄n

f ⊗ a �→ af̄

where f̄ denotes the image of f in R. This map is Z(p)-balanced on I × Fp, so is well-defined out of the 
tensor product. It is a surjective map of R-modules, with ḡj ∈ J̄n having preimage gj ⊗ 1.

We now exhibit a right inverse for ϕ. Define ψ̂ : Rp−1 → I ⊗ Fp by

ψ̂(εj) = gj ⊗ 1,

where εj denotes the jth standard R-basis element of the free R-module Rp−1. Since J̄n is generated by an 
R-regular sequence, the map ψ̂ descends to a map ψ : J̄n → I ⊗ Fp if



A. Pevzner / Journal of Pure and Applied Algebra 228 (2024) 107537 15
ḡk ψ̂(εj) − ḡj ψ̂(εk) = 0

for all 1 ≤ j, k ≤ p − 1. Note that ḡj acts on elements of S ⊗ Fp via left multiplication by gj ⊗ 1. This then 
gives

ḡkψ̂(εj) − ḡjψ̂(εk) = (gk ⊗ 1)(gj ⊗ 1) − (gj ⊗ 1)(gk ⊗ 1)

= (gkgj) ⊗ 1 − (gjgk) ⊗ 1

= 0.

Hence, ψ̂ factors through J̄n to give a map ψ : J̄n → I ⊗ Fp. It is straightforward to verify that ϕ ψ = idJ̄n
. 

Thus, the map ϕ is a split surjection, meaning that

I ⊗ Fp
∼= ker(ϕ) ⊕ J̄n. (3)

It remains to show that ker(ϕ) ∼= R/J̄n. We claim that ker(ϕ) is the cyclic R-submodule of I⊗Fp generated 
by p ⊗ 1. By Lemma 5.1, it suffices to show that any simple tensor g⊗ 1 ∈ ker(ϕ) is an R-multiple of p ⊗ 1. 
But if ϕ(g ⊗ 1) = ḡ = 0 in R, then p divides g in S, so

g ⊗ 1 = g′p⊗ 1 = ḡ′(p⊗ 1)

for some g′ ∈ S. Hence, ker(ϕ) is generated by p ⊗ 1. It remains to show that AnnR(p ⊗ 1) = J̄n. Certainly 
J̄n ⊆ AnnR(p ⊗ 1), since for any 1 ≤ j ≤ p − 1 one has

gj(p⊗ 1) = gjp⊗ 1 = gj ⊗ p = 0,

where we may move the p across the tensor since gj ∈ I. On the other hand, if f̄ ∈ AnnR(p ⊗ 1), then 
fp ⊗ 1 = 0 for any lift f of f̄ . Choosing such a lift, fp ⊗ 1 = 0 implies that fp ∈ pI. Since p is a non zero 
divisor on S, we must have f ∈ I, so f̄ = π(f) ∈ J̄n. Thus we conclude AnnR(p ⊗ 1) = J̄n, showing that 
ker(ϕ) ∼= R/J̄n. Combining with (3) completes the proof. �
5.2. The image of the transfer map with Fp coefficients

Corollary 5.3. Let p ≤ n < 2p. Then the image of the transfer map TrSn

Fp
: Fp[x1, . . . , xn] → Fp[e1, . . . , en]

is equal to the ideal J̄n of Theorem 5.2.

Proof. When G is a permutation group, one can verify using a monomial basis for the polynomial ring that 
the square

Z(p)[x1, . . . , xn] Z(p)[x1, . . . , xn]G

Fp[x1, . . . , xn] Fp[x1, . . . , xn]G

TrGZ(p)

TrGFp

commutes. Since the map Z(p)[x1, . . . , xn] → Fp[x1, . . . , xn] is surjective, the image of TrSn

Fp
can found by 

taking ISn

Z(p)
of Theorem 1.1 and applying the natural surjection to Fp[e1, . . . , en]. This gives exactly the 

ideal J̄n. �
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Corollary 5.3 is consistent with several other results on the image of the transfer map for modular 
representations G ↪→ GLn(k), where k is a field of characteristic p > 0. Campbell, Hughes, Shank, and 
Wehlau remark that the generating set for J̄p follows from [5, Theorem 9.18], where they give a block basis 
for the image of TrSn

k , which in general is a redundant generating set. Shank and Wehlau showed that IGk
is radical when G acts by permutations [15, Theorem 6.1].

