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Koszulity, supersolvability and Stirling
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Ayah Almousa, Victor Reiner and Sheila Sundaram

ABSTRACT. Supersolvable hyperplane arrangements and matroids are known to give rise to certain
Koszul algebras, namely their Orlik—Solomon algebras and graded Varchenko—-Gel’fand algebras. We
explore how this interacts with group actions, particularly for the braid arrangement and the action
of the symmetric group, where the Hilbert functions of the algebras and their Koszul duals are given
by Stirling numbers of the first and second kinds, respectively. The corresponding symmetric group
representations exhibit branching rules that interpret Stirling number recurrences, which are shown
to apply to all supersolvable arrangements. They also enjoy representation stability properties that
follow from Koszul duality.

1. INTRODUCTION

This paper was motivated by a connection between Stirling numbers and Koszul alge-
bras. The (signless) Stirling numbers of the first kind c(n, k) and Stirling numbers of the
second kind S(n, k) are centuries-old answers to certain counting problems: ¢(n, k) is the
number of permutations {1,2, ..., n} with k cycles, while S(n, k) is the number of set
partitions of {1,2, ..., n} with k£ blocks. On the other hand, Koszul algebras A and their
Koszul dual algebras A' originated in work of Priddy [72] and Fréberg [44] in the 1970s
(see also Barcanescu and Manolache [9, 10]), playing an important role in topology, and
in homological and commutative algebra.

The connection stems from a particular Koszul dual pair of graded k-algebras A =
Py Ag and A= Do Aii, described later, carrying actions of the symmetric group &,.
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Their Hilbert series

Hilb(A,t) := i dimy Agt? = (1+¢)(1+2t) - (1 + (n — 1)t) (1.1)
d=0
= gc(n, n — k)tk, (1.2)
k=0
. ! L = .. | ,d 1
Hilb(A' 1) := dz:;]dlmk At = 00— 2) (=D (1.3)
= iS((n—l)—i—k‘,n—l)tk (1.4)

k=0

re-interpret the Stirling numbers ¢(n, k), S(n, k).

In fact, there are two different well-studied algebras that can play the role of the algebra
A above: the Orlik—Solomon algebra OS(Bry,), or the graded Varchenko—Gel’fand algebra
VG(Br,,), associated to the matroid and oriented matroid Br,, for the braid arrangement
on n strands, also known as the type A reflection hyperplane arrangement, or the graphic
arrangement associated to the complete graph on n vertices. A great deal is known about
the &,-representations on the graded components A; for either one of these algebras
A = OS(M),VG(M), due to their importance in the topology of configuration spaces
and in combinatorics. Their Koszul duals A' have seen less study from a combinatorial
representation theory viewpoint, and were our original main interest.

A natural framework here turns out to be the combinatorial notion of supersolvabil-
ity. Well-known results show that the algebras A = OS(M), VG(M) for supersolvable
matroids M and oriented matroids M have quadratic Grobner basis presentations, which
then implies their Koszulity.

Sections 2, 3, and 4 give background for this story. Section 2 is mainly a review of basic
theory of Koszul algebras carrying group actions, although it contains one new observation
on branching rules (Proposition 2.16). Section 3 recalls notions from noncommutative
Grobner bases, along with special features of commutative or anti-commutative rings,
connecting quadratic Grobner bases with Koszulity. Section 4 reviews matroids, oriented
matroids and the notion of supersolvability.

Section 5 starts with a review of the well-studied anti-commutative Orlik—Solomon
algebras OS(M) and their not quite as well-studied commutative counterparts, the graded
Varchenko-Gel’fand rings VG(M). After recalling why both A = OS(M), VG(M) are
Koszul algebras whenever M, M are supersolvable, the first main result, Theorem 5.18,
gives an explicit (noncommutative) quadratic Grobner basis presentation for their Koszul
duals A'. In the case of A = OS(M), the presentation for A' is consistent with Kohno’s
presentation [53, 54] of the holonomy Lie algebra for the cohomology of the complement
of a complex hyperplane arrangement; in the case of A = VG(M), the presentation for
A" appears to be new. An application of the presentation, Corollary 5.22, gives a Koszul
dual analogue of the fact that multiplication by the sum of the variables > ; x; endows
A = OS(M) with an (equivariant) exact chain complex structure: in the supersolvable
case, right-multiplication by the sum of the dual variables 3", y; within A' = OS(M)' gives
an (equivariant) injective self-map of degree one.
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Section 6 pauses to illustrate the foregoing theory on simple examples of supersolv-
able matroids, such as Boolean matroids and rank two matroids, including discussion of
equivariant structure.

Section 7 proves the next main result, Theorem 7.1, giving branching rules for A =
OS(M), VG(M) and their Koszul duals A, in the form of short exact sequences that apply
whenever M, M are supersolvable. For braid matroids Bry,, these short exact sequences
re-interpret the two classical Stirling number recurrences:

cnyk)=mn—-1)-¢c(n—1,k)+c(n—1,k—1),

S(n,k) =k-S(n—1,k)+S(n—1,k—1). (1.5)

Sections 8, 9, and 10 review more general theory of Koszul algebras A, particularly when
A is either anti-commutative (like OS(M)) or commutative (like VG(M)). Section 8 recalls
why the Koszul dual A' is the universal enveloping algebra for its Lie (super-)algebra of
primitive elements, also known as its homotopy Lie algebra, and why the latter coincides in
this setting with its own linear strand, the holonomy Lie algebra. The Poincaré—Birkhoff—
Witt Theorem for universal enveloping algebras then leads to equivariant versions of results
such as the lower central series formula in the anti-commutative case, and the theory of
acyclic closures and deviations in the commutative case. Section 9 briefly reviews the
topological interpretations of Koszul duality, and the interpretation of OS(M), VG(M) in
terms of the cohomology of complements of subspace arrangements. Section 10 reviews
Church and Farb’s notion of representation stability for &,,-representations [25]. It then
proves two results on its interaction with Koszul duality (Corollaries 10.6 and 10.10) show-
ing that after fixing d, representation stability for the d'" graded components {A4(n)}n>1
in a family of Koszul algebras implies the analogous representation stability for their
Koszul duals {A}(n)}, > 1, along with a similar statement for their holonomy Lie algebras.

Finally, Section 11 returns to the motivating example of the braid arrangement matroids
Br,,, examining the consequences of all the previous results for OS(Br,,), VG(Br,,), includ-
ing the aforementioned branching rules re-interpreting the Stirling number recurrences,
Corollary 11.5. One surprise here is Theorem 11.15, on the prevalence of permutation
representations of &,, among the homogeneous components Aé of the Koszul dual A' when
A = OS(Bry,).

Section 12 collects some further remarks and questions. Appendix A includes tables
of data for the characters of the Stirling representations of the first and second kind for
OS(Br,) and VG(Br,) and the primitives of their corresponding holonomy Lie algebras.
In addition, the code at [3] can also be used to generate more data.

Summary of main results. For the ease of the reader, we summarize below the main
results and their applications to the type A braid arrangement Br,,.

e Theorem 5.18 provides an explicit noncommutative Grobner basis for Koszul duals
of Orlik—Solomon and Varchenko—Gel’fand rings of supersolvable matroids.

— The discussion following Remark 11.2 explains the bijection between standard
monomials for OS(Br,) and VG(Br,) and restricted growth functions.

e Corollary 5.22 shows that for a supersolvable matroid M or oriented matroid M,

right-multiplication by the sum of the dual variables Y7, ; in A' = OS(M)' gives

a degree one injective self-map, and the sum of the squares of the dual variables

Siyf in A" = VG(M)' gives a degree two injective self-map. These maps are

equivariant with respect to any group G of automorphisms of M, M.
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— We conjecture the existence of G,-equivariant degree one injective self-maps
for VG(Bry,) in Conjecture 12.3.

e Proposition 2.16 shows that the graded pieces of an equivariant Koszul algebra A
satisfy branching rules of a certain form if and only if the corresponding graded
pieces for A' do. Theorem 7.1 gives short exact sequences for OS(M), VG(M) and
their Koszul duals that lift such branching rules whenever one has supersolvable
matroids.

— Corollary 11.5 gives these branching rules for the Stirling representations,
which lift the classical Stirling number recurrences (1.5).

e Theorem 8.6 gives a presentation for the holonomy Lie algebra of VG(M) for
an arbitrary oriented matroid M. In the supersolvable case, this presentation is
consistent with the Grobner basis for VG(M)' from Theorem 5.18.

e Corollary 10.6 shows that if a family of Koszul algebras A(n) with actions by &,
are representation stable, then so are their Koszul duals.

— Corollary 11.9 applies this to show representation stability for OS(Brn)! and
VG(Br,)'. Conjecture 11.11 conjectures that the bounds for the onset of
stability given in Corollary 11.9 are tight.

e Corollary 10.10 shows that families of representation stable commutative or anti-
commutative Koszul algebras A(n) pass this representation stability to their holo-
nomy Lie algebras £(n).

— Corollary 11.12 states that this holds for the holonomy Lie algebras of OS(Br,,)
and VG(Br,). In Conjecture 11.14, we conjecture that the onset of stability
is at 2¢ for high enough 1.

e Theorem 11.15 summarizes several cases where [OS(Br,,)}] are permutation repre-
sentations.

2. KOSZUL ALGEBRAS

We review here the definitions and properties of Koszul algebras. Useful surveys and
references are Berglund [12], Faber et al [40, Section 2|, Froberg [45], Mazorchuk, Ovsienko
and Stroppel [61], McCullough and Peeva [62, Section 8], Polishchuk and Positselski [71],
and Priddy [72].

2.1. Standard graded algebras and Koszul algebras. Fix a field k throughout this
discussion.

Definition 2.1 (Standard graded k-algebras). For V' a k-vector space with K-basis x1, ...,
ZTn, let
T'(V)=V®¥ =V® -V,
—_———
i tensor factors
and define the tensor algebra Ty(V) = @2, T'(V), with concatenation product. We
identify it with
Tw(V) 2 Kk(z1, ...y Tp),
the free associative k-algebra on n letters. It is a graded K-algebra, in which T%(V) is the
i homogeneous component, and is generated as an algebra in degree 1 by V, the span
of x1, ..., z,.
A standard graded (associative) K-algebra is a graded quotient ring A of Tk (V), that is,

A=T(V)/I (2.1)

Ann. Repr. Th. 2 (2025), 2, p. 173247 https://doi.org/10.5802/art.23
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for some two-sided ideal I C Tk(V') which is homogeneous: I = @i, I; where I; =
INTHV). We will generally assume that the images of 1, ..., 2, within A (which we
still denote x1, ..., z,, abusing notation) are minimal generators for A as a k-algebra, or
equivalently, that I = Iob ® I3 P ---.

Definition 2.2. (Koszul algebras) Given a standard graded K-algebra A, let A, :=
@D;2, A;, and regard the field K = A/A, as the trivial (graded, left-)A-module, gener-
ated in degree 0.

Call A a Koszul algebra if the surjection A — k = A/A, can be extended as the first
step in a graded resolution of kK by free left A-modules, which is linear in the sense that it
has this form:

0+ k «+ F, & B & B & B o~

I I I | (2.2)
A A(=1)A A(—2)P A(—3)Ps

Here F; = A(—i)% is a graded free left A-module of rank f3;, all of whose A-basis elements
have been shifted to degree 4, that is A(—4); := A;j_;. Linearity of the above resolution is
equivalent to saying that the matrices for the differentials d; : A; — A;_1 in the resolution
have only linear (degree one) entries, that is, all matrix entries lie in A;.

Koszulity of A has strong consequences for its algebra presentation, and for the form of
the resolution (2.2), related to the notion of quadratic algebras and their quadratic duals.

Definition 2.3. (Quadratic algebras and quadratic duals) Say that the standard graded
k-algebra A presented as in (2.1) is a quadratic algebra if I is generated as a two-sided
ideal by

L=INT*(V)=In(VaV).

For A any quadratic algebra, presented as in (2.1), one defines its quadratic dual algebra
A' as follows. Let V* have k-dual basis 41, ..., yn to the ordered k-basis z1, ..., x, for
V, so that the bilinear pairing V* x V' — K has (y;,z;) = 6;;. Then T?(V*) and T?(V)
have dual k-bases

lvi®yithi<ij<nand {z; ®xj}1<i j<n
with respect to the bilinear pairing T2(V*) x T?(V) — K defined by

Yoy, ze) = (y2) .2). (2.3)
Define A' as this quadratic algebra quotient of the free associative algebra Tk(V*) =
K{yi, ..., yn): |
A =T(V")/J

where J is the two-sided ideal generated by
Jo=1Iy = {p €T*(V*): (p,q) =0 forall ¢ € [2}.
Note that this really is a duality, in the sense that (A')' = A.
Example 2.4. A commutative polynomial ring K[z1, ..., x,] is a quadratic k-algebra:
A=Sym(V) =K[z1, ..., xp) Zk{x1, ..., zpn)/I

where I = (z;z; — j2;)1<i<j<n. Its quadratic dual A' is the anti-commutative exterior
algebra

A=AV =AW, - un) =Ky, - ) /T
where J = (yiy; + yj¥yi)i<i<j<n + U2 1<i<n-
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2.2. Priddy’s resolution and its consequences. It is not hard to show that Koszul

algebras A are always quadratic.! What is more remarkable is a result of Priddy [72], using

A' to construct a simple, explicit linear A-resolution of k whenever A is Koszul. Before
!

describing it, let us point out certain maps on A and on the graded K-dual (A’)*. The latter
is defined to be the following graded K-vector subspace of the usual dual Homy(A', K):

(4" = Pa)".
i=0

e For z in A;, the map on A which right-multiplies by x, that is a — ax, gives a left
A-module map A — A, raising degree by one.

e For y in A}, the map precomposing ¢ in (A")* with left-multiplication? by ¥, that
is o > @.y where (0.y)(b) := @(yb), gives a k-linear map (A')* — (A")*, lowering
degree by one.

e Combining these, any z ® y in A; ® A} =V ® V* gives rise to a (left A-module)
map A® (A')* — A® (A")* that sends a ® ¢ — (2@ y).(a ® @) = ax @ @.y.

Theorem 2.5 (The Priddy resolution). When A is Koszul, the element ¢ := 377 1 2; @y,

in Ay ® A} acting on A®y (AY)* as a left A-module map gives a linear resolution of K as
in (2.2),

0+— ki—A®g (A))* < A @y (A" <2 Ay (Ah)* <& ...
Its differential d; : A @y (A})* N ®k (AL_|)* is given explicitly as follows:
a®pr—c. (a®gp):Zamj®<p.yj. (2.4)
j=1

Example 2.6. Continuing Example 2.4, one can check that the Priddy resolution for k
over A =K|z1, ..., x,] = Sym(V) becomes the usual Koszul resolution

0+ Kk« Sym(V) @k A°(V) « Sym(V) @k AY(V) « - -+ « Sym(V) @k A" (V) « 0,
using that fact that (A})* = (AY(V*))* =2 AL (V).

We note some important consequences of Priddy’s resolution. Taking graded k-duals
swaps the roles of A and A' in the resolution. Consequently, A is Koszul if and only if A'
is Koszul. In this case, one calls A' the Koszul dual algebra of A. Priddy’s resolution also
has an important consequence for the Hilbert series of A, A":

Hilb(A, 1) ==Y dimy Ait’,

=0
Hilb(A', ) = > dimy Ajt' = 3 dimi(A})*# = Hilb ((4)",¢).
=0 1=0

Corollary 2.7. Whenever A, A" are Koszul, one has Hilb(A, t) - Hilb(A', —t) = 1.

!Quadraticity is equivalent to having a partial linear resolution 0 < k < A « F; < F, up to
homological degree 2.

2This corrects a typo in the definition from [62], and agrees with [71, S 2.3, pp. 25-27], [61, Proposi-
tion 44].
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Proof. For each degree d > 1, taking the coefficient of t¢ on both sides in the corollary
gives the identity

d
> (—1) dimy Ag; - dimg(A})* =0
i=0
asserting vanishing of Euler characteristic for the (exact) d** graded component in Priddy’s
resolution
0 — Ag ®k (A))* = Ag_1 @k (AD* = -+ — A1 @k (A4_1)" — Ao @k (A))* — 0. (2.5)

O
Example 2.8. For the pair of Koszul dual algebras
A=Sym(V) =K[z, ..., ],
A=AV =AWy -y Yn),

one has these Hilbert series

Hilb(4,1) = _1t)n with dim A; = ((7;)) = <”+;_ 1),

Hilb(A',t) = (1+¢)" with dimyg A} = <”>
1

Example 2.9 (Noncommutative monomial Koszul algebras). When a two-sided ideal I
inside T'(V') = k(z1, ..., =) is generated by a subset of noncommutative monomials, it is
called a monomial ideal. 1t is called a quadratic monomial ideal if the generating monomials
are quadratic, that is, they form a subset of the n? monomials {z;z; : (i,7) C [n] x [n]}.
Starting with any quadratic monomial ideal I, one can associate two complementary binary
relations D, D¢ C [n] x [n]:

D :={(i,7) € [n]
D :={(i,j) € [n]

In this setting, denote the ideal I by Ip, and denote the quotient algebra Ap :=T(V)/Ip.
One can view D as a choice of a directed graph on vertex set [n] having no repeated directed
arcs @ — 7, but allowing (single) copies of loops ¢ — i and (single) pairs of antiparallel arcs
i — jand j — 4. Then the d*" homogeneous component (Ap)y of Ap has a k-basis indexed
by the monomials x;, ;, - - - ¢;, whose subscripts (i1, 2, ..., ig) correspond to walks with
d — 1 steps along arcs i; — i;4+1 in the digraph D. Hence Hilb(Ap,t) = 1+ >0 ap(d)t?,
where ap(d) is the number of such walks.

It turns out that these (noncommutative) quadratic monomial K-algebras are always
Koszul. A linear resolution of k over Ap is a special case of a resolution constructed
by Froberg in [44], and was also described recursively by Bruns, Herzog and Vetter [22,
Section 3]; we review the latter construction here. Note that the quadratic dual AY, has
the form

[n] : @wiz; & I},

X
X [n] LT € I}.

Ap =T(V*)/Jpe  where Jpe = (yiy; : (i,5) € D) = ((Ip)3 ) -

Letting A := Ap, the linear A-free resolution 0 «— Kk < Fy < F; « --- described
recursively in [22] has Fy being a free left A-module whose A-basis elements {e¢;, . i)}

Ann. Repr. Th. 2 (2025), 2, p.173-247 https://doi.org/10.5802/art.23
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are indexed by all walks (41,42, ..., iq) taking d — 1 steps along arcs i; — 441 in the
complement D¢. Unraveling their recursion, the resolution has these A-linear differentials:

€(irin, oia) T Tir €(in, .oy ig)* (2.6)

Note that one has an isomorphism of free A-modules
Fd — A Rk (A'd)*

" 2.7
aeiy,..iy) > @@ Wiy Yigl (2.7)

where [y;, - - vi,]* € (A})* is the k-linear functional A, — K sending y;, - -~ i, to 1 and
sending all other degree d monomials to 0. One can check that the definitions preceding
Theorem 2.5 imply

i s Ty Wiy - vi, )" i j=11

it el {0 otherwise.

One therefore concludes that the differential in Priddy’s resolution is the A-linear map
sending A m

n
1@ [YaYiz - vial " D25 ® (Wanlin -+ Yial " 95) = @iy @ [in - - 9ia] ™
j=1
This agrees with the differential described by (2.6) after passing through the isomor-
phism (2.7).
Note that since Ap is Koszul, and A}, = Ape, one has Hilb(Ap,t) - Hilb(Ape, —t) = 1,
an identity which appeared earlier in work of Brenti [20, Section 7.5].

Our goal is to study Koszul algebras A together with symmetries coming from a finite
group G of graded ring automorphisms. We will regard each graded component A; and Ai-
as representations of G, or equivalently, as KG-modules. In order to work over arbitrary
fields k where KG might not be semisimple, we introduce the Grothendieck ring Ry (G).

Definition 2.10 (Grothendieck ring). As a Z-module, the Grothendieck group of KG-
modules Rk(G) is a quotient of the free Z-module whose basis is the set of isomorphism
classes [V] of finite-dimensional KG-modules V', and where one mods out by the Z-span of
these relations:

{[V] = ([U] + [W]) : for all KG-module short exact sequences
0-U—=V—=>W—=0} (2.8)
In particular, in Rx(G) one has [U & W] = [U] + [W]. Multiplication in Ry(G) is induced
by the rule [V] - [W] := [V ®k W], which one can check is consistent with the relations
in (2.8).

We collect here a few standard facts about Rk(G), omitting the proofs.

Proposition 2.11. For any finite group G, one has the following.
(i) The relations in Re(G) imply ¢ o(—1)'[Vi] = 0 for longer exact sequences of
KG-modules
0V« Vi - V0.
(ii) More generally, a finite KG-module complex 0 < Cy 2.2 Cy < 0 with ho-
mology {H.} gives an Euler—Poincaré—Hopf-Lefschetz relation Zfzo(—l)i[Ci] =
S o(=1)[H;] in Rk(G).
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(7ii) Short exact sequences 0 — U — V — W — 0 of KG-modules lead to dual/contra-
gredient ezact sequences 0 — W* — V* — U* — 0, and also (URQV)* 2 U*V*.
Hence the involution [U] — [U*] induces a well-defined involutive ring automor-
phism (=)* : Rk(G) — Rk(G).

(i) For subgroups H of G, the map [U] + [U 1G], where U |G is the restriction of the
kG-module U to a KH-module, induces a well-defined ring map (—) |: Rk(G) —
Ry(H). .

(v) Since (U*) | = (U Lg) as KH-modules, the maps in (i), (iv) commute.

Remark 2.12. We explain here why a group G acting on a Koszul algebra A also acts on
the Koszul dual A'. When a standard graded k-algebra A = T'(V')/I carries the action of
a group G of graded k-algebra automorphisms, the fact that G preserves A; =V, and A,
generates A, implies that one can regard G as a subgroup of GL(V'), possibly replacing
G by G/K if K is the kernel of its action on V. Then G also acts contragrediently on
V*, via ¢ — @ o g~!. This gives the natural k-bilinear pairing V* @ V' — K defined by
P ®v = @(v) a certain G-invariance:

gp@v) = (pog™) @g) = ¢ (37 (9(v)) = ¢(v).

The dual pairing (2.3) between T2(V*) and T?(V) then inherits this same G-invariance.

Consequently, when A = T'(V')/I is a quadratic algebra with the action of a group G
preserving the subspace Iy C T?(V) that generates the ideal I, then G also preserves the
subspace Jo = I3 that generates the ideal J defining the quadratic dual A' = T(V*)/J.
Thus G also acts on A'.

The following proposition should not be surprising.

Proposition 2.13. When A, A" are Koszul, the Priddy resolution is G-equivariant for
any group of graded K-algebra automorphisms acting on A (and hence on A!).

Proof. This follows because the differential acts by ¢ = 3771 z; @ y; in A1 ® AL =VeVH,
and c is G-fixed: under the G-equivariant isomorphism V ® V* = Endk(V) that sends
v® ftop:V =V given by p(w) = f(w) - v, one can check that ¢ — 1y, which is a
G-fixed element of Endy (V). O

This gives a version of Corollary 2.7, regarding the equivariant Hilbert series in Rx(G)][[t]]
0 .
Hilbeq (A, t) := > [Ai]t". (2.9)
i=0
Corollary 2.14 (cf. [51, Proposition 8.1]). Let A, A' be Koszul dual algebras, both with
the action of a group G of graded K-algebra automorphisms. Then one has this identity in

Ri(G)[[t]]-
Hilbeq (A, 1) - Hilbeg ((4')", ~t) = 1 (2.10)
Equivalently, [Ao) = [(A})*] = [1g] and one has these identities in R(G) for d > 1:
d
S (-1 [Aasd] - [(A))7] =0 (211)
i=0
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which can be rewritten as this recurrence for [(A%)*]:

d
(4] = Yo (-1) A [(Ah)*] (2.12)
=1
and this unraveled formula:
(A= Y DAL Aw] - [Aa): (2.13)
o

This last sum runs over all (strict) ordered compositions a = (az, ...,
length £ > 1, that is, oy are positive integers summing to d.

ay) of d, of any

Proof. Tt suffices to prove (2.11), which follows from the G-equivariance and exactness
of (2.5). O

Example 2.15. Continuing Examples 2.4, 2.6, 2.8, the Koszul algebras A = Sym(V), A' =
A(V*) carry the action of G = GL(V'). There is a ring homomorphism from Ry(G) to the
ring

Ax(z) == Ax(z1, ... [&n

of symmetric polynomials in n variables with k coefficients, mapping the class [U] of a
kG-module U to trace(g|y) where g = diag(z1, ..., z,) in GL(V) is the diagonal matrix
in GL(V) having g(z;) = 2 -x; in V for i = 1,2, ..., n, so that g(y;) = z; ' - y; in V*.

Applying this homomorphism to (2.10) gives a standard identity H(¢)E(—t) = 1 in
Ax(z)[[t]], where

, Zn) = Klz1, oo .y 20

th Zly <oy 2
) :Zek(zlj...,
k=0

This can be viewed as the specialization of a well-known identity in the ring of symmetric
functions in infinitely many variables A := Az(z1, 22, . ..) with integer coefficients, relating
the two sets of algebraically independent generators {h1, he, ...} and {e1,ea, ...}; see [58,
Chapter 1, eq. (2.6)], [83, Theorem 7.6.1]. Rewritten as in (2.12), one has eg = hg = 1
and eg = Z?Zl(—l)i_lhi - eq—; for all d > 1. Due to their algebraic independence, any
symmetric function identities in A among {h;},{e;} lead to the same identities relating
{[A1],[A2], ...}, {[(AD*], [(A5)*]} in Rk(G) for any Koszul algebra A over any field k.
For example, a special case of the Jacobi—Trudi identity [58, Chapter 1, eq. (3.4)], [83,
Theorem 7.16.1] expresses the {ey} in terms of the {hy}:

1—}-z]

e
lfl

[h1 hy hs
1 hi he
0 1 h~
eqd = det 0 0 1 Z (_1)d_€hoz1 haz e haga
. . ) a=(ai,...,ayp)
0 0 0 1 by

Ann. Repr. Th. 2 (2025),

where « runs over all compositions of d. One now recovers the unraveled formula (2.13)
for [(A%)*].
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2.3. A Koszul branching relation. We wish to lift several combinatorial recurrences
to branching rules for Koszul algebras A and their Koszul duals A'. Recall from Proposi-
tion 2.11 (iv) that for any subgroup H of a group G, the map [U] +— [U }%] induces a ring
map (—) |: Rk(G) — Rk(H).

