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Abstract

Collective migration is an important component of many biological processes, including wound heal-
ing, tumorigenesis, and embryo development. Spatial agent-based models (ABMs) are often used to
model collective migration, but it is challenging to thoroughly predict these models’ behavior throughout
parameter space due to their random and computationally intensive nature. Modelers often coarse-grain
ABM rules into mean-field differential equation (DE) models. While these DE models are fast to sim-
ulate, they suffer from poor (or even ill-posed) ABM predictions in some regions of parameter space.
In this work, we describe how biologically-informed neural networks (BINNs) can be trained to learn
interpretable BINN-guided DE models capable of accurately predicting ABM behavior. In particular,
we show that BINN-guided partial DE (PDE) simulations can 1.) forecast future spatial ABM data
not seen during model training, and 2.) predict ABM data at previously-unexplored parameter values.
This latter task is achieved by combining BINN-guided PDE simulations with multivariate interpolation.
We demonstrate our approach using three case study ABMs of collective migration that imitate cell
biology experiments and find that BINN-guided PDEs accurately forecast and predict ABM data with
a one-compartment PDE when the mean-field PDE is ill-posed or requires two compartments. This

work suggests that BINN-guided PDEs allow modelers to efficiently explore parameter space, which may



enable data-driven tasks for ABMs, such as estimating parameters from experimental data. All code and

data from our study is available at https://github.com/johnnardini/Forecasting predicting ABMs.

1 Introduction

Many population-level patterns in biology arise from the actions of individuals. For example, predator-prey
interactions determine ecological population dynamics; individuals’ adherence to public health policies limit
disease spread; and cellular interactions drive wound healing and tumor invasion. Mathematical modeling is
a useful tool to understand and predict how such individual actions scale into collective behavior |11, 2] [3] [4]
9, 16l [7]. In particular, stochastic agent-based models (ABMs) are a widely-used modeling framework where
autonomous agents mimic the individuals of a population [8, [9] [10] [11]. ABMs are advantageous because
they capture the discrete and stochastic nature of many biological processes [12]. However, ABMs are
computationally intensive, and their simulations can become time-consuming to perform when the population
is comprised of many individuals [13] [14]. This computational restraint prevents modelers from efficiently
exploring how model parameters alter model outputs. As such, there is a need for the development of
methods to efficiently and accurately predict ABM behavior [14] [15] [16].

Modelers often perform ABM prediction by coarse-graining ABM rules into continuous differential equa-
tion (DE) models [8] [13]. Ordinary DEs (ODEs) describe how a quantity (e.g., agent density) changes over
time, and Partial DEs (PDEs) describe how spatially-varying ABMs change with time [13]. Such DE models
are useful surrogates for ABMs because they are cheap and efficient to simulate. Mean-field DE models,
which assume agents respond to the average behavior of their neighbors, have been shown to accurately pre-
dict ABM behavior at some parameter values. Unfortunately, these models can poorly predict ABM outputs
when the mean-field assumption is violated [8] [17]. For example, Baker and Simpson 2010 [8] demonstrated
that the mean-field DE model for a population growth ABM only accurately predict ABM data when agents
proliferate slowly. A further complication of mean-field DEs is that they may be ill-posed at certain param-
eter values. Anguige and Schmeiser 2009 [I] used a stochastic space-jump model to study how cell adhesion
impacts collective migration and found that the resulting mean-field PDE model is ill-posed (and thus cannot

predict ABM behavior) for large adhesion values.
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Despite the inability of mean-field DE models to predict ABM behavior at all parameter values, ABM
simulations do obey conservation laws (e.g., conservation of mass for spatial ABMs) [18].  Alternative
DE models may thus be capable of accurately describing ABM behavior. Equation learning (EQL) is a
new area of research on the development and application of algorithms to discover the dynamical systems
model that best describes a dataset [19] 20} 211, 22] 23] [24] [25] 26] 27, 28] 29]. Brunton et al. 2016 [19]
introduced a sparse regression-based EQL approach to learn DE models from data with a user-specified
library of candidate terms. This method has proven very successful in recovering informative models from
simulated and experimental data [30]. There is a growing understanding that EQL methods can aid the
prediction of ABM data |14} B1], 32] [33]. For example, we recently demonstrated that the least squares EQL
approach learns ODE equations that accurately describe simulated ABM data, even when the collected data
is incomplete or sparsely sampled [14]. Supekar et al. 2023 [33] coupled this method with spectral basis
representation data to discover PDE models that capture the emergent behavior found in active matter
ABMs. Another popular EQL approach includes physics-informed neural networks (PINNs), where modelers
embed physical knowledge (in the form of a known PDE framework) into the training procedure for artificial
neural networks (ANNs) [34] [35] 36} 37, [38]. Trained PINN models can predict complex, sparse, and noisy
data while also obeying known physical principles. Lagergren et al. 2020 [28] extended the PINNs framework
by replacing physics-based mechanistic terms with function-approximating multi-layer perceptions (MLPs)
to develop the biologically-informed neural network (BINN) methodology. As a result, BINN models can
learn PDE models from data with terms that depend on space, time, or agent density. Training the BINN to
simulated ABM data ensures that a realization of this PDE that best matches the data is learned. Standard
methods of DE analysis, including bifurcation analysis and pattern formation, can be used to understand the
ABM’s behavior. BINNs thus present a promising and interpretable tool for ABM forecasting and prediction.
However, determining how BINNs can be used to learn predictive DE models for ABMs remains an open
area of research.

In this work, we demonstrate how to combine BINNs and PDE model simulations to forecast and predict
ABM behavior. Our approach leverages BINNs’ vast data and modeling approximation capability with the

computational efficiency of PDE models to develop a potent ABM surrogate modeling tool. In particular, we



demonstrate how to use trained BINN models to 1.) forecast future ABM data at a fixed parameter value,
and 2.) predict ABM data at previously-unexplored parameter values. This latter task is achieved using
multivariate interpolation, which provides a straightforward approach for inferring PDE modeling terms.
We demonstrate that visually inspecting the BINN modeling terms over a range of ABM parameter values
allows us to interpret how ABM parameters impact model behavior.

We apply the BINNs methodology to three case study ABMs in this work. Each case study models
collective migration in cell biological experiments, such as barrier and scratch assays |5}, [13] 28] 39 [40]. In
a barrier assay, a two-dimensional layer of cells is cultured inside a physical boundary. Microscopy is used
to image how the cell population migrates outwards once the barrier has been removed [40, 41]. Cells are
closely packed in these experiments and thus interact with their neighbors. Our case study ABMs simulate
how two stimuli, namely, cell pulling and adhesion, impact collectively migrating cell populations. These
processes are ubiquitous in cell biology. For example, leader cells pull their followers into the wound area
to heal wounded epithelial tissue, and cell adhesions in embryonic cells ensures the self organization of the
different germ layers [42] [43] 44]. ABMs provide a promising avenue to model the impacts of these stimuli
on collectively migrating cell populations.

We begin this work in Section [2] by presenting the case study ABMs and notation. In Section [3] we
discuss our methodologies to forecast and predict ABM behavior. In Section [d] we detail our results on using
these methods to forecast and predict data from the three case study ABMs; this section concludes with a
brief discussion on the computational expenses of each method. We conclude these results and suggest areas

for future work in Section [Bl

2 The case study ABMs

We consider three case study ABMs that imitate collective migration during cell biological experiments,
including scratch and barrier assays [0 [13] 28] 39] [40]. Each case study ABM models how cell pulling and
adhesion impact collective cell migration during these experiments [45] [46]. The ABMs are two-dimensional
cellular automata with pulling agents that perform cell pulling rules and/or adhesive agents that perform

rules on cell adhesion. Each model is an exclusion process, meaning that each agent can only occupy one



Variable Description Range
rpull Pulling agent migration rate [0, )
radh Adhesive agent migration rate [0, 00)
Dpull Probability of successful pulling event [0,1]
Dadh Probability of successful adhesion event | [0, 1]

Q Proportion of adhesive agents [0,1]

Table 1: ABM model parameters. We describe each model parameter and present their range of possible

values.

lattice site at a time, and each lattice site is occupied by at most one agent. The first model is borrowed
from [12] and consists only of pulling agents; the second model is inspired by the stochastic space jump
model from [I] and consists only of adhesive agents; to the best of our knowledge, we are the first to study
the third model, which consists of both pulling and adhesive agents.

In this section, we briefly introduce our case study ABMs and their rules on agent pulling and adhesion
in Section we then detail our ABM notation and simulation in Section Additional details on the

ABM rules and implementation can be found in electronic supplementary materials [A] and [B] respectively.

2.1 Brief introduction to the case study ABMs and their model rules

Rules A-F governing agent pulling and adhesion are visually depicted in Figure [1} and the parameters for
each rule are described in Table (1] In all rules, a migrating agent chooses one of its four neighboring lattice
site to move into with equal probability (Figure a)). A migration event is aborted if the lattice site in the
chosen direction is already occupied (Figure b)) We refer to a neighboring agent as an agent located next
to the migrating agent in the direction opposite of the chosen migration direction.

Rules A, B, and E are initiated when a pulling agent attempts to migrate, which occurs with rate r2%!,
Migratory pulling agents pull their neighboring agents along with them with probability p,,;. Rules C, D,
and F are initiated when an adhesive agent attempts to migrate, which occurs with rate r2%". Neighboring
adhesive agents adhere to migrating agents and abort the migration event with probability pgsqn. The

parameter a corresponds to the proportion of adhesive agents in the simulation. Even though we eventually
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Figure 1: ABM rules on migration, pulling, and adhesion. a) When an agent performs a migration event, it

chooses one of the four cardinal directions to move towards with equal probability; migration can also lead to a
pulling or adhesion event in the chosen direction. The migrating agent is referred to as a migrating agent (M) b) A
migration event requires the lattice site in the chosen migration direction to be empty; otherwise, the migration event
is aborted. A neighboring agent (N) is an agent located in the direction opposite the chosen migration direction. c)
Rules A-F dictate the rules on agent migration, pulling, and adhesion. Here, we show each rule when an agent chooses
to move rightwards. Rule A prescribes how a pulling agent (blue circle) migrates when there is no neighboring agent.
Rule B prescribes how a pulling agent migrates and attempts to pull a neighboring pulling agent with it. Rule C
prescribes how an adhesive agent (red hexagon) migrates when there is no neighboring agent. Rule D prescribes how
a neighboring adhesive agent attempts to adhere to a migrating adhesive agent and abort its migration event. Rule
E prescribes how a migrating pulling agent attempts to pull its neighboring adhesive agent, while the adhesive agent
attempts to adhere to the pulling agent. Rule F prescribes how a migrating adhesive agent and neighboring pulling
agent do not interact with each other. The last column documents the rate at which each lattice site configuration
at time ¢ changes to the updated lattice site configuration at time ¢ + At.



summarize each ABM simulation along the x-direction, all rules on migration, pulling, and adhesion occur

in all four cardinal directions.

