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ABSTRACT

A large diversity of fluid pumps is found throughout nature. The study of these pumps has provided insights into fundamental fluid dynamic
processes and inspiration for the development of micro-fluid devices. Recent work by Thiria and Zhang [Appl. Phys. Lett. 106, 054106
(2015)] demonstrated how a reciprocal, valveless pump with a geometric asymmetry could drive net fluid flow due to an impedance mis-
match when the fluid moves in different directions. Their pump’s geometry is reminiscent of the asymmetries seen in the chains of contractile
chambers that form the insect heart and mammalian lymphangions. Inspired by these similarities, we further explored the role of such geo-
metric asymmetry in driving bulk flow in a preferred direction. We used an open-source implementation of the immersed boundary method
to solve the fluid-structure interaction problem of a viscous fluid moving through a sawtooth channel whose walls move up and down with a
reciprocal motion. Using a machine learning approach based on generalized polynomial chaos expansions, we fully described the model’s
behavior over the target 3-dimensional design space, composed of input Reynolds numbers (Rein), pumping frequencies, and duty cycles.
Scaling studies showed that the pump is more effective at higher intermediate Rein. Moreover, greater volumetric flow rates were observed for
near extremal duty cycles, with higher duty cycles (longer contraction and shorter expansion phases) resulting in the highest bulk flow rates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0237403

I. INTRODUCTION

Over the last millennium, nature has provided both inspiration
for technology and insights into fundamental fluid dynamics.2–4 One
striking example of this is the animal heart. Leonardo da Vinci was
perhaps the first to observe the vortices that formed in the sinuses of
Valsalva and postulated that these low-pressure regions aid in valve
closure.5,6 This observation has inspired subsequent work in the for-
mation of jets and vortices at intermediate Reynolds numbers7–9 and
has informed the design of artificial heart valves.10 Similarly, the
dynamics of the early embryonic heart have inspired innovations in
the design of biohybrid and microfluidic pumps.11–13 For example, it
has been proposed that the early vertebrate heart is a dynamic suction
pump,14 and subsequent work has tested the usefulness of these pumps
in generating unidirectional flow.15,16

Recent experimental, computational, and theoretical work has
considered a type of valveless pump where fluid is transported using a
ratcheting effect generated by a geometric asymmetry.1,17–19 In this
case, a reciprocal motion drives two asymmetric sawtooth structures
facing each other. The structures form a corrugated fluid channel that
generates different impedances when the fluid flows in different direc-
tions. Net flow is generated as a result of this impedance mismatch. As
the fluid enters the channel from both ends during the expansion, the
two opposing flows meet somewhere in the middle of the channel but
with a bias that is due to the impedance mismatch. During contraction,
the fluid flows out to both ends of the channel but with a similar direc-
tional bias. As the cycle repeats, the net transport of fluid is generated.
The original design of this pump by Thiria and Zhang1 was inspired
by insect wings.20
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The geometry of this ratcheting pump is reminiscent of the asym-
metries observed in several biological pumps, including insect hearts
and lymphangions (see Fig. 1). In the case of insect hearts, the pump-
ing dorsal vessel consists of a chain of pumping chambers, divided by
valves, that have a similar asymmetry,21 see Fig. 1(a). Lymphangions,
which are responsible for the active transport of lymph through the
body, also consist of a chain of asymmetric pumping chambers that
are separated by values,22 see Fig. 1(b). Both the valves and the travel-
ing peristaltic-like wave of contraction in these pumps contribute to
the net transport of fluid.22 However, the asymmetrical shape of the
pumping chambers could further enhance the transport of fluid.
Studying this mechanism in isolation might reveal how this morphol-
ogy aids in the transport of lymph. Furthermore, bio-inspired innova-
tion is and perhaps should be driven by loose interpretations of nature
rather than the direct copying of it.2,23,24 It is from this lens that we fur-
ther explore the ratcheting fluid pump to gain insights into the mecha-
nisms that may be responsible for transport in such biological pumps.

In this paper, we used the immersed boundary method to per-
form two-dimensional computational fluid dynamics (CFD) simula-
tions of a ratcheting pump where the top and bottom walls were
driven up and down in a reciprocal motion. We varied an input
Reynolds number (Re) of the pump by changing the pumping

frequency (which in turn changes the Strouhal number, St) and by
varying the viscosity of the fluid (which does not change the Strouhal
number). In addition, we varied the duty cycle (p) of the pump for a
range of frequencies (f ) and viscosities. We defined the duty cycle as
the ratio of the pump’s contraction period to the overall period of each
actuation cycle. The volumetric flux over time and net average volu-
metric flux were calculated to assess the pump’s performance across a
parameter space composed of the Reynolds number (variable viscosity,
fixed St), frequency (fixed Re, variable St), and duty cycle. In addition,
fluid circulation in each chamber (tooth) of the pump was calculated
to determine the relationship between vortex dynamics, parameter var-
iations, and pump performance.

To understand how variations in scale (Re), pumping frequency
(f), and duty cycle (p) affect pumping performance, we used a machine
learning (ML) approach based on generalized polynomial chaos
expansions (gPC) to help us reduce the number of simulations neces-
sary to fully explore the 3D parameter space. In comparison with other
surrogate ML techniques, such as neural networks, gPC provides the
added benefit of an easier-to-interpret model function in the form of
multivariate Legendre polynomials.25,26 gPC expansions also require
fewer training data for smaller dimensional parameter spaces.27

Furthermore, gPC allows us to both predict scalar model output as

FIG. 1. (a) Ventral view of heart morphol-
ogy of a mayfly (Procloeon bifidum).
Adapted from Ref. 38. The dorsal vessel
(tubular heart), ostia, and alary muscles
are depicted. (b) Snapshot of multiple lym-
phangions taken from Media 1 of Kodama
et al.39 with an accompanying artist ren-
dering of a single lymphangion. Adapted
from Ref. 40. (d) Bioinspired fluid pump
geometry to study asymmetric geometry
effects on bulk flow properties, based on a
further abstraction of (c) and inspired from
the morphologies in (a) and (b).
Reproduced with permission from G€opel
and Wirkner, PLoS One 13(9), e0201702
(2018). Copyright 2018 Author(s), licensed
under a Creative Commons Attribution 4.0
International (CC BY) license.
Reproduced with permission from
Kodama et al., Biomed. Opt. Express 6,
124–134 (2015). Copyright 2015 Author
(s), licensed under a Creative Commons
Attribution 4.0 (CC BY) license.
Reproduced with permission from
Schulte-Merker et al., J. Cell Biol. 193,
607–618 (2011). Copyright 2011
Rockefeller University Press.
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well as dynamic output metrics, with the added benefit of being able to
assess global sensitivity to variations in uncertain parameters.28–32 A
system is deemed sensitive to an input parameter(s) if small variations
in the parameter(s) result in substantial changes in its output. Global
sensitivity analyses allowed us to quantify the impact of variations
among the input parameters on the overall model output(s) in a holis-
tic fashion,33 as opposed to only local sensitivity measures.34,35 Once
the gPC was trained, validated, and tested, we could eliminate any fur-
ther need for expensive simulation runs of the CFD model itself, to
only needing to evaluate multivariate Legendre polynomials to predict
pumping performance output metrics. Moreover, assessing global sen-
sitivity through gPC provides the benefit of far fewer model evalua-
tions than using low discrepancy sequences, such as Sobol’
sequences,36 to compute accurate Sobol’ sensitivity indices.26,29,37

II. METHODS

The computational model followed the same geometry (size,
shape, and scale) as that of the experimental apparatus of Thiria and
Zhang,1 but with only 8 teeth on each side of the pump rather than 11,
see Fig. 1. Our simulations were performed with a fixed tooth width
w and height h as in Ref. 1. However, while they varied both the initial
gap between the top and bottom of the pump G and the peak-to-peak
oscillation amplitude a, we held them fixed at G ¼ 0:325 cm and
a ¼ 0:337 cm, respectively. This choice was deliberate to study other
properties of this pumping system that were previously unexplored,
namely how varying the duty cycle affects pumping performance in
conjunction with variations in Reynolds number and/or pumping fre-
quency. Note that the fixed geometric choices we made were previ-
ously shown to lead to effective pumping performance in Thiria and
Zhang’s experiment.1

We defined the adjusted input Reynolds number of the system to
be

Rein ¼
d � ðfaÞ � L=G

�
; (1)

where � is the fluid’s kinematic viscosity, d is each tooth’s width/height
(recall w¼ h), f is the pumping frequency, G is the original gap between
the top and bottom, and L is the total horizontal length of the pump.
The product of fa can be viewed as a frequency-based characteristic
velocity of the pumping system. This definition of Rein is equivalent to
the definition of the Reynolds number from Ref. 1. To initialize a simu-
lation for a specific Reynolds number, an appropriate combination of �
and fmust be chosen [see Eq. (1)]. Therefore, we will report an adjusted
input Reynolds number ðReinÞ for each � and f combination. Note that
we varied this input Reynolds number for a range of f to verify our com-
putational model produced similar behavior to that observed by Thiria
and Zhang1 (see Sec. III B). A relationship between the selected f, �, and
Rein is provided in Fig. 25 in Appendix D.