In [11, Corollary 2.5], Neusel showed that if G has a cyclic Sylow p-subgroup P which acts by permuta-
tions, then IGk has height at most n − k, where k is the number of orbits of P acting on x1, . . . , xn. In the 
case of Sn, the p-Sylow subgroups are cyclic of order p when p ≤ n < 2p, having 1 orbit of size p and n − p

orbits of size 1. This gives the bound ht(ISn

Fp
) ≤ p − 1; Corollary 5.3 demonstrates that this bound is sharp.

6. A conjecture for larger n

Theorem 1.1 suggests a natural question regarding the cofixed spaces Z(p)[x1, . . . , xn]Sn
∼= ISn for n ≥ 2p. 

Because the generators for ISn form a regular sequence when p ≤ n < 2p, the minimal free resolution of ISn

over Z(p)[e1, . . . , en] is a Koszul complex. Moreover, since the generators always have degrees 0, 1, . . . , p − 1
mod p, taking all graded Betti numbers βi,j for fixed i gives the same multiset mod p. Such stability in 
the SSn-module structure is trivially true for n < p, since here SSn

is always a free SSn-module of rank 
1. One may ask to what extent this phenomenon persists. The p-Sylow subgroups of Sn follow a similar 
stability pattern for all n, and this structure was critical to the proof of Theorem 1.1. It is conceivable that 
this phenomenon is present for all n. To this end we make the following conjecture.

Conjecture 6.1. Let �p ≤ m, n < (� + 1)p for positive integers �, m, n. For k = Z(p) or k = Fp, let

Mn := k[x1, . . . , xn]Sn

Mm := k[x1, . . . , xm]Sm
,

viewed as modules over Rn = k[e1, . . . , en] and Rm = k[e1, . . . , em], respectively. Then for every homological 
index i ≥ 0 and for each 0 ≤ j ≤ p − 1, one has an equality of graded Betti numbers∑

j′≡j mod p

βRn

i,j′(Mn) =
∑

j′≡j mod p

βRm

i,j′ (Mm).

We now present some evidence for Conjecture 6.1, obtained from computations in Macaulay2. For a 
Z-graded module M over a Z-graded ring R, define for each i ≥ 0 the multiset AR

i (M), which has j ∈ Z

occurring exactly βR
i,j(M)-many times. In other words, AR

i (M) records the degrees of the free modules 
appearing in the ith homological position of a graded minimal free resolution of M .

In Fig. 1, we work over k = Z(2) and consider p = 2 and n = 4, 5. In the language of Conjecture 6.1, 
� = 2. We list the elements of Ai(M4) = (fi,1, fi,2, . . . , fi,ki

) in ascending order for each i, then we list 
the elements of Ai(M5) = (f ′

i,1, f
′
i,2, . . . , f

′
i,ki

) in such an order so that fi,j ≡ f ′
i,j mod 2 for all j. In fact, 

something stronger can be done here: the sets Ai(M4) and Ai(M5) agree after taking elements mod 4, so we 
can choose orderings with fi,j ≡ f ′

i,j mod 4 for all j. From this one can see that upon passing from n = 4
to n = 5, the degrees of free modules in the resolution either stay the same or increase by 4; this is similar 
to what happens in the � = 1 case, where exactly one generator increases in degree while the others remain 
the same. We draw the reader’s attention to the fact that the rightmost columns of both tables in Fig. 1
are identical.

For p = 3, k = F3, and � = 2, data is available for n = 6, 7. We again see that Ai(M6) and Ai(M7) agree 
after taking elements mod 6, with degrees of free modules either staying constant or increasing by 6 upon 
passing from n = 6 to n = 7. This is shown in Fig. 2.
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i Ai(M4) Ai(M4) mod 4
0 0, 1, 2, 3, 6 0, 1, 2, 3, 2
1 1, 2, 3, 3, 4, 5, 6 1, 2, 3, 3, 0, 1, 2
2 3, 4, 5, 6 3, 0, 1, 2
3 6 2

i Ai(M5) Ai(M5) mod 4
0 0, 5, 2, 3, 10 0, 1, 2, 3, 2
1 5, 2, 3, 7, 8, 5, 10 1, 2, 3, 3, 0, 1, 2
2 7, 8, 5, 10 3, 0, 1, 2
3 10 2

Fig. 1. Resolution data for p = 2, n = 4 (first table) and p = 2, n = 5 (second table).

i Ai(M6) Ai(M6) mod 6
0 0, 1, 2, 4, 5, 6, 8, 9, 10 0, 1, 2, 4, 5, 0, 2, 3, 4
1 1, 2, 3, 4, 5, 5, 6, 6, 6, 1, 2, 3, 4, 5, 5, 0, 0, 0,