Proposition 2.16. Let A, B be two Koszul K-algebras, with actions of groups G, H, where
H is a subgroup of G, and let X be a KH-module. Then in Ry(H), one has

[Ai ] = [Bi] + [X] - [Bi—1]
if and only if  [(AD" ] = [(B)]+[x]- ([(AL)" 4])
if and only if | A L] = [BY + [x7]- ([411 ]
Proof. The last equivalence uses the properties of the ring automorphism (—)* : Rg(G) —

Rk (G) from Proposition 2.11 (iii), (iv), (v). Hence it suffices to prove the first equivalence.
Introduce a few abbreviated notations

a; = [A;] and o} = [(Ag)*} in Re(G),

b := [Bi] and b)" = [(B})"| in Ru(H),

a; = [A; |] and a* := [(A;)* q in Ry(H),
x:=[X] in Rk(H)

along with analogous generating functions in Ry(G)[[t]] and Rk(H)[[t]], such as a(t) :=
>, ait?, and similarly b(t), " (t), 5" (t), a(t). In this notation, the first equivalence of the

proposition asserts
—lx

a; = b + xbi_ & @) = b + zal .
Note that one has these three relations, coming from Corollary 2.14 for the Koszul algebras
A, B, and applying the ring map (—) | to the first relation:

a*(t)a(—t) =1

b (8)b(—t) = 1

a*(ta(—t) =1
This lets one compute as follows:

ai =b; +xbi—1 & a(t) = (1+xt) b(t)

- 11 1
a(—t)  1—axt b(—t)
1
Ik Ix
< a(t) = 0 (t
a"(t) = 7= 4" ()
& (L—at)-a™(t) =b"(t)
1k Ik !
& a; —xa;_q =b;
& af = b 4 zay . O

Example 2.17. Continuing Example 2.8, the symmetric group G = &,, acts on the
Koszul dual algebras A(n) := K[z, ..., #,] = Sym(V) and A(n)' = A(y1, ..., yn) =
A(V*) by permuting variables. One can apply Proposition 2.16 with B = A(n — 1) =
Klz1, ..., 2n_1],B' = A(y1, ..., Yn_1), which are both kH-modules for H = &,,_1, and
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with X = 1y the trivial KH-module. Recalling the notation () := (""~"), one then sees

7
that the proposition lifts the equivalence of these two versions of the Pascal recurrence

()0 ()
()= ()

to an equivalence of statements on restricting A(n);, A(n); from &,, to &,,_1:

A} ] = [An - 1i] + [A(n - 1)} 4],
[A)i 1] = [A(n = 1)i] + [A(n)i- 1].

Both also follow from segregating the degree i monomials in K[x1, ..., x,] or A(yy, ...,
Yn), counted by the left sides, into monomials not divisible by the last variable x,,yn,
versus those divisible by it.

3. REVIEW OF NONCOMMUTATIVE, COMMUTATIVE, EXTERIOR GROBNER BASES

We review here some of the theory of Grobner bases for two-sided ideals I in noncom-
mutative, commutative and exterior algebras over a field k, emphasizing aspects that are
special to the situation where I is homogeneous, and/or quadratic. Useful references for
the

e commutative theory: Cox, Little and O’Shea [29], Adams and Loustaunau [1],
Eisenbud [37, Ch. 15],

e exterior algebra theory: Aramova, Herzog and Hibi [4], Stokes [85],

e noncommutative theory: Bokut and Chen [18], Mora [64], Ufnarovskii [91, Sec-
tion 2], Polishchuk and Positselski [71, Chapter 4], Shepler and Witherspoon [79,
Section 3.

3.1. Monomial orders, initial forms, and initial ideals. Fix a positive integer n,
and abbreviate the free associative, commutative, and exterior algebras R in n variables

Z1, ..., Zn as follows:
k(z) :==K(z1, ..., zn),
K[z] := K[z1, ..., 2n],
Nz) = N(z1,y ...y 2n).

The set of monomials in each these rings R will be denoted

Mons(k(z)) := {zilzi2 coozi, 0> 0and (iq, ..., 19) € [n]e}

Mons(K[z]) := {z® = 2{'25%---zp" a = (a1, ..., ap) € N"}

Mons(A(z)) :={zs = zi; Nziy N+ Nz, 0 S ={i1 <ig <--- <ip} C[n]}.
Definition 3.1 (Monomial orders, initial forms, initial ideals). A linear ordering < on
Mons(R) for any of the above three rings R is called a monomial ordering if

e it is a well-ordering: there are no infinite descending chains mi > meo > mg > -- -,
and
e whenever m < m/, then mimms < miym/ms for any other monomials m;, ms.
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Having fixed a monomial order < on one of these rings R = k(z), K[z], A(z), write any ring
element as a finite k-linear sum of monomials m with nonzero coefficients ¢, in K

f= Z CmM = Cpy - Mo + Z CmMm
m € Mons(R) m € Mons(R):
m < mo

and then define mg to be its unique <-initial term or <-leading monomial, denoted
in4(f) := mp. Given a (two-sided) ideal I C R, define its <-initial ideal to be this
two-sided monomial ideal of R:
in_(1) = (in<(f) : f € I).

Definition 3.2. Given a monomial order < on one of R = K(z), K[z], A(z), and a two-sided
ideal I C R, one says that a subset G C I is a Grobner basis (GB) for I with respect to <
if

in<(I) = ({in<(g) : g € G}) =: (in<(9)).
Equivalently, every f in I has in.(f) = mg (left-right) divisible by at least one in~(g) = m
for some g in G, meaning that mo = mymms for some mj, my in Mons(R). One calls a
Grobner basis G reduced if for each pair g # ¢’ in G, none of the monomials m appearing
in g with nonzero coefficient are divisible by in<(¢’).

Grobner bases for I exist, but may need to be infinite when working in R = k(z). For
example, Gy = I itself always gives a GB for I, but is infinite as long as I # {0}. The
fact that a GB for an ideal always generates the ideal will follow from a certain division
algorithm.

Definition 3.3. (G-standard monomials and the division algorithm) Call a monomial m
in Mons(R) a G-standard monomial with respect to < if it is (left-right) divisible by none
of {in<(g) : g € G}

The division algorithm on R with respect to G and < starts with any f in R and produces
a remainder r having f = r mod I (and written f —¢g r) which is a k-linear combination of
G-standard monomials, as follows. Assuming f = )", ¢,,m contains any monomials which
are not G-standard, pick the <-largest such monomial m, and write it as m = mym/'ms
where m/ = in(g) for some?® g in G. Then replace f by

flr=f—cm-mi-g-mo

which has f = f’ mod I. Repeat the process with f’. One can show that, because < is
a well-ordering, this algorithm will eventually terminate with a remainder r that contains
only G-standard monomials. However, the remainder » may not be unique, due to choices
of which element g in G has m’ = in~(g) dividing the non-G-standard term m of f at each
stage.

The following equivalent conditions defining Grébner bases are standard verifications.
Proposition 3.4. Firing < and the two-sided ideal I C R, the following are equivalent
forG CI:

(i) G is a GB for I with respect to <.
(i) The division algorithm f —g r always gives the same remainder r for f.

(iti) One has f € I if and only if f —¢ 0, regardless of choices in the division algorithm.
In particular, G generates I.

3Without loss of generality, assume that all g in G are <-monic, meaning that in<(g) has coefficient +1
in g.
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(iv) The (images of the) G-standard monomials with respect to < give a K-basis for
R/I.

The GB condition has a useful rephrasing for homogeneous ideals I, meaning I =

Proposition 3.5. For a homogeneous two-sided ideal I C R, a subset G C I forms a GB
of I with respect to < if and only if Hilb(S/(in<(G)),t) = Hilb(S/1,t).

Proof. By definition G C I is a GB if and only if the inclusion (in<(G)) C in<(I) is an
equality. This occurs if and only if the graded k-algebra surjection R/(in<(G)) — R/in<(I)
is a k-vector space isomorphism in each degree. By dimension-counting, this occurs if and
only if
Hilb(S/(in<(G9)),t) = Hilb(S/in<(I),t)

However one also has Hilb(S/in<(I),t) = Hilb(S/I,t), since the Grébner basis Gy = I
itself has its Gp-standard monomials giving a (homogeneous) k-basis for both S/in(I) by
definition, and for S/I by Proposition 3.4 (iv). O

There are some advantages to working with Grobner bases in the commutative polyno-
mial algebra K(z| and exterior algebra A(z), where GBs for ideals are always finite, and
can be computed via versions of Buchberger’s algorithm. One can always view quotients
k[z]/I and A(z)/I as quotients of k(z) via the surjections

k(z) — K[z] with ker(7) = (z;2j — zj2; : 1 <i < j < n)
k(z) — A(z) with ker(m) = (zizj + 2j2; : 1 <i < j <n)+ (zf 1<i < n)

In other words, K[z]/I or A(z)/I is isomorphic to K(z)/7~1(I). Note that since the

o commutators [z, 2|+ = zizj — 2%,

e anti-commutators [z;, zj]— = z;zj + zj2;, and

e squares 2}
that generate ker(7) are homogeneous and quadratic, this means that if I is a homogeneous
ideal of K[z] or A(z), then 7=1(I) will be a homogeneous two-sided ideal of k(z). Similarly,
if I is a quadratic ideal, then the same holds for 7=1(I), and k(z) /7 ~1(I) will be a quadratic
algebra.

This leads to one of the most common techniques for proving Koszulity.

Theorem 3.6. Consider (2-sided) ideals I inside any of the rings R = K(z),K[z], A(z).
(i) (Froberg [44]) The quotient R/I by any quadratic monomial ideal I is Koszul.
(7i) [45, Section 4], [62, Theorem 8.14], [70, Section 3] If I has a quadratic Grébner
basis G with respect to some monomial order < on R, then R/I is Koszul.

Proof. For assertion (i), Froberg’s main result in [44] proves Koszulity of a general class
of algebras A, containing as special cases the quadratic monomial quotients R/I for any
such R.

Assertion (ii) for the commutative case where R = K[x] is credited in [39] to Froberg’s
result (i) “and a deformation argument noticed by Kempf and others”. This deformation
argument is written down explicitly by Peeva in [70, Theorem 22.9(3)], proving the fol-
lowing assertion. Given a graded A-module M, produce a free (left-) A-module resolution
0+ M <« Fy < Fy < --- which is minimal in the sense that the differentials have entries
in A;. Then define the graded Betti number 5£(M ) to be the number of free summands
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of the form A(—j) appearing in the i*" resolvent F; = ®D; A(—j)ﬁg(M). Thus Koszulity of
A may be rephrased as ﬂ;;‘.(k) =0 for j # i. Then one has

B () < BRI (k) (3.1)
for any monomial order < on K[x]. Since I having a quadratic Grébner basis with respect
to < implies that K[x]/in<I is Koszul by assertion (i), this implies that K[x]/I itself is
Koszul.

Assertion (ii) for the anticommutative case where R = A(z) is asserted in Peeva [70,
Section 3, p. 613], indicating that the exterior analogue of (3.1) can be proven by a similar
deformation argument, using Grobner basis theory over exterior algebras, and similar in
spirit to [4, Proposition 1.8], [38, p. 4369]. This argument employs the exterior analogue
of a (commutative) flat deformation result as in Eisenbud [37, Theorem 15.17], along the
lines of Murai [66, Lemmas 2.1, 2.2].

Assertion (ii) for the noncommutative case where R = k(x) is asserted in [45, Section 4].
It is proven for certain kinds of noncommutative quadratic Grébner bases called PBW
bases in [72, Section 5] and [71, Chapter 4]. It is also proven for quadratic Grébner
bases with respect to degree orderings on monomials in k(z) in Jollenbeck and Welker [50,
Corollary 4.9]. A proof for general term orders < on k(z) was written down recently in an
unpublished preprint of Backelin [7]. O

4. MATROIDS, ORIENTED MATROIDS, AND SUPERSOLVABILITY

The Koszul algebras of interest to us are Orlik—Solomon algebras of matroids and graded
Varchenko—Gel’fand algebras of oriented matroids, in the case where the matroids are
supersolvable. We therefore review here the basics of matroids, oriented matroids, and
supersolvability.

4.1. Matroid and oriented matroid review. A useful reference for matroids is Ox-
ley [69], and for oriented matroids is Bjorner, Las Vergnas, Sturmfels, White and Zieg-

ler [16].
A matroid M (respectively, oriented matroid M) on ground set £ = {1,2, ..., n} is an
abstraction of the linear dependence information about a list of vectors vi,ve, ..., v, in a

vector space over a field k (respectively, k = R), forgetting the coordinates of the vectors
themselves, but recording which subsets are linearly dependent (respectively, the + signs
in their linear dependences). One way to record this information is with the matroid or
oriented matroid’s circuits, abstracting the minimal dependences.

Definition 4.1. A matroid M on ground set E = {1,2, ..., n} is defined by its collection
C C 2F of circuits, satisfying these axioms:
(Cl) @ ¢cC
(C2) I C,C"in C, and C C C’ then C =’
(C3.) If C,C"inC,and e € CNC" C C, ', then there exists C” € C with C” C CUC"\{e}.
An oriented matroid M on ground set E = {1,2, ..., n} is defined by its collection C* =
{(C4,C-)} of signed circuits which are pairs (Cy,C_) of disjoint subsets Cy LU C_ C F,
satisfying these axioms:
(C1%) (o,2) ¢ Cc*
(C2%)) If (C4,C_) in C*, then (C_,C.) in C*
(C3*%) If (C4,C-),(CL,C") in C*, and CL UC- C C, UC” then (C,,C") = (C4,C-)
or (C_,Cy).
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(C4*) If (C4,C2),(C',,C) in C* and e € C+ N C”, then there exists (CY,C") € C*
with C” € CUC"\ {e} having C C (CL UC’)\{e}, and C” C (C_UC”)\ {e}.

One can check that every oriented matroid M with signed circuits C* gives rise to
a matroid M having circuits C := {C; UC_ : (Cy,C_) € CT}; one calls the matroid
M orientable whenever it comes from such an oriented matroid M, and one calls C the
(matroid) circuits of M.

One calls M a representable matroid (over the field k) if there exists a list of vectors
v1, V2, ..., Uy in a K-vector space such that the subsets C' in C index the minimal dependent
subsets {v;};ec, that is, > jec¢vj = 0 for some ¢; in k, but every proper subset of
{v;j}jec is independent. Similarly, M is a representable oriented matroid if additionally
k = R and the pairs (C, C_) in C* give the subsets C* = {j : ¢; > 0}, C~ = {j : ¢; < 0}.
for all such minimal dependent subsets of v, ..., v,.

A matroid M on ground set E can also be specified by its collection of flats F = {F'} C
2 where F C E is a flat if every circuit C in C with |[C N F| = |C] — 1 has C C F.
We will consider F as a poset ordered via inclusion. This poset turns out to always be a
geometric lattice, meaning that

e any pair of flats F, F’ have a meet (greatest lower bound) FFA F' = FNF’ and a
join (least upper bound) F'V F”,
e it is an atomic lattice in the sense that every flat F' has

F= \/ G,

atoms G < F

where atoms are flats that cover the unique bottom element, and
e it is upper semimodular, meaning that there is a rank function r : F — {0,1,2, ...}
satisfying
r(FVE)<r(F)+r(F)—r(FAF). (4.1)

The rank of the matroid M is defined to be r(M) := r(E).

It will also be convenient later (in Definition 5.15 below) to note that every oriented
matroid M on F of rank r can be specified via its chirotope. This is a function yoq : B —
{0, £1} satisfying certain axioms; see [16, Section 1.9, 3.5]), and the values x (i1, %2, ...,
ir) are defined only up to an overall rescaling by +1. In the case where M is realized by
vectors vy, va, ..., Upn, then xaq(i1, 49, ..., i) is the {0, £1}-valued sign of the determinant
of the r X r matrix having v;,, vi,, ..., v;, as its columns.

In studying Orlik—Solomon and Varchenko-Gel’fand rings, it will turn out (see Re-
mark 5.3 below) that we lose no generality by restricting to matroids and oriented ma-
troids which are simple, meaning that they have no loops (= singleton circuits C' = {i})
and no parallel elements (= circuits C' = {3, j} of size two). Consequently, their matroid
structure M is completely determined by the poset of flats F up to isomorphism, whose
unique bottom element will be the empty flat ' = @, and whose atoms at rank 1 are the
singleton flats F' = {1},{2}, ..., {n}, identified with the ground set E.

4.2. Supersolvability. We will be focussing on matroids that satisfy the strong condition
of supersolvability, reviewed here.

Definition 4.2. Say that a flat F' in a matroid M is modular if one always has equality
in (4.1):
r(FVF)=r(F)+r(F)—r(FAF) foral F' € F.
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A matroid M is called supersolvable if the poset F contains a complete flag F' of modular
flats
F = (@:FogFl - "'gFr(M)—l gFr(M):E)

We consider as examples the (strict) subset of supersolvable matroids among the uniform
matroids, which we recall here.

Definition 4.3 (Uniform matroids). The uniform matroid M = U, , of rank r on ground
set £ ={1,2, ..., n} has circuits C equal to all (r + 1)-element subsets of E. Its poset
of flats F is obtained from 2¥, the Boolean algebra of rank n, by removing all subsets of
cardinalities r,r + 1, --- , n—2,n — 1.

Remark 4.4. The uniform matroid U, , is represented by any list of n vectors vy, vo, ...,
vy, in K" that are sufficiently generic, in the sense that every r-element subset {v;,, ..., v;, }
is linearly independent. This imposes restrictions on the cardinality of the field k, depend-
ing upon n and r, but means that U,.,, is always representable over an infinite field, such
as K = R, and hence is always orientable. Nevertheless, some of these orientations M of
M = U,, can behave differently, for example in their group of automorphisms Aut(M).
In the examples of this section, we will consider only the unoriented matroid M = U,.,,.

It is not hard to see that the uniform matroid M = U, , is
e simple if and only if (r,n) = (0,0) (the empty matroid), (r,n) = (1,1), or r > 2;
and
e simple and supersolvable if and only if (r,n) = (0,0), (r,n) = (1,1), or r = 2 and
n > 2.

Example 4.5. The Boolean matroid M = Uy, on ground set F = {1,2, ..., n} has no
circuits, that is, C = @, and poset of flats F = 2. Every flat F is modular, so every
complete flag F of flats is modular and M is supersolvable.

Example 4.6. Every rank two simple matroid is isomorphic to a uniform matroid M =
Uspon E={1,2, ..., n}, with this flat poset F:

FE
//\
{1y {2y 8y - {n}

\\@/

Again, every flat F' is modular, and every complete flag & C {i} C E shows that M is
supersolvable.

Our original motivation came from braid matroids.

Example 4.7. (Supersolvable graphic matroids and braid matroids) Let G be a graph on
vertex set {1,2, ..., n} with edge set E C {{i,j} : 1 <i < j < n} which is simple, that
is, G no self-loops and no parallel edges. Then G gives rise to a simple graphic matroid M
(and oriented matroid M) represented by the list of vectors {vi; = e; —¢;};; e C R",
where eq, ..., e, are standard basis vectors. The matroid circuits C are indexed by subsets
C C F of edges that form a cycle within G. Stanley showed [81, Proposition 2.8] that
this graphic matroid is supersolvable if and only G is a chordal graph, meaning that for
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every minimal cycle of edges u; —ug — -+ —up_1 —uy — w1 in G having ¢ > 4, there will
be another edge {u;,u;} of G with i # j =1 mod ¢ forming a chord.

In particular, the complete graph K, on n vertices with all (g’) edges is a chordal graph,
and its graphic matroid is called the braid matroid Br,, on n strands. Its poset of flats F
is isomorphic to the lattice II,, of all set partitions 7 = (By, ..., By) of {1,2, ..., n} =
Lf_, By, with ordering by refinement: 7 < 7’ if for every block B; of 7 there exists some
block B!, of n' having B; C B),. The flat F corresponding to m contains all edges {i, j}
whose end vertices %, j lie in the same block By of m. The modular flats correspond to
partitions m with at most one non-singleton block. For example, one modular complete
flag F of flats corresponds to the set partitions m < my < --- < 7, where

o= {{1,2, ..., k},{k+1},{k+2}, ..., {n—1},{n}}.
5. ORLIK—SOLOMON AND VARCHENKO—GEL'FAND RINGS

We review here the Orlik—Solomon algebra of a matroid M and graded Varchenko—
Gel’fand algebra* of an oriented matroid M. Useful references for Orlik-Solomon algebras
are Dimca [32, Ch. 3], Dimca and Yuzvinsky [33], Orlik and Terao [68, Ch. 3], Yuzvin-
sky [94]. Useful references for graded Varchenko—Gel’fand algebras are Brauner [19, Sec-
tion 3.3, Section 5.2], Cordovil [28], Dorpalen-Barry [34], Dorpalen-Barry, Proudfoot and
Wang [35], Moseley [65], Varchenko and Gel’fand [92].

For the remainder of this section, let K be any commutative ring with 1.

Definition 5.1 (Orlik—-Solomon algebra). For a simple matroid M on F = {1,2, ..., n},
define its Orlik—Solomon algebra over K as an anti-commutative quotient

OS(M) = /\(wlv SR xn)/IOS(M)

where A(z1, ..., x,) is the exterior algebra over K on n generators. The Orlik-Solomon
ideal
Tos(y = (0(z¢) : C €C) (5.1)
has one generator d(z¢) for each circuit C' = {cy,co, ..., ¢} in C, with d(z¢) defined by
k
Oxc = Z(fl)j_lazc1 N N,y ATy NTejpq o0 N Ty (5.2)
j=1
Definition 5.2 (Graded Varchenko—Gel’fand ring). For a simple oriented matroid M on
E ={1,2, ..., n}, define its graded Varchenko—Gel’fand ring over K as the commutative
quotient
VG(M) :=K[z1, ..., 2]/ Tygm)
where K[z1, ..., 2] is the polynomial algebra over k. The graded Varchenko—Gel'fand
ideal
Ivaomy = (21, 22) + (0% (2c) : C €0) (5.3)

contains the squares {2} ; along with one generator 9% (z¢) for each circuit C in C, with
0F (x¢) defined by choosing one of the two signed circuits® (C'y,C_) in C with C = C,LUC_,
and setting
% (zc) = Z SENC e, * Ty " Tej_1Te; Tejpy " Tey- (5.4)
cj € CLuC_—

*Also called the Cordovil algebra in [60].
5The choice is immaterial — making the other choice replaces 8% (zc) by its negative.
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Here sgng .. = £1, namely +1 when ¢; € €y and —1 when ¢; € C_.

Remark 5.3. Our assumption that M, M are simple really presents no restriction. In
either case,

e aloop i in E would give a circuit C = {i} € C, causing the collapse OS(M) =0 =
VG(M) since Iog(ary or Iyg(m) contains the generator d(z¢) =1 or 0% (z¢) =1,
and

e parallel elements 7,j in £ would give rise to a circuit C' = {i,j} € C, making
r; = *x; in the rings OS(M) or VG(M) because Ioga) or Iyg(m) contains a
generator d(z¢) or 9% (x¢) of of the form z; + ;.

Thus our assumption in Section 2 that our standard graded Kk-algebras are minimally
generated by the variables x1, ..., z, is consistent with assuming that M, M are simple
matroids.

5.1. Flat decomposition. An important feature of both OS(M) and VG(M) is that
their N-grading is refined by a k-vector space decomposition indexed by the matroid flats

Fin F.

Definition 5.4. Given matroid M or oriented matroid M on E = {1, ..., n} with flats
F, abbreviating the variable sets x = (x1, ..., z,), consider the k-vector space decompo-
sitions

T(V)=k{x)= @ T(V

——
FeF —k(x)
Sym(V) = Kk[x] = @ Sym(V
FeF
=K[x]p
AV)=Ax)= P AV)r,
XeF :/\('X)F

where K(x)p,K[x]p, A(x)F are the k-spans of monomials z; z;, - - - xj, with {j1} V-V
{ir} = F.

Both OS(M), VG(M) inherit these k-vector space decompositions by flats; for OS(M),
see [68, Theorem 3.26, Corollary 3.27], [33, Section 2.3], [94, Section 2.3], and for VG(M)
see [19, Theorem 5.5].

Proposition 5.5. For a matroid M or oriented matroid M, the ideals Iog(ary, Iva(m)
are homogeneous with respect to the decomposition in Definition 5.4, that is,

Iosony = P k(x)r N Iogan,
FeF

Lvamy = P Kixlr N Ivgm-
FeF

Hence they induce K-vector space decompositions of the quotients OS(M), VG(M):

= OS(M)p, (5.5)

FeF

= P VG(M)p. (5.6)

FeF
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We note here an implication for quadratic duals that will become important later, in
Section 8.1. When considering OS(M), VG(M) as quotients A = k(x)/I of the tensor
algebra for a two-sided ideal I, the quadratic part Iy C T?(V) = k(x)s inherits the flat
decomposition Iy = @ pe £ [T*(V)rNI] from T?(V) = @pc » T*(V) r. On the other hand,
if one defines the analogous flat decomposition for the dual tensor algebra and its dual
variables y = (y1, ..., Yn)

T(V*) =kiy)= D T(V)r,

——
FeF
=K(y)r

then the pairing T2(V*) x T?(V) — K from (2.3) makes T%(V*)r and T?(V) g orthogonal
for F' # F'. This implies that the computation of Jy := I3~ can be done flat-by-flat:

1
=P [T2(v*)F n JQ} where [TZ(V*)F n J2] = [TQ(V)F N 12} . (5.7)
FeF
In particular, whenever A = OS(M), VG(M) are Koszul, or even just quadratic algebras
A = k(x)/I with I = (Iy), their quadratic duals A' = k(x)/J where J = (J3) = (I3)
inherit a flat decomposition:

A= P Ap. (5.8)

FeF

5.2. Symmetry. Symmetries of a matroid M or oriented matroid M lead to k-algebra
automorphisms of OS(M) or VG(M), as we explain next.

Definition 5.6. Let M be a matroid on E = {1,2, ..., n} with circuits C. A permutation
o in the symmetric group &,, is an automorphism of M, written o € Aut(M), if o(C) = C,
that is, for every C in C, one has o(C) € C.

One can then check that for any matroid M and o in Aut(M), if o acts on A(z1, ..., Tp)
by permuting subscripts of the variables, that is, o(z;) := T4(;), then the generator d(z¢)
for the Orlik-Solomon ideal Iog(nr) has

o(d(zc)) = +0 (%(C)) :
Consequently, o preserves Iog(ar) and induces a graded k-algebra automorphism of OS(M).