Our three case study ABMs are:

1. The Pulling ABM, which consists of rules A and B. This model has parameters p = (r2“ p,,.;)7.

2. The Adhesion ABM, which consists of rules C and D. This model has parameters p = (r&" p,qs)7.

3. The Pulling & Adhesion ABM, which consists of rules A-F. This model has parameters p =

I .adh T
(B & Dol Padhy @) -

2.2 ABM notation

All parameters used to configure ABM simulations are summarized in Table Each model is simulated
in the spatial domain (z,y) € [0,X] x [0,Y].  We represent this space with a two-dimensional lattice
with square lattice sites of length A = 1 to imitate a typical cell length. Let N}(DT) (x;,t;) and Ng)(mi,tj)

' column at the j* timepoint for

denote the number of pulling and adhesive agents, respectively, in the i*!
i=1,...,X and j = 1,...,Ty from the r*® of R identically prepared ABM simulations (the input model
parameters are fixed but the R model initializations and subsequent agent behaviors are stochastic). Here,

X and T denote the number of spatial columns and temporal grid points, respectively. To estimate the

spatiotemporal pulling and adhesive agent densities from the r** simulation, we compute

Ny il N irt
P("")(x“tj) = w and H(T)(x“t]) — w

,fori=1,...,X, and j=1,...,T},

respectively. The total agent density in the r*" simulation is then estimated by

T(T) (xi,tj) = P(r) (l‘i,tj) + H(T)(J?i, tj).



Variable Description Value
R Number of averaged ABM simulations per dataset 25
ty Ending simulation time 1000
At Spacing between temporal gridpoints 10
Ty Number of total timepoints 100
T}mm Number of training timepoints 75
Tpest Number of testing timepoints 25
X Number of horizontal lattice sites 200
Y Number of vertical lattice sites 40
Az Spacing between spatial points 1

Table 2: ABM configuration parameters. We describe each parameter used for ABM configuration and

present the values used throughout this study.

To estimate the averaged pulling, adhesive, and total agent density in the i*® column from R identically

prepared ABM simulations over time, we compute:
i
(PAPM (25, 1;)) = I ZP(T)(Iiytj);

r=1

R
1
(HAPM (2;,15)) = = ZH(T)(%‘JJ‘); and
r=1

R
1
(TABM (g, 1)) = = > TN (@i t), fori=1,...,X and j=1,...,Ty.
r=1

3 Methods to forecast and predict ABM data

In this section, we outline our methodologies for forecasting future ABM data and predicting ABM data
at new parameter values. This begins with a description of how we generate ABM data in Section
followed by an overview of the four methods we use for ABM forecasting in Section We then describe
our approaches for ABM forecasting and prediction in Sections and respectively. We visualize how
BINNSs can be used for these processes in Figure All methods are implemented using Python (version

3.9.12) with code available on GitHub at https://github.com/johnnardini/Forecasting predicting ABMs.
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Figure 2: Forecasting and predicting ABM data with BINNs. 1. Simulating ABM data. For a given parameter, p,
we simulate the Pulling, Adhesion, or Pulling & Adhesion ABM. Each model outputs snapshots of agent locations over
time; we summarize this data by estimating the average total agent density along the x-direction for each snapshot.
We perform R total ABM simulations (shown as thin lines) for each p and average the total spatiotemporal agent
density to obtain (TAPM (z,t;p)); in this figure, R = 5. The first T;””" timepoints are placed into a training ABM
dataset, and the final Tft“t timepoints are placed into a testing ABM dataset. 2. Training biologically-informed
neural networks (BINNs) to ABM data. Each BINN model consists of a data-approximating MLP, T™%¥ (z t), and
a diffusion-rate-approximating MLP, D™L¥(T). BINN models are trained so that 7ML (x, 1) ~ (TABM (z, t; p)) ™
while TMLP and DMLF gsatisfy Equation . After model training, the inferred D™ZF(T) estimates the agent
diffusion rate. 3a. Forecasting ABM data. Simulating the diffusion PDE framework with D™LP (T allows us to
forecast the ABM training and testing data. 3b. Predicting new ABM data. We predict the rate of agent diffusion
at a new parameter, p"°*, by interpolating D XF (T'; p) over several p values to create D*"**"P(T’; p). Simulating the
diffusion PDE framework with D" (T; p"“*) allows usgto predict the new ABM training and testing data.




3.1 Simulating ABM data

The process of simulating ABM data is illustrated in Part 1 of Figure At the parameter value p, we
calculate (TABM (z,t;p)) = {(TABM (xz,twp))}z;l;f . For subsequent model training and validation

TABM(

purposes, we split ( x,t;p)) into training and testing datasets by setting

jil,‘..,T}T“in

(TAPM (o, tp)) T = (TP (i tip)) JL T and

j=Ttraingq  ptrain g ptest
<TABM (1,7 t; p)>test _ {(TAB]\/I (‘Tia tj; p)>}i:1:‘“7X f f . (1)

Here, T;“““ and T4*** denote the number of training and testing timepoints, respectively, and Ty = T ;’”‘”" +

test
Tt

3.2 Models to forecast ABM data

We now describe the four models we use to forecast future ABM data. Namely, these models are the
mean-field PDE, ANN, BINN, and BINN-guided PDE models.

The mean-field and BINN-guided PDE models consist of simulating a PDE of the for

= (P05, @)

where T = T(x,t) = P(x,t) + H(x,t) denotes the total agent density over space and time. The form of
D(T) in Equation changes based on the ABM and the modeling approach being used. For the mean-field
PDE, we determine the form of D(T) by converting discrete ABM rules into their continuous counterparts
and invoking the mean-field assumption, which may be invalid at some parameter values. BINNs, on the
other hand, are a data-driven approach to infer D(T') from the data without any such a priori assumptions.

The ANN and BINN models consist of training a prescribed neural network to ABM data and then using

the trained neural network to forecast future data.

3.2.1 Mean-field PDE Models

Here, we present the mean-field PDE models for each case study ABM. More detailed information on how

the ABM rules are coarse-grained into these models are provided in electronic supplementary material [D]

lwith the exception of the mean-field PDE for the Pulling & Adhesion ABM, which requires simulating the two-compartment

PDE given by Equation in Section

10



Our numerical method to numerically integrate these PDE models is provided in electronic supplementary
material [F]

The Pulling ABM: The Pulling ABM includes only pulling agents and consists of Rules A-B from

Figure |1} In electronic supplementary material |D.1, we show that these rules can be coarse grained into the

Pulling ABM’s mean-field PDE model:

opP ull ull Tﬁ?” 2
EZV'(DP (P)VP), DP (P):T(1+3ppullp ) (3)

where P = P(x,y,t) denotes the spatiotemporal pulling agent density.

The Adhesion ABM: The Adhesion ABM includes only adhesive agents and consists of Rules C-D

from Figure In electronic supplementary material [D.2, we show that these rules can be coarse grained

into the Adhesion ABM’s mean-field PDE model:

adh 2
%ij _ V(DU H)WVH), Do) = 2 <padh (H - 2) +1- 4p‘””‘> (4)

4 3 3

where H = H(z,y,t) denotes the spatiotemporal adhesive agent density.

Notice that D" (H) from Equation becomes negative for some density values when pgqp > 0.75.
This PDE thus fails to provide an ABM prediction at these parameter values because negative diffusion is
ill-posed [1].

The Pulling & Adhesion ABM: The Pulling & Adhesion ABM includes both pulling and adhesive

agents, and consists of Rules A-F from Figure[l] In electronic supplementary material we show that

these rules can be coarse-grained into the Pulling & Adhesion ABM’s mean-field PDE model:

op  rpull
. Im v ((1-T)VP+PVT
i << )vP v)
pull
+ Padn =V - (— 3P(1—T)VH — H(1 - T)VP — HPVT)
rpu”
+Ppu ==V <3P2VT>
O0H rodh
— = -\ (1=-T)VH + HVT
85 (3o rer)
Tadh
+ Padn ==V - < —4(1 - T)HVH — H2VT)
pull
+ppuur’"Tv- (— (1-T)HVP + (1 —T)PVH+3HPVT>. (5)
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This two-compartment PDE describes the spatiotemporal densities of pulling agents, P(z,y,t), and adhesive
agents, H = H(x,y,t). The total agent density is given by T = T'(z,y,t) = H(x,y,t) + P(z,y,t). To
the best of our knowledge, it is not possible to convert Rules A-F into a single-compartment PDE model

describing T'(z, y, t)

3.2.2 The ANN model

ANNs have recently gained traction as surrogate models for ABMs [16, [47]. Here, we consider a simple
multilayer perceptron (MLP) model, 7™ (z,t), to predict the total agent density at the spatiotemporal
point (z,t). We provide a brief description of the model architecture and training procedure in this section;
more detailed information can be found in electronic supplementary material

The ANN architecture: 7" (z, 1) has a two-dimensional input, (,t), and one-dimensional output,

T'(z,t). This model has three hidden layers, each with 128 neurons. The hidden layers all have sigmoidal
activation functions, and the output layer has a softplus activation function.

ANN model training: The ANN model is trained to minimize

Lanny = Lwrs, (6)

where Ly s is given by Equation in electronic supplementary material [E| and computes a weighted
mean-squared error (MSE) between TMLP (z,¢) and (TABM (z,¢))i74". Here, extra weight is assigned to
data from the first timepoint to ensure that T™EF closely agrees with the ABM’s initial data.

We use the ADAM optimizer with default hyperparameter values to minimize Equation @ We perform

10* epochs with an early stopping criterion of 10® epochs.

3.2.3 The BINN model

We provide a brief overview of our BINN model architecture and training procedure, which closely follow
the implementation from the original BINN model study in [28]. More detailed information can be found in
electronic supplementary material

The BINN architecture: We construct BINN models that consist of two sequential MLP models:

TMLP (2. 1) predicts the total agent density at the point (z,t), and DMLF(T) predicts the agent diffusion

12



rate at the density value 7' (Part 2 of Figure [2). The architecture for TM 2 (z,t) here is identical to the
ANN architecture. The architecture for DM (T also has three hidden layers (each with 128 neurons), and
the same hidden and output activation functions. However, this model has a one-dimensional input, 7, and
one-dimensional output, D(T).

BINN model training: The two MLPs comprising the BINN model are trained to concurrently fit the

given dataset, (TABM (z,¢))t"*" and solve the PDE given by

9 e _ O MLPpMLPy O MLp
8tT - Ox (D (T )&TT ' ™

This is achieved by minimizing the following multi-term loss function:

Leiny = Lwrs +€LppE + Leonstr- (8)

The equation for Ly 1 g is identical to Equation @, Lppg computes the MSE between the left- and right-
hand sides of Equation to ensure both MLPs satisfy this diffusion framework, and L.,ns- penalizes the
two MLPs for violating user-defined criteria (such as lower and upper bounds on DM L), The equations for
these three terms are provided in Equations , , and from electronic supplementary material .
The € parameter is chosen to ensure the Ly s and Lppg terms are weighted equally.

Following [36], we minimize Equation in a two-step process. In the first process, we minimize
Equation @ over 10* epochs with an early stopping criterion of 10® epochs. In the second process, we
minimize Equation over 10% epochs with an early stopping criterion of 10° epochs. The ADAM optimizer

is used during both steps with its default hyperparameter values.

