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Adaptive Joint Spatio-Temporal Graph Learning Network for
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Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are
spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the
ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial
in capturing the traffic dynamic. In this work, we propose AJSTGL, a novel adaptive joint spatio-temporal
graph learning network for traffic data forecasting. The proposed model utilizes static and adaptive graph
learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning
process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine
the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module
to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node
relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our
model could outperform other state-of-the-art baseline methods.
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1 INTRODUCTION

In recent years, spatio-temporal data modeling has received increasing attention due to its
prevalent appearance in many real-world applications, such as traffic data forecasting and natural
disaster prediction [3, 7, 12]. In this article, we study the problem of traffic data forecasting by
given historical traffic conditions. Traffic data forecasting has always been an essential part of the
intelligent traffic system (ITS). Traffic networks can be formulated as graphs, where each node
represents a point of interest, such as road intersections and airports. Then, the edges can be
represented as the connectivity among the points of interest, such as flight routes and road seg-
ments. Conventional spatio-temporal data processing approaches utilize Convolutional Neural
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Networks (CNNs) to extract the spatial features and use Recurrent Neural Networks (RNN’s)
to learn the temporal correlation from the input sequence [4, 26, 37]. However, the “sliding grid”
style of convolution used by CNN cannot produce functional features on graph-structured data.
The grid segments measured using Euclidean distance are not viable candidates to represent the
inherent network structure and node dependencies in a traffic network.

Recently, Graph Convolutional Networks (GCNs) have seen extensive applications on
graph-structured data [30, 33, 39]. GCNs apply convolution on neighboring nodes based on the
adjacency/correlation matrix that formulates the network topology. However, there are still signif-
icant challenges in applying GCNs to traffic data forecasting problems. Most existing GCN-based
models only use pre-defined node relationships to construct the adjacency matrix [8, 11, 42].
The pre-defined graph network is often inferred from the physical route connection and specific
distance measurements. Due to the complex nature of traffic forecasting problems, such an
intuitive graph structure cannot capture diverse traffic patterns. Moreover, many external factors
affecting the traffic patterns, such as weather and special events, are yet fully exploited and
integrated into the model. Some studies [2, 6, 40] attempted to learn the adjacency matrix using
data-driven methods to circumvent the disadvantage of a pre-defined graph. However, as the
prediction horizon increases, most adjacency matrices are prone to noise and fine-scale roughness,
which increases the difficulty of learning complex spatio-temporal correlations.

This article addresses the preceding challenges by proposing AJSTGL, a novel adaptive joint
spatio-temporal graph learning network. AJSTGL is composed of several graph learning modules.
In the static graph learning module, shifted graph Laplacian is applied to expand the sensitivity
of the pre-defined graph. The transformed graph Laplacian can capture more granular hidden
patterns and still leverage the original graph structure’s knowledge. Furthermore, we adopt
node-specific dependency modeling to replace the conventional graph convolutional layer so that
the model can learn node-specific patterns. In the adaptive graph learning module, the adaptive
graph generation and unidirectional graph convolution methods are applied to learn the network
topology in a data-driven manner. A sequence-to-sequence fusion module is developed to encode
multiple graph signals in parallel and hierarchically combine them to learn the short-term
temporal node dependencies. We also develop the spatio-temporal graph transformer module to
complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving
spatial node relations in long-term time intervals.

The main contribution of this work can be summarized as follows:

— A novel spatio-temporal graph learning network for traffic data forecasting is proposed. It
integrates multiple graph learning modules, including static, adaptive, and dynamic spatial
convolutional graphs, to capture the static and evolving spatial correlations.

— A sequence-to-sequence fusion module and a spatio-temporal graph transformer module are
designed for jointly learning the short- and long-term temporal correlations.

— Several graph learning techniques, such as unidirectional graph convolution and graph reg-
ularization, are developed to help the model capture more complex hidden patterns and
improve the graph quality.

— The proposed model is evaluated on three large-scale traffic datasets and compared with
several baseline methods. The experimental results demonstrate the excellent performance
of our model compared to other state-of-the-art techniques.

The rest of the article is organized as follows. Related work is given in Section 2. Section 3
discusses the proposed AJSTGL and its main components. Section 4 presents the experimental
results and compares our model with other baseline methods. Finally, Section 5 summarizes the
article and suggests potential future work.
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2 RELATED WORK

Spatio-temporal data processing has attracted lots of attention due to its broad applications
in many real-world problem domains [18, 19, 25]. CNN has been used to capture the spatial
dependencies on grid-structured data. Recurrent models such as RNN and Long Short-Term
Memory (LSTM) are widely adopted to model temporal relations. Yuan et al. [35] applied CNN
and LSTM to create an auxiliary model that learns the latent space embedding of historical traffic
flow. Environmental data and traffic flow records are combined to predict travel time in the road
network. However, each of these methods has its limitations when handling spatio-temporal
data. For instance, CNNs are restricted in processing grid-structured data since they can only
be applied to data measured in Euclidean distance [13]. The performance of the recurrent-based
model degrades when making long-term predictions since it does not have enough “memory” for
long input sequences [36].

GCN has been successfully applied in spatio-temporal data modeling where the correlation
between objects can be constructed as a graph. Existing applications of GCN-based networks
(e.g., [9, 14, 23]) only model the stationary spatial dependencies in the GCN layers. Although
there have been efforts in incorporating temporal node dependency into the graph convolutional
layers, like embedding the signals of immediate adjacent time steps in the same GCN layer [40],
such approaches still fall short in learning the long-term temporal relations. Recent advances
in transformer-based models [5, 10, 27] enable the network to learn temporal information from
a more extended period. Instead of memorizing the hidden states of neighboring tokens, the
transformer utilizes the self-attention mechanism to generate the contextual vectors based on the
entire input sequence.

