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Recent years have witnessed increasing interest in machine learning (ML) inferences on serverless computing
due to its auto-scaling and cost-effective properties. However, one critical aspect, function granularity, has
been largely overlooked, limiting the potential of serverless ML. This paper explores the impact of function
granularity on serverless ML, revealing its important effects on the SLO hit rates and resource costs of
serverless applications. It further proposes adaptive granularity as an approach to addressing the phenomenon
that no single granularity fits all applications and situations. It explores three predictive models and presents
programming tools and runtime extensions to facilitate the integration of adaptive granularity into existing
serverless platforms. Experiments show adaptive granularity produces up to a 29.2% improvement in SLO hit
rates and up to a 24.6% reduction in resource costs over the state-of-the-art serverless ML which uses fixed
granularity.
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1 Introduction
Recent years have witnessed increasing interest in leveraging serverless platforms [15, 17, 21, 22,
77, 78] to provide a machine learning inference service (called serverless ML for short) thanks to
its cost-effectiveness and autoscaling properties. Many studies have proposed various methods to
improve performance and reduce cost [15, 27, 34, 37, 68, 69, 77, 78, 81] of serverless ML. Supporting
ML inference on GPUs has been challenging in industrial serverless platforms due to the preliminary
support of GPU sharing and intra-GPU isolation. Multi-Instance GPUs (MIG) [10], a feature that
allows partitioning one GPU into multiple mutually isolated instances, was recently introduced to
mitigate the limitation. It has prompted more interest in serverless ML [38, 46].

Despite the promising outcomes from these studies, one critical aspect, function granularity, has
been overlooked. Function granularity refers to the size and scope of the serverless functions that
make up an application, which acts as the unit of functionality and scheduling on a serverless
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platform. The function granularity could directly influence the scheduling flexibility, Service Level
Objective (SLO), and resource usage, making it a pivotal factor in optimizing serverless computing
environments. All prior studies ignore the impacts of function granularity, typically selecting a
fixed granularity for all applications in their designs without fully understanding its impacts. Prior
studies have left several important research questions (RQ) open:

• RQ1: Is the granularity choice important for the efficiency of serverless ML? How much does
it affect the performance and resource cost, especially on modern GPUs in the presence of
MIG?

• RQ2: From the perspectives of both users and cloud providers, how do different granularities
affect the scheduling of serverless ML? How would the impact change with different SLOs,
workloads, or an overall goal that weighs SLO and cost differently?

• RQ3: If granularity is crucial and no single granularity fits all situations, is it possible to
predict the appropriate granularity, both spatial (across different applications) and temporal
(across different requests for the same application), for each application request based on
factors such as the application, workload, SLOs, job arrival rates, and system status?

• RQ4: What programming and runtime mechanisms are needed to incorporate adaptive
granularity into serverless ML?

• RQ5: How much benefit can adaptive granularity bring to serverless ML?

This paper presents the first known in-depth exploration of function granularity of serverless
ML, aiming to answer these research questions through a three-fold exploration.
First, we conducted an empirical study on the impact of function granularity on serverless ML,

giving answers to RQ1 and RQ2. We explored the performance and cost implications of bursty
and steady workloads across a spectrum of SLO settings, ranging from strict and moderate to
relaxed, for four applications using six ML models. The exploration reveals that employing different
granularities can lead to discrepancies of up to 53% in Service Level Objectives (SLO) and up to 54%
in resource costs across various scenarios. This study confirms that varying function granularities
result in significantly different scheduling outcomes, establishing that no granularity is suitable
for all situations. Further in-depth analysis is conducted to uncover the reasons why granularity
significantly influences serverless scheduling outcomes. This analysis identifies the fundamental
factors that affect these outcomes and guides system design in selecting appropriate granularity.
Second, we explored the feasibility of creating a predictive model to dynamically predict the

appropriate granularity for each application request under various conditions, addressing RQ3.
Specifically, we investigated three types of predictors that have shown promising results in many
system problems: deep reinforcement learning (DRL) [50], linear regression [58], and random
forests [26]. The results confirm the feasibility of efficient prediction and demonstrate that adaptive
granularity can accurately predict the appropriate granularity in different scenarios.
Third, we developed programming tools and runtime extensions to facilitate the adoption of

adaptive granularity within existing serverless platforms, addressing RQ4. These programming
tools are designed to automatically partition the original application into functions at various
granularities, significantly reducing the programming efforts needed to develop functions at dif-
ferent granularities. The runtime extension provides adaptive granularity prediction and delivers
functions at the predicted granularity to the existing serverless scheduler. This extension requires
only minor modifications to the current serverless schedulers.

Finally, for RQ5, we integrate our programming tools and runtime extensions into two state-of-
the-art serverless schedulers on GPUs [38, 78] to demonstrate the improved scheduling outcomes
achieved by using adaptive function granularity. We evaluate these two schedulers, featuring
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adaptive function granularity, across four ML inference applications on various workloads to
quantify the impact of adaptive granularity.

Overall, this paper makes the following contributions.

• It provides the first in-depth study on the impact of function granularity on serverless ML
and reveals a set of insights on the impact.

• It gives the first known exploration of the construction of predictive models for function gran-
ularity of serverless ML and confirms the feasibility through supervised and reinforcement
learning approaches.

• It proposes a set of programming and runtime support to enable the integration of adaptive
granularity for ML models in the current serverless platforms.

• It evaluates the effectiveness of adaptive granularity through a set of experiments and
demonstrates significant benefits; compared to the state-of-the-art serverless ML, which uses
fixed granularities, the SLO hit rates increase by as much as 29.2% and the cost decreases by
as much as 24.6%.

2 Background
2.1 Serverless Platform
We use Apache OpenWhisk [11], a popular open-source serverless platform, to illustrate the archi-
tecture of serverless platforms. OpenWhisk’s architecture [1, 70], depicted in Figure 1, comprises a
frontend with RESTful interfaces and a Controller with a Load Balancer. The front end receives
function invocations (i.e., function requests), while the Controller handles their distribution to
Invokers.
Upon receiving a user request, the Controller retrieves the corresponding functions from the

database, assesses the required resources for each function, and assigns these functions to the
appropriate Invokers. The Invoker then initializes the execution environment within a container
(i.e., function instance), after which the function is executed in this container. Each container is
dedicated to a function. To executemultiple requests for the same function concurrently, OpenWhisk
dynamically spawns multiple containers as needed.

Fig. 1. OpenWhisk architecture.

Fig. 2. Programming model of OpenWhisk.

2.2 Serverless Programming
The execution of a serverless application is event-driven. The development of a serverless application
specifies the event triggers and corresponding actions. As illustrated in Fig. 2, a trigger represents
an event from various event sources and is linked by a rule to an action, which embodies functional
logic.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 1, Article 6. Publication date: March 2025.



6:4 Xinning Hui, Yuanchao Xu, Xipeng Shen

A real-world serverless application is typically implemented as a multi-stage workflow or a
directed acyclic graph (DAG) [43]. Incoming requests invoke some serverless functions, the execu-
tions of which trigger other actions. Serverless platforms provide programming frameworks to
specify the workflows, such as AWS Step Functions [2], Azure Durable Functions [3], or Google
Cloud Workflows [6].
Take AWS Step Functions as an example. The user defines the workflow, also known as a state

machine, in JSON by following the Amazon States Language (ASL). This JSON structure defines
the various states of the workflow, their sequence, and how data transitions between them. States
encompass various activities such as executing a Lambda function, branching decisions, wait
periods, and parallel processing paths, and so on.