7, 8, 9, 9, 10, 10, 11, 13, 1, 2, 3, 3, 4, 4, 5, 1,
14 2

2 3, 5, 6, 6, 7, 7, 8, 9, 10, 3, 5, 0, 0, 1, 1, 2, 3, 4
10, 11, 11, 13, 14, 15 4, 5, 5, 1, 2, 3

3 7, 8, 10, 11, 12, 15 1, 2, 4, 5, 0, 3
4 12 0

i Ai(M7) Ai(M7) mod 6
0 0, 7, 2, 4, 5, 12, 14, 9, 10 0, 1, 2, 4, 5, 0, 2, 3, 4
1 7, 2, 9, 4, 5, 11, 6, 12, 12, 1, 2, 3, 4, 5, 5, 0, 0, 0,

7, 14, 9, 10, 16, 17, 19, 1, 2, 3, 3, 4, 4, 5, 1,
14 2

2 9, 11, 6, 12, 7, 13, 14, 9, 16 3, 5, 0, 0, 1, 1, 2, 3, 4
16, 11, 17, 19, 14, 21 4, 5, 5, 1, 2, 3

3 13, 14, 16, 11, 18, 21 1, 2, 4, 5, 0, 3
4 18 0

Fig. 2. Resolution data for p = 3, n = 6 (first table) and p = 3, n = 7 (second table).

Figs. 1 and 2 suggest that something stronger than Conjecture 6.1 may hold, namely that ARn
i (Mn) and 

ARm
i (Mm) are the same mod 2p when 2p ≤ n, m < 3p. So far, no counterexample to this claim has been 

found. One may hope that more generally, if �p ≤ m, n < (� + 1)p, then ARn
i (Mn) and ARm

i (Mm) are the 
same mod �p. However, the data in Figs. 3 and 4 shows that for p = 2, the multisets Ai(M6) and Ai(M7)
do not agree mod 6 or mod 4 (but they still agree mod 2). In Figs. 3 and 4, the entries jk indicate that j
appears in the multiset k times. The elements of Ai(M6) and Ai(M7) are listed in ascending order, with no 
attempt at “matching” degrees mod 2, as was done in Figs. 1 and 2.

i Ai(M6) Ai(M6) mod 2 Ai(M6) mod 4 Ai(M6) mod 6

0 0, 1, 3, 5, 6, 6, 7, 8, 10, 15 05, 15 02, 12, 23, 33 03, 12, 2, 32, 4, 5

1 1, 3, 4, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 09, 110 04, 14, 25, 36 04, 14, 22, 33, 43, 53
10, 11, 11, 12, 13, 15

2 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 08, 17 04, 13, 24, 34 03, 12, 22, 33, 43, 52
12, 13, 14, 15

3 9, 10, 12, 14, 15, 15 03, 13 0, 1, 22, 32 0, 2, 33, 4
4 15 1 3 3

Fig. 3. Degree shifts appearing in the F2[e1, . . . , e6]-resolution of F2[x1, . . . , x6]S6 .

i Ai(M7) Ai(M7) mod 2 Ai(M7) mod 4 Ai(M7) mod 6

0 0, 3, 5, 6, 7, 9, 10, 12, 14, 21 05, 15 02, 13, 23, 32 03, 1, 2, 33, 4, 5

1 3, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 09, 110 04, 16, 25, 34 03, 13, 23, 34, 43, 53
13, 14, 14, 16, 17, 19, 21

2 8, 9, 10, 11, 12, 13, 14, 14, 15 08, 17 04, 14, 24, 33 02, 12, 23, 33, 43, 52
16, 16, 17, 18, 19, 21

3 14, 15, 16, 18, 21, 21 03, 13 0, 12, 22, 3 0, 2, 33, 4
4 21 1 1 3

Fig. 4. Degree shifts appearing in the F2[e1, . . . , e7]-resolution of F2[x1, . . . , x7]S7 .

Conjecture 6.1 is purely a numerical statement, but from Theorem 1.1 it is clear that the resolutions of 
Mn = ISn

Z(p)
are related algebraically. We exhibit this relationship via a change of rings.

Construction 6.2. Let p + 1 ≤ n < 2p. Consider the rings R = Z(p)[e1, . . . , en] and S = Z(p)[e1, . . . , en−1]. 
Define a homomorphism of Z(p)-algebras f : R → S by

f(ej) =
{
ej if j �= n

e e − e if j = n
.

n−p p n−p
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We give R and S a (Z/pZ)-grading by setting deg(ei) = i mod p. Then f is homogeneous with respect to 
this grading and f(ISn) = ISn−1 . We give S an R-module structure via the multiplication map

R× S → S, (r, s) �→ f(r)s.