Traffic forecasting is one domain that heavily involves spatio-temporal data. DCRNN [20] makes
multi-step traffic prediction using an encoder-decoder network structure that integrates graph
convolution with diffusion operation and RNNs. However, it only uses the traditional Euclidean
distance measurement to construct the graph adjacency matrix, which ignores many complex
node relations in a real traffic network. STGCN [34] applies GCN to model spatial correlations and
temporal convolution networks to learn the temporal correlations from the input data. However, it
does not take into account the dynamic aspect of the spatio-temporal dependencies. Some works
utilize a data-driven method to adaptively construct the graph adjacency matrix. AGCRN [2]
learns the adjacency matrix from input signals to model the spatial relations and adopts a gated
RNN to model the temporal relations. Zheng et al. [41] apply dilated causal spatio-temporal graph
convolution layers to capture the spatio-temporal dependencies in multiple time intervals and
develop multi-range attention to help the model focus on different time ranges. In AdapGL [38],
the model trains two GCNs back to back. The pre-defined adjacency matrix is used to optimize the
learned adjacency matrix through each training iteration. However, the RNN-based layers these
models adopt limit their ability to capture long-term temporal correlations. Attention mechanism
has also been leveraged to formulate the dynamic spatio-temporal correlation in traffic forecasting
problems. Li et al. [21] use static and dynamic graphs to learn short and long-term data patterns.
A multi-head attention unit is leveraged to capture the correlations among multi-variables.
Lan et al. [17] apply a dynamic attention map that extracts the probability distribution among
nodes to derive the adjacency matrix. However, these methods overlook the node dependency in
the pre-defined adjacency matrix and require specific manipulation of the network topology.

To address the limitations in the aforementioned works, our proposed model utilizes both
pre-defined and dynamically generated graph adjacency matrices. It enables our model to learn
a more comprehensive representation of the spatial dependencies. Moreover, we incorporate
recurrent- and transformer-based layers to facilitate the model capturing short- and long-term
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Fig. 1. Overall framework of the proposed model.

temporal dependency simultaneously. Additionally, the proposed graph learning approaches,
such as the shifted graph Laplacian, node-specific dependency modeling, and the auxiliary graph,
greatly expand the model’s capability in extracting more complex and dynamic traffic patterns.

3 METHODOLOGY

In this section, we introduce the proposed AJSTGL and its main components. Figure 1 illustrates
the overall framework of AJSTGL, which mainly consists of the static graph learning module,
adaptive graph learning module, spatio-temporal graph transformer module, and sequence-to-
sequence fusion module. We apply several techniques, such as unidirectional graph convolution,
gated information fusion, and graph regularization, to enhance the model’s ability to model
spatio-temporal dependencies and produce higher-quality graphs.

3.1 Preliminaries

Given a graph G = (V, E, X, A), where |V| = N represents the set of nodes, E represents the edges,
X € RN%Q is the node feature with O as the vector size, and A € RNV is the adjacency matrix
that defines the topology of the graph network. The normalized graph Laplacian with self-loop
can be represented as follows:

L=Iy+DtADE, 1)
where Iy € is the identity matrix and D represents the degree matrix of A. To re-

duce the computation complexity on a large graph, the first-order Chebyshev polynomial
approximation [16] of the graph convolution can be described as follows:

X" = (Iy+ D" TAD™ z)x’®+b, ()

RNXN
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where X! € RN*Q and X! € RN*Z are the input and output at layers [ and [ + 1 with Q and
Z as the corresponding vector sizes, and ® € RY*Z and b € RZ are the weight and bias terms,
respectively.

3.2 Static Graph Learning Module

The static graph learning module combines node connectivity and geographical distance to model
the spatial node dependencies.

3.2.1 Node-Specific Dependency Modeling. In a standard graph convolution layer, the weights
are shared among all nodes when the convolution operation is applied. According to Equation (2),
for a specific node x; € R™*9, the trainable weight parameter ® € R*Z in a convolution operation
transforms x; into x;. € R™Z The shared weight © effectively learns the spatial relations among
all nodes, which greatly reduces the number of parameters and saves computation time. However,
in many real-world scenarios, such a weight-sharing strategy could become a constraint since
heterogeneous spatial patterns could exist among closely associated nodes. For instance, airports
with connected flight routes or are geographically closely located may exhibit diverse traffic
patterns due to the influence of weather conditions and special events. Therefore, sharing weight
parameters among all nodes limits the model’s ability for accurate traffic data forecasting, which
relies on learning the distinct spatial patterns. It is essential to incorporate additional parameter
space to model node-specific properties for each node.

To address the aforementioned challenge, we conduct node-specific dependency modeling by
adding an extra dimension to the weight parameter ®, which results in a node-specific weight
parameter © € RN*9%Z where N indicates the node counts in the graph. However, due to the
additional dimension in the new weight matrix, the number of parameters that need to be opti-
mized expands exponentially. It significantly increases the computational cost and potential for
overfitting, especially for graphs with large numbers of nodes. To solve this problem, we apply
graph parameter decomposition to factorize © into §; and W, where &, € RN*% with d, << N
and W, € R%XQ%Z_ Ag a result, instead of optimizing a huge three-dimensional matrix ©, the
model learns two smaller weight matrices §; and Ws. The updated graph convolution layer can be
expressed as

X" = (Iy + DTAD™%) X', W, + 6,bs, 3)
where by € R%*Z is the updated bias term.

3.2.2  Shifted Graph Laplacian. The intuitive node relations are commonly used to model the
spatial node dependency in a pre-defined network topology. Nevertheless, there exist hidden
patterns that cannot be captured by the pre-defined graph schema. Thus, we develop a strategy
to introduce a shifted graph Laplacian Ls on top of the intrinsic graph Laplacian L to learn the
hidden spatial node dependencies.