A state machine is usually invoked by a lambda function. We name the function as bridge function,
which defines the input data, output data, start execution, and state machine ARN (Amazon Resource
Name). ARN is a unique identifier assigned by AWS to a specific state machine. OpenWhisk is
similar. Its Composer serves a similar purpose by creating a composer akin to a state machine
to orchestrate workflows. Our work uses the bridge function to create functions with adaptive
granularity, as explained in Section 5.1.

2.3 GPU Sharing and Multi-Instance GPU (MIG)
Modern GPUs (by NVIDIA) offer two mechanisms for spatial sharing: Multi-Process Service
(MPS)[9] and Multi-Instance GPU (MIG)[8]. GPU sharing allows multiple processes to execute
concurrently on a single GPU.MPS shares a single GPU context across multiple processes, which can
result in resource contention and pose security risks for week isolation. It is not ideal for serverless
computing, where isolated execution environments and security are crucial concerns. MIG partitions
a single GPU into multiple hardware-isolated instances, providing better performance isolation and
security. For instance, an A100 GPU’s streaming multi-processors (SM) consist of seven graphics
processing clusters (GPC). In MIG mode, each slice (used interchangeably with MIG instance)
includes one or more GPCs and a certain amount of GPU memory. The A100 GPU, featuring seven
GPCs, enables the following MIG instance configurations: 1g.10gb, 2g.20gb, 3g.40gb, 4g.40gb, and
7g.80gb, where ‘1g’ stands for one GPC and ‘10gb’ for its associated 10GB of GPU memory.

2.4 Existing Studies All Use a Fixed Function Granularity on GPUs
Several studies have explored serverless system designs on GPUs [38, 46, 48, 62, 78, 79] for ML
inference. They however all employed a fixed function granularity. For example, some studies treat
each ML model as a function. Examples include Infless [78], which explores dynamic batching and
resource assignment with a heuristic algorithm, and ESG [38], which focuses on GPU sharing with
a scalable and efficient resource assignment scheduler. Other studies regard the entire application
as a single serverless function. Examples include Miso [46], which examines container placement
strategies to enhance GPU utilization, and Simppo [62], which uses the entire application, consisting
of multiple ML models to reduce data transfer and improve resource efficiency. Additionally, some
studies use model partitioning to refine function granularity. For instance, Gillis [79] serves large
neural networks by automatically partitioning models at the block level, while Tetris [48] improves
memory efficiency by splitting models at the tensor level to reduce redundancy.

All prior work, however, applies a fixed function granularity to all applications and requests on
GPUs, leaving the impact and possibility of adaptive selection of different granularities yet to be
understood. This work attempts to fill the void.
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Fig. 3. The example of different granularities for one DAG application with four ML models. (a) application
granularity, the whole application as one function; (b) stage granularity, each model or a group of models as
one function; (c) block granularity, the model parallelism is explored and each block as one function.

3 Empirical Studies on the Impact of Granularity
We attempt to answer RQ1 and RQ2 (as listed in Section 1) about the impact of granularity through
empirical studies.

3.1 Experiment Design
Our experiments compare the execution of various serverless MLworkloads using different function
granularities.
Serverless Platform.We use the popular open-source platform, OpenWhisk [11], as the experi-
mental platform. More details are in Section 2. Similar to other serverless platforms, by default,
OpenWhisk does not support GPU sharing or MIG. To overcome this limitation, we adopt ESG [38],
a state-of-the-art scheduling algorithm designed for MIG-enabled serverless computing. ESG adopts
dynamic batching and minimizes data transfer and cold start delays through data-locality-aware
scheduling and pre-warming techniques, helping us assess the full potential of different gran-
ularities. Without these optimizations, the overhead from data transfers and cold starts could
substantially throttle the performance benefits of fine granularities.
Granularities. We evaluate three representative granularities: application, stage, and block, as
shown in Figure 3. Application is the largest granularity, making the entire application a single
serverless function, as shown in Figure 3 (a). Stage is smaller, making each model or a group of
models in the pipeline (or DAG) of the application workflow a serverless function, as shown in
Figure 3 (b). We adopt the dominator-based methods for DAG partition from ESG [38] and divide
the DAG into several self-contained stages.
We also introduce a third granularity, block, which further breaks down each ML model into

smaller serverless functions based on the model architecture, as shown in Figure 3 (c). There are
many possible ways to do that [32, 40, 75, 80, 82]. In our experiments, we try to partition an ML
model evenly for load balance. The number of blocks affects the communication overhead and
resource demand per function. Empirical measurement can help identify the right block size that
gives a good overall tradeoff. In our measurements, we find the numbers shown in Table 1 give good
tradeoffs to those models used in our experiments. For the interest of space, we will concentrate
our discussions of block level on those settings.
Applications andWorkloads.We use four Deep Learning-based applications as shown in Table 2.
These applications were used in the state-of-the-art work [38]; using them allows us to compare
head-to-head to prior work. Among these applications, three are compositions of multiple DNN
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Table 1. MLmodels and the number of blocks they are partitioned into that give good tradeoffs in experiments.

Model Source Total blocks
Super-resolution SRGAN [45] 2

Deblur DeblurGAN [4] 3
Background removal 𝑈 2 Net [61] 6

Segmentation Deeplabv3_resnet50 [5, 24] 5
Classification ResNet50 [12, 36] 4

Depth recognition Midas [63] 6

processing stages in a sequence, and one (Expanded image classification) is extended with two
branches to form a DAG. The DNN models used in those applications are already listed in Table 1.

Table 2. Applications

Applications Composition
Image classification Super resolution ->Segmentation ->Classification
Depth recognition Deblur ->Super resolution ->Depth recognization
Background elimination Super resolution ->Deblur ->Background removal
Expanded image
classification (DAG)

Deblur ->(if low resolution: ->Super resolution; else: pass)
->Background removal ->Segmentation ->Classification