In particular, the top-degree generator en−pep − en of ISn acts on an element s ∈ S as

(en−pep − en) · s = f(en−pep − en)s = en−ps. (4)

Let K• be the Koszul complex which resolves R/ISn over R. By (4), the differentials in the complex of 
S-modules K• ⊗R S are obtained from K• by replacing all matrix entries en−pep − en with en−p; in other 
words, K• ⊗R S is a Koszul complex of S-modules on the generators of ISn−1. Because the generators of 
ISn−1 form an S-regular sequence, the complex K• ⊗R S remains exact; moreover it resolves S/ISn−1 over 
S.

Question 6.3. Let �p + 1 ≤ n < (� + 1)p and let C• be a minimal free resolution of R/ISn over 
R = Z(p)[e1, . . . , en]. Does there exist a map of Z/pZ-graded Z(p)-algebras f : R → S = Z(p)[e1, . . . , en−1]
such that C• ⊗R S resolves S/ISn−1 over S?
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Appendix A. Minimal free resolutions with local coefficient rings

In this section, we verify that minimal free resolutions over the ring Z(p)[e1, . . . , en] are unique up to 
isomorphism. We closely follow the structure of the proof of this fact for polynomial rings k[x1, . . . , xn], 
where k is a field, found in [14]. We modify the arguments taking inspiration from proofs involving the local 
case (see, e.g., [10]).

Let (A, a, K) be a Noetherian local ring. Consider the polynomial ring R = A[z1, . . . , zn], which we make 
a graded A-algebra by setting deg(a) = 0 for all a ∈ A and deg(zi) = di > 0 for all 1 ≤ i ≤ n. Set 
m = aR + (z1, . . . , zn)R ⊂ R. This is the unique homogeneous maximal ideal of R.

Lemma A.1 (Generalized graded Nakayama lemma). Let U be a finitely generated graded R-module and let 
J ⊂ R be a proper homogeneous ideal. Then the following hold:

(1) if JU = U then U = 0, and
(2) if W ⊂ U is a graded R-submodule with U = W + JU , then U = W .
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Proof. First we show (1). Assume that JU = U and U is nonzero. Fix a finite system G of homogeneous 
minimal R-module generators for U . Let m be an element of G of minimal degree. Then Uj = 0 for 
j < deg(m). Every element of JU is either of larger degree than deg(m), or, since J is a proper ideal, must 
lie in (JU)deg(m) = J0 · Udeg(m) ⊂ aR · Udeg(m). By assumption, m ∈ JU , hence m ∈ aR · Udeg(m). Fix a 
subset G′ of G that minimally generates Udeg(m). Then we can write m =

∑
m′∈G′ am′m′, where am′ ∈ a. 

Since m is a minimal generator, it must appear on the right-hand side with nonzero coefficient, hence we 
have

m− amm =
∑

m�=m′∈G′

am′m′

(1 − am)m =
∑

m�=m′∈G′

am′m′.

But am ∈ a = rad(A), hence 1 − am is a unit in A, and consequently is also a unit in R. This contradicts 
minimality of m as a generator of U , hence U = 0.

(2) follows by applying (1) to the graded R-module U/W . �
Theorem A.2 (Analogue to foundational Theorem 2.12 in [14]). Let U be a finitely generated graded R-
module and set U := U/mU . Then U is a finite dimensional graded K-vector space. Let p = dimK U .

(1) Let {u1, . . . , up} be a homogeneous basis for U . For each 1 ≤ i ≤ p, choose a homogeneous preimage 
ui ∈ U of ui. Then {u1, . . . , up} is a minimal homogeneous system of generators for U .

(2) Every minimal system of homogeneous generators of U is obtained as in (1).
(3) Every minimal system of homogeneous generators of U has p elements. Set qi = dimK(U i) for each i. 

Then every minimal system of homogeneous generators of U contains qi elements of degree i.
(4) Let {u1, . . . , up} and {v1, . . . , vp} be two minimal systems of homogeneous generators of U , and let 

vs =
∑

j rjsuj with rjs ∈ R for each s. For all s, j set cjs to be the homogeneous component of 
rjs of degree deg(vs) − deg(uj). Then the following three properties hold: vs =

∑
j cjsuj for all s, 

det([cjs]) ∈ A×, and [cjs] is an invertible matrix with homogeneous entries.