Similar to Thiria and Zhang,1 we only actuated the top of the
pump (the bottom remained fixed). However, unlike their work, we
also varied the duty cycle of the actuation behavior. We defined the
duty cycle p as the ratio of the total contraction time of the pump to
the total period of each actuation cycle. Previous experimental work
only investigated the case in which p¼ 0.50.1 To study how asymmet-
ric pumping kinematics affect the pump’s performance, we chose duty
cycles was between 0:2 � p � 0:8, see Fig. 2. Varying both duty cycle
and frequency may affect vortex formation and vortex interaction

dynamics. This parameter space allowed us to more closely investigate
how vortex dynamics, i.e., circulation, are largely responsible for the
pump’s performance. We used a piece-wise continuous sinusoidal
stencil to prescribe the motion of the pump, i.e.,

ytopðtÞ

¼

G� a
2
sin 2p � t � fcon

2

� �
; t <¼ Tcon

2
;

G� a
2
cos 2p � t�Tcon

2

� �
� fexp
2

� �
; t <¼ Tcon

2
þTexp ;

Gþ a
2
cos 2p � t�Tcon

2
�Texp

� �
� fcon
2

� �
; t <¼ T:

8>>>>>>>>><
>>>>>>>>>:

(2)

The period of one pumping cycle was defined as T ¼ 1=f . We
defined temporal variables for the contraction and expansion phases of
the pumping cycle using the duty cycle, p, i.e., Tcon ¼ pT and
T exp ¼ ð1� pÞT , and hence fcon ¼ 1=Tcon and f exp ¼ 1=T exp. The
time, t, was computed via modular arithmetic to stay within 1 pump-
ing period, i.e., t ¼ “actual simulation time” modT . Figure 2 illus-
trates the prescribed pumping motion for a range of duty cycles p.

Table I provides the study’s input parameters and pump’s geo-
metric parameters used in the study. The varied parameters were the

FIG. 2. Depiction of the vertical pumping motion given by Eq. (2) for a variety of
duty cycles, p.

TABLE I. Pump’s geometric parameters and model input parameter ranges across
all the two-dimensional ratcheting fluid pump immersed boundary simulations.

Parameter Variable Units Value

Total Simulation Time T Pumping cycles 6
Pumping Frequency f Hz [1,5]
Fluid Kinematic Viscosity � cm2=s [0.017,2.47]
Input Reynolds number Rein – [10,300]
Duty cycle p – [0.2,0.8]
Number of Teeth NT – 8
Tooth Width w cm 0.63
Tooth Height h cm 0.63
Jaw Length L cm 5.04
Jaw Gap (resting) G cm 0.325
Actuation Amplitude a cm 0.337
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fluid’s kinematic viscosity (�), pumping frequency (f), and the duty
cycle (p). By changing both � and f different fluid scales (Rein) were
considered. Although the size of the teeth (height, width) and the gap
between jaws were based on parameters in Ref. 1, the number of teeth
used in the study was 8 instead of 11.

As the simulations progressed, the instantaneous volumetric flow
was spatially averaged across each end of the pump, separately, using
the following formula:

VFR=L ¼ uR=LðtÞ � YðtÞ; (3)

where uR=LðtÞ is the spatially averaged horizontal component of veloc-
ity and Y(t) is the time-dependent distance between the top and bot-
tom of the pump. The R/L designates either the volumetric flow over
the right or left end of the pump, respectively. Across each simulation,
50-time points were saved during each pumping cycle, regardless of
pumping frequency or duty cycle.

The overall net volumetric flow was computed as the difference
between the left and right volumetric outflows. These data were then
temporally averaged from the second to the sixth pumping cycle, VF .
The data were then non-dimensionalized in the following manner:

VFND ¼ VF
G � ðfaÞ : (4)

In addition to the flow velocities and volumetric flow rates, we
defined the Strouhal number St and an output Reynolds number Reout
to be the following:

St ¼ G � ðfaÞ
VF

¼ 1

VFND
; (5)

Reout ¼
d � L

G
� VF
G

�
¼ Rein � VFND ¼ Rein

St
: (6)

Furthermore, fluid circulation was calculated across the bottom half of
the pump, throughout the simulation. We computed the circulation
within the gap and within each tooth separately. The circulation in the
kth tooth was computed in the following manner:

Cn
k ¼

ð
Xk

xndA �
X
i;j

xn
ijdxdy; (7)

where Xk is the area inside the kth tooth (as labeled by Fig. 1), and
xn ¼ r�~un is the fluid vorticity at time point n. Furthermore,
dimensionless circulation was computed in the following manner:

eCn

k ¼
Cn
k

f � a � G : (8)

The circulation within the gap was computed analogously. To decrease
numerical errors due to sampling the data near the boundary, the area
inside each tooth Xk was selected such that the grid cells used were five
grid spatial widths from the pump geometry.

To solve the equations that govern this fluid-structure interaction
(FSI) system, we used an open-source implementation of the
immersed boundary method, IB2d.41–43 Previously, the immersed
boundary method (IB) has been applied to numerous valveless pump
studies before, including peristaltic pumps,44–48 dynamic suction
pumps,15,16,49–53 and electrodynamic suction pumps.54,55 In this study,

the pumping kinematics were fully prescribed, and the geometry was
held nearly rigid, i.e., there were no flexible features. More details
regarding IB and this model’s implementation are provided in
Appendix A. Furthermore, we also conducted a convergence study to
ensure that the underlying physics was appropriately resolved (see
Appendix B). The chosen grid resolution of dx ¼ Lx=Nx ¼ 13:5=4608
resulted in relative differences of less than 2.5% when compared to the
highest resolution tested of dx ¼ 13:5=6912 in volumetric flow rates.

A. Comparison with the experimental setup of Thiria
and Zhang1

While the IB formalism allowed us to actuate the pump in the
same manner as the experiment by Thiria and Zhang,1 there were
some notable differences between their experiment and our study.
First, the modeling setup and experimental setup were slightly different
(see Fig. 3). In our model, we only included the pump’s geometry with-
out any divider that separates the sides of the domain. Here, we mea-
sured the bulk flow properties directly out of both ends of the pump
rather than out of a tank overflow tube, as in their experiment.1

Second, gravity played a role in the experimental setup. In our study,
however, we did not model gravitational effects. This was ignored in
our model since the model setup and experimental setup were different
as well as how we measured flow properties. Our model imposed peri-
odic boundaries across every side of the computational domain, while
the experiment had three physical boundaries (bottom, right, and left
sides), on each side of the divider, with an air-water interface (free
boundary) at the top of the tank. To the latter point, we defined the
total flow out of the pump to be the difference between the flows from
the left and right sides. Thus, we were able to measure direct flow
properties without gravity playing an additional role. Third, although
our simulations were performed in two dimensions, the experiment
was inherently 3-dimensional. However, Thiria and Zhang suggested a
two-dimensional representation would be sufficient to capture the nec-
essary dynamics.1 This idea was supported by their tank’s depth being
much larger than the average gap of the pump, i.e., D � G.

B. Generalized polynomial chaos expansions (gPC)
surrogate model

A surrogate model based on generalized polynomial chaos (gPC)
expansions was thoroughly trained, validated, and tested. gPCs are
commonly used in uncertainty quantification as an elegant method to
map the input parameter space to predicted output metrics (quantities

FIG. 3. Schematic of Thiria and Zhang’s1 experimental setup. Reproduced from
Thiria and Zhang, Appl. Phys. Lett. 106, 054106 (2015), with the permission of AIP
Publishing.
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of interest), with high accuracy.26,37 In general, polynomial chaos
expansions (PCE) cast square-integrable random functions in terms of
orthogonal polynomials of the input parameters. That is, an appropriate
Hilbert space is selected in which the model output (response surface)
can be represented on that specific Hilbertian basis. Since quantifying
variations in the model output due to fluctuations in the model input
was of interest, the input parameters are thought to be random variables.
Choosing the probability distribution functions to which the input
parameters are sampled gives rise to a specific weight function for an
inner product, thereby determining the specific family of orthogonal
polynomials from an Askey scheme.25 When the model output space is
smooth, a polynomial chaos expansion can exhibit fast convergence to
the response surface.56 In this work, we sampled our input parameters
from a uniform distribution, thus casting our PCE in terms of Legendre
polynomials, i.e., the gPC’s response surface was written as

S ~n
� �

¼
XP�1

j¼0

cjWj
~n
� �

; (9)

where~n ¼ Re; f ; pf g, a set of input parameters, Wj is a multidimen-
sional Legendre polynomial, and P is the number of unknown coeffi-
cients cjf gP�1

j¼0
, given by

P ¼ M þD
D

� �
¼ ðM þDÞ!

M!D!
; (10)

where M¼ 3 (the dimension of the parameter space) and D is the
highest chosen degree of the multidimensional Legendre polynomial.
The multidimensional Legendre polynomial can be decomposed into
the product of individual one-dimensional Legendre polynomials, one
for each input parameter. For example, we decomposed the jth multi-
dimensional Legendre polynomial from (9) in the following manner:

Wjðn1; n2; n3;…; nMÞ ¼
YM
n¼1

L‘n
n ðnnÞ; (11)

where ‘n was the specific order of the one-dimensional Legendre poly-
nomial Ln such that the cumulative sum of all of those individual
orders was less than or equal toD, i.e.,

XM
n¼1

‘n � D:

Note that we constructed our gPC using an order of D ¼ 7. This
choice was made due to preliminary work suggesting that our pump-
ing model’s output was sufficiently smooth and did not demonstrate a
high degree of nonlinear behavior across the input parameter space.