Following the practice in the recent studies [15, 51, 65], we use twoworkloads, bursty and steady,
for the experiments. These workloads were generated based on the frequencies of job arrivals in the
real-world Azure serverless traces [70]. For the bursty workload and steady workload, intervals
are set such that they put the resource utilization in our serverless environment to 100%, 50%, and
25%, respectively, levels that are representative of what prior studies have used [28, 35, 54, 64]. The
requests to the four applications arrive in a round-robin manner.
SLO Latency Requirement. SLO latency is an important requirement on a serverless workload.
It defines the acceptable latency for the platform to respond to a request. Let t be the time needed
by the application to complete its entire workflow when it runs alone with a unit CPU and a
unit GPU. We use SLO level when describing an SLO latency of a workload. It is defined as the
ratio between the SLO latency and t. An SLO latency level of 0.8× refers to the case where the
acceptable maximal latency is 0.8 times t. The settings of SLO latency follow the practice in recent
literature [38]: For bursty workload periods, we adopt a relaxed SLO setting (1.2× and 1.5×); for
normal workload conditions, more moderate and stringent SLO settings are used (0.8× and 0.5×),
aligning with typical user expectations. Note that 0.5× and 0.8× performance targets are reasonable
and achievable because the base is the performance when only one unit CPU and one unit GPU are
used for the application. DNN applications typically have high parallel speedups.
Platform. We adopt an experimental framework used in a prior work [38] as the platform for this
study. The framework can emulate various serverless workloads and scenarios. The emulations are
based on the actual performance of the serverless functions measured on actual machines in various
configurations (MIGs, batch size, CPU, and GPU resource allocations). The machine is as specified
in Table 3. There is a 16-core CPU and an NVIDIA A100 GPU in each node. By default, the serverless
platform regards a node consisting of 16 vCPUs and 7 vGPUs, with one vCPU corresponding to
one CPU core, and one vGPU to one MIG instance. It is worth noting that multiple vGPUs (MIGs)
can be used as a group to serve one serverless function through software methods [39], which is
the base for our experiments when the scheduler assigns one lambda function to multiple vGPUs.
The network bandwidth is 5Gbps, according to the bandwidth of single-flow traffic to and from
AWS EC2 instances [7]. The hardware resource considered testbed in the emulations consists of 32
nodes, each equipped with 16 vCPUs and one A100 GPU (up to 7 vGPUs by MIG). To accommodate
the impact of other runtime factors on the performance, the emulations add Gaussian noises to the
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Fig. 4. The SLO hit rates and normalized resource costs for all applications in different SLO requirements
and workloads.

performance. The emulation is equipped with a workload generator, which generates workloads
by sampling the set of serverless functions randomly based on a specified arrival rate. The set of
workloads we considered in the evaluation is detailed earlier. The scheduler and job dispatching
implementation are based on the controller in OpenWhisk [1]. The framework uses proxy threads
to monitor the function call intervals, predict subsequent invocations, and proactively warm-up
instances so that most function calls (except first-time calls) can avoid cold-start delays.

Table 3. Experimental hardware configuration

CPU device AMD EPYC 7302P 16-Core Processor
CPU Mhz 1499.866

CPU memory 128GB DDR4 3200MHz ECC DRAM
GPU device NVIDIA A100 80GB

GPU memory 80GB
MIG instances Up to 7 MIGs@10GB

3.2 Metrics and Measurement
We repeat the measurement 10 times and report the average.
Resource Cost. It is defined as execution time multiplied by the allocated resource and the unit
price of a resource. Following AWS EC2 pricing [78], we set the unit price of a vCPU to 0.034$/hour
(including the memory). Based on the pricing of an entire GPU on AWS, we divide it by 7 vGPUs
and get the unit price of a vGPU as 0.67$/hour.
SLO Hit Rate. SLO hit rate is defined as the fraction of requests whose latencies (from the time
when the request arrives at the serverless platform to the time when the result is produced) are
below the required SLO latency.

Our analysis also examines other metrics, such as GPU usage and job queueing time, for in-depth
analysis.

3.3 Observations and Insights
3.3.1 Overall Observation. Fig. 4 shows the total SLO hit rates and resource costs of the work-
loads, for both bursty (a & c) and steady cases (b & d). In each case, there are three SLO latency
requirements.

On the bursty workloads: When the SLO requirement is relaxed (1.2× and 1.5×), the application
granularity uses the largest amount of resource but delivers the lowest SLO hit rates. In contrast,
the block granularity achieves the highest SLO hit rates with the least resource consumption. It
doubles the hit rates of the application granularity while reducing the resource cost by about 20-25%.
When the SLO requirement is strict (1×), the stage granularity becomes the most favorite choice. It

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 1, Article 6. Publication date: March 2025.



6:8 Xinning Hui, Yuanchao Xu, Xipeng Shen

SLO=1.5x SLO=1.2x SLO=1x
(a) Image classification

0

20

40

SL
O 

hi
t r

at
e 

(%
)

Bursty workloads

SLO=1.5x SLO=1.2x SLO=1x
(b) Background elimination

0

20

40

SL
O 

hi
t r

at
e 

(%
)

Bursty workloads

SLO=1.5x SLO=1.2x SLO=1x
(c) Depth recognition

0

20

40

SL
O 

hi
t r

at
e 

(%
)

Bursty workloads

SLO=1.5x SLO=1.2x SLO=1x
(d) Expanded image 

 classification

0

5

10

SL
O 

hi
t r

at
e 

(%
)

Bursty workloads
Application Stage Block

Fig. 5. The SLO hit rates for each application in the bursty workloads.
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Fig. 6. The normalized cost for each application in the bursty workloads.

delivers the highest SLO hit rate (9% higher than application) while consuming only 79% of the
resource used at the application granularity.

On the steady workloads: The differences between the different granularities are less pronounced
except at the lowest SLO level (0.5×), where the block granularity is the least favorable choice.
Compared to the stage granularity, it saves 10% resource but degrades the SLO hit rates by 30%.
More detailed results are shown in Figs. 5, 6, 7, and 8. The first two show the SLO hit rates and

resource cost of each application in the bursty workloads, and the latter two show those in the
steady workloads. The granularity preferences vary across the applications in both the bursty and
steady workloads. In the bursty case, for instance, image classification achieves both the highest
SLO hit rates and the lowest resource cost when it uses block granularity, while it is not the case for
the background elimination application, for which, the stage granularity works substantially better.
The applications also show different responses to the changes in the intensity of the workloads. For
application image classification, for example, block granularity stays preferable as the workloads
change from bursty to steady when the SLO factor is 1× or 0.8×. For extended image classification,
the block was not delivering any SLO hits in the bursty case but becomes the most favorable choice
in the steady case when the SLO factor is 1×.

The application, expanded image classification, is worth more discussions. It shows very low SLO
hit rates in the busty case. The reason is that this application consists of the largest number of DNN
models and, hence, the longest pipeline. In the stage and block cases, it gets the most serverless
functions. As a result, for it to serve one request, it is subject to the longest waiting times in the
queues. It hence gets minimum or no SLO hits, especially when the SLO factor is small. In the
steady workloads, the queues are less occupied, and hence, the waiting time is lower, especially
when the SLO factor is not too small, where, all granularities start to get most SLO hits.

We next provide an in-depth analysis of the impacts of function granularity.
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Fig. 7. The SLO hit rates for each application in the steady workloads.
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Fig. 8. The normalized cost for each application in the steady workloads.

3.4 In-Depth Analysis of the Impact of Function Granularity
The aforementioned results indicate that varying granularities can significantly affect SLO hit
rates and resource consumption across different applications. We conduct an in-depth analysis to
uncover the fundamental reasons behind, providing insights for system designs.

Fig. 9. The normalized execution latency (a) and resource efficiency (b) of different models. Resource efficiency
is the number of requests that can be completed on the entire A100 GPU with various MIG slices for the
same time period.

3.4.1 Variations across Models and Blocks. One explanation for a finer granularity outperforming a
coarser granularity is the variability in scalability across ML models and model blocks on different
MIG instances.
Figure 9 illustrates the execution latency and resource efficiency of the models on a full A100

GPU across different MIG slices. Resource efficiency is measured by the number of requests that
can be completed on the entire A100 GPU with various MIG slices within the same time period.
The execution latency represents the average latency of all requests completed during this time
period.

