
Forecasting and predicting stochastic agent-based model data

with biologically-informed neural networks

John T. Nardini1

1Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, 08628, USA. ,

nardinij@tcnj.edu

August 14, 2024

Abstract

Collective migration is an important component of many biological processes, including wound heal-

ing, tumorigenesis, and embryo development. Spatial agent-based models (ABMs) are often used to

model collective migration, but it is challenging to thoroughly predict these models’ behavior throughout

parameter space due to their random and computationally intensive nature. Modelers often coarse-grain

ABM rules into mean-field di!erential equation (DE) models. While these DE models are fast to sim-

ulate, they su!er from poor (or even ill-posed) ABM predictions in some regions of parameter space.

In this work, we describe how biologically-informed neural networks (BINNs) can be trained to learn

interpretable BINN-guided DE models capable of accurately predicting ABM behavior. In particular,

we show that BINN-guided partial DE (PDE) simulations can 1.) forecast future spatial ABM data

not seen during model training, and 2.) predict ABM data at previously-unexplored parameter values.

This latter task is achieved by combining BINN-guided PDE simulations with multivariate interpolation.

We demonstrate our approach using three case study ABMs of collective migration that imitate cell

biology experiments and find that BINN-guided PDEs accurately forecast and predict ABM data with

a one-compartment PDE when the mean-field PDE is ill-posed or requires two compartments. This

work suggests that BINN-guided PDEs allow modelers to e"ciently explore parameter space, which may

1

ar
X

iv
:2

31
1.

04
70

9v
3

 [q
-b

io
.Q

M
]

13
 A

ug
 2

02
4

enable data-driven tasks for ABMs, such as estimating parameters from experimental data. All code and

data from our study is available at https://github.com/johnnardini/Forecasting_predicting_ABMs.

1 Introduction

Many population-level patterns in biology arise from the actions of individuals. For example, predator-prey

interactions determine ecological population dynamics; individuals’ adherence to public health policies limit

disease spread; and cellular interactions drive wound healing and tumor invasion. Mathematical modeling is

a useful tool to understand and predict how such individual actions scale into collective behavior [1, 2, 3, 4,

5, 6, 7]. In particular, stochastic agent-based models (ABMs) are a widely-used modeling framework where

autonomous agents mimic the individuals of a population [8, 9, 10, 11]. ABMs are advantageous because

they capture the discrete and stochastic nature of many biological processes [12]. However, ABMs are

computationally intensive, and their simulations can become time-consuming to perform when the population

is comprised of many individuals [13, 14]. This computational restraint prevents modelers from e!ciently

exploring how model parameters alter model outputs. As such, there is a need for the development of

methods to e!ciently and accurately predict ABM behavior [14, 15, 16].

Modelers often perform ABM prediction by coarse-graining ABM rules into continuous di"erential equa-

tion (DE) models [8, 13]. Ordinary DEs (ODEs) describe how a quantity (e.g., agent density) changes over

time, and Partial DEs (PDEs) describe how spatially-varying ABMs change with time [13]. Such DE models

are useful surrogates for ABMs because they are cheap and e!cient to simulate. Mean-field DE models,

which assume agents respond to the average behavior of their neighbors, have been shown to accurately pre-

dict ABM behavior at some parameter values. Unfortunately, these models can poorly predict ABM outputs

when the mean-field assumption is violated [8, 17]. For example, Baker and Simpson 2010 [8] demonstrated

that the mean-field DE model for a population growth ABM only accurately predict ABM data when agents

proliferate slowly. A further complication of mean-field DEs is that they may be ill-posed at certain param-

eter values. Anguige and Schmeiser 2009 [1] used a stochastic space-jump model to study how cell adhesion

impacts collective migration and found that the resulting mean-field PDE model is ill-posed (and thus cannot

predict ABM behavior) for large adhesion values.