The gPC alleviated the massive computational expense associated
with having to perform thousands of FSI simulations of our pumping
system to thoroughly explore a target parameter space consisting of
three parameters and perform global sensitivity analysis. In total, we
ran 540 FSI simulations, 240 of which were used to generate our train-
ing dataset, with the remaining to be used as test data. For the training
data, the 3D parameter space was sampled at points where the
ðD þ 1Þst Legendre polynomials are zero

LDþ1ðxÞ ¼ 0 where x 2 �1; 1½ �:
Therefore, for each dimension of the 3-dimensional space, there were
Dþ 1 ¼ 8 possible roots. We then cast those points through linear

transformations into the desired interval for each input parameter, i.e.,
Re 2 ½10; 300�; f 2 ½1; 5�, and p 2 ½0:2; 0:8�. Thus, the entire sampled
space consisted of 83 ¼ 512 total parameter combinations, i.e., 512 spe-
cific combinations of three parameters. We sub-sampled these possible
combinations down to 240 following the empirical rules suggested in
Refs. 29 and 57, i.e., to sub-sample: only use a total of N ¼ ðM � 1ÞP
sampled points in your training set and determine those points by choos-
ing the combinations of roots that are closest to the origin. They observed
that sampling more points did not yield more accurate results.29,57

However, it is been proposed that the fundamental aspect regarding what
the overall number of sampled points should be is that when solving for
the coefficients, the over-determined linear system should have rank at
least equal to the total number of terms in the expansion, P29,30,58 (see
later discussion on computing the coefficients). Note that parameter
space sampling is still an active area of research.59 To generate an inde-
pendent test dataset, we elected to use a Sobol’ sequence of dimension 3
with 300 total unique selections to sample the 3D parameter space.36

This was a deliberate choice to ensure that we (1) produced an unbiased
test dataset using a different sampling strategy than the training data, and
(2) maximized representation across the entire parameter space while
minimizing the possibility of sampling dense patches within the space
(such that could emerge from random sampling).60

The unknown coefficients were then determined through least
squares minimization using the output quantities of interest from the
training dataset, i.e., to find~c ¼ ½c0 c1 � � � cP�1�, we solved

~c ¼ min
~ec

�����
XP�1

j¼0

ecjwj
~n
� �

� S ~n
� ������

2

; (12)

where~ec converges to~c through the minimization procedure and Sð~nÞ
was the true model output (the true simulation data itself). Note that
Eq. (12) can be interpreted as an over-determined linear system, where
least squares procedures can be used to find the best fit, i.e., computing
the pseudo-inverse through singular value decomposition. Next, we
validated that the gPC surrogate model was able to accurately recover
the training data as well as the test datasets. The latter suggested that
the gPC model was an accurate surrogate model for this study. Thus, it
could be used to predict performance for parameter combinations not
explicitly simulated with the full FSI model. Figure 4 provides the
numerical pipeline of how data from IB2d simulations get used to
train and test a gPC-surrogate.

C. gPC model validation

Once the coefficients of our gPC surrogate model were computed
using (12), we validated the gPC expansion against the training dataset.
That is, we ensured that the gPC was able to accurately recover the train-
ing output. We did this for both the dimensional and dimensionless vol-
umetric flow data and circulation data in two different ways as follows.

(1) Temporally over time: The coefficients found in (12) are time-
dependent and computed across one pumping cycle. That pumping
cycle was averaged across each pumping cycle, i.e., each individual
time point in the pumping cycle was found by averaging each cor-
responding time point among all pumping cycles performed.

(2) Time-averaged metrics: Relative errors were calculated between
the averaged output metrics of the full FSI simulated training
data and the gPC predicted values.
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Note that the circulation data highlighted here was spatially aver-
aged across each tooth and gap in the bottom half of the pump.

First, we computed the time-dependent coefficients of a gPC sur-
rogate model to describe the waveforms of each output metric across
one pumping cycle. We did this for a variety of cases in which we held
two parameters constant and varied the third. We used the following
parameters as the base case: ðRein; f ; pÞ ¼ ð133:9; 3:37; 0:56Þ. This
case was chosen due to it being near the center of the parameter space.
We saw qualitative agreement between all cases tested. Figure 5 pro-
vides comparative waveforms when the duty cycle is varied. The cases
involving varying either Rein or f are provided in Fig. 26 in Appendix
D. This agreement suggested that our gPC surrogate model could be
used to study dynamic output data.

However, most of this study focused on time-averaged output
metrics. Therefore, we computed the relative error between the pre-
dicted time-averaged volumetric flow data and circulation data
between the training dataset and the gPC predicted values for the same
parameter combinations. Both qualitative and quantitative agreement
was observed between the training data and gPC predicted quantities
of interest. Figure 6 provides such comparisons for volumetric flow
rates, while Fig. 27 in Appendix D gives a similar comparison for cir-
culation. Overall, the validation statistics illustrate that the gPC surro-
gate can very accurately recover the training data’s volumetric flow
rates, showcasing less than 3.2% relative errors across all the training
data, with an average error of 0.6%.

D. gPC model testing

We then tested our gPC model against our test dataset, i.e., data
that were independent of our training dataset. We used a Sobol’
sequence to sample the reduced 3D parameter subspace consisting of
Rein � f � p ¼ ½15; 250� � ½1:25; 4:75� � ½0:25; 0:75�, as mentioned

at the end of Sec. II C. Similar to our validation step, we observed qual-
itative agreement between dynamical output quantities (see Fig. 7) and
time-averaged scalar outputs [see Figs. 8(a) and 29(a) in Appendix D].
Moreover, the gPC yielded low relative errors between time-averaged
scalar data [see Figs. 8(b) and 8(c)] between the gPC model and test
data.

Figure 7 provides dimensionless volumetric flow and circulation
over one pumping cycle for Rein ¼ 125; f ¼ 3:0Hz, and a variety of
duty cycles. Cases involving variations of Reynolds number or pump-
ing frequency are given in Fig. 28 in Appendix D. On the other hand,
Fig. 8 presents relative error statistics for dimensionless time-averaged
volumetric flow (a similar figure for dimensionless circulation is pro-
vided in Fig. 29 in Appendix D). Note that across all time-averaged
output metrics, relative errors of less than 5% were achieved in
� 94:3% of all test cases considered, with an average relative error of
1.98%.

While it is common that test errors are greater than validation
(training) errors in surrogate models,61,62 we investigated where the
largest relative errors in the test data stemmed from. We noticed that
the cases that yielded such errors involved parameter combinations
where one (or more) parameter values were very close to the edges of
their respective ranges. We suspect that this was due to our sampling
heuristic when choosing what parameters to use for our training data.
Recall that the closest N parameter combinations to the center of the
parameter space were chosen. As a result of this, cases involving
extremal parameter values were not frequently used in the training.

E. gPC statistics and Sobol’ sensitivity indices

Upon viewing the gPC expansion as the model’s response surface,
we computed its mean and overall variance directly from its coeffi-
cients [those found from Eq. (12)] and properties of the basis of the

FIG. 4. Numerical pipeline of how data
from IB2d simulations get used to train
and test a gPC to use it as a surrogate
model for prediction.

FIG. 5. Comparing the waveforms giving the dimensionless (a) volumetric flow rates and (b) circulation (averaged across each tooth and the gap in the bottom half of the jaw)
over one pumping cycle between the training data (full FSI simulations) and the gPC surrogate model.
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probability space, here Legendre polynomials. The mean and variance
were found to be

S ¼ E S½ � ¼ c0; (13)

DgPC ¼ Var S½ � ¼
XP�1

j¼0

c2j � E W2
j

h i
: (14)

Full derivations of the above two quantities are provided in Appendix C.
Furthermore, Sobol’ sensitivity indices could be directly com-

puted from the coefficients of the gPC itself.29 Such sensitivity indices
provide a measure of the global sensitivity of the model output to var-
iations in its input.33 The Sobol’ functional decomposition (also called

the functional ANOVA decomposition)28,63 is a unique hierarchical
expansion to decompose the variance in the model response. For a
gPC expansion, we could write it in the following manner:

Sð~nÞ ¼ s000 þ
X3
i¼1

X
~a2‘i1

s~aw~aðniÞ þ
X

1�i1<i2�3

X
~a2‘i1 ;i2

s~aw~aðni; njÞ

þ
X

~a2‘i1 ;i2 ;i3

s~aw~aðn1; n2; n3Þ; (15)

where the coefficients s~a were the same coefficients,~c, found in Eq.
(12), but re-ordered, i.e.,

FIG. 6. (a) Qualitative comparison between the full FSI simulated training dataset involving dimensionless volumetric flow rates and the gPC-surrogate’s predicted values. (b)
Probability distribution function and (c) cumulative distribution function of the relative errors from those data in (a). Figure 27 in Appendix D provides a similar figure but for the
circulation averaged across the bottom half of the pump.

FIG. 7. Comparing the waveforms giving the dimensionless (a) volumetric flow rates and (b) circulation (averaged across each tooth in the bottom jaw) over one pumping cycle
between the test data (full FSI simulations) and gPC surrogate model.
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S ~n
� �

¼
XP�1

j¼0

cjwj
~n
� �

¼
XP�1

j¼0

s~a jw~a j
~n
� �

¼
XP�1

j¼0

s~a j

Y3
i¼1

LaiðniÞ: (16)

Moreover, we defined the indices,~a and ‘i in the following manner:

‘i1 ;…;is ¼ ~a :
ak > 0 8k¼ 1;2;…;m k 2 ði1; i2;…; isÞ
aj ¼ 0 8k¼ 1;2;…;m k 62 ði1; i2;…; isÞ

� �
: (17)

The Sobol’ sensitivity indices are a ratio of the variance that can
be attributed to one (or more) parameters to the overall variance.64

The higher the sensitivity index is, the more sensitive the model output
is to that particular input parameter. The first-order Sobol’ index
quantifies the effect of varying a specific single parameter alone on the
model’s output. Meanwhile, the total-order index provides a measure
of the total variance associated with that one parameter, even though
others are varied, i.e., the total-order index is the sum of all the sensi-
tivity indices involving that specific input parameter to DgPC. For
example, we calculated these indices for parameter n1 in the following
manner:

S1stn1
¼ 1

DgPC

X
a1 6¼ 0

a2 ¼ a3 ¼ 0

s2~a � E w2
~a

	 

; (18)

STotn1
¼ 1

DgPC

X
a1 6¼ 0
a2; a3

ðwhateverÞ

s2~a � E w2
~a

	 

: (19)

The indices associated with n2 and n3 followed similarly. We inferred
the relative importance of higher-order parameter interactions by
comparing the first-order and total-order indices. If there were sub-
stantial differences between both indices, it would suggest that the out-
put was highly sensitive to varying a parameter in conjunction with
one or more parameters. That is, higher-order interactions among
parameters would be important. Note that higher-order indices can
also be calculated directly from the s~a . However, as Sec. III F will
describe, higher-order interactions did not contribute much to the
overall variance in the model output in the 3D target input space
explored here, see Figs. 39(b) and 40(b) in Appendix D.