The execution latencies of SRGAN and MiDas exhibit higher sensitivity to computing resources,
with a 3.2x slowdown when resources are reduced to 1/7. In contrast, U2NET experiences only a
1.53x slowdown under the same conditions. From the resource efficiency perspective, as illustrated
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Fig. 10. The normalized execution latency and resource efficiency for each block of the depth recognition
model.

in Figure 9 (b), all models demonstrate improved resource efficiency with a finer granularity. Notably,
U2NET achieves significantly higher resource efficiency in the 1g.10gb setting, due to its small
slowdown in execution latency on reduced resources.
Figure 10 shows the execution latency and resource efficiency of each block in MiDas, a depth

recognition model. Similar variations are also observed across different blocks. The resource
efficiency of block 4 is three times higher than that of block 5 on the 1g.10gb MIG slice. Other
models exhibit similar patterns, but they are not depicted for the sake of space.
These variations suggest that using a coarser granularity may lead to resource over-provision.

For example, the serverless platform assigns a fixed amount of resources to an invocation of a
serverless function. If the amount of resource best fits the need of one part of the serverless function
(e.g., one of the DNN models in an application-wise serverless function), it could be a less efficient
setting for another part.

3.4.2 Analysis of Various Scheduling Outcomes. The above evaluation shows that different function
granularities lead to different scheduling outcomes. In this part, we conduct a deeper analysis of
how function granularity influences the scheduling outcome by analyzing GPU resource utilization,
queueing time, and data transfer overhead.

Block
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Fig. 11. The available GPU slices distribution of each
GPU under the bursty workloads.

SLO=1.5x SLO=1.2x SLO=1x
(a)

0

100

200

Qu
eu

ei
ng

 ti
m

e 
(m

s) Bursty workloads

SLO=1x
[8~13.44]

SLO=0.8x
[10~16.8]

SLO=0.5x
[40~67.2]

(b)

0

10

20

Co
m

m
un

ica
tio

n 
 o

ve
rh

ea
d 

(m
s)

Steady workloads
Application Stage Block

Fig. 12. (a) The average queueing time for all tasks.
(b) The data transfer overhead. No data transfer in
the application granularity, thus the overhead is 0.

Figure 11 illustrates the availability of vGPU slices on eight randomly sampled GPUs in the cluster
under a bursty workload. Due to variations in availability over time during workload execution,
boxplots are used to represent the distributions. The results indicate that the application granularity
results in the highest number of idle vGPUs, whereas the block granularity leaves almost no vGPUs
idle. This occurs because functions at the application granularity require large resources initially; if
the currently available resources are insufficient, the scheduler may leave fragmented resources
unused. Additionally, the application granularity often experiences longer queuing times as it
requires accumulating enough resources.
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Figure 12 (a) displays the average queueing time for a job before the controller can have enough
resources and dispatch it. The strong resource constraints associated with application granularity
result in a 19% longer queueing time compared to the block granularity. This increased queueing
time adversely affects SLO hit rates.

The finer-grained functions are not always beneficial. Fig. 12 (b) shows the data transfer overhead
of different granularity. The application granularity incurs no data transfer overhead, whereas the
block granularity experiences a data transfer overhead of up to 100ms. This data transfer overhead
increases the execution latency of applications and negatively affects the SLO hit rates.

3.5 Summary of Insights
In summary, the studies have revealed the following insights:

• Function granularity is crucial to the performance and cost of serverless ML, causing 10%–53%
differences in SLO hit rates and up to 54% differences in costs. (Answers to RQ1)

• No granularity fits all situations. For a given system workload, the best granularity changes
when the SLO level changes or the arrival rates of requests change. (Part-1 answer to RQ2)

• Different models show different scaling as the number of vGPUs increases, and similar
variations manifest across different blocks of an ML model as well. It suggests that the best
granularity differs across different applications. (Part-2 answer to RQ2)

• There is a tradeoff among the various effects of granularity. Based on the observations, we
qualitatively summarize the effects in Fig. 13. As granularity increases, data locality becomes
better, and hence, data transfer overhead decreases, but at the same time, flexibility for
scheduling worsens, job waiting time lengthens, and resources become underutilized. The
exact effects are sensitive to the SLO level and workload properties (e.g., job arrival rates).
(Part-3 answer to RQ2)

Reward 
function

Function
granularity

System
workload

SLO level

Data 
locality

Scheduling
flexibility

Resource 
utilization

Queuing
time

Fig. 13. Impacts and factors of granularity
explored.

It is worth noting that SLO hit rates and resource costs
form a tradeoff. Sometimes, one would use a single reward
function to combine them into a single reward score for
assessment [83]. An example is a weighted sum of the
two:
𝑟𝑒𝑤𝑎𝑟𝑑 = 𝛼 · 𝑆𝐿𝑂 ℎ𝑖𝑡𝑠 − 𝑐𝑜𝑠𝑡𝑠

where, 𝛼 is called reward factor. It is easy to see that
in a given setting, different reward factor values could
lead to different rankings of the granularities. The factors
in Fig. 13 hence also include reward function as one of
the influencing factors. We show how the reward factor
affects the granularity choice in Section 6.

4 Predicting Granularity
The findings in the previous section suggest that the best function granularity varies across
applications, and is affected by many runtime factors, such as current system workloads, resource
availability, and the SLO requirement. The second exploration of our study is to investigate whether
it is feasible to predict the appropriate granularity for each invocation of a serverless ML application
during runtime. We use the three granularities mentioned in the previous section as the potential
choices.

We have designed three ML-based predictive models. The first is multi-agent deep reinforcement
learning (DRL), which does not require pre-training. This method emulates the human learning
process, continuously exploring the space of choices and learning the relations between the state
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of the environment and the best option to make. The other two are supervised learning methods:
linear regression for its simplicity and interpretability, which provides a fast and efficient method
to establish predictions [58]; and random forests for their robustness and capability of handling
complex nonlinear relationships [26]. We choose these methods because (i) they have shown lots
of success in handling runtime predictions in solving system problems [29, 49, 57, 73], (ii) unlike
DNNs, they do not need a large amount of labeled data to train, (iii) they are lightweight models
fast to run, which is important for our task as the prediction must happen on the fly. We next
explain them.

4.1 Multi-agent Reinforcement Learning
It is based on Deep Q-Network (DQN) [31], a deep reinforcement learning (DRL) method. It does
not require manual labels, unlike supervised learning, but actively explores the environment, learns
the relations between actions and rewards automatically, and uses the learned model to predict
the following suitable action. This nature makes it a good fit for the dynamic environment in our
problem. Our design creates a DQN agent for each serverless ML application for the granularity
decision.
The DQN-based RL agent is lightweight. It requires less than 250KB of additional memory,

making the storage overhead minimal [73]. Computationally, the network’s inference time is under
1 ms, and one learning step takes only 1 ms even with all (four) DQN agents operating concurrently.
The computational overhead introduced by the model is negligible.