Proof. To show (1), first note that U = mU + Ru1 + · · · + Rup. By Lemma A.1 (2), we have that U =
Ru1 + · · ·+Rup, hence {u1, . . . , up} generates U . If this is not a minimal generating set, then there is some 
relation (possibly after renumbering) of the form u1 = α2u2 + · · ·+αpup, for αi ∈ R. Descending to U gives 
a relation u1 = α2u2 + · · ·+ αpup, where αi is the image of αi in U . This contradicts that {u1, . . . , up} is a 
K-basis over U , hence {u1, . . . , up} must minimally generate U .

To prove (2), assume that {u1, . . . , up} is a minimal system of homogeneous generators of U . Then 
{u1, . . . , up} generates U . If there is a linear dependence among {u1, . . . , up}, then choose a proper subset 
{ui1 , . . . , uiq} that is a K-basis of U . By (1), the preimages {ui1 , . . . , uiq} generate U as an R-module, 
contradicting minimality of the generating set {u1, . . . , up}. Hence {u1, . . . , up} must be a K-basis for U .

Statement (3) follows from (1) and (2).
To show (4), let {u1, . . . , up} and {v1, . . . , vp} be two minimal sets of homogeneous R-module generators 

of U . Assume that the generators in each set are ordered in increasing degree. By homogeneity, we know 
that vs =

∑
j cjsuj for all s. Let C be the matrix with entries cjs. For each i, let Bi denote the qi× qi block 

on the diagonal of C corresponding to the generators of degree i. Then deg(uj) ≥ deg(vs) for j > s, hence 
cjs = 0 if j > s and cjs is outside the block Bdeg(vs). The entries in the blocks Bi are of degree 0, hence 
they lie in A, and det(C) =

∏
i det(Bi). Let C denote the matrix with entries cjs, where cjs is the image of 

cjs in K = R/m. Then C is a matrix with its only nonzero entries appearing in the blocks Bi. Note that 
vs =

∑
cjsuj for all s, so C is a change of basis matrix for K. It follows that C is invertible and det(C) is 
j
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a unit. Because det(C) =
∏

i det(Bi) lies in A, we have det(C) = det(C) + a, where a ∈ a. Since det(C) is 
a unit, then so is det(C) since a ∈ rad(A). �
Definition A.3. A complex of the form

0 → R(−p) 1→ R(−p) → 0

is called a short trivial complex. A direct sum of short trivial complexes, possibly placed in different homo-
logical degrees, is called a trivial complex.

Theorem A.4 (Analogue to Theorem 7.5(2) of [14]). Let U be a finitely generated graded R-module. Let F
be a minimal graded free resolution of U , and let G be a graded free resolution of U . Then G ∼= F ⊕ T as 
complexes, where T is some trivial complex.

Proof. By [14, Lemma 6.7], the identity map idU : U → U induces graded maps of complexes ϕ : F → G
and ψ : G → F having degree 0. Moreover, there exists a graded homotopy h of internal degree 0 such that

idi −ψiϕi = di+1hi + hi−1di : Fi → Fi

for each i. Since F is minimal, we can repeatedly apply the fact that Im(di) ⊆ mFi−1 for each i to obtain 
that Im(idi −ψiϕi) ⊆ mFi.

Choose a homogeneous basis for Fi, ordering it so that the degrees of the basis elements increase. Let 
C = [crj ] be the matrix of ψiϕi with respect to this ordered basis. Then C has square blocks Bj along the 
diagonal with entries in A, and all entries below the blocks are zero. The matrix of idi −ψiϕi is E − C, 
where E is the identity matrix of the correct dimension. Since Im(idi −ψiϕi) ⊆ mFi, the matrix E − C

has entries in m. Thus, since the diagonal entries of E are 1, the diagonal entries of C must also be 1. 
The remaining entries in the blocks Bj must lie in a, else E − C would have entries that are units in R. 
We have det(C) =

∏
j det(Bj). Modding out by m, we have that C must be the identity matrix, hence 

has determinant 1. But det(C) =
∏

j det(Bj), so each Bj has determinant a nonzero element of K. Hence, 
det(C) =

∏
j(det(Bj) + aj), where aj ∈ a, so this is invertible in A ⊂ R. Thus, ψϕ : F → F is an 

isomorphism. Let ξ : F → F be its inverse. Then

F ϕ→ G ξψ→ F

is a splitting. Write T = ker(ξψ). Then G ∼= ϕ(F) ⊕ T as graded modules. It remains to show that this is 
an isomorphism of chain complexes and that T is a trivial complex. The rest of the proof (see [14, p.37]) 
does not depend on the coefficient ring of R, hence we omit it. �
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