III. RESULTS
A. Reciprocal motion can induce bulk transport

While we are interested in fully exploring how variations in
fluid scale (Rein), pumping frequency (f ), and duty cycle (p) affect
pumping performance, we will first briefly discuss how the sawtooth
pump’s reciprocal motion can induce net volumetric flow. It is the
pump’s geometric asymmetry that makes net volumetric flow possi-
ble. For example, Fig. 9 (Multimedia view) provides snapshots of
tracer particles (and vorticity contours) for a Rein ¼ 150 pump of
ð�; f ; pÞ ¼ ð0:0988; 3:0; 0:50Þ. By the end of the fifth pumping cycle,
the vast majority of the tracers were pushed toward the left side of
the pump. Moreover, by the end of each contraction phase, distinct
vortices formed within each tooth. Figure 10 (Multimedia view) pro-
vides colormaps of vorticity for the same case but across the first two

FIG. 8. (a) Qualitative comparison between the full FSI simulated test dataset involving dimensionless volumetric flow rates and the gPC-surrogate’s predicted values. (b)
Probability distribution function and (c) cumulative distribution function of the relative errors from those data in (a). Figure 29 in Appendix D provides a similar figure but for the
circulation averaged across the bottom half of the pump.
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actuation cycles. Later, we will discuss the role of fluid circulation in
the teeth to help achieve bulk transport. Notably, while Fig. 9 illus-
trates bulk flow moving left, Fig. 10 highlights that substantial back-
flow also occurs.

Time-dependent volumetric flows and overall net volumetric
flows are provided in Fig. 11. When p¼ 0.30, large spikes in volumetric
flow emerge during each short contraction phase out of the left and
right of the pump, followed by smaller peaks (of opposite sign) during

FIG. 9. Snapshots of tracers and vorticity contours for a Rein ¼ 150 case involving � ¼ 0:0988 cm2=s; f ¼ 3:0 Hz, and p¼ 0.50. Multimedia available online.

FIG. 10. Snapshops of vorticity for a Rein ¼ 150 case involving � ¼ 0:0988 cm2=s; f ¼ 3:0 Hz, and p¼ 0.50, across its second actuation cycle. Multimedia available online.
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the subsequent expansion phase. As the peaks corresponding to flows
out of the left side are larger, there is net volumetric flow toward the
left, as previously shown by the tracers in Fig. 9. The thick black line
gives the overall net volumetric flow. The data for duty cycle cases of
p¼ 0.50 and p¼ 0.70 are also given in Fig. 11, for the same Rein and f.
The time-dependent volumetric flow waveforms between the p¼ 0.30
and p¼ 0.70 cases appear similar at first glance; however, there are
noticeable differences. While they both exhibit two different peaks, one
during contraction and one during expansion, their peaks are out of
phase with one another. That is, in the case when p¼ 0.30, the taller
peak occurs during contraction. On the other hand, when p¼ 0.70 the
taller peak occurs during the expansion phase. Moreover, the shorter
peak’s waveform is also noticeably asymmetric in both cases and leans
in different directions between both cases. The waveform in the
p¼ 0.50 case maintains approximately the same shape throughout.
Furthermore, each case’s net volumetric flow waveform is different
[Fig. 11(d)]. Comparing data for each case in Fig. 11(d) to their respec-
tive data in (a)–(c) shows that the maximal instantaneous net volumet-
ric flow rate is only approximately 	 10%–15% of the maximum out
of the left side only. This suggests a low bulk flow efficiency. Note that
when the net volumetric flow is positive during the expansion phase, it
implies that the pump is filling with more fluid from the right side
than the left. A possible heuristic of this mechanism is briefly described
as follows.

Consider the case involving a duty cycle of p¼ 0.50, i.e., equal
contraction and expansion phases. Figure 12 (Multimedia view)
depicts the vortex dynamics in the case of Rein ¼ 150; f ¼ 3:0Hz,

and p¼ 0.50. Immediately after expansion distinct clockwise (CW)
and counterclockwise (CCW) vortex pairs are formed on the right side
of the pump, while more complicated vortex interactions occur on the
left side of the pump. The vortex pairs on the right side persist until
just about halfway through contraction (	 2:0T). The spin of these
vortices shows they act to resist backflow, i.e., flows out of the right
side of the pump. Meanwhile, on the left side of the pump, vortices are
formed that complement the flow out of the pump. Therefore, we sus-
pect that geometric asymmetries enable vortex production that helps
bias net flow toward a preferred direction. Moreover, we hypothesize
that this mechanism can be boosted when combined with particular
pumping kinematics, such as higher duty cycles [see Fig. 11(d)].

To investigate the mechanism that drives net volumetric flow, we
chose a target 3D parameter space that included the fluid scale (an
adjusted input Reynolds number, Rein), actuation frequency (f ), and
duty cycle (p) and covered Rein � f � p ¼ ½10; 300� � ½1; 5�Hz
�½0:2; 0:8�: To thoroughly explore this parameter space, an ML surro-
gate model, based upon generalized polynomial chaos expansions, was
trained, validated, and tested. This allowed us to predict the pump’s
performance over a plethora of input parameter combinations in an
inexpensive, rapid manner while maintaining high accuracy. Using
such a surrogate model was particularly attractive given the computa-
tional cost of simulating the full FSI model, both in computational
time and computational storage. For example, given IB2d is written
in interpretative programing languages (MATLAB and Python), a sim-
ulation with a pumping frequency of 3Hz, time step of dt ¼ 2:5
�10�5; ½Nx;Ny� ¼ ½4608; 1152�, and for six pumping cycles required

FIG. 11. Evolution of volumetric flow out of the left and right sides as well as the net volumetric flow of Rein ¼ 150 cases composed of � ¼ 0:0988 cm2=s and f¼ 3.0 Hz with
duty cycles of (a) p¼ 0.30, (b) p¼ 0.50, and (c) p¼ 0.70. The shaded regions indicate the pump’s contraction phase. The net volumetric flows from each of these cases are
also provided in (d).
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approximately 32 days of computational time on a 2.40GHz Intel
Skylake Gold processor with 192Gb RAMmemory.65

Ultimately, as the input Reynolds number, frequency, and duty
cycle were varied, the pumping system exhibited nonlinear behavior.
The remainder of this section will identify parameter combinations
that led to higher net volumetric flow rates. We will also discuss the
physical mechanism leading to bulk transport in Sec. III E and the
pump’s global sensitivity to parameters in Sec. III F.

B. Volumetric flow rates collapse to single curve for
different actuation frequencies

Thiria and Zhang1 previously explored the case involving equal
contraction and expansion times, i.e., duty cycles of p¼ 0.50. However,
they did this while also varying gaps G and actuation heights a. They
observed that volumetric flow rates increased with increasing Reynolds
number, beyond a threshold Reynolds number of 1800. That is, in their

experimental setup, they only observed emergent bulk flows for
Rein� 1800. Furthermore, they saw that all volumetric flow data col-
lapsed onto the same line when normalized by the average gap, G.

While our numerical setup was slightly different than their exper-
imental setup, we saw similar trends in the case when p¼ 0.50 to
Thiria and Zhang.1 Figure 13 gives the (a) dimensional and (b) dimen-
sionless net volumetric flow rates as functions of f =� and the input
Reynolds numbers, respectively, for a variety of actuation frequencies.
Note that in the dimensional plot Fig. 13(a), the quantity f =� is effec-
tively the input Reynolds number, as neither the gap G, peak-to-peak
actuation amplitude a, tooth geometry d, nor length of the pump L
was varied [see Eq. (1)]. We also observed that net volumetric flow
rates increase with increasing input Reynolds numbers and frequency.
Similar to Ref. 1, the data collapsed to a single curve when normalized
by the system’s characteristic velocity, i.e., the product of frequency
and actuation amplitude fa (see Sec. II). However, we observed bulk
flows for much lower Rein than the aforementioned threshold

FIG. 12. Colormaps illustrating snapshots of vorticity for the case when Rein ¼ 150; f ¼ 3:0 Hz, and p¼ 0.50, during contraction in the second actuation cycle. Multimedia
available online.

FIG. 13. Time-averaged (a) dimensional and (b) non-dimensional net volumetric flow rates corresponding to the ðRein; f Þ subspace with duty cycle p¼ 0.50. These data were
generated by the ML-gPC model.
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described in Ref. 1, due to differences in our computational design. For
the remainder of the manuscript, we will mainly focus on dimension-
less volumetric flow rates. What has yet to be explored at this junction
are any possible effects that varying duty cycles have on volumetric
flow rates.

C. Effects of varying duty cycle on volumetric flow
rates

We first began by exploring duty cycle effects in tandem with
varying input Reynolds numbers, i.e., the ðRein; pÞ subspace. We began
by choosing three actuation frequencies f 2 1:25; 2:5; 3:75f gHz and
investigating those specific slices through the 3D parameter space. As
expected, higher Rein produced higher dimensionless volumetric flow
rates in general, see Fig. 14. Non-linear trends emerged with variations
in duty cycle beyond a critical input Reynolds number, roughly
Re
in 	 50. More specifically, higher Rein and higher duty cycle led to
the largest flow rates overall. Across all three subspaces, higher Rein
and lower duty cycles also resulted in higher flow rates. For
Rein ¼ 250, a minimum in net dimensionless volumetric flow rate
appeared across each subspace between p 	 0:40 and 0.50. Further,
this minimal volumetric flow rate moved toward lower duty cycles as
Rein decreased. While the net dimensionless volumetric flow data
exhibited nonlinear behavior when varying duty cycle for Rein�Re
in,
the data did not show the existence of any local maxima for
p 2 ð0:25; 0:75Þ. This suggests that bulk transport generated by geo-
metric asymmetry favors asymmetric actuating kinematics. The high-
est flow rates observed corresponded to higher duty cycles, i.e., longer
contraction phases with shorter expansion phases.