Applying DRL requires defining three key components: States, Rewards, and Actions. We define
them in the serverless execution environment as follows:
States.The States in a DRL are supposed to capture the status of the environment and the application.
We use the currently available resources (# vCPUs, # vGPUS) in each machine to represent the
environment states and the status of the application with the SLO, and the time interval since its
last call.
Actions. The Actions in a DRL consist of all the possible outputs of its prediction. In our problem,
they are 0 for application granularity, 1 for stage granularity, and 2 for block granularity.
Rewards. The Rewards function in a DRL specifies the rewards that one action could bring. For
many problems, the final rewards may not be known until a series of actions are taken. Our problem
is such a case: it is not possible until an invocation of an application finishes running to tell the
total costs and latency. To help DRL effectively learn, it is common to assign a small reward to
intermediate progress. In our design, we define the award of the finish of one stage (i.e., one DNN
inference or one block) of an ML application as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 =


−𝑝 + 1(𝑙 ≤ 𝑆𝐿𝑂) ∗ 𝛼 , if 𝑎𝑝𝑝 𝑖𝑠 𝑑𝑜𝑛𝑒

1 (𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑠𝑒) , otherwise
0.33 (𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑠𝑒) , otherwise

(1)

where, 𝑝 is the total cost, 𝑙 is the total latency, 𝑆𝐿𝑂 is the SLO latency, 𝛼 is a constant (based on the
user’s preference, see Section 3.5) called reward factor, which balances hit rates and cost. We assign
a small reward (1 for a model, 0.33 for a block) to an intermediate progress.
Neural Networks. DQN includes a policy neural network and a target neural network inside, which
learn about the relations between states, actions, and rewards. We use the default neural network
architectures in DQN [57], but adjusted the input and output channels to align with the dimensions
of the States and Actions in our problem.
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Fig. 14. Expanded OpenWhisk workflow with adaptive granularity enabled.

4.2 Supervised Learning
In addition to the reinforcement learning method, we also explore supervised learning methods.
Given the uncertain relationship between system workload status and granularity, we investigate
two supervised machine learning techniques to forecast granularity. We employ linear regression
for its straightforward approach, and XGBoost, which usually excels on structured data.
Linear Regression. Linear regression is a statistical method used to model the relationship
between a dependent variable and one or more independent variables [58]. The equation of a linear
regression model with multi-independent variables is y = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 +𝜀, where, y
is the dependent variable, 𝑥𝑛 is the independent variables. The goal is to find the linear equation
that best predicts the dependent variable based on the independent variables. In this context, the
dependent variable represents the predicted granularity, while the independent variables include
current system resource availability (# vCPUs, # vGPUS), workload status, and SLO settings.
XGBoost. Xtreme Gradient Boosting (XGBoost) operates on the principle of gradient boosting,
constructing an ensemble of decision trees sequentially, where each subsequent tree aims to correct
the errors made by the previous ones, thereby improving the model’s accuracy. XGBoost works
well with structured data and can be used for classification. It has built-in features for prevent-
ing overfitting. Our objective function multi:softprob is tailored to the nature of the granularity
prediction task.
The training processes use a robust training-validation strategy, employing a split of training

and validation sets, where the ratio is 80:20, to evaluate the model’s generalizability and prevent
overfitting. The input includes current system resource availability (# vCPUs, # vGPUS), the job
arrival interval length, and the SLO levels, and the output is the predicted granularity. We created a
set of synthesized workloads with various settings and SLO levels and empirically found the best
granularities through many trials. These data are used to train the predictive model. The real-world
traces are used as the testing data for evaluations.

5 Programming and Runtime Support
The third exploration in this work is to design the programming and runtime supports to ease the
adoption and integration of adaptive granularity in serverless ML.

Before describing the support, we first note the high-level strategy in constructing functions of
various granularities. At first glance, it might seem desirable to construct serverless functions of
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various levels of granularity on the fly based on the dynamic situations of the serverless platform.
The construction, however, incurs runtime overhead. Moreover, it worsens cold start overhead.
When a new container is initiated for the newly constructed serverless function, it needs to create
a new container image based on the selected function granularity rather than reusing an existing
image. It makes it hard for cold-start minimization techniques to apply, which typically rely on
reusing or prewarming techniques for ahead-of-time created images [20, 28, 53, 67, 70, 74]. The
strategy we find effective is to predefine functions with representative granularities ahead of time
and adaptively invoke the proper one(s) at runtime based on the dynamic situation.
Fig. 14 shows the expanded OpenWhisk workflow with adaptive granularity enabled. During

the deployment stage, the user first creates the functions used in the workflow. User-created
functions prompt OpenWhisk to establish a namespace, register the action, and store its code and
configuration in a database. We enhance this process with a granularity generator that helps users
create functions of different granularities, which are also stored in the database. In the invocation
phase, events trigger action invocations. Granularity selector residing in the Controller determines
the optimal granularity based on the runtime information. The Controller retrieves the function
of the selected granularity from the database and allocates resources for functions. Next, we will
explain the added support in more detail.

5.1 Creating Serverless Functions with Adaptive Granularity
The creation of serverless functions happens offline. The tools we have designed, in the form
of a Python module, help the process. It has three parts: bridge function generation, composer
generation, and function splitting.

As discussed in Section 2.2, a serverless application is implemented as a workflow, represented
as a composer in OpenWhisk, and invoked through a bridge function. Listing 1 illustrates the bridge
function template our tool creates for adaptive granularity. It defines different branches to call the
application in different granularities. For application granularity, this call will be a function call. For
the other granularities, this call will be a composer call. When the user creates various granularity
applications, they either return the function name or the composer name. Our tool takes in the
function name and composer name to generate the bridge function for an application. In execution,
the bridge function will take the granularity from the granularity selector as the input to decide
which branch to execute.
Application-wise workflow. The user takes the whole application program and defines it as a
lambda function, and returns the function name to the bridge function to fill in the application-wise
branch.
Stage-wise workflow. In Section 2.2, we discussed how users create serverless workflows by
defining a composer. For a serverless function to be referenced within this composer, it must be
predefined. The composer’s name is then utilized in the relevant branch in the bridge function.
Block-wise workflow.When a user creates the function for the block-wise workflow, our splitting
function module will generate the block-wise function, and the composer generation module
generates the composer.

As we introduced in Section 3.1, we evenly divide the model into several blocks for load balance.
Our tool retrieves the source code and analyzes it to extract the model architecture and the forward
relations between layers. It then determines the topological order of the layers and evenly segments
them into distinct blocks that fully exploit the parallel execution opportunity in the original model
architecture, creating a separate function for each block and storing them in the database.

After creating all the block-wise functions for a given stage function, our tool can then construct
the composer specific to that stage. The composer of all the stages is put together into the composer
for the application. Since only tensor data is exchanged between blocks, it is straightforward to
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generate these composers. The composer’s name is then put into the relevant branch in the bridge
function.