Definition 5.7. Let M be an oriented matroid on £ = {1,2, ..., n}. Its automorphism
group Aut(M) will be a subgroup of the hyperoctahedral group &;; this is the set of all
signed permutations o of {£1,+2, ..., +n}, meaning those permutations which commute
with the involution +i <+ —i, or in other words, o(+i) = —o(F¢). As notation, for
i,j €{1,2, ..., n}, define
o] =J i ol+i) € {7,
. +  if o(+i) =+,
e(o(i)) = , N
—  ifo(+i) = —J.
Then a signed permutation o is an automorphism of M if for every signed circuit (Cy,C_)
in C*, the following pair (C’,,C") is also a signed circuit in C*, where
C' :={lo(i)]: i€ Cy and €(o(i)) = +}U{|o(i)| : i € C_ and e(o(i)) = —},

C' :={lo(i)]: i€ C_ and €(0(i)) = +}U{|o(i)| : i € Ct and e(o(i)) = —}. (5.9)
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For ¢ in Aut(M), let o act on K[z, ..., z,] via

o(x;) == €(a (7)) - T|o(s)|-

One can then check that for signed circuits (C4,C-),(C’,C") related as in (5.9), if
C =C,UC_ and C' = C, UC", then the generator 9*(z¢) for the ideal Lyg(am) has

g (6i($c)) = iai(xcf).

Consequently, o gives rise to a graded k-algebra automorphism of VG(M).

In this way, when M, M have some group G of automorphisms, we consider A =
OS(M),VG(M) as graded KG-modules, and study their equivariant Hilbert series as
in (2.9). Similarly, when these algebras A are Koszul, we will study the equivariant
Hilbert series for their Koszul dual A'. Note that in the dual setting, the dual variables
Y1, - - -, Yn that give a basis for V* obey the same rules

o (i) = Yo (i) for OS(M)',

(i) = €(0(4)) - Yjo(n) for VG(M)".
This is because V* carries the contragredient representation to V', where the matrix for
the action of o in the basis of y1, ..., yn is the inverse transpose (A~!)! of the matrix A

for its action on x1, ..., z,. However, signed (or unsigned) permutation matrices A are
orthogonal: (A~1)! = A.

5.3. Grobner bases and broken circuits. It turns out that the above generators for
the ideals presenting OS(M ) and VG(M) are actually Grobner bases, with easily-identified
standard monomials.

Definition 5.8. Given a matroid M on E = {1,2, ..., n} and any circuit C' = {¢; <
¢y < -+ < ¢} in C, the associated broken circuit is

C\{min(C)} =C\{a}={ca < - <}
A subset I C E is an NBC (no-broken-circuit) set if it contains none of the sets {C' \

{min(C)}oec-
Theorem 5.9. Fiz a matroid M and oriented matroid M on E = {1,2, ..., n}, with
circuits C. Choose any monomial orders < on AN(z1, ..., xn) and K[z1, ..., ] having

T < Ty < < Ty

(i) [94, Thm 2.8] The generators G = {0(xc)}cec in (5.1) form a Grébner basis for
Tos(ary with respect to <.
(ii) [34, Thm 1] The generators G = {22}"_, U{0%(zc)}cec in (5.3) form a Grobner
basis for Iyg(a) with respect to <.
Furthermore, in both cases, if C = {c; < ¢ < -+ < ¢k} in C, then the <-initial term
in~(d(zc)) or ing(0F(z¢)) is the monomial ¢, - - -z, supported on the broken circuit
associated to C'. Consequently, in either case, the G-standard monomials are the NBC
monomials

{xr =2 - wi, : NBC sets I = {i1, ..., iy} C E}.
In particular, OS(M) and VG(M) have the same Hilbert series, given by

Hilb(OS(M),t) = Hilb(VG(M),t) = Y ¢l
NBC sets ICE
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Remark 5.10. One can readily check that the NBC standard monomial bases for OS(M),
VG(M) respect the flat decompositions (5.5), (5.6) in this sense: for each flat F' € F, the
components OS(M) g, VG(M)r both have as k-bases the monomials {z; : I an NBC set
with V,er{i} = F}.

For supersolvable M, one has quadratic Grobner bases, making OS(M ), VG(M) Koszul,
as we explain next. Bjorner, Edelman and Ziegler [14] gave a useful alternate characteri-
zation of the modular complete flags of flats witnessing supersolvability. To state it, recall
that a flat F" with r(F) = r(M) — 1 is called a coatom in F. Also recall that for a matroid
M on E and subset A C E, the restriction M|, is the matroid on ground set A defined
with circuits {C € C: C C A}.

Proposition 5.11 ([14, Thm. 4.3]). Let M be a simple matroid on ground set E.

(i) For flats F which are coatoms, being a modular element is equivalent to the fol-
lowing condition: for any j # k in E\ F, there exists i in F with {i} < {j}V {k}.

(ii) The flats in a complete flag F = (@ = Fo € F1 C -+ C Frn—1 S Fron = E)
are all modular if and only if F;_1 is a modular coatom within M|p, for each
i=1,2,...,r(M).

Bjorner and Ziegler [17] later elaborated on this, proving the following.

Proposition 5.12 ([17, Theorem 2.8]). Let M be any simple matroid of rank r on ground
set E. The following are equivalent:

(i) M is supersolvable, say with a modular complete flag of flats F = (F})i=o1,...,r-
(ii) There exists an ordered set partition E = (E1, Ea, ..., E,) of E = E1U---UE, such
that if j, k in Eq with j # k, then there exists p < q and i in E, with C = {i,j,k}
in C.
(iii) One can reindex/order E = {1 < 2 < --- < n} so that the minimal broken circuits
(with respect to inclusion) are all of size 2.
Furthermore, when these conditions hold,
(a) a modular flag F as in (i) gives an ordered set partition E as in (ii) via E; :=
E \ Fi—b and
(b) an ordered set partition E as in (i) gives an ordering < on E as in (iii) by
extending the partial order that makes elements of E, come <-earlier than elements
of E4 when p < g,
(c) the minimal broken circuits with respect inclusion are all pairs of the form {j,k}
in some set By for ¢ = 1,2, ..., 7; hence the NBC sets I C E are the subsets
containing at most one element from each E, forp=1,2, ..., r.

Definition 5.13. For a supersolvable matroid M, with F', E/ as in Proposition 5.12, denote
by Cprz(E) C C the circuits C' = {i,j,k} with ¢ € E, and j # k € E; for p < ¢ from
Proposition 5.12 (ii).

Corollary 5.14. Let M, M be supersolvable simple matroids or oriented matroids on F,

with E as in Proposition 5.12. Fiz a field K, and monomial orderings < on N(z1, ..., Tp)
and K[x1, ..., xy) with x1 < x9 < -+ < Ty.
e [70], [94, Section 6.3] Ios(ar) has quadratic Grébner basis G = {0(vc)}cecppys
where
Awe) = i ANy — zi Ny, + x5 A Ty (5.10)
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o [34] Iyg(m) has quadratic Grébner basis G = {27}, U {0F(z¢) Y ecppy, where
oE(xc) = SENC g - TiTj + SEN¢j * TiT + SGN; * TjTg- (5.11)

In both cases,

o the <-initial terms of the elements of G are shown underlined above,
e the G-standard monomial basis {x1} are indexed by the NBC sets I C E, which are
exactly those sets containing at most one element from each E,, forp =1,2, ..., r,

e OS(M),VG(M) are Koszul algebras,
o with the same Hilbert series

Hilb(OS(M),t) = Hilb(VG(M),t) = (1 + e1t)(1 + eat) - - - (1 + e,t) (5.12)
where e, = |Ep| forp=1,2, ..., r.
The integers (e1, €2, ..., €,) are often called the exponents of the supersolvable matroid

M, due to their connection with the theory of free hyperplane arrangements and the
exponents of reflection arrangements; see Orlik and Terao [68, §4.2].

5.4. Quadratic Grobner basis for the Koszul dual. We next prove a counterpart to
Corollary 5.14 for the Koszul duals A' of A = OS(M), VG(M) in the supersolvable case.
Since A = OS(M) or VG(M) are Koszul algebras, one can view them as noncommutative
quotients A = K(z1, ..., x,)/I, and form their Koszul duals A' = k(y1, ..., y.)/J, as in
Section 2. Certain relations in A' will play a key role.

Definition 5.15. Let M be a simple matroid on E = {1,2, ..., n}. For each rank two

flat FF C E and each j in F, define an element of K(y) := k(y1, ..., yn) by
r(F) = > ks = . Wive — wy))- (5.13)
ke F\{j} ke F\{j}
Let M be a simple oriented matroid on £ = {1,2, ..., n}. For each rank two flat F' C E,

pick one of the two chirotopes x v, F? — {0,41} on the restriction M|, which are the
same up to the overall scaling by +1. Then for each j in F' define an element of k(y) by

ke F\{j} ke F\{j}

The relations (5.13) appear in work of Kohno [53] presenting the holonomy Lie algebra
for the complement of any complex hyperplane arrangement; see Section 8.1 for further
discussion. As far as we know, relations (5.14) are new. Certain subsets of these relations
in (5.13) or (5.14) play a distinguished role in the supersolvable case.

Definition 5.16. Let M, M be supersolvable simple matroids or oriented matroids, and
E = (Ey, ..., E;) a choice of an ordered partition of its ground set E as in Proposi-
tion 5.12. Call (j,i) in E? a retrograde (ordered) pair with respect to E if i € E, and
Jj € B, with p <gq.

For each retrograde pair (j,1), let F' := {j} V {i} be the rank two flat that they span,
and denote by 7(j,4),7%(j,4) the following two relations, equivalent to r(j, ') from (5.13)
and r£(j, F) from (5.14):

r(,0) =y —vivi + > [V Ukl+ (5.15)
ke F\{ij}
rE, ) = vy — iy o)) DL X (G k) < [y, v - (5.16)
ke F\{ij}
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The following key point will be used in the proofs of Theorems 5.18 and 5.21.

Lemma 5.17. In the context of Definition 5.16 of a retrograde pair (j,1) with i € E, and
j € Eq for p < q, the rank two flat F:= {j} V {i} has F\ {i,j} C E,.

Consequently, (5.15) and (5.16) can be viewed as rewriting rules that replace the un-
derlined term y;y; by the term y;y; together with a sum of monomials y;yk,yry; whose
subscripts j, k both lie in E.

Proof. Any k € F'\ {i,j} leads to a circuit C = {4, j, k} since M is a simple matroid and
F has rank two. As j > i, one knows j # min C, so the associated broken circuit B C C
is either B = {j, i} or B = {j, k}. But assertion (c) in Proposition 5.12 implies B contains
a pair lying in some set Ey,. This implies ¢’ = ¢, and ¢ # i since i € E, # FE,. Thus
B = {j,k}, and k lies in E,. O
Theorem 5.18. Let M, M be matroids and oriented matroids which are supersolvable,
with ground set E = {1,2, ..., n} and E as in Proposition 5.12. Consider the Koszul

algebras A = OS(M) or VG(M), and their Koszul dual A' = K(y1, ..., y,)/J. Then there
exist monomial orderings < on K{yi, ..., y,) with these properties.

(i) A" = OS(M)' = k{y)/J has {r(j,F) : j € F a rank two flat } as a Grébner basis
for J, and a reduced Grobner basis
G :={r(4,i) : retrograde pairs (j,1)}
with the <-initial term of r(j,4) underlined in (5.15).
(ii) A" = VG(M)' = k(y)/J has {r=(j,F) : j € F a rank two flat } as a Grobner
basis for J, and a reduced Grébner basis
G := {r*(j,i) : retrograde pairs (j,i)}
with the <-initial term of r*(j,1) underlined in (5.16).
In particular,
(1i1) their ideals J share the same initial monomials {y;y; : retrograde pairs (i,7)},
(iv) and hence the same G-standard monomial K-basis for A', of the form {my -my---
my_1 - my} where each my, is any noncommutative monomial in the variable set

{y] }] €Ep;
(v) and they have the same Hilbert series

1
Hilb (0S(M)',t) = Hilb L) = 1
ilb (OS(M)', ¢) = Hilb (VG(M)', t) e el —a=ed (5.17)
where e, = |Ep| are the exponents from Corollary 5.14.
Proof. First let us specify a monomial order < on K(yi, ..., y,) for which the underlined

terms in (5.15), (5.16) are their <-initial terms. Recall that our indexing has i < j for
each retrograde pair (j,7). We claim that it suffices to let < be a graded version of a
lexicographic order having y1 > y2 > - -+ > y, that reads monomials from the right. More
precisely, this means that for two unequal monomials

m =Yi " Yigs

m' = Yji = Yjes
one has m < m/ if either deg(m) = d < e = deg(m/), or if d = e and there exists some
k € {1,2, cee d} with iq = j4,%4-1 = Ja-1, - -, k1 = Jk+1 but ix > ji. It follows from
Lemma 5.17 that for any retrograde pair (j,7) with F' = {j,i}, every k in F'\ {i,j} lies in
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E,, so that k > i and y;yi < y;¥:. Since also j > 7, this makes y;y; the <-initial term in
either (5.15) or (5.16).

We next check that the relations r(j, F),r*(j, F) lie in J, = Iy C V* ® V*, with the
pairing defined by (y;y;, Tkwe) = 6 j),(k,e)- We do the check here for r*(j, F); the check
for (4, F) is similar, but slightly easier. One must check that r*(j, F) is orthogonal to
three types of generators of I in VG(M) = k(x)/I:

xi for k=1,2, ..., n, (5.18)
TRy — Tpxp for 1 <k <€ <mn, (5.19)

9% (0) = SENC i TTe + SENC TR T +SENC , TeTim,
for circuits C' = {k,{,m} of size three.  (5.20)

Note that r*(j, F) pairs to zero with any commutator in (5.19), because r*(j, F) is
a sum of anti-commutators [y, ys]— = Ya¥s + Ys¥a. Note also that whenever quadratic
monomials f(y), g(x) have disjoint E?-support sets

supp f(y) := {(i,j) € E?: y;y; appears in f with nonzero coefﬁcient} ,
supp g(x) := {(k‘,ﬁ) € E? : zjx0 appears in f with nonzero coefﬁcient} ,

then one will have (f(y), g(x)) = 0. This already implies 7*(j, F) pairs to zero with the x2
in (5.18). It also shows that in order for r*(j, F) to have nonzero pairing with some 0% (z¢)
in (5.20), one must have that C' = {k, ¢, m} satisfies F' = {k} vV {¢} v{m}, and furthermore
one must have j € C. In other words, without loss of generality, C = {j,¢,m} C F. It
remains to check that r¥(j, F) still pairs to zero with 8% (z¢) in this situation. Calculating
the pairing, one finds

(8i(xc)7ri(j7 F))

= (Sgnc,m%‘xe + SE0C T T + SO TeTm 5 Y Xmp (G h) - [ijyh]—) (5.21)
he F\{j} )

= SgNC m - XM|F(Ja£) + SgNc g - X./\/l\p(jv m)

Vanishing of the sum in (5.21) can be checked based on cases for the signed circuit C' =
C4 U C_ supported by C' = {j,¢,m}. One can relabel so that |C;| > |C_|, and hence
(IC+],|C=]) = (3,0) or (2,1). As the indices ¢, m play a symmetric role in (5.21), one may
assume without loss of generality that the oriented matroid M|y; s,y matches that of one
of these vector configurations in R?:

m /{ / J m J 14 m / m J
J

In each case, one can check that the sum in (5.21) vanishes.
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Once one has checked that the elements of G lie in Ja, Proposition 3.5 together with
the following Hilbert series calculations will show that they form a quadratic (noncom-
mutative) GB for J. First note that the G-standard monomials m in yi, ..., y, are those
that avoid all factors y;y; in which (j,7) are a retrograde pair, and these are exactly the
monomials described in (iv). Thus, denoting e, = |E,|, one has

Hilb(k(y)/(in<(G).t) = Y edesm)
G-standard
monomials m

@ (1tert+ e+t 4 ) (T et 24 et + )

1
(I—egt)--- (1 —ept)
®_ 1
Hilb(A, —t)

© Hilb(A', ¢) = Hilb(k(y) /], 1).
where equalities (a), (b), (c) above are justified as follows. Equality (a) follows from
the description in (iv) of G-standard monomials as m = my - my - - - m, where m,, is any
noncommutative monomial in the variable set {y;}, ¢ r,. Equality (b) comes from (5.12),
and equality (c) from Corollary 2.7.

Finally, to see that G is a reduced Grobner basis, note that Lemma 5.17 implies that
for each retrograde pair (4,7), the initial term y;y; for the relations r(j,4), (4, 4) cannot
appear as a term in any of the other r(k, £), r*(k, £) with (k,€) # (j,1). O

5.5. Acyclicity and injectivity. As an application of the Grobner basis presentations
for the algebras A' = OS(M)', VG(M)' in Theorem 5.18, we explore a counterpart to an
interesting fact about A = OS(M), VG(M): their Hilbert series contains a factor of 141,

Hilb(OS(M), t) = Hilb(VG(M), 1) = (1 +t) - H(t) (5.22)

and the remaining polynomial factor H(t) € Z[t] always has nonnegative coefficients.

This fact has several explanations: combinatorial, topological, and algebraic. One al-
gebraic explanation views the Orlik—Solomon algebra A = OS(M) as an algebraic cochain
complex

0—>A0£>A1i>"'i>Ar—1£>Ar_>0 (5'23)

whose differential d is given by multiplication by an element x = Y ;" ¢;z; in A;. The
fact that A is a quotient of an exterior algebra implies that 22 = 0 in A, so that indeed
dod=0.

Theorem 5.19 (|94, Thm. 7.2]). The cochain complex (5.23) on A = OS(M) is exact
whenever x = Y1, c;x; has coefficients ¢; satisfying the following genericity condition:
Yicr € #0 ink for all flats F' whose restriction M|p is not a nontrivial direct sum.

Thus whenever x is generic, multiplication by =z on A = OS(M) is “as injective as
possible”, given the constraint that 22 = 0. This algebraically interprets the factor H (t)
in (5.22), since tH(t) is the Hilbert series for the subspace of cocycles (= coboundaries)
in the above cochain complex.
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For M, M supersolvable, the Koszul duals A' = OS(M)', VG(M)' inherit a similar

factorization

1 1 1

Hilb(A',t) = = :
( ) Hilb(A,—t) 1—t H(-t)

There is nothing that says, a priori, the rightmost factor H(—t)~! above should have

nonnegative coefficients. However, this is a consequence of our next result.

_ (1+t+t2+t3+-"> CH(—=t)7 (5.24)

Definition 5.20. Let M, M be supersolvable matroids or oriented matroids of rank r on

the ground set £ = {1,2, ..., n}, with partition E as in Proposition 5.12. For a fixed
d > 1, say that the power sum py(y) = Si iyl € A} € A" = OS(M)' or VG(M)' is
E-generic if for each ¢ = 1,2, ..., r, there exists ¢ € E; with the coefficient ¢; # 0.

Theorem 5.21. Let M, M be supersolvable matroids or oriented matroids of rank r on
E, with partition E as in Proposition 5.12. Then for either A' = OS(M)" or VG(M)',
right-multiplication a — ay by any E-generic element pg(y) in Aii gives an injective map
A" — A'. That is, every E-generic y is a right-non-zero-divisor on A.

Proof. Proceed by induction on the rank r. In the base case r = 1, the ring A' = k(y) =
K[y] is a univariate polynomial ring, and 3¢ is a nonzero element of A!d, so y¢ is a nonzero
divisor.

Preparing for the inductive step, segregate £ = F'U E, where F':= F,_1 = F1 U FEs U
-« U E,_1 is the modular coatom in the modular flag F', and define the early and late

variables:
{vi, s yn} ={vitier U {yj}jer, -
early late

Note that, by Theorem 5.11, the restriction M|p is a rank r — 1 supersolvable matroid to
which induction applies. Also, note that the presentations in Theorem 5.18 and the stan-
dard monomial bases show that the early variables generate a subalgebra of A' isomorphic
to the Koszul dual OS(M|r)' or VG(M|r)".

The standard monomial basis shows that every a in A' has a unique decomposition

a= Z a(m)-m (5.25)

m

where m runs over all monomials in the late variables, and each a(m) lies in the subalgebra
generated by the early variables. Grouping this more coarsely via deg(m), one obtains a
unique decomposition

a= E a  where a9 := E a(m) - m. (5.26)
=0 m:
deg(m)=¢

In particular, py(y) = Z?:l Ciyzd = y(O) + y(d)‘
Let A!(é) denote the set of elements of the form a(® above, so there is a k-vector space

decomposition
I !
A = @ A(z)
/=0
and also define .
Al(zf) = @ A!(p) = A!(e) b A!(2e+1)~ (5.27)
p=~L
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We will use these two facts, justified below:
! | !
Ay Aw) € At

| | |
Azp) Az g S A prg)
These follow ultimately from Lemma 5.17, as we now explain. One can use the Gréb-
ner basis relations 7(4,4),r*(j,4) for retrograde pairs (j,4) appearing in Theorem 5.18 as
rewriting rules, performing the division f —¢ r and rewriting f as a sum r of G-standard

monomials. Lemma 5.17 implies that at each division step, one is always replacing
e quadratic initial terms with no late variables by a sum of terms with no late
variables,
e quadratic initial terms with one late variable by a sum of terms with one or two
late variables.

Continuing the inductive step, assume a € A!q has a-pg(y) = 0, and we want to conclude
that a = 0. Writing a = 37_,a¥ as in (5.26), we will show each a¥) = 0 via an inner
induction on /.

In the inner induction base case ¢ = 0, write

q
(=1

€Al )

so that 0 = a(© . y(© mod A!(> d)° By the direct sum decomposition (5.27), this means

a® .40 = 0. By induction on the rank applied to M|, since y(?) is still generic for M|,
this implies a(9) = 0.

In the inner inductive step, assume a-py(y) = 0 and that a® =g =... = gD =,
that is, a lies in A!(>£). We wish to show that a(® = 0. Write

!
€A 011y

so that 0 = a® - y(© mod A!

(> t+d)"
Write al© = 3, a(m)m as in (5.26), so that m runs through all degree ¢ monomials in
the late variables. Note that for any early variable y; and any monomial m of degree £ in the
late variables, the division algorithm f —g 7 and the form of the relations r(j, ), r*(j, 1)
in G (again using Lemma 5.17) will rewrite
m-yd = yg-mmodA!(EHd).

0) !

Since () is a sum of early variables, similarly m - y(© = 4© . m mod A(>l ) which

implies

al® .40 = Za(m) m-y0) = Za(m) -y m mod A!(ZZer)

m m

Hence one concludes that 0 = Y, a(m) - y(®) - m mod A!(2£+d)' Since 3, a(m) -y© -m

lies in A!(£)7 by the direct sum decomposition (5.27), it must vanish. But by the uniqueness
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in (5.25), this implies each a(m)-3®) = 0. Then by induction on r, each a(m) = 0. Hence
a¥) =0, as desired. O
One has the following corollary to Theorems 5.19 and 5.21.

Corollary 5.22. Let M, M be a matroid or oriented matroid, and G a group of automor-
phisms, that is, a subgroup of Aut(M) or Aut(M). Consider G as a group of K-algebra

automorphisms of A := OS(M) or VG(M).
(i) Any x € Ay which is G-fixed and generic in the sense of Theorem 5.19 (e.g., x =
Yoy x; when K has characteristic zero) gives rise to a factorization in Rx(G)[[t]]

Hilbeq (OS(M), 1) = (1+t) - H(¢)

where tH(t) is the equivariant Hilbert series for the cocycles (=coboundaries) of
the KG-module complez in (5.23).

(ii) Assuming that M is supersolvable with decomposition E as in Proposition 5.12, any
y € A} which is G-fized and E-generic (e.g., y = Y7, y;) gives a factorization, in
Ri(G)[[t]] X

Hilbeq (OS(M)', 1) = T H'(t)
where H'(t) is the equivariant Hilbert series for the quotient KG-module A'/A'y.

(iii) Assuming that M is supersolvable with decomposition E as in Proposition 5.12,
any pa(y) € Al which is G-fized and E-generic® (e.g., pa(y) = S0, y?) gives a
factorization in Ry (G)[[t]]

1 !
= . H'(t

where H'(t) is the equivariant Hilbert series for the quotient KG-module A'/A'pa(y).

Hilbey (VG (M), 1)

Examples of the factorizations in the various parts of Corollary 5.22 appear later:

e Part (i) is illustrated by (6.3), (6.6), (6.12).
e Part (ii) is illustrated by (6.4), (6.7), (6.13).
e Part (iii) is illustrated by (6.8), (8.12).

6. EXAMPLES: BOOLEAN MATROIDS AND MATROIDS OF LOW RANK

Before developing further theory for supersolvable matroids and oriented matroids, we
digress to discuss the action of symmetries in a few of our earlier examples, illustrating
the results so far.

6.1. Boolean matroids. We return to Example 4.5 and the Boolean matroid M = U, .
Although M = U, is orientable, we will focus here on OS(M), where a bit more is known
about the action of symmetries, rather than on VG(M). The discussion of VG(M) is
deferred to Example 8.10 later.

The Boolean matroid M of of rank n has no circuits, so A = OS(M) = AV =
A1, ..., ), and A' = OS(M)' = SymV = K[yi, ..., yn], swapping the roles of A, A'
from Examples 2.4, 2.6, 2.8. Here Aut(M) = &,, and both V,V* carry the defining
representation of &,, permuting the subscripts of the variables x; or y;.

50One cannot always find such G-fixed E-generic elements in A}, e.g., Z:zl y; is E-generic, but not
always G-fixed.
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Thus V is the defining representation of &,, by permutation matrices. Assuming that
k has characteristic zero, V, V* both decompose into irreducible K&,,-modules as

Veyrzsh gsh-ll

where S* denotes the simple k&,,-module indexed by a partition A of n; here S is the
trivial &,,-representation, while S~ is the irreducible reflection representation of &,,.
Consequently, in this situation,

A=A (S @ SNLD) = ASM @ ALY (6.1)
A' = Sym (8™ & $T1D) = Sym 8™ @ Sym ST, (6.2)
and the factorizations in Corollary 5.22 become
Hilbeq (A, 1) = (1 + ) Hilbeg (AS"~1),¢) (6.3)
Hilbeg(A',t) = % Hilbeq (Sym S0, ¢). (6.4)

Both (6.3) and (6.4) can be refined to explicit K&, -irreducible expansions. For (6.3), since
it is known that A!S(—11) =2 §(—i1%) " one has

n—1 ] )

Hilbeq (/\S(”_l’l),t) = [5(”—“”] #.

i=0
For (6.4), one can extend the tensor decomposition (6.2). The &,-invariant subalgebra
of K[y] is K[y]® = Kley,ea, ..., e,] where e = ex(y) is the k™ elementary symmetric
function in the variables y, and the theory of Cohen—Macaulay rings gives a graded k&,,-
module tensor product decomposition

k[y] = k[€17627 sy e’fL] ® k[y]/(€17627 R en)
where K[y]/(e1, €2, ..., €,) is the type A coinvariant algebra. Hence one has
Hilbeq(A!, t) = Hilb(Kle1, e2, ..., ep],t) - Hilbeq(K[y]/(e1, €2, ..., €n),1)
_ 1 . AQ)] mai(Q) (6.5)
= Aha B ) X ¢

where the sum on the right, due to Lusztig and Stanley [82, Proposition 4.11]), has @
running over all standard Young tableaur with n cells, with A(Q) the partition shape of
@, and maj(Q) the sum of all entries ¢ in @ for which i + 1 appears weakly southwest of i
(using English notation for tableaux).