3.2.4 The BINN-guided PDE model

BINN models are trained to satisfy Equation . The BINN-guided PDE model computes this learned
equation by simulating Equation (2) with D(T) = DMEP(T). Our numerical method to numerically integrate

this PDE is provided in electronic supplementary material

3.3 Forecasting future ABM data

We use the four models introduced in Section to forecast future ABM data (Part 3a of Figure [2). In

forecasting, we assess the ability of a model to compute future ABM data at a fixed parameter value from

13



previous ABM data. This could correspond to inferring the future behavior of a computationally-intensive
ABM simulation or an expensive experimental procedure.

We perform ABM forecasting by training each model to the training ABM dataset and then computing
the model prediction over all space- and timepoints. The mean-field PDE model does not require any model
training because we can directly compute it from the ABM parameter values. We then partition each model’s
prediction into training and testing datasets to match the ABM training and testing datasets from Equation
. We report the training MSE from each model prediction as:
ptrain

X 4y

1
X 2

i=1 j=1

(TmOdel(-%‘i7 tj> — <TABM(xi7 tj)>)2 )

and the testing MSE as:

X Ty
1 2
X7 Yoo > (@ i ty) — (TP ()

i=1 jo}ra,inJ’_l
3.4 Predicting new ABM data using BINN-guided PDE models

We combine BINN modeling, multivariate interpolation, and numerical integration of PDEs to predict new
ABM data (Part 3b of Figure . In predicting, we assess the ability of our proposed approach to compute
ABM data at a parameter value that has not been seen previously. This could correspond to exploring an
ABMSs’ parameter space, or predicting the output of an experimental procedure for different experimental
conditions, such as drug concentration or the initial number of agents.

We perform multivariate interpolation using BINNs’ computed diffusion rates to predict density-dependent

diffusion rates for new ABM data. We define a prior parameter collection and a new parameter collection as
'PPMOT _ {pk}kK:ll and PV = {pzew}szzll
Our workflow for predicting ABM data from P"* proceeds as follows:

1. Generate the prior and new ABM data collections by simulating the ABM at all parameters from the

prior and new parameter collections:

K K>
and 70 = {A arippe) )
k=1

orior _ {<TABM(x,t;pk)>}

k=1
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2. Train a BINN model to each k** training ABM dataset from 777" and extract DMLP(T;p;) from

the trained BINN model.

3. Perform multivariate interpolation on {DMELP (T pk)}kK:ll to create an interpolant, D" (T'; p), that

matches the concatenated vector [T, py] to the diffusion rate DMLP(T;py) for k=1,..., K;.

4. Predict the new ABM dataset, (TABM (z,¢; pie?)), by simulating Equation (7)) with D = Dinterp (T, piew)
to create TP (, ¢; ppev). Partition TP (z, ¢; pi°) into its training and testing datasets to match

the ABM data’s training and testing datasets.

5. Compute the training and testing MSEs between TP (z ¢; ppe?) and (TABM (z,¢; pPe?)) to sum-

marize the predictive performance of TP (x, t; pp?) for k = 1,..., Ks.

We implement multi-dimensional radial basis function interpolation using Sci-kit Learn’s (version 0.24.2)

RBFInterpolator command to create D"*¢"?(T’; p).

4 Results

4.1 Mean-field and BINN-guided PDEs accurately forecast baseline ABM sim-

ulations

We simulated the three case study ABMs using the configuration values provided in Table [2l These values
were chosen to match previous studies [12] [13]. For ABMs of collective migration, one often chooses a
large spatiotemporal domain to ensure ample ABM behavior is observed (e.g., the population spreads) while
ensuring the boundary does not affect this behavior. In Table |3 we provide baseline model parameter
values for each case study ABM; these values were arbitrarily chosen to demonstrate typical ABM behavior
characterized by moderate population spread. The ABM outputs are depicted against each ABM’s mean-
field PDE in Figure|3] The mean-field PDE models accurately describe the baseline simulations for all three
ABMs.

We investigate the performance of the mean-field PDE, ANN, BINN, and BINN-guided PDE models in

forecasting Pulling ABM data from the baseline parameter values provided in Table Visual inspection
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Figure 3: Baseline ABM simulation snapshots and the mean-field PDE models for the Pulling, Adhesion,

and Pulling & Adhesion ABMs. Blue pixels denote pulling agents and red pixels denote adhesive agents.

All ABMs were simulated on rectangular 200x40 lattices. (a-c) Snapshots of the Pulling ABM for r24!! =

1.0, ppunr = 0.5. (d-f) The output spatiotemporal pulling agent density (blue ‘x’ marks) is plotted against

the solution of the mean-field PDE (solid blue line) given by Equation (3). (g-i) Snapshots of the Adhesion

ABM for r" = 1.0, pyan = 0.5. (j-1) The output spatiotemporal adhesive agent density (red dots) is plotted

against the solution of the mean-field PDE (dashed red line) given by Equation . (m-0) Snapshots of the

Pulling & Adhesion ABM for 724! = 1.0, 72" = 0.25, ppuu = 0.33,paan = 0.33,a = 0.5. (p-r) The output

spatiotemporal pulling and adhesive agent densities are plotted against the solution of the mean-field PDE

given by Equation .
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Figure 4: Forecasting Pulling ABM data with neural networks and PDEs. ANN and BINN models were
trained to fit (TABM (z,¢))tr*" from the Pulling ABM with p = (r2%% p,u)T = (1.0,0.5)T. These two

neural networks and the mean-field and BINN-guided PDE simulations were then used to forecast (a-b)

<TABM(x,t)>tmm and (C) <TABM(x,t)>tESt.

suggests that all four models match the ABM training data well (Figure ffa-b)). The computed training
MSE values reveal that the mean-field and BINN-guided PDEs outperform the neural networks in describing
this data (Table . The BINN, BINN-guided PDE, and mean-field PDE all accurately forecast the testing
data (Figure[d|c)), but the two PDE models achieve smaller testing MSE values than the BINN model (Table
. The ANN’s prediction for the testing data has a protrusion that overpredicts all data for > 125 (Figure
c) inset), which causes this model’s computed testing MSE value to be almost an order of magnitude higher
than all others. We obtain similar results when using the four models to predict data from the Adhesion

ABM and Pulling & Adhesion ABM at their baseline parameter values (Table [3| and Supplementary Figure

19).

4.2 Forecasting ABM data for many parameter values with BINN-guided and

mean-field PDE simulations
We now investigate the performance of BINN-guided and mean-field PDE simulations in forecasting ABM
datasets over a wide range of parameter values for all three case study ABMs. We only consider the two PDE

models (and exclude the neural network models) in this section due to their strong forecasting performance

in Section (.11
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Forecasting model

Training MSE

Testing MSE

The Pulling ABM

with baseline parameters p = (2% p,.)T = (1.0,0.5)T

ANN 1.17 x 10~* 9.36 x 1074
BINN 9.32 x 1075 1.47 x 1074
Mean-field PDE 7.45 x 1075 1.00 x 1074
BINN-guided PDE 7.64 x 1075 1.02 x 1074

The Adhesion ABM

with baseline parameters p = (r%" p,4,)T = (1.0,0.5)7

ANN 1.55 x 1074 1.84 x 1073
BINN 8.54 x 107° 1.50 x 10~
Mean-field PDE 7.18 x 1075 9.21 x 107°
BINN-guided PDE 7.43 x 1075 1.02 x 1074

The Pulling & Adhesion ABM

with baseline parameters

p= (,,,pull adh

m o Tm »Ppulls Padh, &

)T = (1.0,0.25,0.33,0.33,0.5)7

ANN 1.25 x 1074 2.67 x 1073
BINN 9.65 x 107° 9.96 x 10~°
Mean-field PDE 7.50 x 1075 8.55 x 10~°
BINN-guided PDE 6.55 x 107° 9.11 x 107°

Table 3: Computed training and testing MSE values. Computed MSE values when forecasting
(TABM (g t))train and (TABM (g, t))test from the three ABMs at their baseline parameter values. We used

an ANN, BINN, mean-field PDE, and BINN-guided PDE to forecast each baseline ABM dataset.
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4.2.1 The BINN-guided and mean-field PDEs both accurately forecast Pulling ABM data

The parameters for the Pulling ABM are p = (2%, p,.;1)T. To evaluate the BINN-guided and mean-field
PDE models’ performances in forecasting Pulling ABM data over a range of agent pulling parameter values,
we computed eleven ABM datasets by varying ppu = 0.0,0.1,0.2,...,1.0 while fixing r2“ at its baseline
value of 1.0. The inferred rates of agent diffusion from both models propose that agents diffuse slower for
low densities and faster for high densities (Figure [5(a)). While the mean-field diffusion rate at pyuu = 0 is
constant, BINNs do not use this a priori information. Instead, their flexible nature leads to them learning
a different diffusion rate from the data. The two PDE models achieve comparable training and testing
MSE values for all values of py,;, though the mean-field PDE usually attains slightly smaller values (Figure
b)) Snapshots of both simulated PDE models against data shows that their ABM predictions are visually
indistinguishable (Supplementary Figure [I3{a-c)).

To evaluate both PDE models’ performances over a range of pulling agent migration values, we computed
10 Pulling ABM datasets with r2%! =0.1,0.2,...,1.0 while fixing p,.; at its baseline value of 0.5. We find
close agreement between both models’ inferred diffusion rates for all values (Figure [f[c)). Both models
achieve similar computed training and testing MSE values (Figure [5{d)). Snapshots of both simulated PDE

models against data reveals that their ABM predictions are visually indistinguishable (Supplementary Figure

[I3d-1)).

4.2.2 BINN-guided PDEs accurately forecast Adhesion ABM data when the mean-field PDE

is ill-posed

The parameters for the pulling ABM are p = (729" p,qn)T. To evaluate the BINN-guided and mean-field

PDE models’ performances over a range of agent adhesion parameter values, we computed eleven ABM

adh

adh at its baseline value of 1.0. The inferred

datasets by varying pgqn = 0.0,0.1,0.2,...,1.0 while fixing r
rates of agent diffusion from both models decrease with agent density for most values of pyan (Figure [6]a)).
When pgqn = 0, the BINN-guided diffusion rate is slightly increasing and the mean-field model’s diffusion

rate is constant. The BINN-guided diffusion rates decline faster with agent density than the corresponding

mean-field diffusion rates for low density values. We computed the training and testing MSEs for both
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Figure 5: Forecasting Pulling ABM data with the mean-field (MF) and BINN-guided PDEs. (a) Plots of the
mean-field diffusion rate, DP“!(T'), from Equation (3) and the BINN-guided diffusion rate, DML (T), for
Ppunt = 0.1,0.3,...,0.9 (results not shown for pp,; = 0.0,0.2,...,1.0 for visual ease) while fixing rPull at its
baseline value of 1.0. The horizontal axis ends at 0.75 instead of 1.0 because the ABM simulations begin with
a density of 0.75 and will rarely exceed this initial value. The BINN cannot reliably predict the diffusion
rate for densities outside the values observed in the data. (b) Plots of the mean-field and BINN-guided
PDEs’ computed training and testing MSE values while varying p,,u; and fixing 72% = 1.0. (c) Plots of
DPUY(T) and DMEP(T) for r! = (0.2,0.4, . ..,1.0 while fixing p,.; at its baseline value of 0.5. (d) Plots of
the mean-field and BINN-guided PDEs’ computed training and testing MSE values while varying 2% and

fixing ppuu = 0.5.
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models for all values of pyqpn (Figure[6(b)) and partition the results as follows :

e When pagn < 0.5: both models achieve similar training MSE values near 7 x 10~ and testing MSE

values around 104,

e When 0.5 < pgan < 0.75: the mean-field PDE models’ training and testing MSE values increase
with pagn, with a maximum computed value above 3 x 107%. The BINN-guided PDE model’s training

and testing MSE values remain near 7 x 10~° and 10~%, respectively.

e When pggn > 0.75: the mean-field PDE model is ill-posed and cannot forecast this ABM data. The
BINN-guided PDE model’s computed training and testing MSE values increase with p,q, and have a

maximum computed value of 2 x 10~

Close inspection of snapshots from both PDE model simulations against ABM data from p,q, = 0.7 reveals
that the mean-field PDE model slightly overpredicts the data at high densities above 0.5 and low densities
below 0.1, whereas the BINN-guided PDE closely matches the data (Supplementary Figure [14)a-c)).