2

https://github.com/johnnardini/Forecasting_predicting_ABMs

Despite the inability of mean-field DE models to predict ABM behavior at all parameter values, ABM

simulations do obey conservation laws (e.g., conservation of mass for spatial ABMs) [18]. Alternative

DE models may thus be capable of accurately describing ABM behavior. Equation learning (EQL) is a

new area of research on the development and application of algorithms to discover the dynamical systems

model that best describes a dataset [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Brunton et al. 2016 [19]

introduced a sparse regression-based EQL approach to learn DE models from data with a user-specified

library of candidate terms. This method has proven very successful in recovering informative models from

simulated and experimental data [30]. There is a growing understanding that EQL methods can aid the

prediction of ABM data [14, 31, 32, 33]. For example, we recently demonstrated that the least squares EQL

approach learns ODE equations that accurately describe simulated ABM data, even when the collected data

is incomplete or sparsely sampled [14]. Supekar et al. 2023 [33] coupled this method with spectral basis

representation data to discover PDE models that capture the emergent behavior found in active matter

ABMs. Another popular EQL approach includes physics-informed neural networks (PINNs), where modelers

embed physical knowledge (in the form of a known PDE framework) into the training procedure for artificial

neural networks (ANNs) [34, 35, 36, 37, 38]. Trained PINN models can predict complex, sparse, and noisy

data while also obeying known physical principles. Lagergren et al. 2020 [28] extended the PINNs framework

by replacing physics-based mechanistic terms with function-approximating multi-layer perceptions (MLPs)

to develop the biologically-informed neural network (BINN) methodology. As a result, BINN models can

learn PDE models from data with terms that depend on space, time, or agent density. Training the BINN to

simulated ABM data ensures that a realization of this PDE that best matches the data is learned. Standard

methods of DE analysis, including bifurcation analysis and pattern formation, can be used to understand the

ABM’s behavior. BINNs thus present a promising and interpretable tool for ABM forecasting and prediction.

However, determining how BINNs can be used to learn predictive DE models for ABMs remains an open

area of research.

In this work, we demonstrate how to combine BINNs and PDE model simulations to forecast and predict

ABM behavior. Our approach leverages BINNs’ vast data and modeling approximation capability with the

computational e!ciency of PDE models to develop a potent ABM surrogate modeling tool. In particular, we

3

demonstrate how to use trained BINN models to 1.) forecast future ABM data at a fixed parameter value,

and 2.) predict ABM data at previously-unexplored parameter values. This latter task is achieved using

multivariate interpolation, which provides a straightforward approach for inferring PDE modeling terms.

We demonstrate that visually inspecting the BINN modeling terms over a range of ABM parameter values

allows us to interpret how ABM parameters impact model behavior.

We apply the BINNs methodology to three case study ABMs in this work. Each case study models

collective migration in cell biological experiments, such as barrier and scratch assays [5, 13, 28, 39, 40]. In

a barrier assay, a two-dimensional layer of cells is cultured inside a physical boundary. Microscopy is used

to image how the cell population migrates outwards once the barrier has been removed [40, 41]. Cells are

closely packed in these experiments and thus interact with their neighbors. Our case study ABMs simulate

how two stimuli, namely, cell pulling and adhesion, impact collectively migrating cell populations. These

processes are ubiquitous in cell biology. For example, leader cells pull their followers into the wound area

to heal wounded epithelial tissue, and cell adhesions in embryonic cells ensures the self organization of the

di"erent germ layers [42, 43, 44]. ABMs provide a promising avenue to model the impacts of these stimuli

on collectively migrating cell populations.

We begin this work in Section 2 by presenting the case study ABMs and notation. In Section 3, we

discuss our methodologies to forecast and predict ABM behavior. In Section 4, we detail our results on using

these methods to forecast and predict data from the three case study ABMs; this section concludes with a

brief discussion on the computational expenses of each method. We conclude these results and suggest areas

for future work in Section 5.