The adjacency matrix in a shifted graph Laplacian uses the node-wise Gaussian smoothed
similarity score as the values. In this work, the similarity score is measured by the cosine similarity
between each pair of nodes. The shifted graph A adjacency matrix is represented as follows:

3 exp(—%;;xj)z), i # j and cos(x;, xj) > &
A = 4)
0, otherwise,

where cos(x;, x;) is the cosine similarity score between nodes x; and x;, o is the standard deviation,
and ¢ is the threshold parameter that controls the matrix sparsity. We empirically set &5 to 0.5

ACM Transactions on Spatial Algorithms and Systems, Vol. 10, No. 3, Article 26. Publication date: October 2024.



26:6 T. Wang and S.-C. Chen

to avoid the matrix from becoming overly sparse. Then, the shifted graph Laplacian Ly can be
expressed as follows:

o=

_1 -
Ly =In+Ds*ADg?, (5)

where D; is the degree matrix of A;. Finally, the graph Laplacian for the static convolutional graph
can be calculated as

L=L+alLs, (6)

where « is a learnable parameter that controls the shifting scale on the original graph Laplacian.
Based on Equation (6), Equation (3) can be transformed to

XM = IX S, W, + 8bs. (7)

3.2.3 Auxiliary Convolutional Graph. An auxiliary convolutional graph is used to exploit
contextual information such as wind, humidity, and temperature in a traffic network. The adja-
cency matrix of the auxiliary convolutional graph is generated based on the node’s geographic
proximity. To ensure the matrix symmetrical property, a Gaussian kernel function is applied to
produce the edge weights. Similar to Equation (4), the adjacency matrix A, can be expressed as
follows:

dist(x;,x;)* . . .
y exp(———7——), i#janddist(x;,x;) < &
Ag = t)
0, otherwise,
where dist(x;, x;) is the spherical distance between nodes x; and x;j, o is the standard deviation,
and ¢, is the threshold parameter that controls the matrix sparsity. We empirically set ¢, to 0.4 for
optimal model performance.

3.3 Adaptive Graph Learning Module

3.3.1 Adaptive Graph Generation. Many existing studies only use pre-defined adjacency
matrices to represent the node relations. This limits the model’s ability to learn more complex
spatio-temporal graph patterns. Another disadvantage of the conventional graph convolutional
layer is that it assumes bidirectional node correlations. However, in many real-world problems,
such as traffic data forecasting, the changes in traffic patterns may only transmit in a single
direction.

To address the aforementioned limitations, we propose an adaptive graph generation approach.
It automatically learns the hidden graph topology from the input data. Furthermore, the learned
graph adjacency matrix considers the unidirectional correlations between each pair of nodes.
First, we use an anti-symmetric matrix to construct the normalized graph Laplacian of the new
graph L,:

Lq = Iy + softmax (ReLU (M,M] — MgM)) . )

where M, M, € RN%da g << N are the learned node embedding that formulates the adjacency
matrix through the training process. Being the product of the two anti-symmetric matrices,
MPM; - MqM; has zero values in all of its diagonal elements. The ReLU() function further
transforms another half of the negative matrix elements to zeroes. The so ftmax() function is used
to normalize the adjacency matrix. Additionally, we apply node-specific dependency modeling
from Equation (3) to enable the model to learn node-specific dependencies. Finally, the GCN layer
in the adaptive convolutional graph can be expressed as follows:

X = LX 8, W, + 84b,. (10)
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Fig. 2. lllustration of the overall structure of S2SFM.

3.3.2  Unidirectional Graph Convolution Layer. A unique graph convolution transformation
approach is developed to further enhance the model’s capability of learning the heterogeneous
unidirectional data patterns. The proposed unidirectional graph convolution layer can be
represented as follows:

X" = (LX'6W + 6b) @ (LTX'6W + 8b) . (11)

The transformed graph convolutional layer adds a second term LTX!6W + 8b with transposed
graph Laplacian L to model the reversed dataflow pattern.

3.4 Sequence-to-Sequence Fusion Module

We develop S2SFM, a sequence-to-sequence fusion module, to capture the short-term temporal
node dependencies. Figure 2 demonstrates the overall structure of the proposed S2SFM. Unlike
typical sequence-to-sequence models with a single encoder, S2SFM utilizes parallelized BiLSTM-
based encoders to concurrently process the graph signals from all GCNs. The context vectors
of all encoders are combined using the Hierarchical Graph Fusion (HGF) approach [31]
to capture the n-modal cross-modality interactions among all graph signals. HGF utilizes a
tree-based graph structure to join the input signals on different levels. It learns the unique
joint-modality representations, with lower-level nodes representing basic interactions and higher-
level nodes modeling more complex correlations. The final output of HGF can be represented
as follows:

Fcombined = Funi—modal ® Fbi—modal @ Ftri—modal--' S Fn—modals (12)

where Foompined is the final combined context vector, Fy,i—modals Fbi—modal> Firi—modal> and
F—modal are the representation vectors for each level, and @ is the concatenation operation. In
this study, we use HGF to combine the output signals of four GCNs. Therefore, the first level
contains the uni-modal interactions, the second level learns the bi-modal interactions, the third
level models tri-modal interactions, and the fourth level captures the quad-modal interactions.
The combined context vector is then passed into the decoder to produce the output sequence.
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temporal aware embedding vectors. The dynamic spatial and temporal convolutional graphs are stacked
together to model the node relations jointly.

3.5 Spatio-Temporal Graph Transformer Module

To complement S2SFM in long-term prediction, we develop STGTM (the spatio-temporal graph
transformer module) to jointly model the dynamic spatio-temporal dependencies. Its overall
structure is demonstrated in Figure 3. STGTM consists of spatio-temporal relative positional
encoding, which generates the time-evolving spatial embedding of the graph signals, and the
dynamic spatial and temporal convolutional graphs that model the spatial and temporal node
dependencies, respectively.