Furthermore, asymmetric actuating kinematics produced differ-
ing vortex dynamics as did varying Rein (see Figs. 31 and 33 in
Appendix D, respectively). Given that extremal duty cycles appear to
induce greater fluid transport, these two observations suggest that the
formation and interaction of vortices in the teeth during a pumping
cycle likely play a critical role in generating bulk flow. We will explore
these dynamics more quantitatively in depth in Sec. III E.

Since we posit that vortex dynamics ultimately help mitigate net
flow generation, it is unclear whether an optimal parameter subspace
exists among f and p at different fluid scales. As pumping kinematics
are varied, the timescales surrounding vortex formation, interaction,
and dissipation are also directly affected. Therefore, we suspected that
the pump exhibited nonlinear pumping performance, due to the emer-
gence of a positive feedback loop between pump kinematics and vortex
dynamics. We explored this possibility across three subspaces. Each
subspace included all combinations of frequencies and duty cycles in
the overall parameter space but at a specific input fluid scale:
Rein ¼ 50; 150, and 250.

Figure 15 provides the net dimensionless volumetric flow across
three different subspaces. Similar behavior is observed across each sub-
space: nonlinear trends emerged for volumetric flow rates with varia-
tions in duty cycle, and the highest duty cycles led to the highest
volumetric flow rates overall. Across all subspaces, varying frequency
had little effect on pump performance, i.e., volumetric flow data once
again approximately collapsed to a single curve. Similar to our earlier
observation from Fig. 14, a local minimum emerged in further support
that higher volumetric flow rates favor asymmetric pumping kinematics.
All in all, these plots suggest that variations in duty cycle elicit greater
changes in time-averaged dimensionless volumetric flow rates than var-
iations in frequency across the entire 3D target parameter space.

D. Output Reynolds number (Reout) vs Strouhal number
(St)

Much of the volumetric flow data can be summarized when plot-
ting the Strouhal number (St) against an output Reynolds number
(Reout). Recall Reout ¼ Rein=St [see Eq. (6)]. In particular, higher duty
cycles (p) and input Reynolds numbers (Rein) correspond to higher
volumetric flow rates, whereas varying frequency did not show much
of an effect. Thus, higher Rein and higher p produce higher Reout but
lower St. Figure 16 illustrates these relationships across the 3D target
parameter space. Furthermore, distinct clusters emerge in the Reout
�St space for different Rein and p. On the other hand, Fig. 16(b)
suggests that a given f does not guarantee where you will be in the

FIG. 14. Plots of time-averaged dimensionless net volumetric flow corresponding to three different ðRein; pÞ subspaces, each corresponding to a different contraction frequency:
(a) f ¼ 1:25 Hz, (b) f ¼ 2:5 Hz, and (c) f ¼ 3:75 Hz. These data were generated by the ML-gPC model.
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Reout � St space. Figures that deconstruct the parameter ranges from
Fig. 16 are provided in Figs. 34–36 in Appendix D. As either Rein or
p varies, the relationship between St and Reout change

log St 	 �0:41 � log Reout as Rein varies
log St 	 �1:00 � log Reout as duty cycle varies:

Moreover, these data can give a qualitative idea of how sensitive
volumetric flow rates are to the three input parameters. For example,
dimensionless volumetric flow rates do not appear sensitive to actua-
tion frequency. That is, varying frequency does not substantially affect
the resulting flow rate. However, varying either the input Reynolds
number or duty cycle (or both) can substantially affect the resulting
flow rates. These ideas are quantitatively explored further in Sec. III F.

E. Circulation analysis

Vortex dynamics are guided by geometric anisotropy and appear
to be largely responsible for the pump’s flow performance, as the vor-
ticity snapshots in Figs. 10 and 12 suggest. Our hypothesis was if vortex

dynamics are largely responsible for biasing bulk flow toward a pre-
ferred direction, then volumetric flow dynamics should closely follow
circulation dynamics. Our general heuristic of this process was as fol-
lows: along the bottom of the jaw, CCW vortices (positive circulation
values) push bulk flow toward the left side of the pump (the outflow),
while CW vortices (negative circulation) give rise to backflow toward the
right end of the pump. This creates a competition between CCW and
CW vortices, in that they actively work against each other’s flow direc-
tion when on the other’s flowward side.

To investigate this process, we computed the fluid circulation in
the bottom half of the pump, including across each tooth and halfway
through the gap between the sides of the pump throughout each simu-
lation (see Fig. 30 in Appendix D). We did this to delineate the contri-
bution to circulation from the teeth and gap spacing. However, note
that vortices that were present in the bottom half of the jaw typically
extended from the gap to inside a tooth, as illustrated in Figs. 10 and
12. Therefore, much of our analysis below includes contributions to
circulation from both the gap and teeth. On that note, we defined the

dimensionless circulation across the gap to be eCG, across the teeth to

FIG. 15. Time-averaged dimensionless net volumetric data over slices through the subspace (f, p) corresponding to three different input Reynolds numbers: (a) Rein ¼ 75, (b)
Rein ¼ 150, and (c) Rein ¼ 250. These data were generated by the ML-gPC model.

FIG. 16. Plots of the Strouhal number (St) against the output Reynolds number (Reout ) across the entire 3D target parameter space. Partitioning the data by different ranges of
the (a) input Reynolds number, (b) pumping frequency, and (c) duty cycle. These data were generated by the ML-gPC model. See Figs. 34–36 in Appendix D for a further
deconstruction of each parameter range.
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be eCT , and across both to be eCB. Note that the distance halfway
between both sides of the pump was dynamic; the gap y(t) changed as
the pump was actuated. Thus, the circulation domain was perpetually
re-calculated in our analysis scripts.

Overall, we found that dimensionless net volumetric flow and eCB

followed the pumping kinematics, see Fig. 17. This was also consistent
across different duty cycle cases. However, there were some slight dis-
crepancies between the pumping kinematics and fluid data waveforms.
For example, consider the top case, which provides data for a duty cycle
case of p¼ 0.30. Although the pumping kinematics waveform was asym-
metrically tilted to the right, the waveforms describing volumetric flow

and eCB were more heavily asymmetric but in the same direction.

Nevertheless, more notable was that the net volumetric flow and eCB

waveforms closely resembled each other. On the other hand, for the
other two duty cycle cases shown: p¼ 0.55 (middle) and p¼ 0.75 (bot-
tom), all three waveforms closely followed one another. Figure 37 in
Appendix D provides a complementary plot to Fig. 17 to further show
these relationships, by non-uniformly scaling the time-dependent data
across the three cases. Recall that the net volumetric flow waveforms
were the result of computing the difference between the volumetric flows
out of each end of the pump throughout the simulation. Thus, the obser-
vations above suggest that total circulation helped generate bulk trans-
port in a preferred direction, thereby inducing net volumetric flows.

While Fig. 17 illustrated that the pumping kinematics, net volu-
metric flow, and circulation closely followed each other, it did not
depict how circulation dynamics were affected by variations in the
parameters. Such data are provided in Fig. 18. As the input Reynolds

number increased, the amplitude of the eCB waveform increased as
well (top plot in Fig. 18). Only for smaller Rein did slight changes
appear in the waveform’s profile. However, these observations did not
appear to be the result of the vortices increasing in strength (magni-
tude). Figure 31 in Appendix D highlights that vorticity magnitudes
did not appear to scale with Rein. Rather, as Rein increased, more com-
plicated patterns of vortex formation and interaction appeared.

Varying frequency alone had little effect on the eCB waveform (middle
plot in Fig. 18). This indicated that normalizing the circulation data by
frequency also collapsed it to a single curve, similar to the volumetric
flow data in previous sections. On that note, varying frequency also led
to negligible differences in the circulation dynamics overall, see Fig. 32
in Appendix D for a qualitative comparison. On the other hand, varia-
tions in the duty cycle resulted in abrupt changes to circulation wave-
forms, including both its amplitude and shape. Snapshots of vorticity
are given in Fig. 33 in Appendix D. These snapshots highlight substan-
tial differences in the vortex dynamics overall.

All of the waveforms presented in Fig. 18 only depicted a single
peak within each pumping cycle. However, circulation dynamics

among all teeth along the bottom jaw ðeCTÞ was much more

FIG. 17. Comparison of the pumping kinematics, non-dimensional net volumetric
flow rates, and non-dimensional fluid circulation over time for the case when Rein ¼
150 involving � ¼ 0:0988 cm2=s; f ¼ 3:0 Hz, and p¼ 0.30 (top), p¼ 0.55 (mid-
dle), and p¼ 0.75 (bottom). The pumping kinematics were scaled such that the
contraction and expansion phases could contrasted against the corresponding volu-
metric flow rates and circulation over time.

FIG. 18. Non-dimensional fluid circulation computed within the gap and across the
entire bottom jaw’s teeth ðeC BðtÞÞ over the first four pumping cycles, for different
perturbations of the base case involving Rein ¼ 150 with � ¼ 0:0988 cm2=s and
f ¼ 3:0 Hz, and p¼ 0.50: (top) varying Rein, (middle) varying f, and (bottom) vary-
ing p.
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complicated. Multiple circulation peaks emerged in each pumping
cycle, see Fig. 19. This suggested highly dynamic vortex formation and
interactions occur within the teeth. Comparing Figs. 18 and 19, we

noticed that the highest peaks in eCT occurred at the tail end of the

peaking regions in eCB. On the other hand, the smaller peaks in eCT

generally corresponded to just before eCB began increasing toward its
only largest peak.