We note for future reference in Section 11.6 that &, permutes the monomial basis
{y2 = ¢y :a € N} of A' = K[y], making each graded component A} of A' a
permutation representation.

6.2. Rank one matroids. A simple rank one matroid M has ground set E = {e} of size
one and no circuits. It is always orientable, and has

A= 0S(M) = VG(M) = K[z]/(x?)
A =K[y).

The only difference between M, M arises when one takes into account symmetries. The
matroid M has no nontrivial automorphisms, while the oriented matroid M carries the
action of the two-element group G = Aut(M) = &f = Z/2Z. Assuming that the
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characteristic of K is not 2, then the generator of G negates both z,y when it acts on
A = VG(M) = K[z]/(z?) or A' = VG(M)' = K[y]. Denoting the class of this nontrivial
1-dimensional representation by € in the Grothendieck ring

Ra(G) = Z[d/ (&~ 1)

then in the power series ring Rk(G)[[t]] one has
Hilbeq (OS(M),t) =1+,
Hilbeq (VG(M),t) =1 + €t, (6.6)
1
Hilbeq (OS(M)',#) = 14t + 2+ 134 = T (6.7)
1
. AN 202 | 3,3 . _
H11beq(VG(M),t)_1+et+et + et + g
1+et
ST B N (6.8)
1—¢2
6.3. Rank two matroids. As discussed in Example 4.6, a simple rank two matroid M
on ground set £ = {1,2, ..., n} is always orientable, and supersolvable. Any rank 1

flat, such as F' = {1} is a modular coatom, and one has the corresponding set partition
decomposition E = (Eq, E2) = ({1},{2,3, ..., n}) with (e1,es) = (1,n — 1). Therefore,

Hilb(OS(M),t) = Hilb(VG(M),t) = (1 +t)(1 + (n — 1)t) = 1 +nt + (n — 1)t%,
Hilb(OS(M)'!, t) = Hilb(VG(M)', t)

1
(-1 = (n—1)) (6.9)
=14+(14+m-1)t+1+Mn—-1)+Mn-1)%)t+. .
S I R et et
:Zf(n,z)t where f(n,i) := Z(n—l) =
i=0 Jj=0

In considering symmetries, it is somewhat easier to compute with OS(M), rather than
VG(M). The matroid M has as its symmetries the full symmetric group G = Aut(M) =
S, arbitrarily permuting F = {1,2, ..., n}. It is also helpful to introduce a notation
@y for the class [K[G,,/S,]] within Rk(S,,) of the &,-permutation representation on the
cosets of the Young subgroup &) := &y, x --- x &), where A = (A, A, ..., Ap) is a
partition of n = |A| := Y°¢_; A;. Hence, if k were a field of characteristic zero (which we do
not assume here), then this class @) corresponds to the product of complete homogeneous
symmetric functions

hy:=hy, ---hy,
under the Frobenius characteristic isomorphism Rk(S,) = A, where A,, are the degree n
homogeneous symmetric functions A(z1, 22, . . .), in infinitely many variables.

One finds that OS(M); carries the defining permutation representation of &,, permuting
coordinates in K", whose class in Rk(S,,) is ¥(n—1,1)- Introducing the k&,-submodule

S = fx e K" i ay + -+, = 0}, (6.10)
the quotient ¢, _1,1)/S (n=L.1) carries the trivial k&,-module 8™, giving this identity in
Ry (S,):

[OS(M)1] = g1 = [S™] + [$C=10] =14 [stn=11)]. (6.11)
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The Hilbert series in (6.9) have the following equivariant lifts to Rk(&y,)[[t]]:

Hilbeq(OS(M), 1) = (1+ ) (14 [S"ID] 1) = 14 gyt + [SOID] 2, (6.12)
1
(1—1) (1= [s=1D]¢)

=1+ (14 [s]) e+ (1 + [stt] 4 [SWLU]Z) 24

_th (Z[ - m)}’“) (6.14)

k=0

Hilbeq (OS(M)',t) = (6.13)

We find the next proposition somewhat unexpected.

Proposition 6.1. In Rk(S,,), the element [OS(M)}] = Si_o[ST~LVI* is the class of a
permutation representation, expressible in the following form:
osquy] =47 R i P n-age)y Feven
’ Pn-1,1) + 2a=2 bd,i P(n—d,1d) i odd,
where {aq;}, {ba;} are positive integers, independent of n, given by sums of Stirling num-

bers:
%'
aq; = Z S(2k —1,d —1) for i even,
= [4)
;1
2
bay = Y. S(2k,d—1) fori odd.
5

Proof. The following identity is established in [89, Proposition 7.6, Theorem 7.7] for j > 2.

[S(n—l,l)}j + |:5 n—1, 1)} Z S ] —1,d— ) (n—d,ld)' (6.15)

Since the proofs in [89] are phrased in terms of symmetric functions, over a ground field
of characteristic zero, we explain why this identity still holds in the Grothendieck ring
Rk(S,,) for arbitrary fields k. Sundaram constructs an explicit kK&,-module realizing
the jth tensor power of the &,-permutation module V; ,, whose class is p,_1,1), and
decomposes it in terms of the coset permutation submodules

Vin = (K&q) Tﬁ:%@?

whose class is ¢(;,_q 14y, obtaining [89, Eqn. 18, Lemma. 6.1])

- min(n,j
d=1

In addition we will use the following three facts (1),(2),(3).
(1) [Str—1.D) te!_ xe,] = [Vin—1]. We show this as follows.
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First, if S=1) ig the span of a fixed standard basis vector, and Vi ,_1 is the
span of the n—1 non-fixed standard basis vectors, we clearly have Vi, =& (=1 g
Vi,n—1, which in turn gives

Vin 4] = [S"7V] + Vo). (6.17)

Now recall the definition in (6.10) of S™~11) and the Grothendieck group iden-
tity (6.11). The discussion around (6.10) and (6.11) in effect establishes the exis-
tence of a short exact sequence of K&,,-modules

0= St 5 v, -8 o,

which restricts to the same sequence as (S,,—1 x &1)-modules. Hence we have
Vi 4] = [$™ 4] + [0 ] (6.18)

Since S | = SV comparing (6.17) and (6.18) we obtain [S™~11 |] =
[Vl,n—l]-
(2) [93, Corollary 4.3.8, Part (2)] Transitivity of induction;
(3) [93, Corollary 4.3.8, Part (4)] For a finite group G and subgroup H, and kG-module
U, KH-module V, over any field K,

U (V1§) = U ln V)15

In the present situation we have G = 6,,, H = 6,1 x 61, V = 1g, ,xs,, so that
the class of V' Tf[ iS Yn-1,1) and U = S(”—lal)@’]_l

tion 7.6]), we have
s s =] [50] - s)
=[U®Viyn] Dby (6.11) and definition of U,
U® (1g) Tg} by definition of H, G, Vi ,

. Following the proof of [89, Proposi-

[

[ U ¢§,) Tg} by item (3) above,

_ [ (S(nfl,l))(@(j—l) ig?XGM) o
[

®j—1 46, :
Vi 61x6n71} by item (1) above,

min (n—1,5-1)
= 3 SG-1d) [vd,vn_ngz_l] using (6.16)
d'=1
min (n—1,j—1)
= Z S(j —1,d') [Var41,) by item (2) above,
d'=1
min (n,j)
= > S(G-1d-1)[Vaal.
d=2
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Hence for i > 2, we have

os(] = 3 s

k=0
S +k§ ([ n—m)f’“ + [sm—l,nr’f—l) 7 ; even.
= [ } n {5 n—1,1) ] N 21:)/2 ({S(nl,l)}2k+l N [S(nm)}zk) iodd,
+ ;fl d§2 S(2k —1,d—- ) (nd,ld)> ; 1 even,

- (i—1)/2 <2k+1

On—1,1) T p > S(2k,d— 1)<P(nd,1d)) , i odd.

=1 d=2

Interchanging the order of summation then gives the assertion of the proposition for ¢ > 2.
For i = 0,1 it is easy to check that [OS(M)}] = ¢y and [OS(M N = Pn—1,1)- O

Remark 6.2. Rather than all of &,,, one might restrict the action on OS(M) to the
dihedral group”

W = I(n) = <'r,s =82 =1,srs :'r_1>

of order 2n. Since &, acts on each OS(M ); via permutation representations, the same must
hold for W by restriction. One can check via character computations (omitted here) that
OS(M )L is always a nonnegative combination of these four permutation representations:

e the trivial representation,

e the defining representation pgef on E = {1,2, ..., n} with r = (12---n), s(i) =
n+1—1,

o the regular representation preg := KW, and

e when n is even, the half-regular representation p1

Leg "= K[W/Zw] where Zy =
{175},

(n—1)"*t1-1

One has these expansions in Rx(W), where f(n,4) := dimy OS} = —— as in (6.9):
ﬁ [f(n,i) — 1] - preg + 1 if n is odd, and i is even,
ﬁ [f(n,4) —n] - preg + Pdet if n is odd, and 7 is odd,

os(m);] =
1 [f(n,z) —n- % — } “Plreg + % -pdet + 1 if n is even, and i is even,

- [f(n,z') -n- @} Plreg T % * Pdef if n is even, and 7 is odd.
Remark 6.3. It was observed earlier that uniform matroids U, ,, are supersolvable if and
only if » € {1,2,n}. This means that M = Us,, for n > 4 are not supersolvable, and in
fact, A = OS(M) are not Koszul algebras, and not even quadratic. If one nevertheless tries
to define virtual &,-characters {[A}]};>¢ in terms of the genunine characters {[4;]}i>0
via the recurrence (2.12), then already [A}] are not genuine characters once n > 4.

"These are symmetries of the rank two oriented matroid M, although we are ignoring the action on
VG(M) here.
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7. BRANCHING RULES FOR SUPERSOLVABLE MATROIDS

Let M, M be supersolvable matroids or oriented matroids of rank r on ground set E,
with a modular complete flag F' and decomposition £ as in Proposition 5.12. If F' = F,._;
denotes the modular coatom within the flag F', then the restrictions M|p, M|p are again
supersolvable. Furthermore, the formulas (5.12), (5.17) for the Hilbert series of the rings
A = 0S(M),VG(M) and their Koszul duals A' show that they are closely related to the
Hilbert series of the same rings B, B' for M|p, M|p:

Hilb(A,t) = (1 +eit)--- (1 + e,—1t)(1 + e,t) = Hilb(B, t) - (1 + e,t)
1 1
(I—e1t) - (1 —ep_1t)(1 —ert) 1—ept
which one can rewrite suggestively as follows, for comparison with Proposition 2.16:
Hilb(A,t) = Hilb(B,t) + t - e, - Hilb(B, t) (7.1)
Hilb(A',t) = Hilb(B',t) +t - e, - Hilb(A', t). (7.2)

Hilb(A',t) = = Hilb(B', ) -

This suggests considering a group G of automorphisms of M or M, and how its action on
A, A' restricts to the setwise G-stabilizer subgroup of the modular coatom F
H:={geG:g(F)=F}.

Note that H also permutes the ground set elements E, := E \ F; in the case where G
acts on the oriented matroid M, so that G acts via signed permutations in & on E as
in Definition 5.7, then H acts via signed permutations on FE,.. This gives rise to either
a permutation or signed permutation KH-module X := K[FE, |, which in particular is self-
contragredient. Our goal in the next two subsections is to prove Theorem 7.1 below, which
not only lifts (7.1), (7.2) to these two branching relations in Ry (H)

[Ai ] = [Bi] + [X] - [Bi—1] (7.3)
(4} 4] = [B] + 2] ([4i-1 4]).- (74)
(equivalent by Proposition 2.16 as X* = X), but also lifts them to short exact sequences.

Theorem 7.1. With the above notations, and letting K be any field, one has the following
short exact sequences of graded KH-modules:

(i) 0 — B — A% — X®B(-1) — 0,
(ii) 0 — X © (A'1§) (-1) — A" L§— B' —0.

7.1. Proof of Theorem 7.1 (i).

Proof. The injective maps B — A from Theorem 7.1(i) are instances of injections of
Orlik—Solomon and Varchenko-Gel’fand algebras coming from their flat decompositions

OS(M) = € OS(M)r,
FeF

VG(M) = € OS(M)p
FeF

discussed in Section 5.1. The NBC monomial k-bases from Remark 5.10 show that for any
flat F' in F, one has k-algebra inclusions (see [68, Proposition 3.30], [94, Proposition 2.5],
and [19, Proposition 5.6])
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S(M|rp) = € OS(M)p < OS(M),
F'<F
VGM|p) =2 @ VG(M)p — VG(M).
F'<F
Since A = OS(M) or VG(M) and B = OS(M|r) or VG(M|F), this explains the
injection B — A from the sequence Theorem 7.1(i). In fact, the entire sequence actually
holds in slightly more generality, and for Orlik—-Solomon algebras was essentially observed
by Orlik and Terao [68, Lemma 3.80]. One does not need to assume that M, M are
supersolvable, only that F' is a modular coatom within its lattice of flats F. Keeping the
same notations so that A = OS(M),VG(M), and B = OS(M|r), VG(M|F), with H the
setwise G-stabilizer of F' with a group of the autmorphisms G, one has the following.

Proposition 7.2. Any modular coatom F gives rise to a K-vector space direct sum de-
composition

A=B® ( &y ij) ,
JEE\F
which can also be viewed as a graded KH-module isomorphism
A%~ B @ X®B(-1),

where X is the permutation or signed permutation representation of H on E'\ F as before.
Proof. First note a consequence of Theorem 5.11: if one orders/indexes £ = {1,2, ..., n}
so that ¢ < j whenever i € F' and j € E'\ F, then every pair {j,k} C E\ F with j #kisa
broken-circuit, coming from the 3-element circuit {4, j, k} with {¢} := FN({j}Vv{k}). This
implies NBC subsets for M contain at most one element j of E \ F', so NBC monomials
for M are either of the form

(a) @iy - -~ x4, for NBC sets {i1, ..., i} C F, or

(b) @, - xs,x; for NBC sets {iy, ..., i,} € F,and j € E'\ F.
Identifying B with @ pcp OS(M)p or @pcp VG(M)pr expresses A as a K-vector space

sum
A=DB+ ( > ij) :
JEE\F
However, these sums are direct, via dimension-counting: if e := |E \ F|, then one has

dimg A = dimg B(1 + e)

as the ¢t = 1 specialization of the identity Hilb(A,t) = Hilb(B,t)(1 + et) (cf. (7.1) above)
which follows either from Stanley [80, Thm. 2] or from Orlik and Terao [68, Lem. 3.80].

Note that this dimension count also implies that the NBC monomials in (a),(b) above
form k-bases for B and EBje E\F Bz, respectively. This lets one write a k-vector space
isomorphism

X®B L> @ Bx]‘
JEE\F

as follows: naming the k-basis elements {t; : j € E'\ F'} for the permutation or signed per-
mutation representation X’ of H, let the isomorphism f map t;®@x;, - - - x;, — @3, -+ 23, T.
Since this means that f(t; ® b) = bx; for b € B, the H-equivariance follows from this cal-
culation: by definition, g € H has g(t;) = %t for j,k € E'\ F if and only if g(z;) = £z,
with the same + signs for both. O
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7.2. Proof of Theorem 7.1 (ii). The surjective map A' — B' within the exact sequence
of Theorem 7.1(ii) is simple to define. As before, let M, M be supersolvable matroids or
oriented matroids on ground set £ = {1,2, ..., n} and let E be as in Proposition 5.12,
with F = F,_y = FyU---UFE,_; and E, = E\ F. Let A' = OS(M)' or VG(M)', and
B' = OS(M|Fr)' or VG(M|r)".

Proposition 7.3. The surjective K-algebra map

Ky, -5 yn) — K{yi)igr,
Yi Y if i & By
y; —— 0 ifjeE.,

induces a surjective K-algebra map A' — B'.

Proof. Check that in the quadratic Grébner basis presentation of Theoerem 5.18 for A',
if a quadratic term is divisible by a variable y; with j € E,, then every term is divisible
by such a variable. O

It only remains to identify the kernel of the surjection in Proposition 7.3. Recall that H
is the setwise G-stabilizer subgroup for the modular coatom F', and X is the permutation
or signed permutation representation of H as it acts on FE,., with the k-basis of X denoted

{tj}iek,
Proposition 7.4. The K-linear map
XpAd — A
i ®@Yiy - Yi, > Yiy o Yi,Yj
is injective, with image equal to the kernel of the surjection A' — B' in Proposition 7.3.

Proof. Since the surjection A' — B' is induced by sending the variables {yj}jcE, to
zero, its kernel is the two-sided ideal I = (y; : j € E;) C A' that they generate. As
in the proof of Theorem 5.21, the presentation for A' described in Theorem 5.18 and its
standard monomial k-basis identify this ideal I as A!(> 1) the span of standard monomi-
als mymg---my_1 - my, with m, in the variable set &/j}jeEp, that have deg(m,) > 1.
Classifying such standard monomials according to their rightmost variable y; shows that
I = A!(> 1) is the image of the map in the current proposition. The standard monomial

basis for A' also shows that this map is injective. O

Noting that the maps in Propositions 7.3 and 7.4 are both H-equivariant proves Theo-
rem 7.1 (ii).

8. HOMOTOPY AND HOLONOMY LIE ALGEBRAS

In Section 2, we defined a standard graded k-algebra to be Koszul if it had a (left-)free
resolution of kK = A/A; which is linear. It turns out (see [71, Section 2.1]) that this
definition is equivalent to any of the following conditions:

(a) Ext’y(k,Kk); = 0 for i # j,

(b) A is quadratic and A' = Ext® (K, K),

(c) A is quadratic and (A})* = Torf(k, k),

(d) A is generated by A; and the algebra Ext%(K,K) is generated by Ext}(k, k).
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The next proposition explains why quadratic algebras A that are either commutative or
anti-commutative have quadratic duals A' which inherit a Hopf algebra structure from the
tensor algebra, making A' the universal enveloping algebra of a graded Lie (super)-algebra.
It can be considered an elaboration on [71, Section 1.2 Examples 4,5].

Proposition 8.1. When a quadratic algebra A is anti-commutative (resp. commuta-
tive), its quadratic dual A is not just a K-algebra, but actually a co-commutative Hopf
algebra (resp. co-commutative signed Hopf algebra, in the sense of Cartier—Patras [23,
Section 3.9]). Hence by the Cartier—Milnor-Moore Theorem, A' is the universal envelop-
ing algebra U(L) of the graded Lie algebra (resp. Lie superalgebra) L C A' which is its
K-subspace of primitive elements.

Proof. Since A' := k(y)/J for a two-sided (algebra) ideal J, it suffices to check that .J
is also a co-ideal for the co-product A on the Hopf algebra H := k(y) = T'(V), that is,
A(J)CH®J+J® H. We give the argument for the case where A is commutative; the
anti-commutative case is similar.

Since J = HJyH is generated as a two-sided ideal by J2, and since A : H - H ® H is
an algebra morphism, it suffices to check that A(J2) € H® J+.J® H. Note that since the
quadratic algebra A = k(x)/I is commutative, it must be that I = (I3) has I containing
the k-span of all commutators [z;, z;];. Consequently, Jo = IZL lies in the perp space of
the span of all such commutators, which is the k-span of all anti-commutators [y;, y;]—,
allowing 7 = j here.

Claim. Every anti-commutator [y;,y;]— is primitive, meaning Aly;, y;]—- = 1 ® [y;, yj]— +
[yi, ys]- ® 1.

Assuming the claim, every j € Js is also primitive, so Aj = 1®j+j®1 € HRJ+JRH,
as desired. Checking the claim is a standard calculation: when a = y;, and b = y; are
both primitive, and of odd degree, then their anti-commutator is also primitive:

Ala,b]- =Aab+ba) =(1®a+a®1)(10b+b 1)+ (10b+b01)(1®a+a®1)
=1Qab—-bQ®a+a®@b+abR1+10ba—a@b+b®a+ba®1
=1®ab+abR1+1®ba+ba®1
=1® (ab+ba)+ (ab+ba) ®1 =1® [a,b]- + [a,b]- ® 1. O

Remark 8.2. If a quadratic algebra A is neither commutative nor anti-commutative,

then A' might not inherit a Hopf algebra structure from the tensor algebra. Consider the
quadratic algebra

A= K[z, y]/ (:132 + yg) =k(z,y)/ (:c2 + 92,y — y:r:) )

This is the quadratic dual of A = k{x,y)/(zy +yx,y? — 2?), which is neither commutative
nor anti-commutative. Notice that if the characteristic of K is not equal to 2, the ideal
J = (2® + 92,2y — yx) is not a co-ideal for the coproduct A on the tensor algebra H =

k{z, y):
A(z? 4 92) = (a:2+y2) R1+2zx@r+y®y)+1® <z2+y2>,
which one can check does not liein H® J+ J ® H.
When A = @72, Aq is an associative standard graded k-algebra, so generated by Aj,

and is either commutative or anti-commutative, the Yoneda algebra Ext%(k, k) has a nat-
ural coproduct giving it the structure of a graded Hopf algebra. Therefore, Ext$ (k, k) is
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also the universal enveloping algebra of a graded Lie (super-)algebra. See Avramov [6, Sec-
tion 10.1] for a discussion when A is commutative, and Denham and Suciu [31, Section 1]
for the case where A is anti-commutative.

Definition 8.3. In the above setting, the homotopy Lie algebra w4 is the graded Lie
algebra or Lie superalgebra of primitive elements in the Yoneda algebra Ext% (K, k) of A,
that is,

Ulra) = Ext? (K, k).

8.1. The holonomy Lie algebra. Let A = @32, Aq be an associative graded k-algebra,
with k-basis z1, ..., x, for V = Ay; for the moment we do not assume that A is generated
by Ai. Then the decomposable elements of As are defined to be those in the image of the
multiplication map

¢2A1®A1—>A2.

Letting V = A7 have dual basis y1, ..., yn, if one considers the dual of this multiplication
map

AL — (AT A= AT AT
then one has these identifications:

A ® A\*
(@) = (St = {7 € 479 A7 f(kera) =0},

T2 '
= ( (V)> = Iy =:Js.
I

(8.1)

Here we consider J, = I3~ as a subspace of T?(V*) = V* ® V*, with pairing T2?(V*) x
T%(V) — Kk just as in (2.3). Now just as the proof of Proposition 8.1, if one further
assumes that A is commutative (resp. anti-commutative), then I contains the k-span of
all commutators [v;,x;]; (resp. anti-commutators [x;,z;]_). Consequently, Jo = I3 lies
in the perp space of the span of all such commutators or anti-commutators, which is the
k-span of all anti-commutators [y;, y;]—, allowing ¢ = j (resp. all commutators [y;, y;]+).
In other words, im(¢*) = Ja is identified with a subspace of [A], Aj]_- or [A}, Aj]+ inside

Lie(V*) = Lie(A]) = Lie(y1, ..., yn) C T*(A4])

where Lie(y1, ..., yn) denotes the free Lie algebra (resp. free Lie superalgebra) on yy, ...,
yn when A is anti-commutative (resp. commutative).

Definition 8.4. In the above context of an associative graded k-algebra A which is either
commutative or anti-commutative, define the holonomy Lie algebra § 4 via the quotient

ba = Lic(A7)/(m(¢")) = Lic(ys, ..., yu)/{J2). (8.2)

Here Lie( A7) is the free Lie algebra (resp. free Lie superalgebra) on the k-basis y1, ..., yn
for V* if A is anti-commutative (resp. commutative), and (Jo) = (I5) is the Lie ideal
generated by Jy = I5-.

The following result of Léfwall connects the holonomy and homotopy Lie algebras.
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Lemma 8.5 ([56, Theorem 1.1]). The universal enveloping algebraU(h a) of the holonomy
Lie algebra h 4 equals the linear strand of the Yoneda algebra Ext%(K,K). That is,

A) = @ Ext%(k, k);
i>0
C @ Ext’y (k, K); = Ext% (K, K).
i, 20
In particular, if A is a Koszul algebra, so A' = Ext% (K, K) is equal to its own linear strand,

one has
A' =U(L) where L=1hp=TaA.

We next give a simple presentation for the holonomy Lie algebra h4 when A = OS(M)
or A =VG(M). In the case of OS(M), this is a well-known result of Kohno [53], but as
far as the authors are aware, for VG(M) the presentation is new.

Theorem 8.6. The holonomy Lie algebra of OS(M) (resp. VG(M)) for any simple (ori-
ented) matroid M (resp. M) is generated by the relations (5.13) (resp. (5.14).

Proof. We give a proof for VG(M) analogous to Lofwall’s proof [57] of Kohno’s result for
OS(M). By Equation (8.1), we can identify im(¢*) with J := I3 C K(y), where A =
k(xi, ..., xn)/I. There are three families of quadratic relations in the ideal I presenting

VG(M) to consider:
z3 fork=1,2,...,n, (8.3)

Ty — xpxp for 1 < k<0 <n,
0F(C) := $gN( 1, LTy + SENC pTRTm+SENC R TeTm

for circuits C' = {k, ¢, m} of size three. ~ (8.5)

Recall from (5.7) in Proposition 5.5 that the pairing T7?(V*) ® T?(V) — Kk makes k(x)p
and K(y)p pair to zero unless F' = F’, so that one can compute Jo = I3 flat-by-flat,
obtaining
[J2 Nk(y)]r = [l2 N k{x)]5
for all rank 2 flats F' in F. From this one sees that it suffices to prove the result assuming
M = M|p = Uy, a uniform rank 2 matroid on E = {1,2, ..., n} with one rank 2 flat
F=F.
The quadratic part I contains these n+ (3) + (";1) =n

(8.4), (8.5):

e n of the form z?,

e (5) of the form x;x; — xjz; for i < j, and

o (") of the form 0%(C) for circuits C' = {1,i,5} with 1 <i < j < n.
One can also easily check that they are k-linearly independent inside 72(V'). Consequently
one has

dimg Jo = dimg I2J‘ = dika2(V*) —dimg I, < n? — <n2 —-n+4+ 1) =n-—1.