To evaluate both PDE models’ performances over a range of adhesive agent migration values, we computed
ten ABM datasets with 724" = 0.1,0.2,...,1.0 while fixing puqs at its baseline value of 0.5. Both PDEs
achieve similar computed training and testing MSE values for most values of r?¥ (Figure @(d)) When
radh — (.1, however, the BINN-guided PDE’s testing MSE value is close to 107, whereas the mean-field
PDE attains a lower testing MSE value near 6 x 1072, Despite these differences, the two model simulations

appear similar at these parameter values (Supplementary Figure (d—f)).

4.2.3 BINN-guided PDEs accurately forecast Pulling & Adhesion ABM data with a one-

compartment model

The parameters for the Pulling & Adhesion ABM are p = (rE“! radh p i1, paan, @) 7. We evaluate the perfor-
mance of the BINN-guided and mean-field DE models in forecasting data from the Pulling & Adhesion ABM.
We created 48 ABM datasets by fixing the baseline parameter values at ppase = (1.0,0.25,0.33,0.33,0.5)T
and then varying each parameter individually. We vary 724 = 0.5,0.6,...,1.5; 72 = 0.0,0.1,...,1.0;
Pputr = 0.1,0.2,...,0.6,0.67; pgar, = 0.1,0.2,...,0.6,0.67; and o = 0.0,0.1,...,1.0. These parameter values

were chosen to always satisfy ppuu + Pean < 1.
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Figure 6: Forecasting Adhesion ABM data with the mean-field (MF) and BINN-guided PDEs. (a) Plots of
the mean-field diffusion rate, D*¥(T), from Equation @ and the BINN-guided diffusion rate, DML (T),
for paan = 0.1,0.3,...,0.9 (results not shown for p,qn = 0.0,0.2,...,1.0 for visual ease) while fixing r
at its baseline value of 1.0. (b) Plots of the mean-field and BINN-guided PDEs’ computed training and
testing MSE values while varying p,qn and fixing 724" = 1.0. (c) Plots of D*"(T) and DMLF(T) for
radh —0.2,0.4,...,1.0 while fixing paqp at its baseline value of 0.5. (d) Plots of the mean-field and BINN-

guided PDEs’ computed training and testing MSE values while varying %"
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Figure 7: The BINN-guided diffusion rates for the Pulling & Adhesion ABM data. Plots of the BINN-guided

diffusion rate, DMLP(T'), when varying (a) 2%, (b) 724" (c) ppuir, () Paan, and (e) a.

m

The BINN models’ inferred diffusion rates, DMLP(T; p), are often U-shaped with larger diffusion values
at low and high agent densities and smaller values at intermediate densities (Figure E[) This U-shape tends
to increase for larger values of r’,‘,fj”, rf,flh, and ppyu and decrease for larger values of paqp, and «. The inferred
diffusion rates appear most sensitive to changes in the o parameter: at a = 0.0, DML (T'; p) strictly increases

with agent density and attains an average value of 0.289; at o = 1.0, DMLP(T; p) is strictly decreasing and

has an average value of 0.051. The inferred diffusion rate is also sensitive to the 724" and rP%!! parameters:

adh
m

varying r2¢" primarily alters the BINN diffusion rate at intermediate agent density values, whereas varying
rPull changes the BINN diffusion rate at low and high agent densitiy values.

The BINN-guided PDE computes a single compartment to forecast the total agent density, T'(z,t),
whereas the mean-field PDE computes two compartments forecasting the Pulling and Adhesive agent densi-
ties, P(x,t) and H(x,t), respectively. We forecast the total agent density with the mean-field PDE by setting
T(xz,t) = P(z,t) + H(x,t). The two PDE models achieve similar training MSE values for most parameter
values that we considered (Figure[8). The mean-field model’s testing MSE values are often smaller than the
BINN-guided testing MSE values, though the BINN-guided PDE also achieves small testing MSE values. For

example, both PDE simulations accurately predict ABM data when pqqn is set to 0.4, but visualizing both

PDE simulations shows that the mean-field PDE better matches the elbow of the data than the BINN-guided
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Figure 8: Forecasting Pulling & Adhesion ABM data with the mean-field and BINN-guided PDEs. Plots
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redh (c) ppuit; (d) Padn, and (e) a.

PDE (Supplementary Figure [15(a-~c)). The BINN-guided PDE outperforms the mean-field PDE in forecast-
ing data for small values of 72%": plotting both PDE simulations against data from 72" = (0.1 shows that

the mean-field PDE underpredicts the largest agent density values, while the BINN-guided PDE accurately

matches this data (Supplementary Figure [I5(d-f)).

4.3 Predicting ABM data at new parameter values

We now examine how performing multivariate interpolation on several BINN-guided diffusion rates, DML (T'; p),
can aid the prediction of previously-unseen ABM data at new parameter values (see Section for imple-
mentation details).

We predict new data from the Adhesion and Pulling & Adhesion ABMs in this section. We do not include
the Pulling ABM in this work because the mean-field PDE model accurately forecasted ABM data for all

parameter values that we considered in Section [4.2.1
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4.3.1 Predicting Adhesion ABM data

The parameters for the Adhesion ABM are p = (724" p,4n)T. We perform ABM data prediction for paap >
0.5 in this section because we found that the mean-field PDE model accurately forecasted ABM data for
Padn, < 0.5 in Section [£.2.2]

We first predict ABM data when varying p.qn and fixing 724", The prior data collection consists of
K, = 6 ABM datasets generated by varying p.qn = 0.5,0.6,0.7,...,1.0 while fixing 729" at its baseline
value of 1.0; the new data collection consists of Ko = 5 ABM datasets generated by varying peqn =
0.55,0.65,0.75,0.85, and 0.95 while fixing 729" at its baseline value of 1.0. We performed multivariate in-
terpolation over the six inferred DM (T p) terms from the prior data collection to generate D™™*™?(T’; p).
We use this interpolant to predict the diffusion rates for all parameters from the new data collection (Figure
@(a)). All interpolated diffusion rates decrease with agent density and tend to fall with larger p,qn values.
Most of the computed training and testing MSE values on the new data collection are comparable to their
counterparts from the prior data collection (Figure @(b)) The lone exception occurs at pgqn = 0.95, where
the testing MSE exceeds 5 x 10~ while the testing MSEs at paqn, = 0.9 and 1.0 do not exceed 2.5 x 1074,
Visual inspection of the simulated PDE prediction against ABM data at pyqn, = 0.95 reveals that it matches
the data well but slightly mispredicts the data’s heel at later time points (Supplementary Figure (a—c)).

We next predict ABM data when varying both 2% and p,g,. The prior data collection consists of
K; = 18 ABM datasets generated by varying 724" = 0.1,0.5,1.0 and paan = 0.5,0.6,...,1.0; the new data
collection consists of K5 = 10 ABM datasets generated from a latin hypercube sampling of (729" p,an) €

[0.1,1.0] x [0.5,1.0] (Figure (a) and Supplementary Table. We performed multivariate interpolation over

each DML (T p) from the prior data collection to generate D"*¢"P(T'; p). The predicted diffusion rates for

adh

a®h values, and decrease faster for larger

the new data collection decrease with agent density, rise for larger r
Padn values (Figure [L0[b)). We order the parameters from the new data collection by increasing training
MSE values (Figure[10{c)). The four lowest training and testing MSE values are all below 1 x 1074, the eight
lowest are all below 2 x 10™%, and the highest testing MSE value reaches 1.6 x 1073, Visual inspection of the

interpolated PDE prediction with the highest testing MSE value reveals that this simulation mispredicts the

data’s heel but otherwise matches the ABM data well (Supplementary Figure [17(a-c)). Visual inspection
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Figure 9: Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new

Padn values. The parameters for the Adhesion ABM are given by p = (129" p,41,)T . Here, we vary p,q, while

m

fixing 729" at its baseline value of 1.0. The prior data collection consists of p,gn = 0.5,0.6,...,1.0 and the

new data collection consists of p,qn, = 0.55,0.65,...,0.95 (a) Plots of the learned DMLF(T; p) diffusion rates
for the prior data collection. We performed multivariate interpolation on these rates to obtain D¢"?(T; p),
which we plot for the new data collection. (b) Plots of the BINN-guided PDEs’ computed training and

testing values on the prior data collection, and the interpolated PDE’s training and testing values on the

new data collection.
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Figure 10: Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new

adh
m

and paapn values. The parameters for the Adhesion ABM are given by p = (2" p,4,)T. Here, we vary

r
both parameters. (a) The prior data collection consists of rﬁ{ih =0.1,0.5,1.0 and pgqr, = 0.5,0.6,...,1.0 and
the new data collection consists of a Latin hypercube (LHC) sampling of p € [0.1,1.0] x[0.5, 1.0] with K» = 10
samples. (b) We performed multivariate interpolation on the DMLP(T; p) rates on the prior data collection

to obtain D" (T;p). We plot three illustrative D™ (T; p) values from the new data collection. (c)

Plots of the interpolated PDE’s training and testing values on the new data collection.

of the interpolated PDE prediction with the third-highest MSE value shows that this simulation accurately

matches the ABM data (Supplementary Figure [17(d-f)).

4.3.2 Predicting Adhesion & Pulling ABM data

The parameters for the Pulling & Adhesion ABM are p = (r2u! r“dh,ppu”,padh, a)T. We perform ABM

' T'm
data prediction over a large range of parameter values to determine if the one-compartment BINN-guided
PDE simulations can predict this ABM’s data, which results from two interacting subpopulations.