While Fig. 19 presented the time evolution of circulation in the
entire bottom jaw’s teeth ðeCTÞ, it was a metric comprising the contribu-
tion of every tooth. When looking at circulation data for each individual
tooth eCk

, it was apparent that each tooth’s contribution to ðeCTÞ were
not equal. Circulation magnitudes were greatest for the teeth on the outer
edge of the jaw, i.e., teeth 1 and 8, see Fig. 20. Recall that the teeth are
labeled from right-to-left, see Fig. 1. The teeth closer to the middle had
lower circulation magnitudes throughout each cycle. Moreover, these
observations were consistent in all other cases analyzed, e.g., see Fig. 38 in
Appendix D to see how circulation in each tooth varies for different duty
cycles (for Rein ¼ 150 with � ¼ 0:0988 cm2=s and f ¼ 3Hz). With this
information in mind, an interesting follow-up study may be investigating
the effects that different numbers of teeth have on pump performance.
Similarly, knowing that the teeth nearest the edges of the jaw contributed
the most to the circulation in the teeth overall, it may be interesting to
explore if one could optimize the morphology of the middle teeth to fur-
ther boost pumping performance rather than assume a uniform tooth
morphology across the entire pump.

F. Global sensitivity analysis

Our gPC-based surrogate model allowed us to access the global
sensitivity of our pump’s output metrics to variations among the input
parameters. That is, we were able to quantify how much of the output
data’s variance could be attributed to one (or more) individual param-
eters. We used this information to rank the relative importance of each
parameter on the specific output metric. Note that although we can
determine which parameter variations affect the output data the most,
i.e., contribute most to the overall model output variance, this informa-
tion does not tell us whether performance increased or decreased as a
result of the variations. Thus, this current sensitivity analysis comple-
ments the previous performance studies from Secs. IIIA–III E but can-
not replace them fully.

Recall that our original ML-gPCmodel was trained on a parameter
space comprising Rein � f � p ¼ ½1; 300� � ½1; 5� � ½0:2; 0:8�. In this
analysis, our quantities of interest included time-averaged volumetric
flow and circulation (eCB, the combined circulation from the gap and
teeth). For completeness, we also did this for both dimensional and
non-dimensional quantities. Having thoroughly explored the perfor-
mance of the pump over this 3D parameter space (Secs. III B–III E), we
suspected that the pump’s performance was most sensitive to variations

FIG. 19. Non-dimensional fluid circulation computed within the bottom jaw’s teeth
only ðeC T ðtÞÞ, over the first four pumping cycles, for different perturbations of the
base case involving Rein ¼ 150 with � ¼ 0:0988 cm2=s and f ¼ 3:0 Hz, and
p¼ 0.50: (top) varying Rein, (middle) varying f, and (bottom) varying p.

FIG. 20. Non-dimensional fluid circulation computed in each tooth along the bottom
jaw in the case of Rein ¼ 150 involving � ¼ 0:0988 cm2=s f ¼ 3:0 Hz, and
p¼ 0.50.

FIG. 21. First-order Sobol’ sensitivity indices over the original full parameter space,
Rein � f � p ¼ ½1; 300� � ½1; 5� � ½0:2; 0:8�. These indices correspond to 4 differ-
ent quantities of interest: dimensional and dimensionless time-averaged volumetric
flow rates and time-averaged circulation, for the three input parameters: Rein, f, and
p. The circulation analyzed here included contributions from both the gap and teeth,
i.e., eC B.
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in the input Reynolds number within this parameter space (e.g., see Figs.
13–16). This was formally confirmed by our Sobol’ sensitivity analysis,
see Fig. 21. Note that the dimensional output metrics were most sensi-
tive to the input Reynolds number as well. This may not be too surpris-
ing since lower input Reynolds numbers always result in lower
volumetric flow rates, no matter the frequency or duty cycle. Variations
in frequency had negligible effects on the overall output variance among
all dimensionless quantities. This agreed with our previous observations

that normalizing by the frequency-based characteristic velocity (fa)
resulted in the data collapsing to a single curve (e.g., Figs. 13 and 15, as
well as the middle plots in Figs. 18 and 19). Moreover, the total-order
Sobol’ indices were similar to the first-order indices, suggesting higher-
order interactions did not substantially contribute to the overall model
variance, see Fig. 39 in Appendix D.

However, an interesting question remains in regard to which
parameter(s) are most important if we look at a 3D parameter sub-
space in which there are higher volumetric flows to begin with. For
example, what if we turned our attention to the original target 3D
parameter space described above and focused on a smaller subspace
comprising Rein � f � p ¼ ½185:5; 214:5� � ½2:8; 3:2� � ½0:57; 0:63�?
Within this restricted 3D parameter subspace, we know that volumet-
ric flows are high (see, for example, Figs. 13–15). Therefore, consider-
ing variations of all three parameters within this 3D subspace may
substantially change the Sobol’ sensitivity indices. Note that this
restricted subspace can be viewed as 5% deviations away from
ðRe; f ; pÞ ¼ ð200; 3; 0:6Þ given the full ranges of overall parameter

FIG. 22. First-order Sobol’ sensitivity indices over a restricted 3D parameter sub-
space, Rein � f � p ¼ ½100; 300� � ½1:25; 4:75� � ½0:225; 0:775�. These indices
correspond to four different quantities of interest: dimensional and dimensionless
time-averaged volumetric flow rates and time-averaged circulation, for the three
input parameters: Rein, f, and p. The circulation computed here included both contri-

butions from the gap and teeth, i.e., eC B.

TABLE II. Spatial and temporal parameters used in our FSI model.

Parameter Variable Units Value

Domain Size ½Lx; Ly� cm ½13:5; 3:375�
Spatial Grid Size dx¼ dy cm Lx=4608 ¼ Ly=1152
Lagrangian Grid Size ds cm dx=2
Time Step Size dt s 2:5� 10�5

Target Stiffness ktarget g � cm=s2 1:0� 107

FIG. 23. Time evolution of the spatially
averaged volumetric flow rate for different
grid resolutions in the Rein ¼ 250 case
involving � ¼ 0:0593; f ¼ 3 Hz, and
p¼ 0.50.

FIG. 24. (a) Spatially and time-averaged
volumetric flow rates for different grid resolu-
tions and input Reynolds numbers (Rein),
from parameter combinations of �
¼ 0:2371; 0:1185; 0:0593, and 0.0296,
f ¼ 3 Hz, and p¼ 0.50. (b) Plot of relative
differences in dimensionless volumetric flow
for different Rein across different grid resolu-
tions, compared to the highest resolved case
of dx ¼ Lx=Nx ¼ 13:5=6912 � 0:002.
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space. Furthermore, this chosen restricted subspace included a higher
range of input Reynolds numbers as well as f and p ranges where our
gPC model was found to be more accurate, i.e., ranges that do not
include extremal values of the original parameter ranges.

Recall that the Sobol’ sensitivity indices were calculated based on
the gPC coefficients [see, for example, Eqs. (18) and (19)]. Fortunately,

we were able to make use of the original gPCmodel, which was trained
over the full original 3D parameter space, to train a gPC model on the
3D restricted parameter subspace. That is, we were able to bootstrap
our original gPC surrogate model to construct a gPC model on the 3D
subspace. Thereby, this bootstrapping procedure provided us with new
gPC coefficients that correspond to a gPC trained over the restricted
subspace: Rein � f � p ¼ ½185:5; 214:5� � ½2:8; 3:2� � ½0:57; 0:63�.
This was possible since our original gPC model surrogate model was
able to predict our output quantities of interest with sufficient accu-
racy. Thus, we could make it predict the desired output quantities of
parameter combinations required for training the new bootstrapped
gPC model. Note that we were able to establish accuracy in the newly
acquired sensitivity indices by varying hyperparameters of the gPC,
i.e., the order of the expansion, D ¼ 5; 6; 7; 8; 9; 10f g, and observing
negligible differences in their resulting gPC sensitivity indices.

The sensitivity indices over the restricted 3D parameter subspace
divulged a different story of parameter importance, see Fig. 22. First,
the dimensionless output quantities were most affected by variations
in the duty cycle in this reduced 3D subspace. On the other hand, var-
iations in frequency most affected all dimensional output metrics.
These observations were in stark contrast to when the input Reynolds
number was the most important parameter, regardless of units, over

FIG. 25. Plot illustrating the relationship between the pumping frequency f and kine-
matic viscosity � that provide different adjusted input Reynolds numbers, Rein.

FIG. 26. Comparing the waveforms of the dimensionless (left) volumetric flow rates and (right) circulation (averaged the bottom half of the pump, both the gap and teeth, see
Fig. 30) over one pumping cycle between the training data (full FSI simulations) and gPC surrogate model when (top) Rein is varied, (middle row) f is varied, and (bottom row)
duty cycle is varied.
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the original (full) parameter space. Second, frequency minimally
affected dimensionless quantities, which was consistent with the Sobol’
sensitivity analysis on the full original parameter space (see Fig. 21).
Third, choosing appropriate output metric units was critical to under-
standing the holistic performance of the pump. That is, here the duty
cycle was deemed the most important parameter for dimensionless
quantities in a subspace that exhibited high pumping performance.
Such dimensionless quantities were defined and normalized by the
pumping frequency. However, dimensional metrics were most sensi-
tive to variations in pumping frequency. Therefore, if trying to opti-
mize a physical model, it is critical to decide how you will be
measuring your output, i.e., in what units, to understand the variance
observed due to different design parameters. Finally, once again, the
total-order Sobol’ indices were similar to the first-order indices, sug-
gesting that higher-order interactions did not contribute much to the
overall variance in the output in the restricted parameter subspace, see
Fig. 40 in Appendix D.