2 —n+1 elements among (8.3),

On the other hand, the proof of Theorem 5.18 showed each of these elements from (5.14)
lies in Ij:

r=(E) = Y X,/\/I|F Gok) -y uel- = D XMlF 3, k) - (Y5ur + Yxys),
tekn t<kn
k# k#
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But the subset {r*(j, E)}1 <j <n—1 gives n—1 such elements which are linearly independent
in T%(V*), and therefore they span Jo = I5-. O

8.2. PBW decomposition. When the Koszul algebra A is commutative or anti-commu-
tative, we can use variants of the Poincaré-Birkhoff-Witt (PBW) Theorem to relate the
(G-equivariant) Hilbert series for A' = U(L) and that of the graded Lie algebra £ =

Dazo La-

Remark 8.7. We state the results in this section assuming that the characteristic of K is
zero; however, these results can be extended to arbitrary characteristic by replacing the
symmetric algebra Sym(V) or symmetric powers Sym* (V) with the divided power algebra
D(V) or a divided power D*(V) in every place it appears.

8.2.1. The anti-commutative case. When A is anti-commutative, and K has characteristic
zero, the PBW Theorem gives a graded k-vector space isomorphism A' = U4(£) = Sym(L).
Therefore, we have the Hilbert series relation

Hilb (A',t) = Hilb@©(£),¢) = Hilb(Sym(£), £) = df:[1 u_ltd)gp (8.6)

where pg = dimg Lg; see [71, Section 2.2, Example 2].

Remark 8.8. The lower central series (LCS) of a finitely-generated group G is a chain of
normal subgroups G = G1 > G2 > ... defined recursively by Gy = [Gk_1, G]. Kohno [54]
used the topological interpretation of the Orlik—-Solomon algebra that we will discuss in
Section 9 to investigate the LCS of the homotopy group of the complement of a complex
hyperplane arrangement. By studying the holonomy Lie algebra of the Orlik-Solomon
algebra of the braid arrangement, Kohno proved that the ranks ¢4 of the successive quo-
tients in the lower central series of the homotopy group of the complement of the braid
arrangement satisfy equation (8.6). Falk and Randell [41] later showed that this formula
also holds for supersolvable arrangements, and Shelton and Yuzvinsky [77] proved that an
LCS formula of the form in equation (8.6) holds if and only if the Orlik—-Solomon algebra
of the arrangement is Koszul. Peeva [70] gave another proof that the LCS formula of
this form holds for supersolvable arrangements using the fact that they have a quadratic
Grobner basis.

Any group G of graded k-algebra symmetries of A, and therefore of A', will also act
as graded Lie algebra symmetries of £. The PBW Theorem then gives these equalities in

R(G)[[t]]:
Hilbeg (A’, t) = Hilbeq (U(L), t) = Hilbeq(Sym(L), t)

= Hilbeg (Sym <é£d> ,t> (8.7)

d=0

= > ¢l I [Sym™ L;].

A=(1m12m2...) ji>1

In Section 10, we will use this description to investigate representation stability for £ in
the setting where A is anti-commutative.
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8.2.2. The commutative case. Similarly, when A is commutative, Polishchuk and Positsel-
ski discuss in [71, Section 1.2, Example 4] how A' = U(L) for the (graded) Lie superalgebra
L =@ Ly over K, in which the parity is induced by the grading, that is,

'Ceven = @ ﬁda (8-8>
d=0 mod 2

Loa= P CLa (8.9)
d=1 mod 2

The graded version of the PBW Theorem (see Milnor and Moore [63, Thm. 5.15],
Ross [74, Thm. 2.1], Scheunert [75, Section 2.3 Thm. 1]), asserts that when K is a field of
characteristic zero, one has a graded K-vector space isomorphism

A =U(L) = Sym, (L) := Sym(Leven) @ AN Load)
and hence a Hilbert series relation

[Taoda (1 + td) o

- Hdeven,d22 (1 - td)wd

Hilb (', ¢) = HilbU(£), ) = Hilb(Sym_ (L), t)

where pg = dimy Ly.

Remark 8.9. For any formal power series P(t) = 1+ ;5 bjt/ with b; € Z, there exist
uniquely defined ¢4 such that

Plr) - I14 0aa (1 + tdyd

B Hd even,d > 2 (1 - td)wd .

If P(t) = Y2 dimk Torf‘(k, k) is the Poincaré series of a Noetherian commutative ring
R in either

e the local setting, where (R, m) is a local ring with residue field k = R/m, or
e the graded setting, where R = @32 is an N-graded commutative K-algebra with
Ry =K,

the exponent g is called the d*"' deviation of the ring R. This is because the nonvan-
ishing of the ¢4 measures whether R “deviates” from being a regular ring or a complete
intersection in precise senses:

e R is regular if and only if g9 = 3 =--- = 0; see [6, 7.3.2]
e R is a complete intersection if and only if p3 = @4 = --- = 0; see [6, 7.3.3].

Moreover, in the local setting one can always resolve K over R via an acyclic closure;
this was first proven in [47]. See [6, Section 6.3, Section 7, Section 10.2] for an in-depth
discussion in the local setting; analogous results hold for commutative Noetherian graded
k-algebras. Informally, an acyclic closure is built by recursively adjoining formal variables
to represent boundaries of any cycles that appear while computing an R-free resolution of
k. The number of formal variables that one must adjoin in homological degree d is exactly
g, which predicts the dimension of the d'"" graded component of the indecomposables
within Torf(k, k). Since the graded dual of Tor®(k, k) is exactly Extg(k, k), the space of
indecomposables of TorR(k, k) is the graded dual to the space of primitives in Extr(K,K),
so that g = dimg Lg.
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Again, in the presence of a group G of graded k-algebra symmetries acting on A4, A',
one also has these equalities in Ry (G)[[t]]:

Hilbeq (A',t) = Hilbeq (U(L), 1)
= Hilbeq (Sym (L), t)

= Hilbeq (A (Loda) ® Sym (Leven) » t) (8.10)
= > T I Sym™izy).
A=(1m12m2...) j odd j even,j>2

We will use this description in Section 10 to investigate representation stability for £ in
the setting where A is commutative.

Example 8.10. Let us return to the Boolean matroid U, ,, discussed in Example 4.5 and
Section 6.1, but now considered as an oriented matroid represented by the standard basis

vectors vy, ..., v, in R™. Since the {v;} are linearly independent, there are no circuits,
and the graded Varchenko-Gel'fand ring A = VG(U,,,,) and its Koszul dual A' have these
descriptions:

A=K, (s 2)

=k{zy, ..., T (332 mx—xz)
(@1, ooy wn)/ (@ i — 2523 1<k<n,1<i<j<n

A =Ky, -, yn) /Wiy + Yiyidi<i<i<n

The oriented matroid automorphisms is Aut(M) are the full hyperoctahedral group &;-,
in which a signed permutation w with w(v;) = v; acts on the variables via w(z;) =
+a;, w(y;) = ty;.

We next analyze the graded k& -modules A, A' when Kk has characteristic zero. To do
this, first recall (e.g., from Geissinger and Kinch [46], Macdonald [58, Chap. 1., App. B])
that irreducible k&F-modules SA"A7) are indexed by ordered pairs of partitions (A, A™)
where [A\*| = ny, |\ = n_ with ny +n_ = n. One can construct SA" A7) using the
irreducible k&,,-modules {S*#} as building blocks as follows. Introduce the operation of
inflation U +—— U 1 of a k&,-module U to a K& -module by precomposing with the
group surjection 7 : & — &,, that ignores the + signs in a signed permutation. Also
introduce the one-dimensional character x+ : & — {41} sending a signed permutation
w to the product of its £1 signs, that is, y+(w) := det(w)/ det(m(w)). Then starting with
irreducible k&,,-modules S*, one builds S (ATA7) as follows:

SAFAT) . (8” T ® (Xi ® (8N TT))) Tgéxsﬂ

For example, this identifies the graded component A; of A = K[z1, ..., z,]/(z?, ..., z2)
as the irreducible k& -module S(™=):()). This is because it is a direct sum of the (")
lines which are the Gf—images of the line L := K- xy2x9---x;. This line L is stabilized
setwise by the subgroup Gf_i X ch, with the Gf_i factor acting trivially, and the 6?[
factor acting via x+. Hence one has

Hilbey (A, t) = Xn:ti [st=.0)].
1=0
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We next analyze A' as a k& -module. Since (2, ..., 2) is a regular sequence in K[x],
the quotient A is a complete intersection, and £, = V* = span{yi, ..., yn} and Lo =
span {y?, ..., y2}. This gives a k& -module isomorphism

A AkL1 ®k Sym Lo

(8.11)
= Ak(y1, - -, yn)®kk[y%, ol yi}

One can analyze each tensor factor in (8.11) separately. An analysis similar to the one
for A; gives an K& -module isomorphism
Ae(yiy oy yn) = S((n=1,(9),

In the other tensor factor of (8.11), the action of & on K[y?, ..., y2] is inflated through
the surjection 7 : 6% — G, letting one compute its Gf{—equivariant Hilbert series from
the one for &,, on K[y1, ..., y,] given in (6.5), and doubling the grading. The upshot is
this equivariant Hilbert series:

Hilbeg (A’, t)
= Hilbeg (k [y%, o yg} ,t) Hilbeg(A{y1, -+, yn} 1)

T a-)1- ;1) (= (Z 12mai(@). [SWQW)]) <zn: 4 [5(<ni>7(1i))]>

Q i=0

S 2@ [sO@2)] - [s(n-0:())]
0Q

n

(2

(1—12) (1 —t4)--- (1 —t2n)
(8.12)

where in the sums above, () ranges over all standard Young tableaux with n cells.

9. TOPOLOGICAL INTERPRETATIONS OF OS(M), VG(M) AND KOSZUL DUALITY
Orlik—Solomon algebras OS(M) have their origins in the following result.

Theorem 9.1 ([67]). For an arrangement A= {Hy, ..., Hy} of linear hyperplanes in C"
with normal vectors vy, ..., v, representing a matroid M, the cohomology ring of their
complement X := C" \ Uy c 4 H has presentation (using any coefficient ring K) as

H*(X,k) = OS(M).
An analogue for VG(M) was given by de Longueville and Schultz [30] and later Mose-
ley [65].

Theorem 9.2 ([30, Corollary 5.6]). Moseley [65] For an arrangement A= {Hy, ..., Hy}
of linear hyperplanes in R" with normal vectors vy, ..., v, representing an oriented ma-
troid M, the cohomology ring of their “R3-thickened” complement Xgs := t(R"” ®r R?) \
Un e 4(H ®r R3) has presentation (using any coefficient ring K) as

H* (Xgs, K) 2 VG(M),

with the cohomology concentrated in even degrees, so that the isomorphism halves the
grading.
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Remark 9.3. The result of de Longueville and Schultz [30, Corollary 5.6] proves more
generally that, for any d > 2, under the same assumptions on A C R”, the “R%thickened”
complement Xga := (R" ®r R?) \ Uy ¢ 4(H ®r RY) has presentation (using any coefficient
ring K) as
H* (X, K) = {OS(M) for d = 2,4,6, ..., even,
VG(M) ford=3,5,7, ..., odd,

with cohomology concentrated in degrees divisible by dy, so the isomorphism divides the
grading by d — 1. Here M, M are the matroid, oriented matroid associated to the normal
vectors vy, ..., Up.

Remark 9.4. The type A, and B, reflection arrangements are both supersolvable and
realizable over R (and therefore C) and therefore we can apply this topological interpreta-
tion of the Orlik—Solomon and Varchenko-Gel’fand rings of these families of arrangements.
In fact, for the type A reflection arrangements, we can also view the Orlik—Solomon and
Varchenko-Gel’fand rings as cohomology rings of configuration spaces of points in R?; this
perspective will be discussed further in Section 11.1.

In general, not every arrangement realizable over C is realizable over R, and there exist
matroids (including supersolvable ones) that are represented only in positive characteris-
tics, and some not representable over any field. See for example, some of the matroids
discussed in Sections 12.1 and 12.2. One may visualize some of the implications as follows:

matroid M <« oriented matroid M

T T

A realized over C <« A realized over R

If the cohomology ring H*(X, K) of a simply connected topological space X is a Koszul
k-algebra (as in the case of the Orlik—Solomon and Varchenko—Gel’fand rings for supersolv-
able arrangements), then the Koszul dual H*(X,K)"' can be interpreted as the homology
ring H,(QX,K) of the based loop space Q.X.

Proposition 9.5 (See [12, 13]). Let X be a simply connected topological space such that
its cohomology ring A := H*(X,K) is a Koszul K-algebra over a field K. Then

A= H*(X, k) = H,(QX,k)
where QX is the basepointed loop space of X.

Proof. The authors thank Craig Westerland for communicating the following proof to
them. Observe that these spaces participate in the path-loop fibration

QX - PX — X,

where PX :={f: I — X : f(0) = % and f continuous} is the space of based maps from an
interval into X; note that PX is contractible. In general, for a Serre fibration F — E — B
having B simply connected, the Eilenberg—Moore spectral sequence for cohomology is

By = Toryg. )k, H*(E)) = H*(F)

where H*(E) is a H*(B)-module by the map in the fibration, and K is our base field (or
ring, if everything is suitably flat over K). In the case of the path-loop fibration, since PX
is contractible,

TOI‘H*(X)(k, k) = H*(QX)
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If k is a field, we can apply Homy(—, K) to get

If H*(X) is Koszul, then Extg-(x)(k, k) = H* (X)'. Further, as Ext g+ (x)(K, K) is concen-
trated in diagonal bidegrees, its differentials are zero, so the spectral sequence collapses
at Fo, giving

H,(QX,k) = H*(X,k)". O

Remark 9.6. Under the hypotheses of Proposition 9.5, the terminology from Defini-
tion 8.3 of homotopy Lie algebra for the k-subspace of primitives £ C A' = Ext%(k,K)
is consistent with the same terminology in rational homotopy theory, where a simply
connected space X has homotopy Lie algebra defined as the k-subspace of primitives
L = 7,(0X) ® Kk inside the Hopf algebra H,(QX,Kk); see, e.g., Félix, Halperin and
Thomas [42, Section 21(d), Theorem 21.5].

10. REPRESENTATION STABILITY AND KOSZUL ALGEBRAS

We wish to show how sequences of Koszul algebras {A(n)},>1 with &,-actions that
satisfy representation stability in the sense of Church and Farb [25] lead to representation
stability for their Koszul duals {A(n)'}, > 1, and for the primitive parts {£(n)},>1 of the
duals. Useful references on representation stability are Church and Farb [25], Church,
Ellenberg and Farb [24] and Matherne, Miyata, Proudfoot and Ramos [60].

In this section, K is a field of characteristic zero. Recall this definition from [25].

Definition 10.1. For a partition u of k, recall that S* denotes the irreducible K&-module
indexed by p. Given a partition A = (Aq, Ag, ..., A¢) and n > || + A1, define a partition
of n by

)\[n] = (n — ’/\|7 )\1, )\2, ey Ag).
Say that a sequence {V;,},,>1 of K&,-modules® is representation stable if there is a list of

(not necessarily distinct) partitions {\#}!_, and an integer N such that for n > N, one
has

t
V, = &,
i=1
Say that {V,,}n > 1 is representation stable past N when the above equality holds for n > N.

The following easy observations are recorded in [60, Section 3].

Proposition 10.2. When {V,,},{W,} are representation stable sequences, then so is {V,&®
Wy}. On the other hand, if the virtual modules [U,] = [V,] — [Why] come from genuine
kS,,-modules {Uy,}, then {U,} is also a representation stable sequence.

It is less obvious what happens for tensor products. The following precise version of a
result of Murnaghan was proven by Briand, Orellana, Rosas [21, Theorem 1.2].

Theorem 10.3. The sequence {S*M@8PIM} is representation stable past |o|+|3|4+o1+51.

This consequence was noted by Matherne, Miyata, Proudfoot and Ramos [60, Theo-
rem 3.3].

Lemma 10.4. If the {V,,},{W,} are representation stable past A, B, respectively, then
{V,, @ Wy, } is representation stable past A+ B.

8Such a sequence of k&,,-modules is equivalent to what is called an FB-module in [60].
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The following observation is occasionally useful for pinpointing the onset of representa-
tion stability.

Lemma 10.5 ([48, Lemma 2.2]). Let {V,},>n be K&, -modules defined via a finite direct

sum @
Cu
Vo= @ (s 18 )
" EP TG\u\XGn—m

with |p| > N, and integers ¢, > 1. Then {V,,} is representation stable, stabilizing exzactly
at

n = max{|u| + pu}.

We next use some of the foregoing observations to show how representation stability of
families of Koszul algebras {A(n)} passes to their Koszul duals {A(n)'}.

Corollary 10.6. Let {A(n)}n>1 be a sequence of Koszul algebras, with Koszul duals
{A(n)'}.
(i) If for each fized i > 0, the sequence {A(n);} is representation stable, then so is
each {A(n)}}.
(ii) If furthermore there exists a constant ¢ (independent of i) such that each sequence
{A(n);} is representation stable past ci, then each {A(n):} is also representation
stable past ci.

Proof. We prove (ii); the proof for (i) is the same, ignoring the bounds involving ci.
But (ii) is immediate using equation (2.13) that appeared in Corollary 2.14, along with
Lemma 10.4, since each factor A,, = Ay, (n) in the right-hand side of (2.13), now in
characteristic zero, has the sequence {A,,(n)} representation stable past co. O

Example 10.7. Rank two matroids Us, were discussed in Example 4.6 and Section 6.3.
Their group of matroid automorphisms is Aut(Usz,) = &, and (6.12) showed that as
k&,,-modules, one has

[OS(Uz,n)0] = [SW] ,
[0S(Uzn)1] [g(m} I [Sm_l,n] ’
[0S(Us,)2] = [s(nfl,l)] 7

which are representation stable past n = 2. Consequently, applying Corollary 10.6 (ii)
with ¢ = 2 implies that the Koszul duals {OS(Uz,)i}, which are the &,-permutation
representations discussed in Proposition 6.1, should be representation stable past n = 2.
In fact, one has the following.

Proposition 10.8. For i > 0, representation stability of {OS(Uay,)i} starts exactly at
n = 2.

Proof. Recall that Proposition 6.1 expresses [0S(Us,)}] as a nonnegative combination of
classes ¢(,_g,14) for various d in the range 2 < d < i, where ¢, is the class of the coset
representation K[S,,/&,]. Furthermore, the coefficient on P(n—i,1) 18 1. Since one can

write
Pln—d1d) = [(kGd) TSZXG,L,J where k&, ;= @ (5#)@d1m8”’
pelpl=d
Lemma 10.5 shows {‘P(n—d,ld)}n stabilizes exactly at n = 2d, and {[OS(UQn);]} exactly at
n = 24. "
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Recall from Section 8 that when A is Koszul and commutative or anti-commutative,
then A' = U (L) is the universal enveloping algebra for a graded Lie algebra or superalgebra
L. We next show how representation stability of families of Koszul algebras { A(n)} passes
to the Lie (super-)algebras {£(n)}. The following lemma will be useful for this purpose.

Lemma 10.9. For any representation stable sequence {V,,} and any partition p giving rise
to a Schur functor SH(—), the sequence {SF(V,,)} is also representation stable. In particu-
lar, for each fited m = 0,1,2, ..., the sequences {\""(V,,)},{Sym™(V,,)} are representation
stable.

Proof. Express the representation stable sequence {V;,} for n > 0 as V,, = @!_,; SA(Z)["],
and proceed by induction on ¢ to show {S¥(V},)} is representation stable for all p.

The case t = 1 was proven by Church, Ellenberg, Farb [24, Proposition 3.4.5] who
showed that for any partitions A, u, the sequence {S*(S*™)} is representation stable.
In the inductive step, write V,, = U, ® SN for > 0, where U,, := EB:;} S)‘(i)[”],
so that induction applies to the representation stable sequence {U,}. Using the general
isomorphism (see, e.g., [2, Theorem I1.4.11])

S(X@Y) = @ S'(X) @ SH(Y)

vCp

one concludes that, for n > 0,

S/ (V) = 8" (U & SN = (P §"(U,) @ 5/ ($)
vCu

> @ (s o5 ()

V[P

for some nonnegative integer (Littlewood—Richardson) coefficients cg/ ”. By induction on

t, the sequences {S”(U,,)} are representation stable, and by the ¢ = 1 case, the same holds
for {SP(SA")}. Hence by Theorem 10.3, each summand {S*(U,,) ® S?(S*™)} on the right
side is a representation stable sequence, and the same holds for the entire direct sum. [

We now apply this to the sequences of Lie (super-)algebras {£(n)}.

Corollary 10.10. Let {A(n)} be a family of Koszul algebras, all commutative (resp. anti-
commutative), with {L(n)} defined by A(n)' = U(L(n)). If for each fized i = 0,1,2, ...,
the sequence {A(n);} is representation stable, then for each fizedi = 1,2, ..., the sequence
{L(n);} is also representation stable.

Proof. In either case where {A(n)} are commutative or anti-commutative, use induction
on 7. In the base case i = 1, one has this string of equalities, justified below:

£mn] 2 [Ami] € 1(Am))T 2 (A

Equality (a) comes from comparing coefficients of ¢! on either side of (8.10) or (8.7),
equality (b) comes from (2.12), and equality (c) comes from the fact that K&,-modules
are all self-contragredient. Since the right sides {A(n);} are representation stable, so are
the left sides {L£(n);}.

In the induction step where i > 2, rewrite the equalities that come from comparing the
coefficient of #* on either side of (8.10) or (8.7), isolating the summand [£(n);] on the right
corresponding to A = (i). For fixed n, this expresses £(n); recursively in terms of A(n)}
and L(n)1,L(n)a, ..., L(n);—1:
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[£(n)i]
> A-i: [l <j<;[Sym™ (L(n);)] for A(n) anti-commutative.

A=(1mi2m2.gma) T

A (i)
= [A(n)}|— . m;
[ } ai Thi<i<i [N™(L£(n);)] TI2<j <i [Sym™ (£(n);)]

A=(1"12m2...4™i) 5 odd Jj even

AF(4)
for A(n) commutative.

Now use Corollary 10.6 asserting that each sequence {A(n)}} is representation stable.
Induction on i shows each sequence {L(n);} for j < i — 1 appearing on the right is
representation stable. Lemma 10.9, then implies the same for all sequences {A™7(L(n);},
{Sym™i(L(n);} appearing on the right. Then Theorem 10.3 gives the same for their tensor
products. Thus every summand on the right is a representation stable sequence in n, and
hence so is {£(n);}. O

Remark 10.11. The above proof shows the following statement for a sequence of graded
Lie (super-)algebras and k&,,-modules £(n), with universal enveloping algebras U(L(n)):
one has for all ¢ > 1 that {£(n);} is representation stable if and only if one has for all
i > 0 that {{(L(n));} is representation stable.

Remark 10.12. Unlike Corollary 10.6, we have not seriously tried to bound the onset
of stability for the sequences {L£(n);}, in terms of a given bound for the onset of stability
in {A(n);}. However, Sage computations up to i = 10 suggest the following for uniform
matroids Us ,, of rank 2.

Conjecture 10.13. Defining £(n); by OS(Uz,)' = U(L(n)), the sequence {L(n);} is
representation stable past n = 2i — 1 for fixed i > 3.

Remark 10.14. Although [A(n)}] is a permutation representation when A(n) = OS(Us,,)
by Proposition 6.1, the primitives [£(n);] are generally not classes of permutation repre-
sentations. This fails immediately for n = 3 and ¢ = 2, where [£(3)2] is the sign repre-
sentation. Also for braid matroids, if A(n) = OS(Br,,), and A(n)' = OS(Br,)' = U(L(n)),
one can check

Sn
L(n)2 = (Sgn63 ® 167173) S3xGp_3

which is again not a permutation module.

11. THE MOTIVATING EXAMPLE: BRAID MATROIDS AND STIRLING REPRESENTATIONS

As mentioned prior to Example 4.7, our motivation came from the braid matroids M =
Br,,, which are also known as the graphic matroids for complete graphs K,,. They are also
known as the matroids represented by the vectors {v;;}1<i<j<n with v;; :=e; —e; in R”
which are the (positive) roots in the type A,_; root system, whose normal hyperplanes
H;j = {x € R" : z; = z;} are the reflecting hyperplanes for the transposition (i, j) in the
symmetric group &,, when it acts on V = R"™ by permuting coordinates. Thus M = Br,
is orientable, and abusing notation slightly, we will also denote by M = Br,, the oriented
matroid on the ground set £ = {{i,j} : 1 <1i < j < n} represented by these vectors {v;;}.
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11.1. Comparison with cohomology of configuration spaces. It turns out that the
algebras OS(Br,,), VG(Br,) had been studied historically earlier as the cohomology rings
of certain configuration spaces of n ordered (labeled) points in a space X
Conf,(X) :={(z1, ..., 2n) € X" 12y #xjfor 1 <i<j<n}.
The arrangement of hyperplanes H;; in V' = R™ described above allow one to identify
Conf,(RY) =V ®rR'\ |J Hy;erRY,
1<i<j<n

that is, as the complement of subspace arrangements coming from the reflection hyperplane
arrangements “thickened” by tensoring with R% as in Theorems 9.1, 9.2 and Remark 9.3.
In fact, the special cases of those results for the braid arrangements, along with quadratic
presentations for the associated algebras, were known to Arnol’d [5] for OS(Br,) and
Cohen [27] for VG(Br,,):

OS(Bry,) = Ak(zij)/ (mijzik — xijTjk + Tintjk)
VG(BI‘n) =~ k[l'w]/ (xzjxlk — TijZjk + TikTjk, x?j )
Here permutations o in &,, act on the variables by permuting subscripts, that is, o(x;;) =
To(i),0(j), Put with the convention that z;; = x;; in OS(Bry,), and xj; = —x;; in VG(Bry,).
Note that that these presentations are consistent with the general presentation com-

ing from supersolvable matroids in Corollary 5.14, using the modular complete flag F
of flats chosen in Example 4.7: one checks that the corresponding decomposition £ =

(Ev, B, ...y Eny) of E={{i,j}}1<i<j<n has
Ey = {{1,2}},
Ey = {{1,3},{2,3}},
By = {{1,4},{2,4},{3,4}}, (11.1)

-1 ={{L,n},{2,n}, ..., {n—2,n},{n —1,n}},

and the subset of circuits Crrz(E) = {{i,7}, {3, k}, {j,k}}1<i<j<k<n. Here the NBC
monomial basis for either OS(Bry,), VG(Br,) are the products of x;; that choose at most

one {i,j} from each set E, with p=1,2, ..., n—1 above; Barcelo [11, Theorem 2.1] calls
this picking at most one finger x;; from each hand E,. Since the exponents e, = |E,| here
are (e1, ..., e,) = (1,2, ..., n— 1), one has these Hilbert series

Hilb(OS(Br,,), t) = Hilb(VG(Br,), t)
=(1+t)(1+2t)---(1+ (n—1)t Ztl (n,n — i)

Hilb (OS(Bry)',t) = Hilb (VG(Br,)' t)

1
T A-tHa-2t)---(1—(n—1))

Ztl (n—1)+i,n—1),

where the coefficients ¢(n, k), S(n, k) appearing here are the (signless) Stirling numbers
of the first kind c(n,k), counting permutations in &, with k cycles, and the Stirling
numbers of the 2nd kind S(n, k), counting partitions of the set {1,2, ..., n} into k blocks.
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Comparing coefficients on powers of ¢, one has for either A(n) = OS(Br,) or VG(Br,)
that

dimg A(n); = c(n,n — 1),
c(n, k) = dimg A(n)p—x,

dimy A(n)} = S((n — 1) +i,n — 1),
S(n, k) = dimy A(k +1)},_.