3.5.1 Spatio-Temporal Relative Positional Encoding. The transformer-based model applies
positional encoding to embed the spatial relations of each token in the input sequence. Static
positional encoding approaches, such as the widely adopted sinusoidal wavelength method [29],
rely on fixed-length input sequences and do not consider their relative positional relations.
In STGTM, we apply a relative positional encoding layer with trainable parameters to learn
the dynamic spatial and temporal dependencies. More specifically, matrices PEs € RN*N and
PEr € R®*C in the encoding layer hold the learned spatial and temporal relative positional
embedding, where C represents the number of timesteps in the input sequence. The embedded
input feature vector can be represented as

Xg = conv (X @ PEg ® PEy) , (13)

where X € RE*NXQ js a three-dimensional vector that contains the features of all nodes across the
entire historical time sequence, and PE/S € ROXNXN and PEIT € REXNXC are the expanded matrices
of PEg and PEt along the spatial and temporal dimensions, respectively. In addition, conv() isa 1 X
1 convolutional layer that converts the original input vector X into its spatio-temporal embedded
form Xp € REXNXQ,

3.5.2  Dynamic Spatial Convolutional Graph. The DSCG (dynamic spatial convolutional graph)
learns the adjacency matrix from the time-evolving hidden patterns in the positional embedded
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input sequence. We apply a multi-head self-attention mechanism to capture the pattern representa-
tions from different subspaces and form the adjacency matrix. Figure 4 demonstrates the structure
of the multi-head adjacency matrix that applies the self-attention mechanism. The subspaces used
in DSCG contains the query Qs € RN*% key Ks € RN*% and value Vs € RNV*? spaces, where
dy is the query size and key vector size, and d,, is the value vector size. Each matrix is calculated
as the product of the input feature vector and its corresponding weight parameter:

Qs = Xy Wo, Ks = XgWi, Vs = X; Wy, (14)

where X;E € RN*Q represents a single timestep in Xz, and Wp € RO, Wy € R, and
Wy € ROXQ are the learnable weight parameters for Qs, K, and Vs, respectively.

The adjacency matrix of DSCG for each attention head unit can be derived from the scaled dot
product among the query, key, and value matrices:

. QLK
A, = softmax Ve, 15
q = sof ( v )V (15)

where softmax() is used to obtain the normalized spatio-temporal node-wise dependency in the
ith attention head A’,, and Vdy serves as the scaling factor to stabilize the gradients during the
training. The multi-head attention unit is generated by concatenating each attention head unit:

Ay = concat (Ab,A‘fi, .. "Afi) Wo, (16)

where A}i, e ,Aii are the single-head attention units, and Wy is the learnable weight parameter.
The output of the node input feature through the multi-head attention unit is then calculated as
follows:
X E= AdX E- (17)

We add residual connection and layer normalization to help improve the model stability and gen-
eralization performance:

X, = LN (Xg + X)), (18)
where LN () represents layer normalization [1]. Then, the output is fed into two feed-forward layers
with ReLU activation function:

Xsr = ReLU (ReLU (X}Wa + ba) W, + bb) , (19)
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where W,, Wy, b,, and b;, are the weight parameters. In the last step, we apply residual connection
and layer normalization again on the output of the two feed-forward layers to generate the final
feature vector X7 € RENXQ of STGTM:

X571 = LN (XST +X}) . (20)

3.5.3 Dynamic Temporal Convolutional Graph. The DTCG (dynamic temporal convolutional
graph) shares a network structure similar to that of DSCG. We first apply residual connection
between the original input vector X and DSCG output Xs7 to get X € RE*N*Q_ The relative
positional encoding layer is applied to produce embedding results using the temporal encoding
PEr. X and PE7 are concatenated and passed through a 1 X 1 convolutional layer to generate the
temporal encoded vector Xg. Similar to DSCG, the multi-head self-attention mechanism is applied
to capture the pattern representations from Qs, K, and Vs subspaces:

Qs = XEWQ, Ks = XEWK» Vs = ;(/EWV’ (21)
where )E'E e RExQ represents an arbitrary node in XE, and WQ € RQXJk, WK € RQX‘{k, and
Wy € RO*Q are the trainable weight parameters for Qg, K, and Vs. Then, the attention-aware
adjacency matrix based on a single attention unit can be expressed as

Yi T
AZ = softmax S—KS \7;, (22)
Vi
Similar to DSCG, the final multi-head attention context vector is generated by concatenating each
single-head unit:
Ay = concat (AZ,AZ, . ,A;) Wo, (23)
Next, the intermediate output Xz is multiplied with the multi-head unit to produce the attention-
weighted vector:
X = AaX, (24)
The attention-weighted vector is fed into two feed-forward layers with residual connection and
layer normalization:

X;: =LN (XE +XE), (25)
Xsr = ReLU (ReLU (X Wa + bo) Wy + by ) (26)
XST = LN (XST + )(_}5) 5 (27)

where Xs7 € RE*N*Q is the final output of STGTM, which will be combined with the output of
S2SFM using gated information fusion.

3.5.4 Gated Information Fusion. We apply a gating mechanism to adaptively combine the out-
put features of S2SFM and STGTM. More specifically, a set of learnable parameters are used as a
gate to control the relative weighting between the two input vectors:

G = sigmoid ((y ()N(ST) Dy (XSZSFM)) W, + bg) , (28)

where the sigmoid activation function is used to limit the value of gate G within range [0, 1], y()
is a linear projection function that transforms the feature vectors from both modules into a one-
dimensional vector, and W, and b, are the weight parameters. As a result, we can use G to fuse
the two feature vectors as i

Xr =G 0o Xsr + (1 -G) © XsasFums (29)
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where O is element-wise multiplication. X € REXNXQ represents the joint spatio-temporal depen-
dencies that will be used for the final prediction.