5.2 Runtime Support
Besides the offline automatic generator, we need to provide the runtime extension to make the
adaptive function invocation in OpenWhisk.
As introduced, the controller handles requests and fetches that function from the database. In

our extended platform, the invocation becomes a call to the bridge function. Before fetching the
function, the granularity selector residing in the controller will check the load balancer to get
the available resource information. Proxy threads are employed to track the intervals between
application requests. Then the granularity selector, through its encompassed granularity predictor,
uses the data on available resources, request intervals, and SLO levels to determine the optimal
granularity. Subsequently, the controller fetches the bridge function from the database and gives
the granularity as the input. The bridge function takes the granularity and calls the corresponding
branch.

const openwhisk = require('openwhisk ');

function main(params) {

#get the granularity from input

granularity = console.log(params.granularity);

#application wise

if granularity ==0:

name = 'ApplicationName '

# Invoke the TargetFunction

data = ow.actions.invoke ({name , result , params })

#stage wise or block wise

if granularity ==1 or granularity ==2:

# Initialize the Openwhisk Composer

const composer = require('@openwhisk/composer ')

# Define composer name here

if granularity ==1:

composer_name = 'StageName '

if granularity ==2:

composer_name = 'BlockName '

# Start execution of the composer

module.exports = composer.sequence(composer_name)

return data

}

Listing 1. Bridge function template

6 Evaluation of Adaptive Granularity
This section evaluates (i) the effectiveness of adaptive granularity, (ii) the detailed analysis of
the effectiveness, and (iii) the generality evaluation. We use the same methodology as described
in Section 3. One difference is that we use real-world traces from Azure [70] with mixed SLO
levels—1.2× and 1.5× SLO requirements during the bursty stage, and 0.45×, 0.5×, and 0.8× SLOs
during the steady stage.
We assess the effectiveness of adaptive granularity using three predictors: multi-agent deep

reinforcement learning (DRL), linear regression, and XGBoost, as detailed in Section 4. These
methods are evaluated against the state-of-the-art serverless ML, ESG [38]. To test generality, we
also experiment with another recent serverless ML, INFless [78]. Both use stage granularity. We
add the other two fixed granularities and implement our adaptive granularity upon those two
state-of-the-art serverless ML frameworks. The results with fixed granularities are labeled as ESG-
application, ESG-stage, ESG-block, INFless-application, INFless-stage, and INFless-block. Results
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using adaptive function granularity with three predictors are denoted as ESG+DRL, ESG+Linear
Regression, ESG+XGBoost, INFless+DRL, INFless+Linear Regression, and INFless+XGBoost.

We use reward score as the overall metric, defined as 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝛼 ·𝑆𝐿𝑂 ℎ𝑖𝑡𝑠 −𝑐𝑜𝑠𝑡𝑠 as mentioned
in Section 3.5. To illustrate adaptivity, we use three different reward factors (1, 50, 100) for 𝛼 to
represent different user preferences on the emphasis given to resource cost and SLO hit rate.

6.1 End-to-end Performance
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Fig. 15. The rewards (higher is better) with different factor settings in (a) overall, (b) bursty stage, and (c)
steady stage.
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Fig. 16. The SLO hit rates (higher is better) with different factor settings in (a) overall, (b) bursty stage, and
(c) steady stage.
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Fig. 17. The resource cost (lower is better) with different factor settings in (a) overall, (b) bursty stage, and (c)
steady stage.

Fig. 15 (a) displays the total reward scores for various reward factors when different granularities
are applied. When the factor is set to 50 and 100, emphasizing the importance of SLO hit rate
over resource cost, ESG+XGBoost achieves 31.1%-93.5% improvement in rewards compared to
fixed granularity. Conversely, with the reward factor at 1, which gives some more emphasis on
resource cost over SLO hit rate, ESG+XGBoost outperforms both ESG-application and ESG-stage
by 29.11% and 11.9%, respectively, showing that using the adaptive function granularity leads
to significant better scheduling outcomes for different scenarios. Among all adaptive schemes,
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ESG+XGBoost surpasses ESG+RL by 3%-25% and ESG+Linear Regression by 0%-8.24%, delivering
the best performance.
Fig. 16 (a) and 17 (a) illustrate SLO hit rates and resource costs, respectively. When the reward

factor is 1, ESG+XGBoost consumes smaller resource costs by up to 24.6% compared to the fixed
granularity. When the reward factor is set to 50 and 100, Fig.16(a) demonstrates that adaptive
granularity outperforms fixed granularity in terms of the SLO hit rate, showing up to 29.2% SLO
hit rate using XGBoost.
Fig. 18 presents the total rewards for each application. All applications achieve the highest

rewards using ESG+XGBoost. The highest improvement is on the expanded image classification
workload, 436% higher than the fixed granularity. The reason is that this application consists of
the largest number of DNN models and, hence, the longest pipelines. As shown in Figure 18 (d),
this application achieves the highest reward when using application-level granularity compared
to all fixed granularities. Fine-grained approaches introduce data transfer overhead and queuing
delays for each function in the pipeline, which increase the end-to-end latency and lead to the
poorest performance. Our dynamic granularity successfully identifies the best granularity and
yields significant improvement.

Fig.19 displays the SLO hit rates, showing that ESG+XGBoost yields the best SLO hit rates for all
applications when the reward factor is 50 and 100, at most 45% higher than the fixed granularity for
expanded image classification. Fig. 20 illustrates the resource cost, where ESG+XGBoost consistently
results in the lowest resource cost across all applications when the reward factor is set to 1, at most
58% lower resource cost for the expanded image classification.
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Fig. 18. The rewards (higher is better) for each application in the real-world trace.
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Fig. 19. The SLO hit rates (higher is better) for each application in the real-world trace.

6.2 Performance Breakdown Analysis
Figs. 15 (b), 16 (b), and 17 (b) show the performance during the bursty stage, whereas the (c) parts
of these figures show the results in the steady stage.
The figures show that SLO hit rate and resource cost remain the same across different factor

settings for a fixed granularity level (Application, Stage, or Layer). This consistency is caused by
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Fig. 20. The resource cost (lower is better) for each application in the real-world trace.

the same granularity being utilized irrespective of all factor settings. In the bursty case, ESG-block
achieves a higher SLO hit rate (22%-102%) and utilizes fewer resources (0.3%-5%) over the other two
fixed granularity, thanks to its high resource efficiency, which aligns with the analysis presented in
Section 3. In the steady case, because of the stringent SLO requirements, ESG-application gets the
highest SLO hit rate but at the expense of more significant resource costs.
When the factor is set at 1, indicating more emphasis on resource cost savings, ESG-block

demonstrates the lowest resource cost during both bursty and steady cases for all requests, as
shown in Fig. 17. It is observed that ESG+XGBoost consistently selects this granularity, matching
the performance of block granularity in each stage.
When the factor is adjusted to 50 and 100, prioritizing the SLO hit rate becomes crucial. As

Fig. 16 shows, during the bursty phase, ESG-block granularity achieves the top SLO hit rate, and
the adaptive granularity approach delivers comparable results. In the steady phase, application
granularity gets the highest SLO hit rate, and the performance of the adaptive granularity closely
aligns with it.

Figure 16 (c) reveals that the SLO hit rate for ESG-application is slightly better than ESG+XGBoost
when the factor is set at 50 or 100. This difference is primarily due to variations in runtime
system resources, which depend on the granularity method employed. Specifically, during the
bursty phase, the granularity choices between ESG+XGBoost and ESG-application differ, impacting
resource availability in subsequent normal phases and influencing detailed performance metrics.
Despite these variations, Figure 16 (a) and Figure 17 (a) show that ESG+XGBoost outperforms fixed
granularity approaches in terms of SLO hit rates while incurring similar resource cost.

Fig. 21. The average GPU resource utilization.

Given the varying nature of workloads and
factor settings, the adaptive granularity can
adapt to the change and choose suitable gran-
ularity, thus it can outperform fixed granular-
ity. This suggests that considering the system’s
current state and user preferences is crucial for
optimizing the performance of serverless ML
workflows.