Definition 11.1 (Stirling representations). For either A(n) = OS(Br,) or A(n) =
VG (Bry,), call A(n); the Stirling representations of the first kind, and call A(n)} the Stirling
representations of the second kind. When emphasizing their dimensions as representations,
we will abbreviate them as

cos(n, k) :== OS(Bry,)n—k,
cvg(n, k) := VG(Bry,)n—k, both kK&,-modules,

Sos(n, k) := OS(Brj11)}, 1,
Sva(n, k) := VG(Brji1)},_4, both kS i-modules.

Remark 11.2. The coincidence between dimy A(k + 1), _, and S(n,k), counting set
partitions of {1,2, ..., n} into k blocks, is closely related to a well-known combinatorial
encoding of set partitions via restricted growth functions, as we explain here; see also
Stanton and White [84, Section 1.5].

Given any k-block set partition m = {By, ..., B} of {1,2, ..., n}, re-index the blocks
so that min By < min By < --- < min Bg. Then the restricted growth function (rgf)
encoding 7 is the sequence (i1,142, ..., iy) defined by i; = £ if j € By for j =1,2, ..., n.
By definition, i; := 1 and i; < 14 max{ig,1, ..., 4j—1}; it is not hard to check that
these two properties characterize the rgf’s. For example, with n = 15 and k = 3, this set
partition

7 =1{{1,2,3,5,8,10,15},{4,6,7,12},{9,11, 13, 14} }

B1 B> Bs

corresponds to this rgf (i1, 12, ..., i15):

i1 92 i3 4 U5 6 U7 U8 19 10 11 12 413 14 U5

r 1t 1 2 1 2 2 13 1 3 2 3 3 1
We claim that these rgf’s correspond bijectively to the standard monomial K-basis for
A(k+1)! _, given in Corollary 5.18. To explain this bijection, underline the first (leftmost)
occurrence of each value p = 1,2, ..., k among the i;, and append an extra (underlined)
in+1 := k + 1 on the right, as a convention. One then associates to (i1, ..., iy) the
product mg - m3---my, - M1 where m,, is the noncommutative monomial in variables
{yip}fz_ll obtained by replacing each non-underlined value i; above with the variable x;, ;
if p is the next underlined value to the right of i;:

i1 1 2 1 2 2 1 3 1 3 2 3 3 1 4
Yiz Y12 - Y13 Y23 Y23 Y13 - Y14 Y34 Y24 Y34 Y34 Y4

Ann. Repr. Th. 2 (2025), 2, p. 173-247 https://doi.org/10.5802/art.23


https://doi.org/10.5802/art.23

224 Ayah Almousa et al.

Since the number of non-underlined values ¢; is n — k, this is a standard monomial in

Ak +1) .

Remark 11.3. The presentations of OS(Bry,)', VG(Br,)" in Theorem 5.18 are equivalent
to what Cohen and Gitler [26] called graded infinitesimal braid relations in their presen-
tation of the loop space homology algebra H,.(Q2X,k) where X = Conf,(R%); see also
Berglund [12, Example 5.5]. For the case of OS(Br,,)", considered as a universal envelop-
ing algebra OS(Br,,)' = U(L), see also the discussion by Fresse [43, Chapter 10] referring
to L as the Drinfeld—Kohno Lie algebra and U(L) as the algebra of chord diagrams.

11.2. Stirling representations of the first kind: generating functions. The k&,,-
module structure for either A(n) = OS(Bry,) or VG(Br,,) are well-studied. Explicit irre-
ducible decompositions are not known, but can be computed reasonably efficiently through
symmetric function formulas involving plethysm and generating functions, given in work
of Sundaram and Welker [90, Theorem 4.4 (iii)] and reviewed here; see also the summary
in Hersh and Reiner [48, Section 2].

Let K be a field of characteristic zero. The Frobenius characteristic isomorphism Rk(&y,)
= A,, where A, are the degree n homogeneous symmetric functions A(z1, z2, ...),, men-
tioned in Section 6.3 above, can be compiled for all n to give a ring isomorphism

o0 h o
P B(S,) = P A=A
n=0 n=0
Here the product on the left is the external or induction product

([0, V) — [(U ek V) Tarits, |

while the product on the right simply multiplies symmetric functions. If one defines the
power sum symmetric function p, := 2] + 25 + -+, and the k-basis {px = px,pr, -}
indexed by partitions A of n for A, then for each k&,-module U with character xy, the
Frobenius isomorphism maps [U] LN L3 ees, xulo) Pa(e) Where A(o) is the cycle type
partition of o.

Let Lie,, denote the n'* Lie representation: the &,-representation on the multilinear
component of the free Lie algebra on n variables. It has a formula due to Klyachko [52] as
Lie, = Tg:, where ( is the one-dimensional representation of the cyclic group C), inside

&, generated by an n-cycle ¢, that sends ¢ +— e Defining symmetric functions

En = Ch(Lien)v
7, = ch(sgn,, ® Lie,),

and letting (f,g) — f[g] denote plethystic composition of symmetric functions [58, Sec-
tion 1.8], one has the following plethystic expressions and product generating functions (see
Sundaram [87, Theorem 1.8, and p. 249], Sundaram and Welker [90, Theorem 4.4 (iii)] and
Hersh and Reiner [48, Section 2, Theorem 2.17]):
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1+ f: u" f: ch ((VGBro)ni))t" = > uMEO IT i, [¢)] (11.2)

n=1 k=1 A=1m12m2... ji>1
=TI (0 — u"pp) ", (11.3)
m=1
1+Z Zch OSBrp)ni])tF = 3 WP T by [mi] 1 em, 7],
n=1 A=1m12m2... jodd J even
Jj=2
(11.4)
= [T @+ (—w)™pp)* Y, (11.5)
m=1

where here a,,(t) = L > dm p(d)t'd, with p(d) the number-theoretic Mobius function.
Equivalently, define for a partition A = 1"12™2 ... of n (written A b n) with m; parts equal
to i, the &, -representations OSy, VG, whose Frobenius characteristics are the products
appearing above. Then

ch VG, := [17m:l6:], so that ch(VG(Brn)n—k) = > VGa,
) A-n
=k (11.6)
chOSy =[] hm[m] J] emim], so that ch(OS(Bry)n—) Z OS,.
i odd i even
E()\):k

Thus VG, is the Lie representation with chVG,) = ¢, mentioned above. Similarly,
{VG,} are called higher Lie characters; see Schocker [76]. Also, the last equality in (11.6)
implies that OS(Bry,),_; coincides with the &,-representation on the (n — k)" Whitney
homology of the partition lattice, 1 < k < n; see Lehrer and Solomon [55, Theorem 4.5],
Sundaram [87, Theorem 1.8].

11.3. Data on Stirling representations of the second kind. In contrast to the above
KG,,-descriptions of A(n); when A(n) = OS(Br,), VG(Br,), for the Koszul duals A(n)},
we currently lack formulas of this nature, although we can tabulate A(n)'z recursively from
the A(n); using (2.12).

Question 11.4. Are there formulas like (11.2), (11.3), (11.4), (11.5) for the duals
VG(Br,)',0S(Br,)' ?

11.4. Branching rules for both kinds of Stirling representations. Stirling numbers
of both kinds satisfy well-known recurrences, mentioned in the Introduction:

cnyk)=mn—-1)-c(n—1,k)+c(n—1,k—1) (11.7)
S(n,k)y=k-S(n—1,k)+Sn—-1,k—1) (11.8)
Theorem 7.1 will allow us to lift these to branching rules for the Stirling representations of
both kinds. We consider here the action of G = &,, on the matroid and oriented matroid

Br,. In this case, the setwise &,,-stabilizer for the modular coatom F' = E,,_9 in (11.1) is
the subgroup H = &,,_1. Furthermore, the permutation action X of &,,_1 on the set

E,.1=E\F={{l,n},{2,n}, ..., {n—1,n}}
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and its signed permtuation action on the real vectors representing F,_; in the oriented
matroid Br,

{'Uln7v2na ) 'Un—l,n} = {61 —€p,€2 —€n, ", Ep—1 — 6n}7

are both equivalent to the defining &,,_1-permutation representation XE{;; Y Via (n—1)x

(n — 1) permutation matrices. Translating Theorem 7.1 then immediately implies the
following.

Corollary 11.5. For any field K, the recurrences (11.7), (11.8) lift equivariantly as follows.

(i) Letting ¢(n,k) denote either OS(Bry,),—r or VG(Br,)n—k as K&y,-module, the re-
currence (11.7) lifts to two recurrences in Rx(Sp,—1)

e W) 1, = [xaer ] - leo = 1B felo = 1k = 1), (11.9)
reflecting two KS,,_1-module exact sequences
0— c(n—1,k—1) — c(n, k) 42— x5V @c(n—1,k) — 0. (11.10)

(i) Letting S(n, k) denote either OS(Bryy1)!, ;. or VG(Bryi1)!, . as K&y 1-module,
the recurrence (11.8) lifts to two relations in Ry (Sy)

(S Le ] = X - [Str = 1,80 18] + St — 1,k = 1)), (11.11)
reflecting two K&y -module exact sequences
0 — x{F@SMn—1,k) L — S(n, k) Lg"" — S(n— 1,k —1) — 0. (11.12)

Remark 11.6. Proposition 2.16 implies the two versions of (11.9) are equivalent to those
of (11.11).

Remark 11.7. All of the assertions Corollary 11.5 are new, as far as we know, when
working over fields k of positive characteristic, and (11.10),(11.11), (11.12) are new even
when Kk has characteristic zero. However, when Kk has characteristic zero, it turns out
that (11.9) also follows from work of Sundaram in [87, 88]. For example, the relation (11.9)
for ¢(n,k) = OS(Bry),—i can be deduced by combining [87, Theorem 2.2, Part (2) and
Proposition 1.9]; we omit the details here. Also it turns out that both cases of (11.9),
when either ¢(n,k) = OS(Bry,),—r or VG(Bry),—, follow from the symmetric function
branching result [88, Theorem 4.10]. In the notation there, choosing F' = Y, <, ¢, one
takes G7, = h;[F]|qegn to deduce (11.9) for ¢(n,k) = VG(Bry,),—, and one takes G, =
€j[F]|aegn to deduce (11.9) for ¢(n, k) = OS(Bry,),—i. We again omit the details here.

11.5. Braid matroids and representation stability. Here we wish to apply the rep-
resentation stability results of Section 10 to the braid matroids Br,. A special case of
the main result of Church and Farb [25] shows, in our language, that for each fixed
i=0,1,2..., both sequences {A(n);} where A(n) = OS(Br,), VG(Br,,) are representation
stable. Hersh and Reiner [48, Theorem 1.1] pinned down the onset of this representation
stability.

Theorem 11.8. For each fized i > 1, both sequences {A(n);} where A(n) = OS(Br,,) and
VG(Bry,) are representation stable, past 3i for VG(Bry,) and past 3i + 1 for OS(Bry,).

One then deduces the following representation stability for their Koszul duals.

Corollary 11.9. For each fized i > 1, both sequences {A(n)}} where A(n) = OS(Br,) and

)

VG(Br,,) are representation stable, past 3i for {VG(Br,)}} and past 4i for {OS(Bry,)}}.
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Proof. Theorem 11.8 gives the necessary hypotheses to apply Corollary 10.6, using the
constant ¢ = 3 for {VG(Br,);} and using the constant ¢ = 4 (since 3i + 1 < 44) for
{OS(Bry);}. O

Remark 11.10. The bounds in Corollary 11.9 happen to be tight for OS(Br,)}, VG(Br,);
when ¢ = 0,1,2. To see this, one can apply Lemma 10.5 to Propositions B.1, B.2 and Re-
mark B.3 below (specifically, see equations (B.7), (B.9)) to deduce that for i = 0,1, 2,
the sequences {OS(Br,)}} start to stabilize exactly when n > 4i, and the sequences
{VG(Br,)}} start to stabilize exactly when n > 3i. This suggests the following con-
jecture, confirmed by Sage/Cocalc for OS(Br,)} up to i = 5, and for VG(Br,)} up to
i=T.

Conjecture 11.11. The bounds for onset of stability in Corollary 11.9 are tight: for
i > 0, the sequences {OS(Br,):} and {VG(Br,)}} start to stabilize exactly when n = 4i
and n = 3¢, respectively.

Since A(n) = OS(Bry,), VG(Br,,) are anti-commutative and commutative, respectively,
Corollary 10.10 immediately implies the following.

Corollary 11.12. Letting A(n) = OS(Br,), VG(Br,), and defining L(n); by A(n)' =
U(L(n)), for each fized i = 1,2, ..., the sequence {L(n);} is representation stable.

Remark 11.13. The case of Corollary 11.12 for A(n) = OS(Br,) also follows from work
of Church, Ellenberg and Farb [24, Theorem 7.3.4]. They consider instead of L£(n) the
Malcev Lie algebra p,, associated to the fundamental group m1(X) for the configuration
space X = Conf,(R?) = Conf,(C) considered in Section 11.1; alternatively, X is the
complement of the complex braid arrangement A as in Theorem 9.1. These two Lie
algebras p,, and L(n) coincide due to the 1-formality of complements of complex algebraic
hypersurfaces; see, e.g., Suciu and Wang [86, Section 6,7].

Computations in Sage/Cocalc through ¢ = 8 suggest the following conjecture.

Conjecture 11.14. Defining {£(n);} by A(n)' = U(L(n)), its onset of representation
stability is:

e n = 2; for a fixed i > 1 when A(n) = OS(Bry,),

e n = 2; for a fixed i > 3 when A(n) = VG(Br,).

11.6. Near-boundary cases for Stirling representations of the second kind. Stir-
ling numbers S(n, k) of the second kind have more explicit formulas when either k or n—k
is small. We similarly present here more explicit formulas, in the language of symmetric
functions for the Stirling representations

OS(Bry,); = Sos((n—1) +i,n — 1),
VG(Br,); = Svg((n—1) +i,n—1),
as K&,,-modules, when either ¢ or n is small.

Part of our motivation comes from the following observations about when OS(M);,
VG(M); and their Koszul duals OS(M)}, VG(M)} turn out to be permutation representa-
tions of their automorphism groups G = Aut(M) or Aut(M). The discussion of Boolean
matroids in Section 6.1 and low rank matroids in Section 6.2 and Proposition 6.1 showed
that

e OS(M);,VG(M); are rarely permutation representations,

. VG(M)é is not always a permutation representation,
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e but OS(M)!

; was always a G-permutation representation in these previous exam-
ples.

For the braid matroids Bry,, it is not always true that OS(Br,); is a permutation rep-
resentation, but the next result shows that it happens in many cases where ¢ or n is
small.

Theorem 11.15. For K of characteristic zero, the K&,-modules OS(Br,): = Sos((n —
1) +i,n—1)

(i) are permutation modules for i =0, 1,
(ii) are half-permutation modules for i = 2, meaning that 2 - [OS(Bry,)5] is the class of
a permutation module in Ry (S,,),
(iii) are permutation modules® for n =1,2,3,4,5.

However, both

Sos(10,5) = OS(Brg)s,

!

Sos(11,6) = OS(Br7)s

fail to be permutation modules, even after scaling them by positive integers, since they can
be shown to have negative character values.'

TABLE 11.1. When are [OS(Br,)}] = Sos((n — 1) 4 4,n — 1) permutation

modules or “fractions” thereof?
0 1 2 3 4 5 6 7 8

i

2
3

4 @ Permutation module

5 O Not a “fraction” of a permutation module
6 © Half-permutation module

7 O

8

9

n

Table 11.1 summarizes the results of Theorem 11.15; an outline of the proof appears in
Appendix B.

9And [OS(Br,);] are even h-positive permutation modules when n = 1,2,3, overlapping with the dis-
cussion in Section 6.3 on rank two matroids, as Uz 3 = Brs.

OTrevor Karn’s Burnside Solver further shows that Sos (541,5) is a permutation module for ¢ < 4 and
i =6,7,10; it fails to be one at i = 8, 9.
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12. FURTHER REMARKS AND QUESTIONS

We remark here on some further directions which could merit exploration.

12.1. Projective geometries over finite fields. The Boolean matroids U, , discussed
in Example 4.5 and Section 6.1 have a well-studied “g-analogue”: the projective geometries
PG(n,q), associated with the finite vector spaces F,- These PG (n,q) are non-orientable
simple matroids whose ground set £ = P(F}) = PE;l is the set of points in a finite
projective space, so |E| = [n], :=1+q+¢*+ -+ ¢" 71, with poset of flats F given by
the lattice of all subspaces in F7; see Oxley [69, Section 6.1] and Orlik and Terao [68,
Example 4.33]. The lattices F are modular, meaning that every flat is a modular element,
so that every complete flag F is a modular complete flag. Hence the matroids PG(n,q)
are supersolvable, with exponents (e1, ..., e,) = (1,q,¢°, ..., ¢" ). Consequently, the
family of k-algebras A(n) := OS(PG(n,q)) is Koszul, satisfying

)

Hilb(A(n),t) = (1 + )1+ qt)(1 + ¢%)--- (1 + ")  with dimg A(n)} = ¢() m
q

1
1=t —q)(1—g%t)---(1—q"'1)
with dimg A(n)} = [

Hilb(A(n)', t) =

n—i—z’—l}
1 q’

where [Z]q = % with [n]ly == [n]g[n — 14 - [2]4[1]4; see Macdonald [58, Exam-
ple 1.2.2].

Problem 12.1. Study A(n) = OS(PG(n,q)) and A(n)' = OS(PG(n,q))' as GL,(F,)-
representations.

For example, the g-Pascal recurrences for A(n); = [?]q and A(n)} = ["F=1] will have
lifts to branching rules via Proposition 2.16 and Theorem 7.1. There is also an appro-
priate analogue here of representation stability for G Ly (F,)-representations developed by

Putman and Sam [73].

12.2. Type B, wreath products, and Dowling geometries. As mentioned in Sec-
tion 11, the braid matroids Br,, are represented by the root systems of type A,_1, ac-
counting for the action of the reflection group &,, on them as symmetries.

There are other real and complex reflection groups giving rise to matroids with large
symmetry, but relatively few of these matroids are supersolvable; see Hoge and Rohrle [49]
for their classification. They include the dihedral reflection groups giving rise to the rank
two matroids already discussed in Example 4.6 and Section 6.3. They also include the
reflection groups of type B, or C,, isomorphic to the hyperoctahedral group or signed
permutation group & that appeared in Section 5.2. Their root systems can be realized
over R, giving rise to an oriented matroid from the positive roots

@En = {—i—ei + 6j}1§7;<j§n U {ei}lgz‘gn- (12-1)

More generally, one has the complex reflection groups &,[Z/mZ] = (Z/mZ) 1 &,, for
m > 2, also known as the groups G((m, 1,n) within Shephard and Todd’s classification [78]

of irreducible complex reflection groups. Letting (,, := e%, their associated matroids can
be represented by this list of vectors in C™:
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{ei—CPejhicicij<n U {eihi<i<n (12.2)
0<k<m—1
These matroids are not realizable over R (and not orientable) unless m = 2 where they
recover the type B, /C, reflection groups.

Motivated by these examples, Dowling [36] introduced a more general class of matroids,
now known as the Dowling geometries Q,(G); see Oxley [69, Section 6.10] for definitions
and discussion. Here G is any finite group, and the matroid automorphisms of @Q,,(G) con-
tain the wreath product &,[G] = G1&,,. Interestingly, Dowling proved that the matroid
Qn(G) is representable over a field F if and only if the finite group G is a subgroup of
F*; in particular, this forces G to be cyclic, as in the complex reflection groups &,,[Z/mZ]
mentioned above.

Dowling also showed that @, (G) is supersolvable for any finite group G. Consequently,
their Orlik—Solomon algebras OS(Q,,(G)) are always Koszul, and when |G| = 2, the same
holds for the Varchenko-Gel'fand ring VG(M(By,)), e.g., if M(B,,) is realized by the
vectors in (12.1) above.

Problem 12.2. Study these families of Koszul algebras A(n) = OS(Qn(G)) and
VG(M(B,)), along with their Koszul duals A(n)', as &,[G]-representations.

If m := |G|, then the exponents for the supersolvable matroids @, (G) turn out to be
(e1,e9, ..., en)=(1A,m+1,2m+1, ..., (n—1)m+1).

Combining this with Dowling’s formulas [36, Section 4], for the rank sizes!! in the poset
of flats of @, (G), one encounters a similar coincidence to the equality dimg OS(Br,); =
S((n—1)+4,n—1) discussed in Remark 11.2: the dimension of OS(Q,(G))} is the size of the
(n —1)% rank in the flat poset of Q(n—1)+i(G). This again reflects a bijection between the
standard monomial K-basis for OS(Q,(G))} from Theorem 5.18 and an encoding of flats in
Qn(G) generalizing restricted growth functions, similar to work of Komatsu, Bagno, and
Garber [8, Section 2.3]. We omit the details here.

12.3. Equivariant degree one injections. Recall the following consequences of The-
orem 5.21: By Part (ii) of Corollary 5.22, for the matroid automorphism group G =
Aut(M), there are G-equivariant degree one injections

OS(M)}| — |OS(M)}, |, foralli>0 (12.3)
[08();] = [os(ar)]

while Part (iii) of Corollary 5.22 asserts that for the full oriented matroid automorphism
group G = Aut(M), there are G-equivariant degree two injections

[VGM)}] = [VGM),], forall > 0.

The latter injections arise from right-multiplication by a degree two G-invariant E-
generic power sum po(y), such as pa(y) = >, ¥2. Unfortunately, for some oriented matroids
M, there are no degree one E-generic element power sums pi(y) in A!1 that are also G-
invariant. For example, p1(y) = >, yi is not always G-invariant. In fact, the calculation
for rank one oriented matroids M = U;; in (6.8) shows that in that case, there are no
G-equivariant injections VG(M)} < VG(M)!; for any 1.

Nonetheless, for the braid matroids M = Br,, Sage calculations for n < 10 and 1 <
i < 9 support the following conjecture.

1 Also called the Whitney numbers of the second kind for the poset.
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Conjecture 12.3. For the braid oriented matroid M = Br,, there exist equivariant
injections

[Sval(n—1) +i,n— 1)] = [VG(Bry)j]
< [Sva((n = 1) +i+1,n—1)] = [VG(Bry)i, |, foralli> 1.
Propositions B.4 and B.8 establish Conjecture 12.3 for n < 4 in characteristic zero.
We close with some observations on a consequence of the G-equivariant injections

in (12.3): they imply that the following alternating sum in Ry(G) is always the class
of a genuine kKG-module:

08 (M);] = [0S' (M) 1] + ... + (=1)"1 |0S!(M),] (12.4)

Problem 12.4. Investigate the genuine KG-modules (12.4). Do they have interesting
descriptions?

For example, for the braid matroid M = Br,,, the dimension of the genuine module (12.4)
is

S(n—1+i,n—1) — S(n—24i,n—1) +--- 4+ (=1)'S(n—Ln—1). (12.5)
This has an interpretation via a result of Mansour and Munagi [59, Corollary 11]: it is the
number of set partitions of {1,2, ..., n+ ¢} into n blocks, where no block contains a pair

4,7+ 1 modulo n+1i for 1 < j < n+i. We know of no accompanying K&,,-module built
from these objects.
We remark that for any matroid M, the alternating sum analogous to (12.4) for OS(M),
namely
[OS(M);] = [0S(M)i—1] + ... + (=1)"[OS(M)q] (12.6)
is always a genuine KG-module for G = Aut(M), isomorphic to the top homology of a
rank-selected subposet of the lattice of flats. We quickly sketch how this follows from
combining these two results:
e [67] exhibits a kKG-module isomorphism OS(M) = Whit (L), where Whit (L)
is the Whitney homology of the lattice of flats £Lys of M, and
e [87] If G = Aut(P) for a Cohen-Macaulay poset P, then the alternating sum in
Rk(G)

[Whit;(P)] — [Whit;_1(P)] + ... + (—1)""! [Whit,(P)]

is kKG-isomorphic to the top homology of the rank-selected subposet of P consist-
ing of the bottom i nonzero ranks. The Hopf trace argument in [87, Lemma 1.1},
written for characteristic zero, can be replaced by applying, for an arbitrary field
k, Proposition 2.11(ii) to Baclawski’s complex. Similarly the arguments of Ba-
clawski and Bjorner as cited in [87, Theorem 1.2] can be adapted for any field K,
by appealing to the isomorphism in [15, p. 262, Theorem 7.9.6]. Finally, the equi-
variant isomorphism with OS(M/) follows from [15, Theorem 7.10.2], extending the
argument of [67, Theorem 4.3] to the whole Orlik—Solomon algebra.

APPENDIX A. TABLES OF IRREDUCIBLES FOR STIRLING REPRESENTATIONS

This section consists of several tables for the decomposition into irreducible modules for
A(n)} and its primitives £(A(n)); when A(n) = OS(Br,) or VG(Br,,). For each table, the
observed onset of representation stability in each column is shaded in blue. The data is
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presented in terms of the Frobenius characteristics of the modules, expanded in the Schur
basis. All data was generated using SAGE code which is publicly available at [3].