3.6 Prediction Layer and Loss Function

To generate the multi-step prediction, the output of the gated information fusion module Xy is
passed into a double-layered convolutional network:

Y = conv(conv(Xy)). (30)

Xy is transformed into a two-dimensional vector Y € RN*7 where 7 is the number of timesteps
in the output sequence.

To improve the quality of the convolutional graphs, we optimize the learned graph adjacency
matrix by applying certain constraints in the loss function. The model is forced to minimize a
graph regularization term during the training process. The graph regularization term is expressed
as follows:

N N 2 .. SN2
Jor = 20 2 e =, 42+ B (41)" 6D
i=1 j=1
where AY is the corresponding adjacency matrix element for nodes x; and x;, and f is a scaling
2
factor controlling the matrix sparsity. Term Hx,— - xjH2 enforces the graph proximity property by

encouraging larger AY values when x; and x; are close and smaller AY values when the two nodes
move away in the latent space.

The loss function minimizes the Mean Absolute Error (MAE) between the ground truth value
and the predicted value. The graph regularization term in Equation (31) is added to the MAE loss
function. The final loss function is expressed as follows:

Lioss = ”Y - ?Hl + )LJgr’ (32)

where Y is the ground truth value and ] is a scaling factor that controls the degree of regularization.
We empirically set A to 0.4 to achieve the best model performance.

4 EXPERIMENTS AND ANALYSES
4.1 Datasets

We evaluate AJSTGL on several large-scale real-world datasets: Reporting Carrier On-Time
Performance (RCOTP), PeMSD4, and PeMSDS8:

— RCOTP: Released by the U.S. Bureau of Transportation Statistics (BTS), this dataset con-
tains flight operation information for all reporting airlines in the U.S. domestic market.
Records from January 2017 to December 2021 were collected, which include 433 airports
and 30,940,455 records. Among them, 8,102 origin and destination (OD) pairs are retrieved.
Figure 5 visualizes major airports based on the volumes of their connection flights. In the
experiment, we predict the multi-step flight arrival delays at the airport level.

— PeMSD4: This dataset includes historical traffic condition data in the San Francisco Bay area
published by the Caltrans Group using the Performance Measurements System (PeMS). The
data was collected in 5-minute intervals using 307 sensors on seven major roads. The period
covered by PeMSD4 ranges from January 2018 to February 2018. Three types of measure-
ments are used, which include average speed, average occupancy, and traffic flow. In this
study, we focus on traffic flow and traffic speed predictions.

— PeMSD8: Also published by Caltrans Group, this dataset contains the traffic information
in the San Bernardino area from July 2016 to August 2016. The 170 sensors used 5-minute
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Fig. 5. Visualization of the RCOTP dataset showing major U.S. airports based on the number of connection
flights. The blue dot size indicates the relative connection flight volume an airport receives compared to
other airports.

intervals on eight roads to collect the average speed, average occupancy, and traffic
flow information. Like PeMSD4, we focus on traffic flow and speed predictions in this
study.

We also utilize real-time weather forecasting records from the National Climate Data Center
(NCDC). Weather conditions collected by nearby weather stations at each traffic network node in
the same period are used as the input for the auxiliary convolutional graph network.

4.2 Experimental Setup

The RCOTP data is aggregated at the airport level to produce the average hourly flight delay. For
PeMSD4 and PeMSD8, we aggregate the traffic speed at 5-minute intervals. Data preprocessing is
done on all datasets: (1) missing values are interpolated as the mean value of the previous and later
timesteps, (2) categorical and discrete values are one-hot encoded, and (3) continuous values are
normalized using min-max normalization. For RCOTP, we conduct arrival delay prediction in the
next 10-hour horizons. For PeMSD4 and PeMSD8, we perform traffic flow prediction and traffic
speed forecast in the next 15-, 30-, 45-, and 60-minute horizons.

All datasets are split into 60% for training, 20% for validation, and 20% for testing. Hyperparam-
eters including the threshold parameter ¢ in the shifted graph Laplacian adjacency matrix, ¢ in
the auxiliary GCN adjacency matrix, node embedding size ds, f§ in the graph regularization, and
A in the final loss function are tuned on the validation set. The numbers of layers in the static,
adaptive, and auxiliary convolutional graphs are set to 3, 4, and 3, respectively. In the dynamic
spatial and temporal convolutional graph, the hidden dimension of self-attention, the dimension
of all sub-layers, and the number of attention heads are set to 64, 512, and 8, respectively.

The model is trained using the Adam optimizer [15] with a training rate of 0.001 and batch
size of 128. Early stopping is applied to prevent the model from overfitting, and the model that
performed best on the validation set is saved. All experiments are repeated five times, and the
dataset is shuffled before the split to ensure randomness in the training, validation, and testing
datasets.
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Table 1. Overall Performance Comparison of AJSTGL and Baselines on Three
Datasets: RCOTP (Average 10-Hour Arrival Delay), PeMSD4 (Traffic Flow), and
PeMSD8 (Traffic Flow)

Model Dataset RCOTP PeMSD4 PeMSD8
Metrics MAE RMSE MAE RMSE MAE RMSE
ARIMA 13.36  24.04 40.05 66.08 36.11 59.85
DCRNN 9.93 16.39 21.25 3349 16.81 26.34
STGCN 9.86 16.86 21.2 35.01 17.52 27.14
ASTGCN 9.66 16.22 22.94 3541 18.28 28.44
Graph WaveNet 10.52 17.88 20.01 31.11 15.61 24.44
AGCRN 9.02 15.24 19.85 32.28 15.97 25.55
STGMN 9.36 16.15 20.83 3298 16.04 24.18
iDCGCN 9.10 15.57 1998 32.11 15.56 25.02
DSTAGNN 9.08 15.33 19.76 3197 15.67 25.37
AJSTGL 7.60 12.84 18.07 29.37 13.79 22.48

4.3 Evaluation Metrics and Baseline Methods

26:13

To evaluate the proposed AJSTGL, we adopt MAE and Root Mean-Squared Error (RMSE).