We perform multivariate interpolation over the pyyii, Padn, and o parameters while fixing rPull and radh at
their baseline values of 1.0 and 0.25, respectively. The prior and new data collections consist of K7 = 40 and
K5 = 20 ABM parameter combinations, respectively, that were generated from Latin hypercube samplings
of (Ppults Padn, ) € [0,0.67] x [0,0.67] x [0,1] (Figure [L1|a) and Supplementary Tables [§| and [9). We chose
samplings where ppui + Paan < 1.0 for all samples. The computed training and testing MSE values for the

new parameter collection suggest all simulated PDE predictions accurately match the ABM data at those

parameters (Figure [11[b)). Of the K5 = 20 computed testing MSE values in the new data collection, four
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Figure 11: Predicting Pulling & Adhesion ABM data for new ppuiu, Padn, and o« values. The parameters for
the Adhesion ABM are given by p = (rﬁffh, rﬂ‘”,padh,pm”, a)T. Here, we vary ppuyii, Dadh, and a while fixing
rPull and r29h at their baseline values of 1.0 and 0.25, respectively. (a) The prior data consists of a Latin
hypercube (LHC) sampling of (ppuii, Padn, @) € [0,0.67] x [0,0.67] x [0, 1] with K; = 40 samples and the new

data consists of a LHC sampling of the same domain with K> = 20 samples. (b) Plots of the interpolated

PDE’s training and testing values on the new data, arranged by increasing training MSE values.

are below 1 x 1074, 16 are below 2 x 10~%, and all are below 5 x 104, The highest and third highest
testing MSE value results from (ppuii; Padn, ) = (0.218,0.553,0.675) and (0.251,0.486,0.975), respectively.
Visually inspecting the interpolated PDE predictions from these parameter values against ABM data reveals
that both match the data well, though the worst prediction overpredicts the largest ABM density values

(Supplementary Figure [L§).

4.4 Comparing the computational expense of each modeling approach

We finish with a discussion on the computational expense of all approaches discussed in this work (Table
@ and Supplementary Figure [19). We recorded the computed wall times to simulate each ABM, train
each BINN model, and simulate each PDE from Section Averaging across all ABMs suggests that the
average ABM dataset took 40.0 minutes to generate with a standard deviation of 15.6 minutes. The average
mean-field PDE model simulations for the Pulling ABM and the Adhesion ABM took 0.6 and 0.5 seconds

to complete, respectively, which are about 4,000 and 4,500 times faster than the average ABM simulation
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ABM Name

ABM simulation

MF PDE simulation

BINN Training

BG PDE simulation

Adhesion

37.5 (15.4) minutes

0.5 (0.15) seconds

10.6 (4.44) hours

16.9 (23.65) seconds

Pulling

39.9 (15.8) minutes

0.6 (0.20) seconds

10.0 (3.99) hours

164.8 (156.9) seconds

Pulling & Adhesion

42.5 (15.52) minutes

4.7 (1.20) seconds

13.1 (4.54) hours

66.9 (50.81) seconds

40.0 minutes

1.9 seconds

11.2 hours

82.9 seconds

Average

Table 4: Computational expenses of each modeling approach. The mean wall time computations (standard
deviation in parentheses) for ABM simulations, BINN training, mean-field (MF) PDE simulations, and
BINN-guided (BG) PDE simulations for all three ABMs. The last row depicts the average mean computation

time across all three ABMs.

time. The average mean-field PDE model simulation time for the Pulling & Adhesion ABM was 4.7 seconds,
which is 542 times faster than the average ABM simulation time. Training a BINN model is the most time-
consuming task with an average time of 11.2 hours across all ABMs with a standard deviation of 4.32 hours.
The average BINN-guided PDE simulation takes 82.9 seconds with a standard deviation of 77.12 seconds,

which is approximately 28 times faster than simulating the ABM.

5 Discussion and Future Work

In this work, we introduced how BINNs can be used to learn BINN-guided PDE models from simulated
ABM data. BINN-guided PDE model simulations provide a new approach for forecasting and predicting
ABM data. This methodology works by training a BINN model to match simulated ABM data while also
obeying a pre-specified PDE model framework. After model training, future ABM data can be forecasted by
simulating the BINN-guided PDE. Predicting ABM data at new parameters can be performed by simulating
the pre-specified PDE framework with an interpolated modeling term. This model term is computed by
interpolating over several learned BINN model terms and the parameter values that led to these terms.

It is challenging to predict how model parameters affect ABMs’ output behavior due to their heavy
computational nature. Mathematical modelers often address this limitation by coarse-graining ABM rules

into computationally-efficient mean-field DE models. Unfortunately, these DE models may give misleading
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ABM predictions; furthermore, they can be ill-posed for certain parameter values [1}, [8]. Here, we demon-
strated that BINN-guided PDE models accurately forecast future ABM data and predict ABM data from
new parameter values. One benefit of this BINN-guided approach for ABM prediction is that BINNs can, in
theory, be trained to simulated data from complex ABMs because BINN models are agnostic to the ABM
rules. This is in contrast to the coarse-graining approach, which is limited to ABMs with simple rules to
ensure a final PDE model can be recovered.

A limitation of the BINN-guided approach for ABM forecasting and prediction is the computational
expense of BINN model training. The average BINN training procedure in this study took 11.2 hours, which
is 17 times longer than the average ABM data generation time of 40 minutes. Once a BINN model has been
trained, however, the average BINN-guided PDE simulation took 83 seconds, which is 28 times faster than
the average time to generate an ABM dataset. One possible source of these long BINN training times is our
chosen BINN model architecture, which consists of over over 50,000 parameters to train. Kaplarevi-Malii
et al. [35] proposed a genetic algorithm to identify the optimal model archictecture for PINN models. In
future work, we plan to implement this algorithm to identify simpler BINN model architectures that can be
efficiently trained to learn predictive PDE models for ABMs.

This work was purely computational, as we applied all prediction methodologies to simulated ABM
data. It will be interesting in the future to validate the BINN-guided methodology on experimental data.
Performing data-driven modeling techniques, such as parameter estimation, is challenging for ABMs due to
their long simulation times. Our results suggest that BINN-guided PDE models may advance parameter
estimation for ABMs by providing an accurate and efficient ABM surrogate model. For example, a
typical approximate Bayesian computation (ABC) for parameter estimation requires performing 10,000 ABM
simulations [48], which would require more than 6,600 computational hours. If we instead simulate the ABM
at 10 parameter combinations, train BINN models to these data, and then use 10,000 interpolated BINN-
guided PDE model simulations for ABC, then this total process would take 349 hours, a 19-fold reduction
in time. This process will become even more efficient with new methodologies to expedite BINN model
training.

Case study: collective migration. We studied three case study ABMs that are applicable to cell
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ABM prediction Interpretability

MF PDE accurate for all parameters | MF PDE is interpretable
Pulling ABM
BG PDE accurate for all parameters | BG PDE is interpretable

MF PDE accurate for pgqn < 0.5 MF PDE is interpretable
Adhesion ABM
BG PDE accurate for p,qn < 0.9 BG PDE is interpretable

MF PDE accurate for all parameters | MF PDE not interpretable
Pulling & Adhesion ABM
BG PDE accurate for all parameters | BG PDE is interpretable

Table 5: Highlighting the ability of mean-field (MF) and BINN-guided (BG) PDEs to accurately forecast

simulated ABM data with interpretable PDE models.

biological experiments, such as barrier and scratch assays. Each ABM consists of rules governing how key
cellular interactions (namely, pulling and adhesion) impact the collective migration of cell populations during
these experiments 5], [I7]. Table |5| summarizes the predictive and interpretative capabilities of the mean-
field and BINN-guided PDE models for the three case study ABMs. For the Pulling ABM, both models
use interpretable one-compartment PDEs that accurately predict ABM behavior for all parameter values.
For the Adhesion ABM, the mean-field PDE predictions become less accurate for pyqn € [0.5,0.75] and are
ill-posed for pyqp > 0.75, whereas the BINN-guided PDEs make accurate predictions for p,qn < 0.9. For
the Pulling & Adhesion ABM, both PDE models accurately forecast the total ABM data for most parameter
values considered. The mean-field PDE model is not interpretable, as it contains two compartments that
consist of many terms. The BINN-guided PDE, on the other hand, achieves similar accuracy to the mean-field
PDE with an interpretable one-compartment PDE model.

We compared the performance of the mean-field and BINN-guided PDE models throughout this work.
We emphasize, however, that these two approaches are complementary, and our thorough investigation
highlights the strengths and limitations of each model. The mean-field PDE is fast to simulate but can
provide inaccurate, ill-posed, and/or uninterpretable ABM predictions. The BINN-guided PDE accurately
predicts ABM behavior with an interpretable PDE, but current BINN model training times are lengthy.

We encourage modelers to refer to these guidelines when deciding which approach to use for their future
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applications.
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A ABM Rules

A.1 The Pulling Model

The Pulling model consists of pulling agents that migrate with rat 7Pl and perform rules A and B from
Figure [1} Suppose a pulling agent at lattice site (4, 7) chooses to move rightwards into site (i + 1, 7). If the
lattice site (i — 1,7) is unoccupied, then the agent performs Rule A and moves into site (i + 1,5). If the
lattice site (i — 1, 7) is occupied, then the agent attempts Rule B on agent pulling. This event succeeds with
probability pp.u, and the agent moves to site (¢ + 1, j) and pulls its neighbor into lattice site (¢, 7). This
event fails with probability 1 — pp,u, in which the agent moves into site (¢ + 1,5) but the neighbor remains

at lattice site (i — 1, j). These rules can be described by the following trimolecular reaction rates:

rﬁz"”/él

0i—1,; + Pi,j +0iy1,; — 0j—1,; +0;,; + Pi+17j, (Rule A)

wll
PpultThy" /4

P_1;+P;+0i41 0i—1,5 + P j + Py, (Rule B.1)

1—ppurt) Pt /4
Pi_1;+P;+041; M} Pi_1;+0;;+ Py (Rule B.2)

Equivalent reactions govern agent migration and pulling in the other three directions.

A.2 The Adhesion Model

adh

a4 and perform rules C and D from

The Adhesion model consists of adhesive agents that migrate with rate r
Figure [1l Suppose an adhesive agent at lattice site (i,5) chooses to move rightwards into site (i + 1,j). If
the lattice site (¢ — 1, ) is unoccupied, then the agent performs Rule C and moves into site (i + 1, ). If the
lattice site (¢ — 1, ) is occupied, then the neighboring agent attempts Rule D to adhere to the migrating
agent and abort their movement. This event succeeds with probability p,qn, and neither agent changes its

location. This adhesion event fails with probability 1 — paqn, and the migrating agent moves to site (i + 1, 7)

and the neighbor remains at lattice site (i — 1, 7). These rules can be described by the following trimolecular

2Meaning that pulling agents attempt to migrate over an infinitesimal time interval of length dt with probability rf,;‘”dt.
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reaction rates:

Tadh/4

0i—1,; + Hiyj +0i41,5 S 0j—1,; +0;; + Hi+17j7 (Rule C)

(1=paan)ra™ /4

Hiflﬁj + Hi,j + 0i+1,j Hifl)j + Oi,j + HH*L]" (Rule D)

A.3 The Pulling & Adhesion Model

The Pulling & Adhesion model consists of both pulling and adhesive agents. This model implements Rules
A-F from Figure [} Rules A-D are unchanged from their descriptions in Sections [A.1] and [A.2] If a pulling
agent at lattice site (¢, j) chooses to move rightwards into site (i + 1, j) while an adhesive agent occupies site
(i—1,7), then Rule E dictates the agents’ attempts to pull and adhere to each other. The migrating pulling
agent succeeds with probability pp.; and moves to site (i + 1, j) while pulling the neighboring adhesive agent
into site (i, 7); the neighboring adhesive agent successfully aborts the pulling agent’s migration event with
probability p,qp; both agents fail with probability 1 —pgqn —ppun and the pulling agent moves to site (i+1, 5)
while the adhesive agent remains at site (¢ — 1, j). Based on our definition of this rule, it is not possible that
both the pulling and adhesion events succeed, so the parameters must satisfy 0 < ppyi; + padr, < 1. Rule E

can be described by the following trimolecular reaction rate:

u
PpuniTh /4

Hirj+Pij+0ip1; ——— Oi—1,5 + Hij + Piy1,j, (Rule E.1)