6.3 Resource Utilization Analysis
Fig.21 shows the average GPU resource utiliza-
tion. It shows that finer function granularity
facilitates cost savings due to the variability in
the scalability of ML models and blocks (as discussed in Section3.4.1), while coarser granularity
consumes more resources but achieves higher SLO hit rates (see Fig. 16). The figure also reveals
that when the factor is set to 1, ESG+XGBoost consumes the fewest resources, similar to ESG-block.
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However, as the factor increases to 50 and 100, ESG+XGBoost utilizes more resources, akin to
ESG-application, to achieve higher SLOs (as depicted in Fig. 16).

Figure 22 displays the GPU resource utilization for each time step, with different 𝛼s. It shows the
period when the bursty stage ends and the system shifts into a steady stage. During the bursty stage,
ESG+XGBoost exhibits increased resource utilization to reduce queuing time and improve SLO.
In the steady stage, when the factor is 50 and 100, prioritizing SLO, as illustrated in Figure 22 (b)
and (c), ESG+XGBoost achieves high SLO hit rates through increased resource usage. Conversely,
when the factor is set to 1, emphasizing resource conservation, ESG+XGBoost reduces resource
utilization, as shown in Figure 22(a). In conclusion, ESG+XGBoost can make suitable decisions
based on system and workload conditions, as well as performance objectives.

Fig. 22. The GPU resource utilization during which the burst stage ends and the system transitions to a
steady stage for (a) factor is 1, (b) factor is 50, and (c) factor is 100.

6.4 Generality Study
6.4.1 Different MIG Partitions on A100. We conducted experiments on two additional MIG partition
settings, as detailed in Table 4. Figure 23 presents the results for partition P1, which consists of
three 2g.20gb instances and one 1g.10gb instance. Among the fixed granularity choices, block
granularity consistently achieves the highest performance, with SLO hit rates that are 17% and
7% higher than those of application and stage granularities, respectively. Figure 24 presents the
results for partition P2, which consists of one 4g.40gb instance, one 2g.20gb instance, and one
1g.10gb instance. For this setting, it is the stage granularity that achieves the highest SLO hit rates
among all fixed granularity choices, outperforming application granularity by 5%. Block granularity
shows the lowest performance. We attribute the reasons for the different performances of the three
fixed granularities in these two settings to the different restrictions imposed by the partitions. The
lower performance of block granularity in P2, for instance, is due to the tension between its need
to schedule more functions and the very limited MIG instances in P2. That leads to significant
resource contention, causing many functions to wait for available resources.

Our dynamic granularity, ESG+XGBoost, consistently brings the largest rewards in both settings.
In partition P2, for instance, it achieves SLO hit rates that are 12% to 19% higher than fixed granularity
methods when prioritizing SLO adherence and reduces costs by 17% when emphasizing cost savings.
It is worth noticing that in terms of the overall results, the best are achieved by ESG+XGBoost
when the GPUs have the finest MIG partitions (as shown in Section 6.1). The reason is that that
setting gives the largest granularity selection space (recall that multiple vGPUs can be used as a
group by a serverless function) and, hence, the largest performance potential.

6.4.2 NVIDIA H100. We also conducted experiments on the NVIDIA H100, a more recent GPU in
Hopper architecture. It has the same set of MIG instance partitions as A100. We use the finest MIG
partitions for this experiment for its superior performance.
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Table 4. Additional partition settings of NVIDIA A100.
Partitions NVIDIA MIGs

P1 2g.20gb + 2g.20gb + 2g.20gb + 1g.10gb
P2 4g.40gb + 2g.20gb + 1g.10gb
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Fig. 23. The (a) total reward, (b) SLO hit rates, and (c) resource cost enabled on partition P1 in Table 4. The
ESG-stage in (c) is 1.
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Fig. 24. The (a) total reward, (b) SLO hit rates, and (c) resource cost enabled on partition P2 in Table 4. The
ESG-stage in (c) is 1.

Fig. 25 (a) displays the total reward scores for various reward factors when different granularities
are applied. When the factor is set to 50 and 100, emphasizing the importance of SLO hit rate
over resource cost, ESG+XGBoost achieves 15.3%-88.7% improvement in rewards compared to
fixed granularity. Conversely, with the reward factor at 1, which gives some more emphasis on
resource cost over SLO hit rate, ESG+XGBoost outperforms both ESG-application and ESG-stage by
37.6%, showing that using the adaptive function granularity leads to significantly better scheduling
outcomes for different scenarios. Among all adaptive schemes, ESG+XGBoost surpasses ESG+RL
by 15% and ESG+Linear Regression by 11%, delivering the best performance.
Fig. 25 (b) and (c) illustrate SLO hit rates and resource costs, respectively. When the reward

factor is 1, ESG+XGBoost consumes smaller resource costs by up to 29.8% compared to the fixed
granularity. When the reward factor is set to 50 and 100, ESG+XGBoost shows up to 36.7% SLO
hit rate improvement. H100 delivers better SLO hit rates overall than A100 thanks to its greater
computing power.

6.4.3 On Other Serverless Framework. To check the generality, Fig. 26 shows the results on another
serverless ML framework, INFless [78]. The results show that adaptive function granularity also
improves INFless; XGBoost gives the best performance.

6.5 Overhead Analysis
Table 5 reports the average queueing delay and data transfer overhead of different methods. The
ESG-block yields the least queuing delay in the bursty phase while it has the largest data transfer
overhead. The ESG-application has the largest queuing overhead but no data transfer overhead.
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Fig. 25. The (a) total reward, (b) SLO hit rates, and (c) resource cost on NVIDIA H100. The ESG-stage in (c) is
1.
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Fig. 26. The (a) total reward, (b) SLO hit rates, and (c) resource cost enabled on INFless[78]. The INFless-stage
in (c) is 1.

Table 5. The queueing time and data transfer overhead.
Workloads Total Bursty Steady

𝛼 1 50 100 1 50 100 1 50 100

Queuing time
(ms)

ESG-application 25 25 25 49 49 49 1 1 1
ESG-stage 7 7 7 12 12 12 2 2 2
ESG-block 9 9 9 11 11 11 7 7 7
ESG+DRL 19 7 12 32 12 21 6 2 4
ESG+Linear Reg. 9 6 6 11 12 12 7 0.5 0.5
ESG+XGBoost 9 6 6 11 12 12 7 0 0

Data transfer
overhead (ms)

ESG-application 0 0 0 0 0 0 0 0 0
ESG-stage 6 6 6 9 9 9 4 4 4
ESG-block 33 33 33 55 55 55 10 10 10
ESG+DRL 22 24 22 33 45 37 10 3 7
ESG+Linear Reg. 33 18 15 55 35 30 10 0 0
ESG+XGBoost 33 28 28 55 56 56 10 0 0

ESG+XGBoost results in shorter queuing delays compared to ESG-application and reduces data
transfer compared to ESG-block, enhancing its overall scheduling outcomes. These benefits are
derived from its adaptive decision-making. As demonstrated in Table 5, XGBoost selects block
granularity during the burst stage, leveraging its scheduling flexibility and shorter execution times
to reduce queuing. During the steady stage, it opts for application granularity, taking advantage
of sufficient system resources to handle applications more efficiently and minimize data transfer
overhead.