Several baselines are utilized to compare with our proposed method:

— ARIMA (Autoregressive Integrated Moving Average) [28]: A statistical analysis model that uses
previous timestep values to predict future values.
— DCRNN [20]: A deep neural network with an encoder-decoder structure that combines graph
convolution with diffusion operation and RNNs for multi-step prediction.
— STGCN [34]: A network utilizing GCN to model spatial correlations and a temporal convo-
lution network to capture temporal dependencies.
— ASTGCN [8]: A spatio-temporal convolutional graph network leveraging an attention mech-
anism to model spatial and temporal dependencies.
— Graph WaveNet [32]: A spatio-temporal convolutional graph network that applies diffusion
convolution to capture spatial dependencies and leverages dilated convolution to model the

temporal correlations.

— AGCRN [2]: A convolutional graph network learning the correlation matrix from data to
capture the spatial dependencies and utilizing an RNN to learn the temporal correlation

from the input data.

— STGMN [24]: A spatial-temporal graph convolutional model utilizing gated multi-graph con-
volution to model the spatial dependency and leveraging the multi-scale receptive field of

the CNN to capture the temporal dependency.

— iDCGCN [22]: A GCN using dynamic Chebyshev polynomial mechanism to capture long-

term temporal dependency by extracting the features from various time periods.

— DSTAGNN [17]: A graph neural network that extracts the probability distribution among
nodes from the historical data to derive the node dependencies that replace the pre-defined

static graph.

4.4 Experimental Results

4.4.1  Overall Comparison. Table 1 illustrates the model performance of AJSTGL on the three
datasets against all nine baselines. As shown in the table, we report the average arrival delay for
RCOTP and traffic flow prediction for PeMSD4 and PeMSD8. The traffic speed prediction results

on PeMSD4 and PeMSD8 are presented later in Tables 3 and 4, respectively.
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Table 2. Overall Performance Comparison of AJSTGL and Baselines on Average Hourly Flight
Arrival Delay Prediction in 10-Hour Horizons Using the RCOTP Dataset

MAE
th  2h 3h 4h 5h 6h 7h 8h 9h 10h
ARIMA 733 8.02 926 11.83 13.10 15.77 1593 16.28 17.73 18.32
DCRNN 638 6.78 7.36 810 939 11.02 11.86 12.17 1242 12.94
STGCN 6.24 6.83 7.88 807 9.14 11.73 11.89 12.19 12.60 12.02
ASTGCN 598 554 6.85 815 9.28 10.85 11.99 12.27 13.65 12.03
GW 519 568 6.46 838 1098 12.07 13.09 13.43 14.83 15.07
AGCRN 515 5.63 550 731 958 1031 11.24 1142 11.84 12.19
STGMN 544 575 597 7.63 987 10.6 11.55 1197 1233 12.51
iDCGCN 5.2 558 571 7.49 9.64 1043 1136 11.55 11.96 12.23
DSTAGNN 5.09 542 557 7.02 95 1039 11.63 11.72 12.01 12.28
AJSTGL 4.02 4.26 5.21 699 8.44 932 959 973 995 10.21

Method

——ARIMA ~=—-DCRNN
19 | —4—STGCN ASTGCN
——Graph WaveNet —o—AGCRN
——STGMN —iDCGCN

17

—DSTAGNN ——AJSTGL

13

MAE

11

HOURS

Fig. 6. Visualization of MAE for the RCOTP dataset obtained by AJSTGL and other baselines—arrival delay
in the next 10 horizons.

RCOTP. It can be seen from Table 1 that our model achieves the best performance in terms of
all evaluation metrics. ARIMA, the traditional time series approach, performs the worst among all
methods, as it only captures the temporal dependency in the data. Other spatio-temporal graph
models demonstrate more robust performance since they model both the spatial and temporal
correlations from the data. Our proposed AJSTGL outperforms all baseline methods and leads the
second-best performer (AGCRN) by 15.74% in MAE. This implies that AJSTGL is very effective at
long-term forecasting and that including auxiliary GCN facilitates the model to capture additional
spatial node dependencies.

Table 2 and Figure 6 contain a more in-depth view of the changes in prediction results through
all horizons. Overall, the prediction accuracy drops across all models as the prediction interval
increases. As shown in the figure, ARIMA’s performance decreases dramatically in long-term in-
tervals compared to short-term ones. In comparison, the rest of the GCN-based models achieve
better results in long-term intervals, as they consider both temporal and spatial correlations. For
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Table 3. MAE and RMSE of Traffic Speed Prediction on PeMSD4 for the Next

Four Horizons

26:15

Model Dataset PeMSD4 (15/30/45/60 min)
Metrics MAE RMSE

ARIMA 2.8 5.43
DCRNN 1.34/1.79/2.06/2.27 2.95/4.08/4.82/5.36
STGCN 1.48/1.95/2.23/2.61 3.01/4.22/5.03/5.66
ASTGCN 2.11/2.45/2.62/2.74 3.94/4.58/4.94/5.18
Graph WaveNet 1.45/1.92/2.15/2.55 2.97/4.15/4.89/5.52
AGCRN 2.04/2.39/2.58/2.66 3.86/4.47/4.80/5.12
STGMN 1.87/2.05/2.31/2.54 3.52/4.40/4.66/5.08
iDCGCN 1.63/1.78/1.98/2.25 3.32/4.02/4.35/4.85
DSTAGNN 1.57/1.72/1.90/2.16 3.08/3.94/4.05/4.67
AJSTGL 1.26/1.62/1.78/1.91 2.65/3.40/3.74/3.82

instance, Graph WaveNet outperforms ARIMA since it applies diffusion and dilated convolution
to capture the spatial and temporal correlations. However, Graph WaveNet’s prediction accuracy
deteriorates too quickly compared to other GCN-based models in long-term intervals. DCRNN,
STGCN, ASTGCN, AGCRN, STGMN, iDCGCN, and DSTAGNN have similar performance, with
some models demonstrating an advantage in short-term intervals, such as DSTAGNN, and other
models like STGCN and ASTGCN maintaining a more stable prediction accuracy.