(1=Padnh —Ppurt) T /4

Hi_1;+P;+0i41; H;_1;+0;;+Piy1;. (Rule E.2)

If an adhesive agent at lattice site (i,7) chooses to move rightwards into site (¢ + 1, ) while a pulling
agent occupies site (i — 1, j), then Rule F dictates that the adhesive agent moves into site (i + 1, j) and the

pulling agent remains at site (i — 1, 7). Rule F can be described by the following trimolecular reaction rate:

'rfnd’h/4

]JZ‘_LJ' + Hi,j + 0i+1,j —_— Pi—l,j + Oi,j + Hi+1,j~ (Rule F)
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B ABM implementation

Each model is simulated in the spatial domain (z,y) € [0,X] x [0,Y]. We choose X = 200 and Y = 40
to represent a thin rectangle where collective migration primarily occurs along the z-dimension and is not
affected by the boundary in this dimension. We represent this space with a two-dimensional lattice with
square lattice sites with length A = 1 to imitate a typical cell length. The (4, )" lattice site is centered at
(xi,y;), where x; = (i —0.5)A, i =1,...,X,and y; = (j — 0.5)A, j=1,...,Y. Each model is an exclusion
process, meaning that each agent can only occupy one lattice site at a time, and each lattice site is occupied
by at most one agent. The parameter « € (0,1) denotes the proportion of nonempty lattice sites that are
occupied by adhesive agents in the simulation, and (1 — «) denotes the proportion of nonempty lattice sites
that are occupied by pulling agents in the simulation.

All model simulations are initialized by populating 75% of the lattice sites in the middle 20% of columns,
e.g., 75% of the lattice sites in {(z,;)})_; are initially occupied for i = 80,...,120. All other columns are
initially empty. This initial condition is chosen to reflect a barrier assay [41]. Reflecting boundary conditions
are used at the boundaries of lattice to enforce a no-flux condition in the spatial domain. We simulate each
ABM using the Gillespie algorithm, which we provide for the Pulling & Adhesion ABM in Supplementary

Algorithm [I] in electronic supplementary material [C. All ABMs are simulated until ¢ = 1000.
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C Gillespie algorithm

Our implementation of the Gillespie Algorithm for the Pulling & Adhesion ABM is provided in Supplementary

Algorithm

Algorithm 1: Gillespie algorithm for the Pulling & Adhesion ABM
Create an X x Y lattice with user-specified placement of agents

Sett =0
Set maximum simulation time teng
Set P(t) and H(t) equal to the number of Pulling and Adhesive agents on the lattice, respectively

while t < t.,q do

Calculate the following random variables, uniformly distributed on [0, 1] : v, Y2
Calculate the propensity function a(t) = 724 P(t) 4 radh H (t)

Calculate time step 7 = —In(y1)/a(t)

t=t+7

R = a(t)ye

if R <2 P(t) then
| Perform Pulling agent migration (Supplementary Algorithm

else if R < r2“'P(t) 4+ r29" H (t) then
| Perform Adhesive agent migration (Supplementary Algorithm

end
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Algorithm 2: Pulling Agent migration

Randomly choose a pulling agent and determine its lattice site index, & = (i, j)T

Choose one of the four cardinal migration directions,
dz = (dz,dy)T € {(1,0)7,(=1,0)T,(0,1)T, (0, —1)T}, with equal probability, 1/4. The neighboring
direction is given by dr = —dzx

if 7+ do is empty then

if 7+ dux is empty then

/* Rule A %/

Move the chosen pulling agent to lattice site & + dx

else if &+ dx is occupied by a Pulling agent then
/* Rule B */
Calculate the random variable, -y, uniformly distributed on [0, 1]

if v3 < ppuy then

Move the chosen pulling agent to lattice site & + dzx

Move the neighboring agent to lattice site &

else if 3 > pp,y then

‘ Move the chosen pulling agent to lattice site & + dzx

else if 7+ dz is occupied by an Adhesive agent then
/* Rule E */
Calculate the random variable, 73, uniformly distributed on [0, 1]

if v3 < Ppull then

Move the chosen pulling agent to lattice site o + dzx

Move the neighboring agent to lattice site &

else if 73 < ppui + 1 — paan then

‘ Move the chosen pulling agent to lattice site o + dzx
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Algorithm 3: Adhesive agent migration

Randomly choose an adhesive agent and determine its lattice site index, ¥ = (4, j)7

Choose one of the four cardinal migration directions,
dz = (dz,dy)T € {(1,0)7, (=1,0)T,(0,1)T, (0, —1)T}, with equal probability, 1/4. The neighboring
direction is given by dr = —dzx

if 7+ dr is empty then

if 7+ du is empty then

/* Rule C */

Move the chosen adhesive agent to lattice site & + dx

else if &+ dx is occupied by an adhesive agent then
/* Rule D */
Calculate the random variable, -3, uniformly distributed on [0, 1]

if v3 < (1 — paan) then
‘ Move the chosen adhesive agent to lattice site & + dzx

else if 7+ dz is occupied by a Pulling agent then

/* Rule F x/

Move the chosen adhesive agent to lattice site & + dzx
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D Coarse-graining ABM rules into PDE models

We will coarse-grain the Pulling, Adhesion, and Pulling & Adhesion ABMs into their mean-field PDE models.
Each ABM consists of a combination of Rules A-F from Figure[l] Each rule updates the occupancies of three
consecutive lattice sites, such as {(¢,j—1), (4, 7), (¢, j+1)}. Let the variables P; ;(t), H; ;(t), and 0, ;(t) denote
the probabilities that lattice site (4, ) is occupied by a pulling agent, adhesive agent, or empty at time ¢,
respectively. To convert each rule into a PDE model, we invoke the mean-field assumption, which supposes
that all lattice site occupancies are independent of each other. This assumption simplifies model coarse-
graining by allowing us to replace the joint probability of three lattice site occupancies with the product of
the three individual lattice site occupancy probabilities. For example, under the mean-field assumption, we
can write the probability that lattice sites (i,5 — 1), (4,7), and (i,5 4 1) are all occupied by pulling agents at
time t as P; j_1(t)P; ;(t)P; j+1(t); otherwise, we must consider the joint occupancy probability for this triplet
of lattice sites. Mean-field DE models can poorly predict ABM behavior when the mean-field assumption is

violated during ABM simulations, see [8| [13] [14] for further details.

D.1 Coarse-graining the Pulling ABM

The Pulling ABM is composed of Rules A and B from Figure [I] and Section [A.T. We begin coarse-graining
this ABM into a PDE model by writing the master equation governing how P; ;(t) changes according to

these rules:

ané(t) :KLRMLLAJ+KLRHLLB-J-+KLR“LLB‘Z, (9)

specifies how pulling agents migrate into an empty lattice site with rate 724! /4 when there is no
neighboring agent in the lattice site opposite the direction of migration. This rate is divided by four because
the agent randomly chooses to attempt to migrate into one of its four neighboring lattice sites. We write

this rule in the master equation as:

KEule A — QT?H (04,1 () Pi, ()05 541 () + 01,5 (¢) P j (#)0i1,5(t)]

pull
Tm

+ [05,j—2(t)Pij—1(t)0i () + 0i j Pi j+10;i j12 + 0i—2jPi—1,30i j + 0; j Piy1,;0i12,5],  (10)

=

where the first line describes how a pulling agent moves out of lattice site (z, j), and the second line describes
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how a pulling agent moves into lattice site (4, j).
specifies how a pulling agent migrates into an empty neighboring lattice site and pulls its

neighbor along with it, which occurs with probability p,.;;. We write this rule in the master equation as:

ule p ullr?#ll
Kiule Bl — =P 1 {Pi,j(t)PMH(t)0i7j+2(t)+Oi7j_2(t)H,j_1(t)Pi7j(t)+

Pi j(t)Pit1,5(t)0i12,5(t) + 0i—2,5 (t)R'l,j(t)Pz‘,j(t)}

u
DPputt™hy

1 {Pz‘,jz(t)Pi,jl(t)Oi,j(t) + 04,5 () Pi j+1(t) Pij2(t)+

Pi—oj(t)Pi—1,5(t)0:,5(t) + Oi,j(t)Pi-i-l,j(t)Pi-i-?,j(t):| : (11)

specifies how a pulling agent migrates into an empty neighboring lattice site and fails to pull its

neighbor along with it, which occurs with probability 1 —p,.;;. We write this rule in the master equation as:

1— rpull
R (Lot [ (025 00,41(0) + 0,1 (0P (O Pesn 01+
Py, () P55 (t)0i41,541 () + 05,51 (8) P (£) iy, (t)}

(1 — ppun) it

* 4

|:Pi,j2(t)Pi,j1(t)0i,j ) +0;; ()P j+1(t) P j+2(t)+
Prea (1) Py (101, (1) + 01y (1) Pr s (1) Prya (t)} | (12)

To obtain the resulting PDE model for the Pulling ABM, we substitute Equations , , and

into Equation @ and set 0; ; = 1—F; ;. We replace each term with its Taylor expansion, up to second order:

A2
Pitn g (1) = Piy(t) £ mA P (1) + o (Pry(D)as + O(A?), m=-2,-1,0,1,%
nA? 3
P jan(t) = Pij(t) £nA(Fij(0)y + ——(Fij(t)yy + O(A7), n=-2-1012  (13)

where subscripts denote differentiation with respect the the shown variable, and A is the length of each
lattice site. As shown in the Mathematica notebook Pulling model coarse graining.nb, taking the

limit of the resulting expression as A — 0 leads to the mean-field PDE model for the Pulling ABM:

opP rpull
_v-( ‘

5 (1+ 3ppur P?) VP) , (14)

where P = PiJ (t)
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D.2 Coarse-graining the Adhesion ABM

The Adhesion ABM is composed of Rules C and D from Figure [I]and Section [A.2. We begin coarse-graining
this ABM into a PDE model by writing the master equation governing how H; ;(t) changes according to

these rules:

O, ,;(t)
ot

_ Bule (*I+KI.B.1¢LLQ. (15)

specifies how adhesive agents migrate into an empty lattice site with rate r29" /4 when there is
no neighboring agent in the lattice site opposite the direction of migration. We write this rule in the master

equation as:

WULE 2/,1%?}7(
R 208 o, (0) iy (001541(0) 0t (0, (0001150
radh
= [Oi’jz(t)Hi,jl(t)Oi,j () + 04,5 (1) Hi j41(£)0i j 2 () +
Oc- g (01 00055 0) 05 (801120 (16)

where the first line describes how an adhesive agent moves out of lattice site (i, ), and the second and third
lines describe how an adhesive agent moves into lattice site (4, 7).

specifies how adhesive agents migrate into an empty neighboring lattice site when a neighboring
adhesive agent is in the lattice site opposite the direction of migration. The neighboring adhesive agent
attempts to adhere to the migrating agent and abort the migration event. The adhesion event succeeds with
probability peqn, and neither agent changes its position. The adhesion event fails with probability 1 — paqn,
and the migrating agent shifts into the previously-empty lattice site while the neighboring agent remains in

its previous lattice site. We write this rule in the master equation as:

1—p. rfndh
pmEn_ (=P Zh) [Hi,j—l(t)Hi,j (t)0i 541 (t) + 0451 (8) Hy 5 (8) Hi j 1 (t)+
Hi 0 (005150) 4 0115 (O () His 1)

1 — paan)redh
+% H; j—o(t)H; j—1(t)0;;(t) + 0; ;(t)H; j1+1(t)H; jyo(t)+

Higj(t)H;1,5(t)0:;(t) + Om‘(t)Hi+1,j(t)Hi+27j(t)} : (17)
To obtain the resulting PDE model for the Adhesion ABM, we substitute Equations and into
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Equation and set 0; ; = 1 — H; ;. We replace each term with its Taylor expansion, up to second order:

2
Hison (1) = Hiy(0) % mA(Ho () + "0 (Hog()ee + O, m=—2,-1,0,1,2
AQ
Hijin(t) = Hij(t) £ nA(H, (1)), + "T(Hi,j(t))yy +O(AY), n=-2-1,0,1,2 (18)

As shown in the Mathematica notebook Adhesion model coarse graining.nb, taking the limit of the

resulting expression as A — 0 leads to the mean-field PDE model for the Adhesion ABM:

OH radh 2\ 4paan
at‘v'<4<3p“dh(H‘3) AR "

where H = H, ;(t).