Fig. 27 presents the 95th percentile tail latency for all applications. The ESG-application experi-
ences higher tail latency primarily due to cold start delays, whereas the ESG-stage and ESG-block
achieve lower latency by loading only parts of the models each time. Additionally, the pre-warming
policy initializes non-first function instances within the workflows, which further reduces tail
latency for the ESG-stage and ESG-block. When the factor is set to 50 and 100, the adaptive methods
choose block granularity during the bursty stage and application granularity during the steady
stage (details in Fig. 28 and Fig. 29). Consequently, the adaptive methods exhibit tail latency similar
to that of the ESG-application. However, when the factor is set to 1, the adaptive methods opt for
block granularity, resulting in tail latency comparable to the ESG-block.
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Fig. 27. The 95th percentile tail latency for all applications.

Fig. 28. The 95th percentile tail latency for all applications in the bursty stage.

Fig. 29. The 95th percentile tail latency for all applications in the steady stage.

Table 6. Scheduling overhead and percentage.
Scheduling overhead (ms) Percentage (%)

𝛼 1 50 100 1 50 100
ESG-application 0.34 0.34 0.34 0.0 0.0 0.0
ESG-stage 1.23 1.23 1.23 0.05 0.05 0.05
ESG-block 2.55 2.55 2.55 0.17 0.17 0.17
ESG+RL 1.49 1.59 2.71 0.02 0.02 0.11
ESG+Linear Reg. 3.05 2.38 2.03 0.2 0.08 0.07
ESG+XGBoost 3.45 3.48 3.48 0.22 0.15 0.15

Table 6 presents the scheduling overhead associated with different granularities. Finer granularity
incurs higher scheduling overhead than coarse granularity because of the increased search space
from more functions. Adaptive granularity results in slightly longer overhead, approximately 1
ms, compared to fixed granularity. However, this overhead constitutes a small fraction of the total
end-to-end latency, less than 0.3%.

6.6 Discussion
The current results reveal that XGBoost surpasses both linear regression and the multi-agent
RL approach. The superior performance over RL is due to the challenges of sparse and delayed
rewards in reinforcement learning: rewards are distributed at each step as functions are executed,
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yet comprehensive data such as end-to-end latency and exact resource usage of an application are
not clear until the final function completes, complicating the task of accurate reward evaluation.
XGBoost’s superiority over linear regression highlights that the correlation between input features
and predicted granularity is too intricate for linear models to capture.
This study explores three given granularities to demonstrate how function granularity affects

serverless scheduling outcomes. One could use automated ML partitioning techniques, such as
Alpa [82], to partition the original application into even more possible granularities. Our current
design can be extended to handle that, which is left as future work.

This paper demonstrates the enhancements in performance and cost efficiency achieved through
the adoption of varying function granularities in MIG. Incorporating different function granularities
could also improve performance and cost efficiency in MPS by broadening the selection space,
thereby accommodating dynamic resource availability and diverse user needs. One recent study,
PROTEAN [19], have investigated the integration of MIG and MPS on serverless computing to
augment resource efficiency and satisfy SLOs. Our research contributes are orthogonal to PROTEAN
by introducing dynamic granularities. Incorporating a broader spectrum of function granularities
could potentially further enhance PROTEAN’s improvements if the increased scheduling complexity
can be effectively addressed.

7 Related Work
Explorations to enable efficient sharing of a GPU for multiple co-running jobs trace back to the
pioneering work by Wu and others [76], who proposed a technique called SM-centric program
transformations to allow flexible control of the placements and scheduling of GPU threads at
program level. It opens up opportunities for optimizing co-runs of GPU kernels through code
transformations. Based on the technique, Chen and others [23] designed the first software-enabled
preemptive scheduler for GPUs regardless of whether the GPUs have built-in hardware support
for kernel preemption. These techniques circumvent the limitations of GPU hardware, making it
possible for programs to conduct flexible controls and optimizations of threads, scheduling, and
kernel co-runs. Recent GPUs are equipped with new hardware features, such as MIG, to better
support co-runs. Those software methods still have their value in enabling flexible software-level
optimizations.
In serverless computing, several recent studies have started investigating the segmentation of

functions to enhance resource utilization. For instance, Splitwise [59] decomposes large generative
language models (LLMs) into memory-intensive and compute-intensive segments to optimize the
use of resources; this approach ensures that compute and memory resources are not unnecessarily
tied up when they are not in active use. Gillis [79] introduces automatic model partitioning for
large neural networks within serverless functions, leveraging the potential for parallel execution to
enhance performance and reduce costs. While these studies acknowledge the advantages of fine
granularity in serverless functions concerning resource use and flexibility, they do not delve into
the impacts of varying granularities.

Other studies employed the coarse fixed function granularity, such as application and model. For
example, some studies treat each ML model as a function. Infless [78] explores dynamic batching
and resource assignment with a heuristic algorithm, while ESG [38] focuses on GPU sharing,
developing a scalable and efficient resource assignment scheduler. Other research considers the
entire application as a single function. Miso [46] examines container placement strategies to enhance
GPU utilization, and Simppo [62] uses the entire application, consisting of multiple ML models, to
reduce data transfer and improve resource efficiency.
There are numerous studies trying to improve the efficiency of the serverless computing by

optimizing scheduling algorithm [16, 25, 42, 44, 48, 55, 56, 60, 62, 66, 72, 78, 83]. Some of them, such
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as [38, 55, 78], employ search-based scheduling algorithms, while others (e.g., [62]) utilize rein-
forcement learning for resource management. There are also approaches [83] that adopt Bayesian
optimization-based scheduling algorithm, which builds upon IceBreaker [67] and CLITE [60] and
extends BO in new ways than what was previously done in other BO-inspired solutions, such
as SATORI [66], Ribbon [47], and OLPart [25]. Several studies have investigated the efficient
scheduling of function Directed Acyclic Graphs (DAGs) on CPUs. Orion [55] proposes assigning
multiple instances of a function to a single virtual machine (VM) to improve resource utilization.
WiseFuse [56] suggests assigning in-series functions to a VM, aiming to reduce communication
overhead. Although WiseFuse dynamically assigns in-series functions to leverage some benefits
akin to our exploration of varying function granularities, its focus remains on CPU-based environ-
ments and does not explore the potential resource efficiency improvements that different function
granularities might yield on GPUs. ProPack [18] investigates the assignment of an optimal number
of function instances of a function to a VM to address the significant scaling latency observed when
numerous functions are invoked concurrently.
Besides, there are many works optimizting the cold start [14, 30, 33, 71] and improve data lo-

cality [13, 41, 52]. However, none of them change the function granularity to further optimize
serverless computing. Our research introduces an innovative dimension, granularity, that is com-
plementary to existing strategies. To the best of our knowledge, this is the first study to explore
granularity as a distinct dimension to improve serverless computing, offering potential synergies
that could amplify the benefits of prior solutions.

8 Conclusion
This paper presents three-fold explorations in function granularity for serverless ML. It confirms
the importance of granularity and uncovers a series of insights on the impact of granularity
on the SLO and resource costs. It describes our three attempts to create predictive models for
function granularities and the associated programming and runtime support for integrating adaptive
granularity into serverless platforms. The results show that adaptive granularity can achieve
significant benefits compared with the conventional workflow using single fixed granularity.
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