Nevertheless, our proposed AJSTGL yields higher prediction accuracy values across all hori-
zons, especially in mid- to long-term intervals. As discussed earlier, long-term prediction suffers
from diminishing return effects while utilizing historical observations. Therefore, it is essential to
leverage contextual information and construct the graph adjacency matrix based on dynamic long-
term spatio-temporal dependencies. In addition, as a spatio-temporal model, AJSTGL incorporates
the functional structure to extract temporal dependency information from the data. However,
compared with other spatio-temporal baselines, AJSTGL leverages recurrent and transformer-
based network structures simultaneously. Combined with HGF and gated information fusion, our
model demonstrates a more stable performance through short- and long-term time intervals.

PeMSD4 and PeMSD8. According to Table 1, similar to the outcome from the RCOTP dataset,
the traditional time series model ARIMA produces the lowest overall prediction accuracy and
shows its weakness in long-term interval prediction. Other GCN-based models achieve better
results by simultaneously learning spatial and temporal correlations. There are some subtle
changes in the performance ranking. DSTAGNN produces the second-lowest prediction error
on the PeMSD4 dataset, and iDCGCN has the second-best prediction accuracy on the PeMSD8
dataset. Once again, AJSTGL achieves the lowest MAE and RMSE scores in both datasets and
leads the second-best baseline model DSTAGNN by 8.55% in MAE on PeMSD4 and iDCGCN by
11.38% in MAE on PeMSDS8.

Tables 3 and 4 show the traffic speed prediction results in four consecutive intervals (15, 30,
45, and 60 minutes). As an autoregressive model, the result of ARIMA is only shown on the last
time interval. In comparison, all GCN-based models outperform ARIMA, given that they learn the
spatio-temporal correlations simultaneously. On average, DSTAGNN outperforms other baseline
models for traffic speed prediction by a small margin. This may be due to the availability and consis-
tency of the historical data pattern in the two PeMSD datasets. DSTAGNN’s focus on constructing
the probability distribution of historical data helps enhance the quality of the learned graph adja-
cency matrix. Again, our model produces the lowest MAE and RMSE scores among the baselines.
On average, it beats DSTAGNN by 10.61% and 7.13% in MAE on PeMSD4 and PeMSDS8, respectively.
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Table 4. MAE and RMSE of Traffic Speed Prediction on PeMSD8 for the Next

Four Horizons

Model Dataset PeMSD38 (15/30/45/60 min)
Metrics MAE RMSE

ARIMA 2.22 4.57
DCRNN 1.16/1.52/1.69/1.88 2.55/3.53/4.10/4.47
STGCN 1.21/1.62/1.79/1.85 3.21/3.74/3.94/4.19
ASTGCN 1.53/1.71/1.85/1.94 3.22/3.75/3.98/4.25
Graph WaveNet 1.19/1.58/1.81/1.97 3.17/3.69/3.92/4.13
AGCRN 1.51/1.66/1.82/1.88 3.21/3.68/3.86/4.31
STGMN 1.23/1.54/1.71/1.84 3.25/3.62/4.13/4.39
iDCGCN 1.22/1.45/1.67/1.80 3.15/3.48/4.03/4.37
DSTAGNN 1.19/1.42/1.63/1.79 3.10/3.42/3.97/4.35
AJSTGL 1.13/1.32/1.51/1.64 2.37/2.77/3.17/3.28

Table 5. Ablation Study MAE and RMSE for Average Arrival Delay on
RCOTP and Traffic Flow on PeMSD4 and PeMSD8 Datasets

Method Dataset RCOTP PeMSD4 PeMSD8
Metrics MAE RMSE MAE RMSE MAE RMSE
w/o SGL 7.99 15.83 19.01 30.88 14.50 23.64
w/o NSDM 8.27 16.37 19.66 3194 15.00 24.45
w/o AGG 8.32 16.47 19.78 32.14 15.10 24.61
w/o GR 8.12 16.08 1931 3137 1473 24.02
w/o UC 7.93 15.70 18.85 30.63 14.39 2345
w/o AGCN 8.11 16.05 19.27 31.32 14.71  23.97
w/o S2SFM 7.84 15.52 18.64 30.29 14.23 23.19
w/o STGTM 8.01 15.86 19.04 30.95 14.53 23.69
AJSTGL 7.60 12.84 18.07 29.37 13.79 22.48

Table 6. Ablation Study MAE for Arrival Delay on RCOTP for the Next 10 Horizons

MAE

Method 1 2 3 1 5 6 7 8 9 10

w/o SGL 419 449 549 735 868 979 998 999 10.00 10.01
w/oNSDM ~ 4.04 447 574 755 871 985 1033 1027 1075 11.00
w/o AGG 463 490 553 804 867 933 986 1023 1085 11.18
w/o GR 423 447 547 741 890 951 990 1011 10.45 10.79
w/o UC 419 444 543 729 880 956 976 9.87 10.09 10.21
w/o AGCN 430 485 557 684 759 932 1023 1038 1077 11.25
w/oS2SFM 477 582 650 7.62 877 979 981 1043 10.66 11.25
w/o STGTM 4.02 428 583 755 888 999 1074 1139 11.84 12.95
AJSTGL 398 4.26 521 6.99 825 930 949 950 952 9.52

4.4.2 Ablation Study. We conduct an ablation study to further investigate each main compo-
nent’s effectiveness in AJSTGL and their impacts on the model performance. Table 5 presents the
component-wise impact on all three datasets. Table 6 and Figure 7 demonstrate the ablation study
of arrival delay prediction results in the next 10 horizons on RCOTP.
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Fig. 7. Ablation study MAE for arrival delay on RCOTP for the next 10 horizons.