D.3 Coarse-graining the Pulling & Adhesion ABM

The Pulling & Adhesion ABM is composed of Rules A to F from Figure [I] and Sections[A.1{A.3l We begin
coarse-graining this ABM into a PDE model by writing the master system of equations governing how both

P, ;(t) and H; ;(t) change according to these rules:

Pt
OFi;(t) é;():KM+KM+Kw+KﬁwP + fule L2 (20)
(’)ng(t) — KEleQ | pEuleD | ple BT | pdRule 7 (21)
where KBule BT denotes how P (t) is affected by [Rule E.1)and KEZ<EI denotes how H; ;(t) is affected by

@. All other rules affect either P; ;(t) or H; ;(t), but not both. Rules A-D are described in Sections
and [D.2, and we do not restate them here.

Rule E specifies how a pulling agent migrates into an empty neighboring lattice site when a neighboring
adhesive agent is present in the lattice site opposite the direction of migration. In the pulling agent
successfully pulls the adhesive agent as it migrates, which occurs with probability pp,;. In this scenario,

the pulling agent shifts into the previously-empty lattice site and the adhesive agent moves into the site
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previously occupied by the pulling agent. We write this rule in the master equation for P; ;(t) as:

wule p ullr%”
Kpuetdl= 22 1 [Hm1(15)Pi,j(t)0i,j+1(t) + 0i5-1(8) Pij (6) Hi 1 () +

Hi1 j(#)P; j()0i41,5(t) + 0i—1,;(6) Pi j (1) Hit1,5 (t)]

i
DpullThy

M

|:Hi,j—2(t)Pi,j—1(t)oi,j(t) + 04,5 (t) Pijpr () Hy jyo(t)+
Hi o j(t)Pi—1,;()0;;(t) + 0; ;(t) Piv1,j(t) Hita, (t)] , (22)

and in the master equation for H; ;(t) as:

ule 1 ppu”rg?”
H = - 0i,j—2(t) P j—1 () Hij (t) + Hi i (£) Py, j1()0i j42(t) +

A
0i—2,(t)Piz1,j(t)Hy j(t) + Hi j(t)Piv1,(t)0it2 (t)]

1
PpuliThy

A

[Hi,j_mt)a,j(t)oi,m<t> 00y (6P (1) Hy g (1)
Hi 1 ()P (t)0441,5(t) + 0i—1,;(t) Pi j(t) Hiy1 (t)] : (23)

The neighboring adhesive agent successfully adheres to the migrating pulling agent and aborts its migration
event with probability peqn. Neither P; ;(t) or H; j(t) changes in this scenario as no agents change their
locations in response to the adhesion event. In the adhesive agent fails to adhere to the pulling
agent and the pulling agent fails to pull the adhesive agent, which occurs with probability 1 — paan — Ppuir-
In this scenario, the pulling agent shifts into the previously-empty lattice site while the neighboring adhesive

agent remains in its previous lattice site. We write this rule in the master equation as:

(1 — Padh — P, ull)Tg:Lll
KOl B2 — 1 £ H;j1(t)Pij()0i4+1(t) + 0i j—1(t) Pij () Hi j1(t)+

Hi 1 j(t)P;(t)0i41,5(t) +4+0;—1 ;(6) P (1) Hiy1 (t)]

(1 = padn — Ppunr) 2
4

+ {Hi,j—2(t)szj—1(t)0i,j (t) +0i ; ()P j+1(t) Hi jy2(t)+

Hioo(8)Proy 5 (1)01.5(1) + 015 () Prg (t)HiJrz,j(t)] @

Rule F specifies how adhesive agents migrate into an empty neighboring lattice site when a neighboring
pulling agent is in the lattice site opposite the direction of migration. The two agents do not interact with

each other in this scenario. As such, the adhesive agent migrates into the empty lattice site with rate r2" /4.
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We write this rule in the master equation as:

M
= [Pi,jl(t)Hz',j ()0 j4+1(t) + 0 j—1(t) Hi i (8) Py j+1(t)+
Pt O (0150 4 05150 (0P 1)

Tadh
+= [Pi,j—2(t)Hi,j—1(t)oi,j(t)+Om‘(t)Hi,j+1(t)Pi,j+2(t)+

Pi_o j(t)Hi—1,;()0;,(t) + Om-(t)Hi+17j(t)P,-+27j(t)} . (25)

To obtain the resulting system of differential equations for the Pulling & Adhesion ABM, we substitute
Equations , , , , , , , , and into Equation and set 0;; =1 —1T; ;,
where T} ; = P; j+ H; ;. We replace each term with its Taylor expansion, up to second order, from Equations
and . As shown in the Mathematica notebook Pulling-Adhesion coarse graining.nb, taking
the limit of the resulting expression as A — 0 leads to the mean-field system of PDEs for the Pulling &

Adhesion ABM:

op  yrull
= =m v.((1-T)VP+PVT
g (< VP + v)
rpu”
+ Paan ==V - (— 3P(1—T)VH — H(1 - T)VP — HPVT)
rpu”
+ppull72 V. <3P2VT>
OH rodh
= =m v ((1-T)VH+ HVT
LR << )VH + v)
radh
+ Padn =V ( —4(1 - T)HVH — HQVT)
pull
+ppullmTv . ( - (1-T)HVP+ (1-T)PVH + 3HPVT>, (26)

where P =P, ;(t), H = H; j(t), and T = T; ;(t).
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E BINN implementation and training

E.1 BINNSs architecture

Following [28], we construct TMLF (., t) using a fully-connected feed-forward MLP with three hidden layers,

which can be written as:

zo = [z, 1]

z1 =0 (20W1 + b1)
29 =0 (z1Wa + b)
23 = 0 (22W3 + b3)

TMLP (.’IJ, t) = ¢ (23W4 + b4) ) (27)

where each z; denotes the k™™ hidden layer for k = 1,2,3; the W, matrices and the by vectors provide
the weights and biases of each hidden layer, respectively; o denotes the sigmoid activation function o(x) =
1/(1+exp(—x)), and ¢ denotes the softplus activation function ¢ (x) = log(1 + exp(z)). Each hidden layer
in Equation has 128 neurons, meaning that W; € R2X128. 1}, Wy € R128%128. 11/, ¢ R128X1.p) by bs €
R!28: and by € R.

The architecture of DMLP(T) is identical to the architecture for TML¥ in Equation , except DMLF

has a one-dimensional input vector, T', instead of the two-dimensional input vector, [z, t].

E.2 Loss Function

BINNSs are trained to concurrently fit the given dataset, (T4ABM (2, ¢))"*" and solve Equation by mini-

mizing the following multi-term loss function:

»Ctotal = CWLS + 6»CPDE + Lconstr' (28)

The € parameter ensures the terms Ly s and Lppg are equally weighted because these terms can be of
different orders of magnitude; we find good results for e = 10%.

The Lwrs term of Equation computes a weighted mean-squared error between TMLP (2, t) and
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<TABM($7 t)>train:

X,T;Tain

> wiy (TMLP(%‘v t;) = (TAPM (2, tj))) 2- (29)

i=1,j=1

[’WLS = T;rainX

We set w; 1 = 10.0 for all values of ¢ and all other w; ; values to 1.0 to ensure that T° MLP closely agrees
with the ABM’s initial data. By minimizing Equation , we ensure TMEP (g, t) closely approximates
(TABM (g ¢)ytrain,

The Lppr term of Equation quantifies how closely TMEP and DMLP follow Equation . To
ensure the MLPs satisfy this PDE framework throughout the ABM’s entire spatiotemporal domain, we
uniformly sample 10,000 points, {(xk,tk)}i(igoo, from [0, X] x [0, 750]. For notational convenience, let T} =
TMLP (2, t1,) and Dy, = DMLP(TMLP(a?k, tk)). We then compute the mean-squared error between the left-

and right-hand sides of Equation at all sampled points:

1
Lrpe = 10,000 ;

9.  9/(/~ 9\

is performed using automatic differentiation. Minimizing Equation

10,000 {

TMLP DMLP

where differentiation of and
verifies that TMLP and DMEP together satisfy Equation @

The L.onsir term of Equation incorporates user knowledge into BINNs training. We penalize pMLP
for outputting values outside of the interval [Dpyin, Dmax]- We set Dpin = 0 because Equation is ill-
posed if D(u) < 0, and we set Dyax = 1.0 because the mean-field rates of diffusion are below one for all

ABM simulations in this study. We compute this term by squaring any values of D, that are not within

[Dmmin, Dimax) and weighting these values by 101°:

i 10,000
£cons r = 1010 _D 2. 31
o= L () (31)

k=1
Dy &[Dmin,Dmax)

This term regularizes the BINN training procedure to prevent DMLF from outputting unrealistic values.

E.3 BINN Training Procedure

For BINN model training, we randomly partition the training ABM dataset into 80%,/20% BINN training
and BINN validation datasets. We train the BINN parameter values (i.e., the weights and biases for TMLP

and DMEP) to minimize a loss function, £, using the gradient-based ADAM optimizer with its default
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hyperparameter values on the BINN training dataset. For each new set of BINN parameters, we compute
L on the BINN validation dataset and save the BINN parameters if the newly computed £ value achieves
a 1% or greater relative improvement over the previous smallest recorded value. Following [36], we perform
training in a two-step process: in the first step, we train the BINN to match the ABM data by optimizing
L = Lwrs from Equation ; in the second step, we train the BINN on £ = L, from Equation .
The first training step is performed for 10* epochs with an early stopping criterion of 103, meaning that
training ends early if the smallest-computed £ value on the validation data is unchanged for 10 epochs. The
second step is performed for 10 epochs with an early stopping criterion of 10°. Each epoch is computed in
minibatches of size 103. BINN model training is performed using the PyTorch deep learning library (version
1.7.1).