TABLE A.1. Irreducibles for [OS(Br,,)!]
that ch[OS(Br;)}] = s for 4 > 0 and ch[OS(Bry,)j] = s, for n > 2.

[Sos((n — 1) +i,n — 1)]. Note

nZ 1 2 3
3 S2,1 + S3 81,1,1 + 2521 + 253 281,11 + 552,1 + 353
4 S22+ S3.1 + 54 S1,1,1,1 + 282,11 451,111 + 952,11
’ ’ +352,2 + 353,1 + 354 +10s2,9 + 11531 + 654
5 S5t 511t 55 $2,1,1,1 + 25221 + 25311 2s1,1,1,1,1 +852,1,1,1 + 138221
’ ’ +4s30 + 4541 + 355 +1583,1,1 + 18532 + 16541 + 755
8222+ 831,11 352,1,1,1,1 +952.2,1,1 + 752,22
6 S4,2+ S5.1 + S6 +2s321 + 833+ 28411 +10s3,1,1,1 + 218321 + 8533
—|—5S472 + 48571 + 3sg —|—17S47171 + 245472 + 1785,1 + 8s¢
s3.2.2 + S0111 $2,2,1,1,1 + 282221
7 S5.9 - 861 + 57 28101 + 2505 + 25511 +3s31,1,1,1 + 783211 + 98322
’ ’ - ’ ” +8s331 4+ 1054111 + 245421 + 14543
+585,2 + 46,1 + 357
+17S571’1 -+ 258572 -+ 1886,1 + 887
S € 4 G 82222+ 8321,1,1 +2532,21 + 253311
8 Sez -+ 571+ Sg 285 01 + 2553 + 256 1.1 +25332 4+ 354,1,1,1,1 + 754,2,1,1 + 105422
7 , +5’s(’5 2+ 45; e 35; 7 +11s4,31 + 6544 +1085,1,1,1 + 248521
’ ’ 15853 + 175611 + 26562 + 1857.1 + 855
83222+ 8421,1,1 +254221
S5,2,2 + 854 + 56,1,1,1 +25431,1 + 354,32+ 35441
9 S7.2+ S8.1 + Sg +256,21 + 256,3 + 257,11 +355,1,1,1,1 + 785,2,1,1 + 105522
+587,90 + 45851 + 359 +11s531 + 7s5,4 + 1056,1,1,1 + 2456,2,1
+1686,3 + 178771,1 + 2637,2 + 1858,1 + 8s9
84222+ 8442+ 5521,1,1 +28522,1
S6,2,2 + S6,4 + S7,1,1,1 +255,3,1.1 + 355,32 + 355,41 + S5,5
10 || ss2+ 891+ 810 | T28721+ 2873+ 28511 | +386,1,1,1,1 + 786,2,1,1 + 108622 + 115631
+5sg,2 + 4591 + 3510 +8s6,4 +1087,1,1,1 + 245721 + 16573
—|—17Sg7171 + 2658,2 + 1889,1 + 8s10
852,22+ 8542+ 862,1,1,1 + 256,2,2,1
S7,2,2+ 87,4+ 881,1,1 +256,3,1,1 + 356,3,2 + 356,4,1 + 2565
11 || sg2+ S101 +s11 | T2882,1+ 2853+ 259,11 | +3s7,1,1,1,1 + 77,211 + 108722 + 118734
+589,2 + 481071 + 3811 +887,4 + 1088,1,1,1 + 2458,2,1 + 168873
+17s9 1,1 + 26592 + 18s19,1 + 8511
$6,2,2,2 + S6,4,2 + S6,6 T S7,2,1,1,1
+2s7.2.21+ 287311 + 357,32
$8,2,2 + 88,4 + S9,1,1,1
+3s7.41 + 2575 +358.1,1,1,1
12 || s10,2 + S11,1 + S12 | T259,2,1 + 2893 + 2510,1,1
55100 + As111 + 3512 +7s8,21,1 + 108822+ 115531
+858,4 + 1089111 + 245921 + 1659 3
+17510,1,1 + 26510,2 + 18511,1 + 8512
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TABLE A.2. Trreducibles for [VG(Br,)!] = [Sva((n — 1) +4,n — 1)].

;
0 1 2 3
n
2 || s 51,1 S92 51,1
3 || 83 | s1,11+ 821 51,11 + 2821 + 253 381,1,1 + 5521 + 253
: 51,1,1,1 + 382,11 4ds1 1,11 +11s21,1 + 8522
S4| 5211+ 831 +28272 + 353,1 + 284 +1183,1 + 4sy
2891,1,1 + 28221 +3831,1 351,1,1,1,1 + 1082111 + 145221
5 || 85 | 83,1,1 + 84,1
+3s832 + 3541 + 285 +17s31,1 + 15532 + 14541 + 455
82211+ 253111 811,1,1,1,1 +982.1,1,1,1 + 852211
6 || s6 | sa11+s51 | 128321 +833+3s41,1 | +7s222+ 1383111 + 218321+ 7833
—|—3S472 == 38571 + 2sg +18s41,1 + 18542 + 1485’1 + 4sg
$21,1,1,1,1 +28221,1,1 + 352221
$32.1,1 + 254111
Tl s7 | s511+ 861 | 128421+ 843+ 38511 TOssLLL1+ Hss211 + 85522
- ’ . ’ | 478331 + 1354111 + 225421 + 10543
+3852 + 3561 + 257 o v '
’ ’ +18s5.1,1 + 18852 + 1456 1 + 457
892,22 +531,1,1,1,1 +383.2,1,1,1
$42,1,1 + 2851,1,1 +3s53221 + 3533,1,1 + 53,32
< +28521 + 853 +654,1,1,1,1 +115421,1 + 85422
58 | S6,1,1 1 57,1 +356,1,1 + 356,2 +884,3,1 + 354,4 + 1355111
+3S771 + 2sg +22$57271 + 108573 -+ 1886,171
+18s6,2 + 14571 + 458
832,221 833111 +841,1,1,1,1
552,11 + 256,1,1,1 +3542,1,1,1 + 354221 + 354311
9 +286,2,1 + 56,3 +5432 + S441 + 6551111
S9 | ST11+ 881 +3s7,1,1 + 3572 +11s591,1 + 88522 + 85531
+3s8,1 + 259 +3s54 + 1356,1,1,1 + 228621 + 10563
+18s7,1,1 + 18579 + 14551 + 459
84222+ 843111+ 8511111
862,11 + 257111 +38521,1,1 +385221 + 385311
) +2s8721 + 57,3 +5532 + S541 + 656,1,1.1,1
O s10] ss.11F 89, +388.1,1 + 3582 +11s621,1 + 856,22 + 856,31
+359.1 + 2810 +3s6,4 + 13587111 + 228791 + 10573
—|—1888,171 + 1888’2 + 145971 + 4s19
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TABLE A.3. Irreducibles for [£(n);] when A = OS(Bry,).

1 2 3 4 5
n
2 So 0 0 0 0
3 82,1 1+ 83 $1,1,1 82,1 51,1,1 1 82,1 $1,1,1 + 2821 + 83
4 S22+ 831 +84 | S1,1,1,1 +82,1,1 | S2,1,1 +2822+ 831 | 281,1,1,1 +382,1,1 + 2522+ 2831 | 351,1,1,1 +682,1,1 + 6522 + 6531 + 354
5 L N N 2892,1 + 83.1,1 $1,1,1,1,1 +382,1,1,1 + 382,21 251,1,1,1,1 +882,1,1,1 + 118221
832+ 841+ 85 | S2,1,1,1 + 83,11
’ +2$372 + S4,1 +58371’1 + 383’2 + 284’1 +118371’1 + 1283’2 + 108471 + 385
$2,1,1,1,1 + 82,2,1,1 + 52,22 4s01,1,1,1 +78221,1 + 752,22
59,22 + 25391
6 || sa2+ssatse | ssaaatsann | o T g0 T 483,111 + 583,21 + 833 +11s3,1,1,1 + 185321 + 6533
41,1 4,2+ 851
+5S47171 + 38472 + 28571 +135471,1 + 175472 + 105571 + 3s4
5 Y L 2522.1,1,1 + 352221 +983.1,1,1,1
3,1,1,1,1 3,2,1,1 8322
. N N N 5322+ 25421 495 s 455 +10s32,1,1 + 983,22 + 73,31
S52 + 56,1+ 57 | S4,1,1,1 + 55,11 3,3,1 4,1,1,1 4,21
+85,1,1 + 2552 + S6.,1 +11s41,1,1 + 2185401 + 11543
+54,3 + 985,1,1 + 3552 + 2561
+13S57171 + 175572 + 108671 + 387
5 g 829222 +3532.1,1,1 +3532,2,1
3,3,1,1 T 54,1,1,1,1
+353.3,1,1 + 25332 +554,1,1,1,1
84,22+ 28521 +284.21,1 + 84,22 + 25431
8 || se2+ 7.1+ ss | S5,1,1,1F 86,11 +10842,1,1 + 105422 + 105431
+56,1,1 + 286,2 + 57,1 +455.1,1,1 + 585,21 + 85,3
+5S4_’4 + 1185’171’1 + 218572,1 + 118573
+556,1,1 + 356,2 + 2571
+138671’1 + 1786’2 + 108771 + 388
$3,2,2,2 +833,1,1,1 +3542,1,1,1
$4,3,1,1 T S5,1,1,1,1 +354,2,2,1 +354,3,1,1 + 354,32
9 N N N 85,2,2 + 286,2,1 +285.2,1,1 + 85,22 + 25531 +384,4,1 +585,1,1,1,1 + 1085211
S$7,2 T 88,1 T S9 $6,1,1,1 T S7,1,1
’ +s7,1,1 + 2872 + 881 +456,1,1,1 + 556,2,1 + 56,3 +10s5,2,20 + 108531 + 5554
+587.1,1 + 3872 + 2581 +11s6,1,1,1 + 218621 + 11563
+13s7.1,1 + 175720 + 10881 + 359
S4,222 1+ 8431,1,1 T 54,42
55,3,1,1 + 86,1,1,1,1 +355,2,1,1,1 + 355,221 + 355,3,1,1
86,2,2 + 25721 +256,2,1,1 + S86,2,2 + 256,31 +385,3,2 + 35541 + 5S6,1,1,1,1
10 || sg2 + 59,1 + 510 | S57,1,1,1 + 58,1,1

+58,1,1 + 2582 + 89,1

+4s71,1,1 + 58721 + 57,3

+5s88,1,1 + 3882 + 2591

+10s6,2,1,1 + 106,22 + 105631
+586,4 + 1187111 + 218721 + 11573
+13sg,1,1 + 17sg 2 + 10891 + 3510
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TABLE A.4. Irreducibles for [£(n);] when A = VG(Bry,).

1 2 3 4 5
n
2 51,1 S92 0 0 0
3 $1,1,1 F S2.1 S2.1 + 283 S9,1 $1,1,1 + 82,1 81,1,1 +2521 + 83
4 S21,1+ S31 | S22+ 2831 + 284 S21,1 +2822 4831 | St,1,1,1 T 48211+ S22+ 2831 | 281,111 + Ts2,1,1 + 4822 + Ts31 + 284
5 N 98 5 & 254 1 + 2 28221 + 83.1,1 352.1,1,1 + 35221 $1,1,1,1,1 +882,1,1,1 + 108221
831,11+ 54,1 | 2832 + 2541 + 285
+283,2 + S4,1 +683’1,1 -+ 283,2 -+ 284_’1 +1383,171 + 118372 + 108411 + 285
282211 +4831,1,1 3s2,1,1,1,1 + 952211 +48222
533+ 2542 S2,2.2 + 25391
6 S4.11+ S5.1 +583,2,1 + 53,3 +10s3,1,1,1 + 185321 + 8533
’ 42551 + 256 +54,1,1 + 2542 + 85,1
+68471}1 + 28472 + 285)1 —|—16S4}171 + 148472 + 1085)1 + 254
3822.1,1,1 + 9382221 + 3531,1,1,1
3832,1,1 + 25331
. N 54,3 + 2852 8322+ 25421 s 4 5s Y +11s32,1,1 + 653,22 + 95331
$5,1,1 T S6,1 4,1,1,1 4,2,1 4,3
+2s6,1 + 257 +55,1,1 + 2852 + S6,1 +11s41,1,1 + 218401 + 11843
+655,1,1 + 2552 + 2561
+1685,171 + 145572 + 108671 + 287
$2,2,2.1,1 +3832,1,1,1 + 383221
$3,3,1,1 +354,2,1,1
+2s3.31,1 + 383,32 +354,1,1,1,1
85,3 + 2562 84,22 + 28521 +254,31 +4551,1,1
8 || s6,1,1 + 57,1 +1254 91,1 + 65422 + 125431
’ +2s71 + 253 +56,1,1 + 2862 + 57,1 +585,2,1 + 55,3
+384,4 + 118571’171 + 21857271 + 118573
+6s56,1,1 + 256,2 + 2571
+1686,171 + 148672 + 108711 + 288
$3,2,2,1,1 + 8333 +384,2.1,1,1
54,3,1,1 +3585,2,1,1 +354,2,2,1 + 354,3,1,1 + 354,32
9 N 86,3 + 2572 85,2,2 + 256,21 +285,31 + 456,1,1,1 +384,4,1 +385,1,1,1,1 + 1285211
S7,1,1 T S8,1
’ +2sg,1 + 259 +s7,1,1 + 2872+ 881 +586,2,1 + 56,3 +655,22 + 125531 + 3554
+657.1,1 + 2572 + 2581 +11s6,1,1,1 + 218621 + 11563
+16S7’171 + 1487’2 + 1088’1 + 289
S4,2211 1+ 8433+ 844,11
55,3,1,1 +356,2,1,1 +385,2,1,1,1 + 385,2,2,1 +385,3,1,1
S7.3 4+ 2582 56,2,2 + 25701 +2s6,31 +457,1,1,1 +355,3,2 + 355,41 + 356,1,1,1,1
10 || s8,1,1 + 89,1

—|—25971 + 2519

+58,1,1 + 2882 + 59,1

+587.21 + 573
+6s8,1,1 + 2832 + 2591

+1256.2.1,1 + 656,22 + 1256 3.1
+3S6’4 SR 1157’1,1,1 4F 2187’2’1 =4k 1187,3
+16Sg’1’1 =F 1488’2 aF 1089’1 + 2510
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APPENDIX B. PROOF OF THEOREM 11.15

The proof of Theorem 11.15 and calculation of near-boundary cases for OS(Br,)},
VG(Brn)% employ a brute-force strategy, which we outline here, giving only brief sketches
of the arguments.

Note that since all k&,-modules U are self-contragredient, one has [U*] = [U] in
Rk(6,,), and so the defining recurrence (2.12) for Koszul modules simplifies to this:

d

[Ad] = Y (1) A [(A-)] (B.1)

i=1
This means that if one defines
gi =chOS(n); for 0 <i<n-—1,
fi :==ch0S(n); = Sos(n —1+i,n—1) fori =0,1,2, ...,

then, with % below denoting the internal (Kronecker) product of symmetric functions,
(11.6) lets one sometimes compute explicit formulas for the g; in terms of the homogeneous

symmetric functions {h)}, and (B.1) gives a recurrence for f; in terms of fo, fi1, ..., fi—1:
d .
fi=> (=1 gix fai (B.2)
i=1

In each of the cases below, we identify a small subset T" of partitions of n such that the
linear span of {hy : A\ € T'} contains the f;. Further manipulation then gives the results
described in Theorem 11.15, and the precise formulas below.

B.1. Proof of Theorem 11.15(i). Corresponding to the Stirling number formulas

Sn—1,n—-1)=1,

S(n,n—1) = (Z),

one has the following result, implying Theorem 11.15 (i).

Proposition B.1. For the cases i = 0,1, one has

chSos(n—1,n—1)=chSyg(n—-1,n—1)=h, forn >1, (B.3)
ch Sos(n,n — 1) = hohy_2 forn > 2, (B.4)
chSva(n,n —1) = eahp—2 forn > 2. (B.5)

Proof. Equation (B.3) follows since OS(Br,)o = VG(Br,)o = K, carrying the trivial &,
representation in either case. For (B.4), (B.5), note that (B.1) and (11.6) imply

[0S(Bry)i| = [08(Bry)1] = [0S(Bra)ain-2)] = hu[ms] - hna[m] = hohn ..,
[VG(BI"”)'J = [VG(Brn)l] = [VG(BTn)(an—2)] = hl[ﬁz] . hnfg[fl] = eghnfg.
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B.2. Proof of Theorem 11.15(ii). Here we prove the curious fact that for n > 7,
OS(Br,,)5 = Sos(n 4+ 1,n — 1) is in fact half of a permutation module.

Forn =17,8,9, 10, Sage computation with the Burnside ring shows that Sog(n+1,n—1)
is NOT a permutation module. By running his Burnside solver on the first formula in
Proposition B.2 below with rational coefficients, Trevor Karn noticed positive half-integers
in the data and conjectured that two copies of Spg(n + 1,n — 1) together constitute a
permutation module.

Proposition B.2. One has the following decompositions as permutation modules for
n < 6:

and then for n > 4 one has
ch OS(Bry,)}
=chSps(n+1,n—1)
= hp_oho + hy_3h3 + hy_3h3 + hy_4h3 + hy_ghs—hy_ghaohy — h, ghgh;  (B.6)
= hn-2 5@+ hns (s09) + s +56)) +hnea (502 + 50) (B.7)
= hy_ohy + %hn_gh{’ + %hn_g(hg + €3) + g - ha[ha). (B.8)

So two copies of OS(Bry,)y = Sos(n + 1,n — 1) together form a permutation module, with
orbit stabilisers

{6r-2 xS, 63, 6,3 x C3, Sy X Ir(4)}

where C,, is the cyclic group of order n (generated by the n-cycle (1,2, ..., n) in &,) and
Iy(n) is the dihedral group of order 2n inside &,, containing that same n-cycle.

Sketch of proof. The expansion for n = 2 is clear. For n > 3, writing f;, g; as in (B.2), one
finds that

fi=91,
fo=fi*xg1 — g2

Using (11.6) and writing 6(S5) € {0, 1} depending on whether statement S is false or true,
one has

f1 =4g1 = ch A(n)1 =ch OS(271n—2) = hn,Qﬂ'Q = hn,QhQ,
g2 = hp—3(hahi — h3) - 0 >3 + hp—a(hghi — ha) - 0p > 4.

Using the standard fact that U ® (VTg) = Ul,® V)Tf[, for the Young subgroup
H = 65 x 6,,_9, and the skewing operators sé) and s(llz) as defined in Macdonald
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[58, Ex. 1.5.3], the expression (B.6) follows by routine manipulation. Then to estab-
lish (B.8), we use these facts:

h3 + 2hs — 2hohy = hs + e3 = ch 1@;,

holha] = ha + s2.2) = ha+ B3 — hahy = ch 1177 . 0
Remark B.3. A similar analysis gives the following for VG(Br},)a:
chSyg(n+1,n—1)
= hnshs + has (hs — hoha + hi) + B (ha+ hoh? — hghy — h3) , n > 4
(B.9)

= hn—25(2) + hn—3 (8(13) +5(2,1) T 8(3)) + hn—a52,1,1)-

Also chSyg(n + 1,n — 1) = A} + hy, for n = 3,4, and hence Syg(n + 1,n — 1) is a
permutation module for n < 4; it is half a permutation module for n = 5. However
for n = 6,7, the Burnside solver shows that it is not a permutation module (even after
scaling), even though all character values are nonnegative. At n = 8 there are negative
character values, so even scaling will not result in a permutation module.

B.3. Proof of Theorem 11.15 (iii).

Proof. For fixed small k, the general Stirling number formula

S(n, k) = H;(—l) <Z>(k:—z) (B.10)
gives fairly simple explicit formulas for S(n, k) as a function of n, e.g., for k = 1,2, 3,4, 5:
S(n,1) =1 (B.11)
1
S(n,2) = (2" =2-1") = vl _1=1424224... 42772 (B.12)
1
S(n.3)= (3" =3-2" +3) (B.13)
1
S(n,4) = S (4" —4-3"4+6-2" —4) (B.14)
1
S(n,5):m(5"—5~4”+10-3"—10~2”+5) (B.15)

We give here analogous descriptions of the k&,,-modules OS(Br,,)}, VG(Bry,), having di-
mension S(n — 14 i,n — 1), starting!? with n = 2, 3.

Proposition B.4. The Frobenius characteristics of the K&,,-modules
OS(Br,): = Sog(n —1+i,n—1),
VG(Br,): = Syg(n —1+4,n—1)

for n = 2,3 have these formulas:

n=2: ch Sos(i + 1,1) = ho,

chSyg(i+1,1) = {

ho, 1 even,

es, 1 odd.

2There is little to say for n = 1, as &1 is the trivial group, and OS(Br1) = VG(Br1) = k = OS(Bry)' =
VG(Br1)', and ch Sos(0,0) = ch Syq(0,0) = hy.
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n=3: chSps(i+2,2) = chSyg(i +2,2) = 2i3_1hif + hg, if i even,
ch Sos (i +2,2) = 22 =Un3 4 hyhy, if i odd,
i—1
chSya(i+2,2) = 2E=Upd 4 hiey, if i odd.

In particular,

e OS(Bry)}, OS(Br3)}, are permutation modules, while

e VG(Brg)}, VG(Br3)} are permutation modules for all even i, and
e When n =2,3 one has

VG(Br,); if i is even,

OS(Br,,) =
" \sgn, @ VG(Br,))  if i is odd.

Sketch of proof. These all follow by induction on i via the recurrences (B.1) and (11.6). O

Remark B.5. Note the expressions for n = 2 are consistent with the formula S(i +1,1)
= 1 coming from (B.11). We claim that the expressions for n = 3 are also consistent with
the formulas

S(i+2,2) =2 —1 (B.16)
=142+22 ... 42 (B.17)
coming from (B.12), which we illustrate here for OS(Brs3); = S(i + 2,2). One can rewrite

it as

20 4 (—1)? 1) W+ {hg if ¢ is even,
6 2

ch OS(Br3); = ch Sos(i +2,2) = ( D) hohy if i is odd
2101

call this ¢;
9i+1 B4 hs — %h“} if ¢ is even,
= st PSP
hohy1 — %h% if 7 is odd.

Since h3, hohi, hs correspond to k&3-modules of dimensions 6,3, 1, one can check that
this last formula lifts (B.16). Interestingly, the number ¢; of copies of the regular repre-
sentation here (that is, the coefficient of h$) gives a sequence 0,0, 1,2, 5,10, 21,42, 85, ...
for which every other term 0,1,5,21,85,341, ... appears in the Online Encyclopedia of
Integer Sequences as OEIS A002450.

Expressions lifting (B.17) arise when one uses the recurrences (B.1) and (11.6), without
trying to rewrite things in terms of hy. Recalling that S* is the irreducible k&,,-module
indexed by A, with ch S* = sy, a Schur function. One can check that these recurrences
give

chSos(i+2,2) = hz+s@1) + 551+ + 501 (B.18)
chSva (i +2,2) = w'hs) + 520) + 5351y + -+ 551, (B.19)
where w : A — A is the involution on symmetric functions swapping h, < e, for n > 1,

corresponding to tensoring k&,,-modules by the sign character sgn,,. Bearing in mind that
h3, es correspond to 1-dimensional modules, while s 1) corresponds to the 2-dimensional

reflection representation S>1) of &3, one sees that (B.18), (B.19) lift (B.17). Note also
that (B.18) is consistent with the n = 3 case of (6.14), since one has a matroid isomorphism
BI‘3 = U2’3.
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B.4. The cases OS(Bry)' and VG (Bry)'. Here we show that the &4-modules Sog(n+3, 3)
are permutation modules. One observes a periodicity in the initial expressions for f, =
ch Sos(n + 3,3) below.

Jo=ha

fL=h;

fo = hi—hgh? + 2h3 + hy = ha[hi] + hiho + hy

f3 = 4h}—3hyh? + 5h3 = 2h{ + 2ho[h?] + hihg + h3

fi = 14h{—8hgh% + 10h3 + hy = 10h} + 4hy[h?] + 2h2 + hy (B:20)
f5 = 44h}—18hgh? + 2152 = 35h] + 9ho[h?] + 3h3

f6 = 135h1—39hoh? + 42h3 + hy = 115h% + 20ha[h3] + 2h3 + hoh? + hy

fr = 408hi—81hyh? + 85h3 = 367h] + 41ho[h3] + 33 + hoh?

Proposition B.6. The Frobenius characteristic chSpg(n + 3,3) = ch OS'(Bry), is an
integer combination of {h}, h2ha, h3, hy}.

Let ch Sos(n + 3,3) = aphi + byhZhs + cLhZ + dyhy, n > 0. Let Gy be the subgroup
of order 2 generated by (12)(34). Then Sos(n+3,3) is a permutation module with orbit sta-
bilisers consisting of the wreath product S2[Gs], as well as a subset of the Young subgroups
Gy, A€ {(1%),(2,1?),(2?),(4)}. We have, for an,c,,d, >0 and b, <0,

chSps(n+ 3,3)
by, b

— (an + 2) hi — E"hg[h%] +(c), +by)h3 +dphg, n=0,1mod 4,  (B.21)

= <an + b"; 1) hi — 6"2_ 1h2[h%] + hiho + (¢, + by — 1)h3 + dypha, n
= 2,3 mod 4. (B.22)
The coefficients ay,, by, ¢, d, are determined below.
(1) The coefficients of ha are the sequence d,, = w, n > 0.

(2) The coefficients of h3 are {0,0,1,2,5,10,21, ...}, i.e. the numbers c, from Re-
2n+273+(71)n+3

mark B.5. More precisely, ¢, = cpy3 = ———, n > 0.
n+1 n
(8) bp—bp—1 = —Cpia = —%,n > 1, with by = 0 = by. In particular, b, < 0
forn > 2. We have
2 n 1 ntl p 31
bp=—=(2" 1) 4=+ —(1—(=1)") = — i S (=1 >0
=3 I RETIC S 5 Tty ptlinz

Thus Sos(n + 3,3) is NOT h-positive for n > 2.
(4) The coefficients a,, are all nonnegative, and strictly positive if n > 2. We have
ag=a1 =0 and forn > 2,
3t 4 — (1)
B TCR 16

In particular, a,, + %”, and ap + b”T*l are positive integers for n > 3.

Also, ay,, is the multiplicity of the sign representation.

Remark B.7. Computing dimensions shows that the h-expansion of ch S(n + 3,3) lifts
the formula (B.13) for the Stirling number S(n + 3, 3).
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The coefficient a,, of h} gives the sequence 0,0, 1,4, 14,44, 135,408, 1228, .. ., appearing
as OEIS A097137. (One checks that a, — a,_o = (3"~! —1)/2.) Also the negative of the
coefficient b, of h2hsy gives 0,0, 1,3,8, 18,39, 81,166, 336,677, ..., which is OEIS A011377
or OEIS A178420.