Effect of Shifted Graph Laplacian (w/o SGL). In this scenario, the static convolutional graph
only utilizes the explicit network topology for the graph adjacency matrix. As demonstrated in
Table 5, the MAE of w/o SGL variant increases by 5.18% on average across all datasets. This implies
that the shifted graph Laplacian can effectively help the static GCN capture the hidden patterns in
the graph signal.

Effect of Node-Specific Dependency Modeling (w/o NSDM). To investigate the effect of node-
specific dependency modeling, we remove the node-specific embedding in the weight parameters
of all GCN layers. Results in Table 5 show that the MAE of w/o NSDM increases by 8.78% on
average across all datasets. In Table 6 and Figure 7, it can also be observed that the performance
gain from NSDM is substantially higher in mid- to long-term intervals. We argue that NSDM helps
the model learn node-related patterns that could compensate for the lack of historical information
in long-term prediction.

Effect of Adaptive Graph Generation (w/o AGG). In the w/o AGG test, the GCN created by
adaptive graph generation is removed. We want to study the impact of the hidden patterns captured
by the adaptive GCN and observe whether it could complement the intrinsic pre-defined adjacency
matrix. As illustrated in Table 5, the MAE of w/o AGG increases by 9.5% on average across all
datasets. The substantial performance impact suggests that the pre-defined graph structure could
benefit significantly from the granular node dependencies captured by AGG.

Effect of Graph Regularization (w/o GR). Graph regularization enforces the smoothness of
the learned graph and further controls the matrix sparsity. The w/o GR test removes the regular-
ization term (set A to zero in the loss function) and uses only the MAE loss function to optimize
the model parameters. As shown in Table 5, the MAE of w/o GR test increases by 6.84% compared
to the baseline. Since AJSTGL heavily relies on learning the spatio-temporal dependencies, this
indicates that graph regularization could improve the learned graph quality.

Effect of Unidirectional Graph Convolution (w/o UC).In AJSTGL, we transform the standard
Chebyshev polynomials-based graph convolution layer by concatenating two convolutional layers
with transposed graph Laplacian to capture the unidirectional dataflow patterns. To evaluate its
effectiveness, we use the standard graph convolution layer in all GCNs. Table 5 shows that the MAE
of w/o UC increases by 4.31% on average. This implies that modeling the unidirectional dataflow
on complex real-world data enables the model to capture the in-flow and out-flow patterns.

Effect of Auxiliary GCN (w/o AGCN). We remove the auxiliary GCN, which adopts the spher-
ical distance between nodes as the adjacency matrix to model the contextual weather conditions.
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As shown in Table 5, w/o AGCN produces an increase of 6.65% in average MAE score, substan-
tially impacting the overall prediction accuracy. As a result, we observe a substantial correlation
between the contextual weather condition and traffic patterns.

Effect of the Sequence-to-Sequence Fusion Model (w/o S2SFM). We further validate that the
proposed S2SFM is capable of learning short-term temporal dependencies. In this test, all GCNs
are combined with the gated fusion mechanism and passed into DTCG. We remove S2SFM so that
AJSTGL solely relies on DTCG to model the temporal node dependency. From Table 5, we can
observe a 12.37% increase in average MAE score, which produces the second largest hit on the
model performance. Table 6 and Figure 7 further illustrate the impact of S2SFM on short-term
prediction. Compared to STGTM, removing S2SFM creates a much greater penalty in short-term
prediction performance (first to fourth horizons).

Effect of the Spatio-Temporal Graph Transformer Module (w/o STGTM). The main goal of
STGTM is to complement S2SFM on long-term prediction. To evaluate the effectiveness of STGTM,
we completely remove it from AJSTGL. Table 5 demonstrates a significant 15.13% increase in aver-
age MAE from all datasets. Table 6 and Figure 7 provide more insight from the 10 horizons arrival
delay prediction results. It can be observed that STGTM excels at mid- to long-term predictions
(5th to 10th horizons) when compared to S2SFM. This outcome can be explained from several as-
pects. First, instead of relying on the absolute position, the relative positional encoding generates
the spatial and temporal embedding of the input sequence in a data-aware manner. This helps
the model capture the dynamic hidden patterns from the graph signals. Second, the adjacency
matrix constructed by the multi-head attention mechanism learns the spatial node dependencies
from high-dimensional latent subspaces, which extends the model’s capacity in modeling the hid-
den spatio-temporal relations. Third, AJSTGL balances short-term and long-term predictions by
adopting both S2SFM and STGTM. The gated information fusion module ensures the model learns
the optimal weighting when combining the features from the two modules.

5 CONCLUSION AND FUTURE WORK

This article proposed a novel graph learning network for traffic data prediction. We used
static and adaptive graph learning modules to improve the pre-defined graph and adaptively
learn new graphs to capture complex and dynamic traffic patterns. An auxiliary convolutional
graph was adopted to leverage contextual information. We further transformed the standard
graph convolutional layer to allow the model to learn unidirectional traffic flow patterns. The
sequence-to-sequence fusion module hierarchically combines the parallelized encoders and
learns the short-term temporal node dependencies. We also developed the spatio-temporal graph
transformer module to complement S2SFM by dynamically capturing the spatio-temporal depen-
dencies in long-term prediction. Experimental results on three real-world datasets demonstrated
the excellent performance of our approach compared to other state-of-the-art baselines. Due to the
flexibility of the proposed model, we see the potential of extending it to other spatio-temporal data.
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