Following [28], we train five separate BINNs for each ABM dataset using different BINN training and
validation datasets because the final trained model can be sensitive to which data is included in these two
datasets. We compute the five PDE forward simulations from these trained models and select whichever
BINN achieves the smallest mean-squared error against the ABM training data as the final selected BINN

model.

E.4 Comments on BINN training convergence

We depict the chosen hyperparameter values for BINN model training in Table [f] Many of these values
were chosen to follow previous modeling studies 28] 36]. A current challenge in neural network training is
determining the optimal choice of such hyperparameter values [35]. In our work, we found that BINN model
training is most sensitive to the e parameter as well as the number of epochs and early stopping number
used during BINN model training (results not shown). If € is too small, then the BINN will prioritize fitting
the ABM data but not satisfying the PDE framework. Conversely, if € is too large, then the BINN will
ensure it satisfies a PDE framework while neglecting the data. We found a good balance between the two
loss functions for € = 1 x 10~%. Training the BINN with a smaller number of epochs, such as 10° with an
early stopping criterion of 10* led to a model that had not fully converged to the data and we found better

convergence using 10% epochs with an early stopping criterion of 10°.
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Hyperparameter description Value

Number of hidden layers 3
Number of neurons per hidden layer 128
Weighting between Ly s and Lppg (€) 10—*
Additional initial condition weighting in Ly g 10.0
Number of collocation points for Lppg 10,000
Penalty for DMLY values outside of [Dyin, Dimax) 1010
Din 0.0
Dinax 1.0
ANN epochs 104
ANN early stopping 103
BINN epochs 106
BINN early stopping 10°

Table 6: Hyperparameter values used to perform BINN model training.
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F  Numerical integration of PDEs

When simulating Equation , we populate the middle 20% of the spatial dimension with 75% confluence and
zero confluence everywhere else to match the initial ABM configurations and implement no-flux boundary

conditions:

0.75, 80 < x < 120

T(x,O) = )
0, otherwise,
oT ou
——(0,t) = —(X,t) = 0. 2
(0.0) = (X, =0 (32)

Before integration, we discretize the spatial domain as z; = iAx with ¢ = 0,...,199 and Az = 1.0. For
ease of notation, let T;(¢t) = T(x;,t) and D;(t) = D(T;(t)). We then use the method of lines approach to

integrate Equation . To discretize the right hand side of Equation , we let

agf) < Dt 8?3575)) N Pi+1/2(t)A—xPi,1/2(t)’

where P;41/,(t) denotes the right or left flux through location x;, respectively. Following [49], we approximate

these fluxes by

Pralt) = 5 (Dz (t) Ti“(ti; L) | p ) Ti“(z; Ti(t))
Prya(t) = % <Di_1(t) T;(1) —Afpl(t) n Dz(t)TZ(t) ;?1@)) (33)

To implement the no-flux boundary conditions, we incorporate the ghost points x_; and xs99 that enforce
u_1(t) = i (t) and u19s(t) = ug0o(t) into Equation (33). We integrate Equation using the odeint com-
mand from Scipy’s integration package (version 1.8.0), which implements the Livermore Solver for Differential

Equations (LSODA) method [50].
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G Supplementary figures

a) t = 3333 b) t = 666.7 c) t = 1000.0
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Figure 12: Forecasting ABM data with neural networks and PDEs. ANN and BINN models were trained
to fit (TABM (g ¢))trem These two neural networks and the mean-field and BINN-guided PDE simula-
tions were then used to forecast (TABM (x, t))treim and (TABM (g, t))*st. This was performed for (a-c)
the Adhesion ABM with p = (72" p,qn)T = (1.0,0.5)T and (d-f) the Pulling & Adhesion ABM with

p = (r2wt radh p ity Paan, )T = (1.0,0.25,0.33,0.33,0.5)T.
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Sample | p = (g™, padn)”
1 (0.145, 0.825)T
2 (0.505, 0.575)T
3 (0.415, 0.725)"
4 (0.865, 0.525)7
5 (0.955, 0.625)7
6 (0.235, 0.775)7
7 (0.685, 0.675)7
8 (0.325, 0.875)7
9 (0.775, 0.925)7
10 (0.595, 0.975)7

Table 7: Latin hypercube sampling for the Adhesion ABM. The samples from the new parameter dataset for

the Adhesion ABM when varying 72" and p,qn. The samples are ordered by increasing testing MSE values

(see Figure [10)(c)).

58



Sample | p= (5, r8dh poi Padn, o)
1 (1.0, 0.25, 0.394, 0.578, 0.912)T
2 (1.0, 0.25, 0.293, 0.528, 0.938)T
3 (1.0, 0.25, 0.008, 0.226, 0.988)T
4 (1.0, 0.25, 0.511, 0.477, 0.862)7
5 (1.0, 0.25, 0.41, 0.109, 0.962)T
6 (1.0, 0.25, 0.075, 0.595, 0.888)T
7 (1.0, 0.25, 0.042, 0.544, 0.838)T
8 (1.0, 0.25, 0.327, 0.059, 0.712)T
9 (1.0, 0.25, 0.444, 0.31, 0.662)T
10 (1.0, 0.25, 0.209, 0.209, 0.612)T
11 (1.0, 0.25, 0.126, 0.41, 0.762)T
12 (1.0, 0.25, 0.193, 0.042, 0.588)7
13 (1.0, 0.25, 0.059, 0.561, 0.462)T
14 (1.0, 0.25, 0.243, 0.26, 0.788)7
15 (1.0, 0.25, 0.427, 0.494, 0.512)7
16 (1.0, 0.25, 0.595, 0.327, 0.812)T
17 (1.0, 0.25, 0.025, 0.461, 0.388)T
18 (1.0, 0.25, 0.377, 0.176, 0.488)T
19 (1.0, 0.25, 0.226, 0.645, 0.538)T
20 (1.0, 0.25, 0.528, 0.126, 0.688)T
21 (1.0, 0.25, 0.561, 0.075, 0.562)T
22 (1.0, 0.25, 0.142, 0.193, 0.362)T
23 (1.0, 0.25, 0.31, 0.092, 0.738)T
24 (1.0, 0.25, 0.176, 0.662, 0.412)T
25 (1.0, 0.25, 0.645, 0.008, 0.638)T
26 (1.0, 0.25, 0.343, 0.293, 0.312)T
27 (1.0, 0.25, 0.092, 0.611, 0.238)T
28 (1.0, 0.25, 0.109, 0.628, 0.012)T
29 (1.0, 0.25, 0.159, 0.343, 0.212)7
30 (1.0, 0.25, 0.26, 0.142, 0.188)T
31 (1.0, 0.25, 0.36, 0.377, 0.262)T
32 (1.0, 0.25, 0.276, 0.36, 0.038)T
33 (1.0, 0.25, 0.578, 0.243, 0.288)T
34 (1.0, 0.25, 0.628, 0.159, 0.062)T
35 (1.0, 0.25, 0.477, 0.511, 0.138)T
36 (1.0, 0.25, 0.611, 0.276, 0.338)T




Sample | p= (r2) radh poity Padn, )T
1 (1.0, 0.25, 0.285, 0.519, 0.775)"
2 (1.0, 0.25, 0.419, 0.352, 0.875)T
3 (1.0, 0.25, 0.486, 0.117, 0.525)7
4 (1.0, 0.25, 0.553, 0.285, 0.375)7
5 (1.0, 0.25, 0.385, 0.586, 0.475)7
6 (1.0, 0.25, 0.586, 0.184, 0.175)7
7 (1.0, 0.25, 0.62, 0.151, 0.325)%
8 (1.0, 0.25, 0.184, 0.084, 0.625)"
9 (1.0, 0.25, 0.352, 0.385, 0.925)7
10 (1.0, 0.25, 0.653, 0.05, 0.275)7
11 (1.0, 0.25, 0.151, 0.653, 0.075)T
12 (1.0, 0.25, 0.452, 0.251, 0.125)7
13 (1.0, 0.25, 0.084, 0.218, 0.225)7
14 (1.0, 0.25, 0.318, 0.62, 0.725)"
15 (1.0, 0.25, 0.519, 0.017, 0.825)7
16 (1.0, 0.25, 0.117, 0.419, 0.425)7
17 (1.0, 0.25, 0.251, 0.486, 0.975)T
18 (1.0, 0.25, 0.017, 0.452, 0.025)T
19 (1.0, 0.25, 0.05, 0.318, 0.575)T
20 (1.0, 0.25, 0.218, 0.553, 0.675)7

Table 9: Latin hypercube sampling for the Pulling & Adhesion ABM. The samples from the new parameter
dataset for the Pulling & Adhesion ABM when varying ppuii, Padn, and «. The samples are ordered by

increasing training MSE values.
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Pulling ABM, rB¥" = 1.0, ppus = 0.8

a) t=333.3 b) t = 666.7 c) t = 1000.0
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Figure 13: Forecasting Pulling ABM data with mean-field (MF) and BINN-guided PDE models. The mean-

field and BINN-guided PDE simulations are used to forecast Pulling ABM data for (a-c) r2%! = 1.0, Dpull =

0.8 (d-f) r2% = 0.9, ppuy = 0.5.
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Adhesion ABM, radh = 1.0, pagn = 0.7
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Figure 14: Forecasting Adhesion ABM data with mean-field and BINN-guided PDE models. The mean-field

and BINN-guided PDE simulations are used to forecast Adhesion ABM data for (a-c) r2®" = 1.0, poan = 0.7

(d-f) 729" = 0.1, paan, = 0.5.
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Pulling & Adhesion ABM, r¥/l = 1.0, r3dh = 0.25, ppyy = 0.33, pagh = 0.4, a = 0.5
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Figure 15: Forecasting Pulling & Adhesion ABM data with mean-field (MF) and BINN-guided PDE models.
The mean-field and BINN-guided PDE simulations are used to forecast Pulling & Adhesion ABM data for
the base parameter values (r£“! = 1.0,72% = 0.25, ppuy = 0.33, paan = 0.33, and a = 0.5), except (a-c)

Paan = 0.4 (d-f) r2dh = 0.1.
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Figure 16: Predicting Adhesion ABM data with the interpolated PDE model. The interpolated PDE model

predicts Adhesion ABM data for (a-c) r¢¥" = 1.0 and paan = 0.95.
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Adhesion ABM, r2dh = 0.595, pagn = 0.975
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Figure 17: Predicting Adhesion ABM data with the interpolated PDE model. The interpolated PDE model

predicts Adhesion ABM data for (a-c) " = 0.595 and paan, = 0.975 and (d-f) r2" = 0.325 and paa, = 0.875.
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Pulling & Adhesion ABM, r2¥/ = 1.0, ra9h = 0.25, ppyy = 0.218, pagh = 0.553, @ = 0.675
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Figure 18: Predicting Pulling & Adhesion ABM data with the interpolated PDE model. The interpolated
PDE model predicts Adhesion ABM data for 2% = 1.0, 729" = 0.25, and (a-c) ppuy = 0.218, paan = 0.553,

and a = 0.675 (d-f) ppuur = 0.251, pagn = 0.486, and « = 0.975.
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Figure 19: Computational expenses of each modeling approach. Violin plots represent the distribution of
wall time computations for ABM simulations, BINN training, mean-field PDE simulations, and BINN-guided

PDE simulations for the (a) Pulling ABM, (b) Adhesion ABM, and (c) Pulling & Adhesion ABM.
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