A similar analysis for VG(Bry)} shows that its Frobenius characteristic ch Syq (3 + i, 3)
is also an integer combination of {h}, h2ha, h3, hs}, in fact of {h{, hoea, hy}.

Here is the data for f; = ch VG'(4); with 0 <4 < 11:

Jo="hy J1 = haez

fo=hi+hy fs =4ht — haes
fa=12ht + 2hoey + hy f5 = 40 hi + hges

fo = 127h} — 4 hoea + hy fr =388 N7 + 3 haes

fs = 1186 h + 6 haea + hy fo = 3608 h} — 11 hgey
fio = 10901 hi + hy fi1 = 32868 b + 23 haes

Observe that the set {h}, hoea, hy} is linearly independent. One then has the following
more precise statement:

Proposition B.8. Write f,, for chSyg(n+3,3) =ch VG!(Br4)n. Then fon_1, fon —hg €
Z[hi, haes] and hence for n > 0, both the representation Syg(2n + 2,3) and the quotient
representation Sya(2n + 3,3)/1e, are fized under tensoring with the sign representation
sgn of &y4.

Let fn = anhi + byhaes + dyhy. Then, with initial values ag = a1 = 0,a2 = 1,a3 = 4,
bo =0,b1 = 1,by = 0,b3 = —1, one has that d, = 1+(;1)n, an > 0 for alln >0, and for
n>3:

ap = 6a,—1 — 1lay—2 + 6a,—3 + 2(bn—l —bp2+ bn—3) —dp—2,
bn = _bn—2 + 2bn—3-

The sequence {by}n>0 appears in OEIS A077912, with generating function

1+:E2x—23n3 ’
Moreover Syg(n+3,3) is a permutation module if and only if b, = 0 or b, < —2. Write
—by, = 20, + 3B, for nonnegative integers oy, Byn. Then a, — (cu, + Br) is nonnegative and

fo = (an = (an + Ba))h} + anch (1T)) + Buch (1T7) + daha

is the Frobenius characteristic of a permutation module, where the orbit stabilisers are &1,

&4 and the subgroups G = ((12)(34)) and V4 = {(1), (12)(34), (13)(24), (14)(23)} of &4.

B.5. The case OS(Brs)'. In this section we show that the &s-modules Sog(n + 4,4)
are also permutation modules. We also show that the h-expansions exhibit a curious
periodicity modulo 4.
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The initial expressions for f, = chSpg(n + 4,4) are as follows.
Jo = hs, f1 = hsha,
fo = hahy + hoh? + 2hsho—hgh? = hyholho] 4 ho(hs + e3) + hahy,
f3 = 2R3 4 3h3hy + 2h3hs,
fa = 12h3 + 8h3hy + 2h3hy + hs
f5 = 60R3 + 18h3hy + 3h3hs
fo = 274h3 + 38h3hy + hoh3—hgh? + 4hzhy + hahy
= (274h7 + 38hoh? + 2h3hs ) + fo
fr = 1194h3 4 81h3hy + 4hshs.

(B.23)

Proposition B.9. The G5-module Sog(n+4,4) = ch OS'(Brs),, is a permutation module
for alln > 0, with orbit stabilisers given by
e the Young subgroups &y for A € {(1°),(22,1),(3,2)} if n = 1,3 mod 4.
o the Young subgroup &2 1y, as well as the subgroups &1 x I5(4), A3 x Sy if
n = 2 mod 4.
Here A3 x &y is the subgroup of the Young subgroup &3 x &4, for the alternating
subgroup As of S3.
e the Young subgroups &y for A € {(1°),(2%,1),(3,2),(5)} if n = 0 mod 4.
Let J = {h9,h3h1, hgha}. Let f, = chSog(n + 4,4) = ch A'(5),,. Then
(1) fn is a nonnegative integer combination of the set J if n = 1,3 mod 4.
(2) fn — f2 is a nonnegative integer combination of J if n = 2 mod 4.
(3) fn — fo is a nonnegative integer combination of J if n = 0 mod 4.

The following explicit decomposition holds for fnia — fn:

fria — fn = anh + byhih3 + 2hohs, n >0, (B.24)
where by =8, b, = 10(2") — 2, n > 1, and
1 n+1 n+1 n+3
an:§(1+17-4 —3.oml o3t (B.25)

Let 0 <i<3and k> 0. Then
Faktari — fi = b} + Brihaha + 2(k + 1)hohs

where
k k k
Qi = E+1 4 gqitl 2561 — 1 _ 3i+281 -1 _ gitl 1681 —1 (B.26)
" 3 45 80 15
16— 1
Bri =2 ———— —2(k +1).
' 3

The multiplicity of the sign representation in f,, is

agi, n=4k+1)+iand k>0,
2, n =3,
0, n < 3.
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Remark B.10 (The restriction of Spg(n + 1,n — 1) and Syg(n + 1,n — 1) to &,—1).
Observe that in each of the cases OS(Bry,), 1 < n < 5, the restriction of the &,-module
to &, is always an h-positive permutation module. The restriction is not h-positive for
S(n+1,n—1) when n > 5, although the following formula shows that it is a permutation
module.

chSn+1,n—-1)g" |
= (hn-ah1 + hn_shy + 2k _3h? + B ahi + ho_shs) Sp>a+ hns ch 1100, 0>,
Here I5(4) is the dihedral group of order 8.

Remark B.11 (The restriction of Sog(n + 3,3) and Sya(n + 3,3)). With the coeffi-
cients defined in Proposition B.6, the restriction of Sps(n + 3,3) to &3 has Frobenius
characteristic
(4ay 4 bp)h3 + 2(by + ¢, h1hs + dphs,

and is thus h-positive. In particular Spg(n+3, S)lGS is a permutation module whose point
stabilisers are Young subgroups.

Proposition B.8 shows that a similar statement holds for Syg(n + 3,3)| Sy here the
orbit stabilisers are &1 and Gs.

Remark B.12 (The restriction of Sos(n + 4,4)). The restriction of f, = chSos(n +
4,4) to &, is h-positive, supported on the set {h{, h3ha, h3} if n = 1,3 mod 4, the set
{ht, h3ha, h3, hy} if n = 0 mod 4, and finally the set {h{, h3ha, h3, hghi, hy} if n = 2 mod 4.
In particular Sog(n+4,4) | o, is a permutation module whose point stabilisers are Young
subgroups.

Remark B.13 (The multiplicity of the trivial representation). Here we collect formulas
for the multiplicity of the trivial representation:

For Spg(n + 1,n — 1), the multiplicity of the trivial representation is 3 for n > 4, and
the multiplicity of the sign representation is 0 for n # 3,4, and 1 otherwise.

For Spg(n + 2,2), the multiplicity is

vt 34 (-1)”
+ .
6 6
For Sps(n + 3,3), the multiplicity of the trivial representation is

3tl m 84 5(—1)"
16 4 16
giving {1,1,3,6,17,47,139,412, ...}.
For Spg(n+4,4), (with definitions as in Proposition B.9), the multiplicity of the trivial
representation is

E+1 1 256RT — 1 81k 1 .16k — 1
T 41—1-17 _ 3z+2 21—}—3 ). n
ACKNOWLEDGMENTS

The authors thank Jorgen Backelin, Vladimir Dotsenko, Ralf Froberg, Darij Grinberg,
Shiyue Li, Ivan Marin, Anne Shepler, Keller VandeBogert, Peter Webb, Craig Wester-
land, and Sarah Witherspoon for helpful conversations and references. They are grateful
to Trevor Karn for his wonderful Sage/Cocalc code that checks whether a symmetric

Ann. Repr. Th. 2 (2025), 2, p. 173247 https://doi.org/10.5802/art.23


https://doi.org/10.5802/art.23

244 Ayah Almousa et al.

group representation is isomorphic to a permutation representation, which helped us cre-
ate Table 11.1. In particular, they are grateful to him for experimentally discovering the
half-integers in the decomposition of Proposition B.2. They also thank two anonymous
referees for their helpful suggestions.

REFERENCES

[1] William W. Adams and Philippe Loustaunau, An introduction to Grébner bases, Graduate Studies in
Mathematics, vol. 3, American Mathematical Society, 1994.

[2] Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complezes, Adv.
Math. 44 (1982), no. 3, 207-278.

[3] Ayah Almousa, Stirling Representations, 2024, version 1.0, BSD-3-Clause licence, https://github.

com/aalmousa/StirlingRepresentations.git.

[4] Annetta Aramova, Jirgen Herzog, and Takayuki Hibi, Gotzmann theorems for exterior algebras and

combinatorics, J. Algebra 191 (1997), no. 1, 174-211.
[5] Vladimir I. Arnol’d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231.
[6] Luchezar L. Avramov, Infinite free resolutions, in Six lectures on commutative algebra, Modern
Birkhéuser Classics, Birkhduser, 2010, pp. 1-118.

[7] Joergen Backelin, Low degrees in a Grébner basis may force the Koszul property, 2024, https://

staff.math.su.se/joeb/papers/list.shtml.

[8] Eli Bagno, David Garber, and Takao Komatsu, A g, r-analogue for the Stirling numbers of the second

kind of Cozxeter groups of type B, PU.M.A., Pure Math. Appl. 30 (2022), no. 1, 8-16.
[9] Serban Biarcinescu and Nicolae Manolache, Nombres de Betti d’une singularité de Segre—Veronese,
C. R. Acad. Sci., Paris, Sér. A 288 (1979), no. 4, A237-A239.

, Betti numbers of Segre—Veronese singularities, Rev. Roum. Math. Pures Appl. 26 (1981),
no. 4, 549-565.

[11] Héléne Marie-Louise Barcelo, On the action of the symmetric group on the Free Lie Algebra and on
the homology and cohomology of the partition lattice, Ph.D. thesis, University of California, San Diego,
USA, 1988, https://www.proquest.com/docview/303690441.

[12] Alexander Berglund, Koszul spaces, Trans. Am. Math. Soc. 366 (2014), no. 9, 4551-4569.

[13] Alexander Berglund and Kaj Borjeson, Free loop space homology of highly connected manifolds, Forum
Math. 29 (2017), no. 1, 201-228.

[14] Anders Bjorner, Paul H. Edelman, and Glinter M. Ziegler, Hyperplane arrangements with a lattice of
regions, Discrete Comput. Geom. 5 (1990), no. 3, 263-288.

[15] Anders Bjorner et al., The homology and shellability of matroids and geometric lattices, in Matroid
applications, Encyclopedia of Mathematics and Its Applications, vol. 40, Cambridge University Press,
1992, pp. 226-283.

[16] Anders Bjorner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Giinter M. Ziegler, Oriented
matroids, second ed., Encyclopedia of Mathematics and Its Applications, vol. 46, Cambridge University
Press, 1999.

[17] Anders Bjorner and Giinter M. Ziegler, Broken circuit complexes: factorizations and generalizations,
J. Comb. Theory, Ser. B 51 (1991), no. 1, 96-126.

[18] Leonid A. Bokut and Yuqun Chen, Grébner—Shirshov bases and their calculation, Bull. Math. Sci. 4
(2014), no. 3, 325-395.

[19] Sarah Brauner, Fulerian representations for real reflection groups, J. Lond. Math. Soc. (2) 105 (2022),
no. 1, 412-444.

[20] Francesco Brenti, Unimodal, log-concave and Pdlya frequency sequences in combinatorics, Memoirs of
the American Mathematical Society, vol. 413, American Mathematical Society, 1989.

[21] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, The stability of the Kronecker product of
Schur functions, J. Algebra 331 (2011), 11-27.

[22] Winfried Bruns, Jirgen Herzog, and Udo Vetter, Syzygies and walks, in Commutative algebra (Trieste,
1992), World Scientific, 1994, pp. 36-57.

[23] Pierre Cartier and Frédéric Patras, Classical Hopf algebras and their applications, Algebra and Appli-
cations, vol. 29, Springer, 2021.

[24] Thomas Church, Jordan S. Ellenberg, and Benson Farb, Fi-modules and stability for representations
of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833-1910.

Ann. Repr. Th. 2 (2025), 2, p.173-247 https://doi.org/10.5802/art.23


https://github.com/aalmousa/StirlingRepresentations.git
https://github.com/aalmousa/StirlingRepresentations.git
https://staff.math.su.se/joeb/papers/list.shtml
https://staff.math.su.se/joeb/papers/list.shtml
https://www.proquest.com/docview/303690441
https://doi.org/10.5802/art.23

Koszulity, supersolvability and Stirling Representations

245

[25]

Ann. Repr.

Thomas Church and Benson Farb, Representation theory and homological stability, Adv. Math. 245
(2013), 250-314.

Frederick R. Cohen and Samuel Gitler, On loop spaces of configuration spaces, Trans. Am. Math. Soc.
354 (2002), no. 5, 1705-1748.

Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture
Notes in Mathematics, vol. 533, Springer, 1976.

Raul Cordovil, A commutative algebra for oriented matroids, Discrete Comput. Geom. 27 (2002),
73-84.

David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms. an introduction
to computational algebraic geometry and commutative algebra, fourth ed., Undergraduate Texts in
Mathematics, Springer, 2015.

Mark de Longueville and Carsten A. Schultz, The cohomology rings of complements of subspace ar-
rangements, Math. Ann. 319 (2001), no. 4, 625-646.

Graham Denham and Alexander I. Suciu, On the homotopy Lie algebra of an arrangement, Mich.
Math. J. 54 (2006), no. 2, 319-340.

| Alexandru Dimca, Hyperplane arrangements. An introduction, Universitext, Springer, 2017.

Alexandru Dimca and Sergey Yuzvinsky, Lectures on Orlik—Solomon algebras, in Arrangements, local
systems and singularities, Progress in Mathematics, vol. 283, Birkhduser, 2010, pp. 83-110.

Galen Dorpalen-Barry, The Varchenko—Gel’fand ring of a cone, J. Algebra 617 (2023), 500-521.
Galen Dorpalen-Barry, Nicholas Proudfoot, and Jidong Wang, Equivariant cohomology and conditional
oriented matroids, 2022, https://arxiv.org/abs/2208.04855.

Thomas A. Dowling, A class of geometric lattices based on finite groups, J. Comb. Theory, Ser. B 14
(1973), 61-86.

David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer, 1995,
With a view toward algebraic geometry.

David Eisenbud, Sorin Popescu, and Sergey Yuzvinsky, Hyperplane arrangement cohomology and
monomials in the exterior algebra, Trans. Am. Math. Soc. 355 (2003), no. 11, 4365-4383.

David Eisenbud, Alyson Reeves, and Burt Totaro, Initial ideals, Veronese subrings, and rates of
algebras, Adv. Math. 109 (1994), no. 2, 168-187.

Eleonore Faber, Martina Juhnke-Kubitzke, Haydee Lindo, Claudia Miller, Rebecca Rebhuhn-Glanz,
and Alexandra Seceleanu, Canonical resolutions over Koszul algebras, in Women in commutative
algebra, Association for Women in Mathematics Series, vol. 29, Springer, 2022, pp. 281-301.

Michael Falk and Richard Randell, The lower central series of a fiber-type arrangement, Invent. Math.
82 (1985), no. 1, 77-88.

Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts
in Mathematics, vol. 205, Springer, 2001.

Benoit Fresse, Homotopy of operads and Grothendieck—Teichmiiller groups. Part 1, Mathematical
Surveys and Monographs, vol. 217, American Mathematical Society, 2017, The algebraic theory and
its topological background.

Ralf Froberg, Determination of a class of Poincaré series, Math. Scand. 37 (1975), no. 1, 29-39.

, Koszul algebras, in Advances in commutative ring theory (Fez, 1997), Lecture Notes in Pure
and Applied Mathematics, vol. 205, Marcel Dekker, 1999, pp. 337-350.

Ladnor Geissinger and D. Kinch, Representations of the hyperoctahedral groups, J. Algebra 53 (1978),
no. 1, 1-20.

Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Papers in Pure and Applied
Mathematics, vol. 20, Queen’s University, Kingston, Ontario, 1969.

Patricia Hersh and Victor Reiner, Representation stability for cohomology of configuration spaces in
R¢, Int. Math. Res. Not. 2017 (2017), no. 5, 1433-1486, With an appendix written jointly with Steven
Sam.

Torsten Hoge and Gerhard Rohrle, Supersolvable refiection arrangements, Proc. Am. Math. Soc. 142
(2014), no. 11, 3787-3799.

Michael Jollenbeck and Volkmar Welker, Minimal resolutions via algebraic discrete Morse theory,
Memoirs of the American Mathematical Society, vol. 923, American Mathematical Society, 2009.
Matthieu Josuat-Verges and Philippe Nadeau, Koszulity of dual braid monoid algebras via cluster
complexes, 2021, https://arxiv.org/abs/2107.13442.

Aleksandr A. Klyachko, Lie elements in a tensor algebra, Sib. Mat. Zh. 15 (1974), 1296-1304.

Th. 2 (2025), 2, p.173-247 https://doi.org/10.5802/art.23


https://arxiv.org/abs/2208.04855
https://arxiv.org/abs/2107.13442
https://doi.org/10.5802/art.23

246 Ayah Almousa et al.

[63] Toshitake Kohno, On the holonomy Lie algebra and the nilpotent completion of the fundamental group
of the complement of hypersurfaces, Nagoya Math. J. 92 (1983), 21-37.

, Série de Poincaré—Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985),
no. 1, 57-75.

[65] Gustav I. Lehrer and Louis Solomon, On the action of the symmetric group on the cohomology of the
complement of its reflecting hyperplanes, J. Algebra 104 (1986), no. 2, 410-424.

[56] Clas Lofwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra,
in Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Mathemat-
ics, vol. 1183, Springer, 1986, pp. 291-338.

, The holonomy Lie algebra of a matroid, 2020, https://arxiv.org/abs/2012.12044.

[58] Ian G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Mono-
graphs, Clarendon Press; Oxford University Press, 1995, with contributions by A. Zelevinsky, Oxford
Science Publications.

[59] Toufik Mansour and Augustine O. Munagi, Set partitions with circular successions, Eur. J. Comb. 42
(2014), 207-216.

[60] Jacob P. Matherne, Dane Miyata, Nicholas Proudfoot, and Eric Ramos, Equivariant log concavity and
representation stability, 2021, https://arxiv.org/abs/2104.00715.

[61] Volodymyr Mazorchuk, Serge Ovsienko, and Catharina Stroppel, Quadratic duals, Koszul dual func-
tors, and applications, Trans. Am. Math. Soc. 361 (2009), no. 3, 1129-1172.

[62] Jason McCullough and Irena Peeva, Infinite graded free resolutions, in Commutative algebra and
noncommutative algebraic geometry. Volume I. Expository articles, Mathematical Sciences Research
Institute Publications, vol. 67, Cambridge University Press, 2015, pp. 215-257.

[63] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. Math. (2) 81 (1965),
211-264.

[64] Teo Mora, An introduction to commutative and noncommutative Grobner bases, Theor. Comput. Sci.
134 (1994), no. 1, 131-173.

[65] Daniel Moseley, Equivariant cohomology and the Varchenko-Gelfand filtration, J. Algebra 472 (2017),
95-114.

[66] Satoshi Murai, Generic initial ideals and exterior algebraic shifting of the join of simplicial complezes,
Ark. Mat. 45 (2007), no. 2, 327-336.

[67] Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent.
Math. 56 (1980), no. 2, 167-189.

[68] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wis-
senschaften, vol. 300, Springer, 1992.

[69] James G. Oxley, Matroid theory, Oxford Graduate Texts in Mathematics, vol. 3, Oxford Science
Publications; Oxford University Press, 1992.

[70] Irena Peeva, Hyperplane arrangements and linear strands in resolutions, Trans. Am. Math. Soc. 355
(2003), no. 2, 609-618.

[71] Alexander Polishchuk and Leonid Positselski, Quadratic algebras, University Lecture Series, vol. 37,
American Mathematical Society, 2005.

[72] Stewart B. Priddy, Koszul resolutions, Trans. Am. Math. Soc. 152 (1970), 39-60.

[73] Andrew Putman and Steven V. Sam, Representation stability and finite linear groups, Duke Math. J.
166 (2017), no. 13, 2521-2598.

[74] Leonard E. Ross, Representations of graded Lie algebras, Trans. Am. Math. Soc. 120 (1965), 17-23.

[75] Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer,
1979, An introduction.

[76] Manfred Schocker, Multiplicities of higher Lie characters, J. Aust. Math. Soc. 75 (2003), no. 1, 9-21.

[77] Brad Shelton and Sergey Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements,
J. Lond. Math. Soc. 56 (1997), no. 3, 477-490.

[78] Geoffrey C. Shephard and John A. Todd, Finite unitary reflection groups, Can. J. Math. 6 (1954),
274-304.

[79] Anne V. Shepler and Sarah Witherspoon, Poincaré—Birkhoff-Witt theorems, in Commutative algebra
and noncommutative algebraic geometry. Vol. I, Mathematical Sciences Research Institute Publica-
tions, vol. 67, Cambridge University Press, 2015, pp. 259-290.

[80] Richard P. Stanley, Modular elements of geometric lattices, Algebra Univers. 1 (1971), 214-217.

, Supersolvable lattices, Algebra Univers. 2 (1972), no. 1, 197-217.

[54]

Ann. Repr. Th. 2 (2025), 2, p.173-247 https://doi.org/10.5802/art.23


https://arxiv.org/abs/2012.12044
https://arxiv.org/abs/2104.00715
https://doi.org/10.5802/art.23

Koszulity, supersolvability and Stirling Representations 247

, Invariants of finite groups and their applications to combinatorics, Bull. Am. Math. Soc. 1
(1979), no. 3, 475-511.

, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62,
Cambridge University Press, 1999, with a foreword by Gian-Carlo Rota and appendix 1 by Sergey
Fomin.

[84] Dennis Stanton and Dennis White, Constructive combinatorics, Undergraduate Texts in Mathematics,
Springer, 1986.

[85] Timothy Stokes, Grébner bases in exterior algebra, J. Autom. Reasoning 6 (1990), no. 3, 233-250.

[86] Alexander 1. Suciu and He Wang, Formality properties of finitely generated groups and Lie algebras,
Forum Math. 31 (2019), no. 4, 867-905.

[87] Sheila Sundaram, The homology representations of the symmetric group on Cohen—Macaulay subposets
of the partition lattice, Adv. Math. 104 (1994), no. 2, 225-296.

, On a curious variant of the Sn-module Lie,, Algebr. Comb. 3 (2020), no. 4, 985-1009.

, The reflection representation in the homology of subword order, Algebr. Comb. 4 (2021),
no. 5, 879-907.

[90] Sheila Sundaram and Volkmar Welker, Group actions on arrangements of linear subspaces and appli-
cations to configuration spaces, Trans. Am. Math. Soc. 349 (1997), no. 4, 1389-1420.

[91] Victor A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, in Algebra, VI, Encyclopae-
dia of Mathematical Sciences, vol. 57, Springer, 1995, pp. 1-196.

[92] Alexander N. Varchenko and Israil’ M. Gel’fand, Heaviside functions of a configuration of hyperplanes,
Funkts. Anal. Prilozh. 21 (1987), no. 4, 1-18.

[93] Peter Webb, A course in finite group representation theory, Cambridge Studies in Advanced Mathe-
matics, vol. 161, Cambridge University Press, 2016.

[94] Sergey Yuzvinsky, Orlik—Solomon algebras in algebra and topology, Usp. Mat. Nauk 56 (2001),
no. 2(338), 87-166.

— AvAH ALMOUSA —
UNIVERSITY OF SOUTH CAROLINA, DEPARTMENT OF MATHEMATICS, COLUMBIA, SC, USA
E-mail address: aalmousa@sc.edu

— VICTOR REINER —
UNIVERSITY OF MINNESOTA — TWIN CITIES, SCHOOL OF MATHEMATICS, MINNEAPOLIS, MN, USA
E-mail address: reiner@umn.edu

— SHEILA SUNDARAM —

UNIVERSITY OF MINNESOTA — TwIN CITIES, SCHOOL OF MATHEMATICS, MINNEAPOLIS, MN, USA
E-mail address: shsund@umn.edu

Ann. Repr. Th. 2 (2025), 2, p.173-247 https://doi.org/10.5802/art.23


https://doi.org/10.5802/art.23

	1. Introduction
	Summary of main results

	2. Koszul algebras
	2.1. Standard graded algebras and Koszul algebras
	2.2. Priddy's resolution and its consequences
	2.3. A Koszul branching relation

	3. Review of noncommutative, commutative, exterior Gröbner bases
	3.1. Monomial orders, initial forms, and initial ideals

	4. Matroids, oriented matroids, and supersolvability
	4.1. Matroid and oriented matroid review
	4.2. Supersolvability

	5. Orlik–Solomon and Varchenko–Gel'fand rings
	5.1. Flat decomposition
	5.2. Symmetry
	5.3. Gröbner bases and broken circuits
	5.4. Quadratic Gröbner basis for the Koszul dual
	5.5. Acyclicity and injectivity

	6. Examples: Boolean matroids and matroids of low rank
	6.1. Boolean matroids
	6.2. Rank one matroids
	6.3. Rank two matroids

	7. Branching rules for supersolvable matroids
	7.1. Proof of Theorem 7.12mu(i)
	7.2. Proof of Theorem 7.12mu(ii)

	8. Homotopy and holonomy Lie algebras
	8.1. The holonomy Lie algebra
	8.2. PBW decomposition

	9. Topological interpretations of OS(M), VG(M) and Koszul duality
	10. Representation stability and Koszul algebras
	11. The motivating example: braid matroids and Stirling representations
	11.1. Comparison with cohomology of configuration spaces
	11.2. Stirling representations of the first kind: generating functions
	11.3. Data on Stirling representations of the second kind
	11.4. Branching rules for both kinds of Stirling representations
	11.5. Braid matroids and representation stability
	11.6. Near-boundary cases for Stirling representations of the second kind

	12. Further remarks and questions
	12.1. Projective geometries over finite fields
	12.2. Type B, wreath products, and Dowling geometries
	12.3. Equivariant degree one injections

	Appendix A. Tables of irreducibles for Stirling representations
	Appendix B. Proof of Theorem 11.15
	B.1. Proof of Theorem 11.152mu(i)
	B.2. Proof of Theorem 11.152mu(ii)
	B.3. Proof of Theorem 11.152mu(iii)
	B.4. The cases OS(braid4)! and VG(braid4)!
	B.5. The case OS(braid5)!

	Acknowledgments
	References