IV. DISCUSSION AND CONCLUSIONS

In this work, we demonstrated how geometric anisotropy can
induce bulk fluid flow in a preferred direction. More specifically, we
showed that volumetric flow rates are driven by fluid vorticity (circula-
tion) within the pump itself. We also identified how pumping kinemat-
ics (frequency and duty cycle) affect pump performance, along with
scale (an input Reynolds number). Higher input Reynolds numbers and
higher duty cycles produced higher dimensionless volumetric flow rates.

Variations in frequency were negligible for dimensionless volumetric
flow, which agreed with the scaling observations of Thiria and Zhang.1

Moreover, this was later formally confirmed in our global sensitivity
analysis, where frequency was the least important parameter for the
pump’s dimensionless quantities of interest. Performance metrics were
most sensitive to the input Reynolds number on the full parameter
space: Rein � f � p ¼ ½1; 300� � ½1; 5� � ½0:2; 0:8�. On the other hand,
in a reduced 3D parameter subspace (Rein � f � p ¼ ½185:5; 214:5�
�½2:8; 3:2� � ½0:57; 0:63�), we observed that duty cycle became the
most important parameter for dimensionless output metrics, while fre-
quency remained nearly negligible. Interestingly, this substantially
changed for dimensional metrics; they were most sensitive to frequency.

Much of this study was only possible by taking a machine learn-
ing (ML) approach using generalized polynomial chaos expansions
(gPC). Once trained, validated, and tested, gPC alleviated the necessity
for performing computationally expensive fluid-structure interaction
simulations. Not only were we able to accurately predict time-averaged
performance metrics, but we were able to use our ML-gPC approach
to predict time-series data corresponding to our metrics, as well, e.g.,
volumetric flow rates and circulation over time. We remark that gPC
accuracy slightly decreased when predicting output metrics near the
edges of the parameter space on which it was trained. This likely was
an artifact of the sampling approach used to collect training data (see
Sec. II B). Overall, this framework allowed us to quickly and accurately
predict performance outputs on any lower-dimensional subspaces of
the full 3D target space. Furthermore, gPC allowed us to assess the

FIG. 27. (a) Qualitative comparison between the full FSI simulated training dataset involving dimensionless circulation (in the bottom half of the pump, both the gap and teeth,
see Fig. 30) and the gPC-surrogate’s predicted values. (b) Probability distribution function and (c) cumulative distribution function of the relative errors from those data in (a).
Figure 6 in Sec. II C provides a similar figure but for dimensionless volumetric flow rates.
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global sensitivity of our model’s outputs over variations in a 3D
parameter space. To that extent, since gPC is a surrogate framework,
we could bootstrap it to perform sensitivity analysis on a restricted
proper 3D subspace of the original 3D space that the gPC was trained
over.

Although this study focused on understanding how variations in
three parameters (an adjusted input Re, frequency, and duty cycle)
affected pump performance, there are many other interesting avenues
to pursue in light of these results. For example, in this work the actua-
tion amplitude was held constant; however, previous valveless pump-
ing studies have shown the relative importance of compression ratio
on bulk flow rates.15,66–69 Also, as briefly mentioned in Sec. III E, from
having learned that the outer teeth along the pump most contribute to
intertooth circulation ðeCTÞ, this begs the question of how many teeth
are necessary in the pump to reap the performance benefits of geomet-
ric anisotropy. This was also posited by Chrispell et al.19 Furthermore,
in tandem, one could also vary the relative positions of the teeth on the
top and bottom of the pump to one another. Here, we assumed sym-
metry across the gap, although one may be inclined to relax this
notion. Finally, one could also try modulating the shape of the interior
teeth to harness circulation in an effort to optimize bulk transport.

Since cavity morphology, i.e., the teeth in this work has been shown to
heavily influence vortex formation, topology, and dynamics,70–72 it
may be possible to design an overall anisotropic geometry that opti-
mizes volumetric flow via fluid ratcheting.

Previous efforts by Chrispell et al.19 observed interesting behavior
when ratcheting viscoelastic fluids using a similar geometry. Nonlinear
behavior emerged when varying Weissenberg number (We), that is,
the degree of viscoelasticity. Their data suggested that there is an opti-
mal We before volumetric fluxes become impeded. Thus, combining
similar efforts of this study and the ideas proposed above but with a
pump immersed in a viscoelastic fluid may lead to unsuspected non-
linear behavior.

However, attempting to holistically study these proposed pertur-
bations in concert would be computationally challenging using the
ML-gPC method implored in this work. As the dimension of target
design parameter space increases, the amount of training data, i.e.,
independent fluid-structure simulations, required to train the gPC
increases substantially. For example, using the same empirical rules
and polynomial degrees as this work (see Sec. II), if one wanted to
explore a 4, 5, or 6-dimensional parameter space, it would require 990,
3168, or 8580 independent FSI simulations, respectively. Note that

FIG. 28. Comparing the waveforms of the dimensionless (left) volumetric flow rates and (right) circulation (averaged the bottom half of the pump, both the gap and teeth, see
Fig. 30) over one pumping cycle between the test data (full FSI simulations) and gPC surrogate model when (top) Rein is varied, (middle row) f is varied, and (bottom row) duty
cycle is varied.
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these estimates are solely for training the gPC and do not include the
number of independent simulations required for testing the gPC’s
accuracy. Thus, the curse of dimensionality still rears its ugly head.
Moreover, ML-gPC has the restriction that its ‘hyper-parameters’ are
selected a prior. That is, one first selects the polynomial degree which
determines how the training points are sampled (see Sec. II B). There
are a variety of other surrogate model frameworks.73 One popular
framework is feedforward neural networks (FNNs),74–76 which are
well known to be universal function approximators.77 FNNs offer the
flexibility of hyperparameter selection once all data have been col-
lected; however, there is ambiguity when it comes to optimal sampling
strategies and the amount of training data to collect.

If design optimization is only of interest, an alternative method
could be using the method of active subspaces. Active subspace assesses
gradients of a model’s output to construct a response surface in a lower

dimensional space.78,79 It has been successfully applied to numerous
problems, including optimizing the design of an aircraft wing within a
50-dimensional parameter space. The low-dimensional subspaces it
found revealed global trends within the overall 50-dimensional space.80

Despite its successes, traditionally active subspaces have suffered from
two drawbacks. First, an inability to know a priori how many model
evaluations (simulations) must be performed, beyond ad hoc esti-
mates.81 Since FSI model evaluations are computationally expensive,
performing sequential model evaluations once gradients are uncovered,
after successive rounds of parameter space sampling, could be impracti-
cal. Second, improper sampling of the parameter space could lead to
sub-optimal solutions.81 However, numerous research efforts have
focused on alleviating these ailments.81–85 Either way, such an active
subspace framework may forgo one’s ability to holistically interpret the
pump’s performance across the entire high dimensional parameter

FIG. 29. (a) Qualitative comparison between the full FSI simulated test dataset involving dimensionless circulation (in the bottom half of the pump, both the gap and teeth, see
Fig. 30) and the gPC-surrogate’s predicted values. (b) Probability distribution function and (c) cumulative distribution function of the relative errors from those data in (a). Figure
8 in Sec. II D provides a similar figure but for dimensionless volumetric flow rates.

FIG. 30. Depicting the regions in which
circulation was computed through each
simulation.
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space. Although global sensitivity can be assessed using active subspa-
ces,86 one benefit of the ML-gPC approach here is that we were able to
construct a surrogate model to predict performance over the entire
parameter space. Once trained, the gPC could also be bootstrapped to
explore global sensitivity within any subspace of the full overall parame-
ter space; this could be computationally challenging using active subspa-
ces, without performing more expensive FSI simulations.
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APPENDIX A: DETAILS REGARDING THE IMMERSED
BOUNDARY METHOD (IB)

Here, the immersed boundary method (IB)87 will be briefly
introduced. The IB is a fluid-structure interaction method that

solves the equations that couple the motion of an immersed struc-
ture to the fluid in which it is immersed. The open-source IB soft-
ware IB2d41–43 was used for all the simulations presented in this
work.

The full viscous, incompressible Navier–Stokes equations were
used to model the fluid system at the intermediate Reynolds num-
bers considered, i.e.,

q
@u
@t

ðx; tÞ þ ðuðx; tÞ � rÞuðx; tÞ
� �
¼ �rpðx; tÞ þ lDuðx; tÞ þ fðx; tÞ; (A1)

r � uðx; tÞ ¼ 0; (A2)

where uðx; tÞ and pðx; tÞ are the fluid’s velocity and pressure,
respectively, at spatial location x at time t. fðx; tÞ is the force per
unit area applied to the fluid by the immersed boundary, i.e., the

FIG. 32. Colormaps illustrating snapshots of vorticity (with vorticity contours) for cases involving f ¼ 2:0 Hz (left) and f ¼ 4:0 Hz (right) when the input Reynolds number and
duty cycle are fixed at 150 (using � ¼ 0:0658 and 0:1317 cm2=s) and p¼ 0.50, respectively. Note that the time points depicted are from the start of the second to third pump-
ing cycle and that the colormaps are identical between both cases.
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ratcheting pump. These three quantities are modeled in an Eulerian
framework on a fixed rectangular mesh. q and l are the fluid’s den-
sity and dynamic viscosity, respectively.

All interactions between the pump and fluid are governed by inte-
gral equations with delta function kernels, see Eqs. (A3) and (A4).
While the pumping motion is prescribed, the fluid’s behavior is not.
As the pump oscillates, forces are spread from it onto the nearest fluid
mesh points, which in turn push the fluid to move. On the other hand,
while the fluid’s velocity is interpolated back onto the pump to ensure
the no-slip condition is satisfied, it has little effect on the pump. This is
due to the pump’s rigidity and prescribed pumping dynamics [see Eq.
(A5)]; the pump resists non-prescribed motion. The integral equations
that govern these dynamics are given as

fðx; tÞ ¼
ð
Fðs; tÞd x � Xðs; tÞð Þds; (A3)

@X
@t

ðs; tÞ ¼
ð
uðx; tÞd x � Xðs; tÞð Þdx: (A4)

Xðs; tÞ and Fðs; tÞ give the Cartesian coordinates and deformation
forces along the immersed boundary (the pump) for each point
denoted by Lagrangian parameter s and at time t, respectively.
Equations (A3) and (A4) essentially transform Lagrangian variables
to Eulerian variables and vice versa. Here, dðxÞ is a 2D delta func-
tion. These delta functions help to ensure that forces from the
immersed body are spread only to the nearest fluid mesh points to
the immersed boundary and vice versa, when the velocity field is
interpolated back to the immersed boundary.

To create the pump’s sawtooth geometry, each Lagrangian
point was chosen to be a distance half the grid’s resolution away
from its neighbors, i.e., ds ¼ 0:5dx where ds and dx are the distances
between successive Lagrangian points and the grid resolution,

FIG. 33. Colormaps illustrating snapshots of vorticity (with vorticity contours) for cases involving p¼ 0.30 (left) and 0.70 (right) when the input Reynolds number and frequency
are fixed at 150 and 3:0 Hz, respectively, using � ¼ 0:0988 cm2=s. Note that the time points depicted are from the start of the second to third pumping cycle and that the color-
maps are identical between both cases.
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respectively. Once the pump’s sawtooth geometry was constructed,
each Lagrangian point was tethered to a target point, via a virtual
spring. The pump’s upper jaw’s actuation was performed by dynam-
ically updating the preferred position of each target point along the
entire sawtooth geometry [see Eq. (2)]. The bottom jaw was held
nearly rigid by enforcing static target point positions. Both of these
actions were possible by applying a force proportional to the distance
between the location of the actual Lagrangian point and its preferred
target position, i.e., the target point force formulation, see Eq. (A5).
Using a large value of ktarget helps to mitigate only minor deviations
between the actual position and its preferred position. The governing
deformation force equation is given as follows:

Ftarget ¼ ktargetðYAðtÞ � XAðtÞÞ; (A5)

where ktarget is the stiffness coefficient and XAðtÞ and YAðtÞ are the
actual position of the Lagrangian point and the prescribed position
of its target point, respectively. Table II provides all of the spatial
and temporal discretization parameters used in our study.

To discretize (A3) and (A4) regularized delta functions from
Ref. 87 were used, i.e., dhðxÞ

dhðxÞ ¼
1
h2

/
x
h

� �
/

y
h

� �
; (A6)

where /ðrÞ is defined as

FIG. 34. Deconstructing Fig. 16(a) to
show the breadth to which each range of
input Reynolds number spans in the
space of Strouhal number vs output
Reynolds number. Each subfigure introdu-
ces a new range of input Reynolds num-
ber ðReinÞ: (a) [25,53), (b) [53,81), (c)
[81,109), (d) [109,138), (e) [138,166), (f)
[166,194), (g) [194,222), and (h)
[222,250].
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/ðrÞ ¼

1
8

3� 2jrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
; 0� jrj< 1;

1
8

5� 2jrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 1� jrj< 2;

0; 2� jrj:

8>>>>><
>>>>>: (A7)

APPENDIX B: CONVERGENCE STUDY OF THE FSI
MODEL

We performed convergence tests with respect to volumetric
flow rates across seven different grid resolutions dx ¼ Lx=Nx , where

Lx ¼ 13:5 and Nx ¼ 144; 288; 576; 1152; 2304; 4608, and 6912.
Figure 23 provides the time evolution of spatially averaged volumet-
ric flow for a Rein ¼ 250 case comprising � ¼ 0:059 cm2=s; f
¼ 3Hz, and p¼ 0.50. The case when dx ¼ Lx=4608 looks qualita-
tively similar to the case when dx ¼ Lx=6912. Figure 24(a) provides
the spatially and time-averaged dimensionless volumetric flow rate
for a variety of grid resolutions as well as Reynolds numbers,
Rein ¼ 62:5; 125; 250, and 500, all with the same frequency and
duty cycle, f ¼ 3Hz and p¼ 0.5, but viscosities of � ¼ 0:2371;
0:1185; 0:0593, and 0.0296, respectively.

Figure 24(b) provides the relative difference for the average
dimensionless volumetric flow rate between the highest resolved

FIG. 35. Deconstructing Fig. 16(b) to
show the breadth to which each range of
frequency values spans in the space of
Strouhal number vs output Reynolds num-
ber. Each subfigure introduces a new
range of frequency (f): (a) [1.5,1.88), (b)
[1.88,2.25), (c) [2.25,2.62), (d) [2.62,3.0),
(e) [3.0,3.38), (f) [3.38,3.75), (g)
[3.75,4.12), and (h) [4.12,4.5].
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grid resolution case of Nx¼ 6912 and all other grid resolutions
tested. The relative differences when considering the Nx¼ 4608
discretization are 1.00%, 1.66%, and 1.96% for Reynolds numbers
of 62.5, 125, and 250, respectively. The case when Rein ¼ 500
resulted in a relative error of 5.63%. In the remainder of the
study, we used a grid discretization of Nx¼ 4608 for the sake of
computational cost (both time and storage) and its relative agree-
ment with the more refined grid of Nx¼ 6912. Moreover, to try to
minimize numerical errors, we elected to only consider model
evaluations with Re�300. Thus, we restricted our study to
Rein < 300. Note that to generate the training dataset for the gPC

model, the highest Rein value simulated was 280.41, from
combinations of ðf ; �Þ ¼ ð1:949; 0:0343Þ; ð2:633; 0:0464Þ; ð3:367;
0:0593Þ, and ð4:051; 0:0713Þ.

APPENDIX C: GPC STATISTICS

Given a gPC expansion in the form

S ~n
� �

¼
XP�1

j¼0

cjW ~n
� �

;

FIG. 36. Deconstructing Fig. 16(c) to
show the breadth to which each range of
duty cycle values spans in the space of
Strouhal number vs output Reynolds num-
ber. Each subfigure introduces a new
range of duty cycle (p): (a) [0.25,0.31), (b)
[0.31,0.38), (c) [0.38,0.44), (d) [0.44,0.50),
(e) [0.50,0.56), (f) [0.56,0.62), (g)
[0.62,0.69), and (h) [0.69,0.75].
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with ni each scaled to be within ½�1:1�, we can derive the expan-
sion’s mean and variance from the coefficients cjf gP�1

j¼0
and proper-

ties of multivariate Legendre polynomials. Note that W0ð~nÞ ¼ 1.
The derivation for the mean is as follows:

S ¼ E S½ � ¼
ð
X
S � /ðxÞ dX ¼

ð
X

XP�1

j¼0

cjWjð~nÞ � 1 dX

¼
XP�1

j¼0

cj

ð
X
Wjð~nÞ � 1 dX ¼

XP�1

j¼0

cj � E Wjð~nÞ � 1
h i

¼
XP�1

j¼0

cj � E Wjð~nÞ �W0ð~nÞ
h i

¼
XP�1

j¼0

cj �
1

2ðjÞ þ 1
dj0

S ¼ c0 � 1
2ð0Þ þ 1

¼ c0:

Thus, the mean of a particular output is given by the first coefficient
c0, which is the coefficient of the W0 ¼ 1 multidimensional
Legendre polynomial [see Eq. (11)].

The derivation for the overall model variance for a specific out-
put metric that the gPC was trained on is given as follows:

D¼Var S½ � ¼ E ðS� c0Þ2
	 


¼
ð
X
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0
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1
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¼
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X
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ð
X
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X
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2
j dXþ

ð
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2
0 dX�2

ð
X
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2
0 dXþ

ð
X
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2
0 dX

¼
X
j¼1

c2j

ð
X
W2

j ð~nÞdX

D¼
X
j¼1
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j

h i
:

Note that for the multidimensional Legendre polynomials

E W2
j

h i
¼ E Wjðn1; n2;…; nMÞ2

h i
¼

YM
n¼1

1
2 ‘nð Þ þ 1

;

FIG. 37. Comparison of the pumping kinematics, non-dimensional net volumetric
flow rates, and non-dimensional fluid circulation over time for the case when Rein ¼
150 involving � ¼ 0:0988 cm2=s; f ¼ 3:0 Hz, and p¼ 0.30 (top), p¼ 0.55 (mid-
dle), and p¼ 0.75 (bottom). The pumping kinematics were scaled such that the
contraction and expansion phases could contrasted against the corresponding volu-
metric flow rates and circulation over time. This figure complements Fig. 17. In this
figure, the data were non-uniformly scaled across the three cases to highlight that
the volumetric flow rates and circulation waveforms closely resemble one another.

FIG. 38. Non-dimensional fluid circulation computed in each tooth along the bottom
jaw in the case of Rein ¼ 150 and f ¼ 3:0 Hz using � ¼ 0:0988 cm2=s, for (top)
p¼ 0.25, (middle) 0.50, and (bottom) 0.75.
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where ‘n is the specific order of the nth one-dimensional Legendre
polynomial that comprises the jth multi-dimensional Legendre
polynomial Wj, i.e.,

Wjðn1; n2;…; nMÞ2 ¼
YM
n¼1

L‘n
n ðnnÞ:

See Sec. II B for more details.

APPENDIX D: ADDITIONAL FIGURES

The relationship between the desired pumping frequency f,
kinematic viscosity �, and the adjusted input Reynolds number Rein
is provided in Fig. 25.
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