2 The case study ABMs

We consider three case study ABMs that imitate collective migration during cell biological experiments,

including scratch and barrier assays [5, 13, 28, 39, 40]. Each case study ABM models how cell pulling and

adhesion impact collective cell migration during these experiments [45, 46]. The ABMs are two-dimensional

cellular automata with pulling agents that perform cell pulling rules and/or adhesive agents that perform

rules on cell adhesion. Each model is an exclusion process, meaning that each agent can only occupy one

4

Variable Description Range

r
pull

m
Pulling agent migration rate [0,→)

r
adh

m
Adhesive agent migration rate [0,→)

ppull Probability of successful pulling event [0, 1]

padh Probability of successful adhesion event [0, 1]

ω Proportion of adhesive agents [0, 1]

Table 1: ABM model parameters. We describe each model parameter and present their range of possible

values.

lattice site at a time, and each lattice site is occupied by at most one agent. The first model is borrowed

from [12] and consists only of pulling agents; the second model is inspired by the stochastic space jump

model from [1] and consists only of adhesive agents; to the best of our knowledge, we are the first to study

the third model, which consists of both pulling and adhesive agents.

In this section, we briefly introduce our case study ABMs and their rules on agent pulling and adhesion

in Section 2.1; we then detail our ABM notation and simulation in Section 2.2. Additional details on the

ABM rules and implementation can be found in electronic supplementary materials A and B, respectively.

2.1 Brief introduction to the case study ABMs and their model rules

Rules A-F governing agent pulling and adhesion are visually depicted in Figure 1, and the parameters for

each rule are described in Table 1. In all rules, a migrating agent chooses one of its four neighboring lattice

site to move into with equal probability (Figure 1(a)). A migration event is aborted if the lattice site in the

chosen direction is already occupied (Figure 1(b)). We refer to a neighboring agent as an agent located next

to the migrating agent in the direction opposite of the chosen migration direction.

Rules A, B, and E are initiated when a pulling agent attempts to migrate, which occurs with rate r
pull

m
.

Migratory pulling agents pull their neighboring agents along with them with probability ppull. Rules C, D,

and F are initiated when an adhesive agent attempts to migrate, which occurs with rate r
adh

m
. Neighboring

adhesive agents adhere to migrating agents and abort the migration event with probability padh. The

parameter ω corresponds to the proportion of adhesive agents in the simulation. Even though we eventually

5

Figure 1: ABM rules on migration, pulling, and adhesion. a) When an agent performs a migration event, it

chooses one of the four cardinal directions to move towards with equal probability; migration can also lead to a

pulling or adhesion event in the chosen direction. The migrating agent is referred to as a migrating agent (M) b) A

migration event requires the lattice site in the chosen migration direction to be empty; otherwise, the migration event

is aborted. A neighboring agent (N) is an agent located in the direction opposite the chosen migration direction. c)

Rules A-F dictate the rules on agent migration, pulling, and adhesion. Here, we show each rule when an agent chooses

to move rightwards. Rule A prescribes how a pulling agent (blue circle) migrates when there is no neighboring agent.

Rule B prescribes how a pulling agent migrates and attempts to pull a neighboring pulling agent with it. Rule C

prescribes how an adhesive agent (red hexagon) migrates when there is no neighboring agent. Rule D prescribes how

a neighboring adhesive agent attempts to adhere to a migrating adhesive agent and abort its migration event. Rule

E prescribes how a migrating pulling agent attempts to pull its neighboring adhesive agent, while the adhesive agent

attempts to adhere to the pulling agent. Rule F prescribes how a migrating adhesive agent and neighboring pulling

agent do not interact with each other. The last column documents the rate at which each lattice site configuration

at time t changes to the updated lattice site configuration at time t+!t.

6

summarize each ABM simulation along the x-direction, all rules on migration, pulling, and adhesion occur

in all four cardinal directions.

Our three case study ABMs are:

1. The Pulling ABM, which consists of rules A and B. This model has parameters p = (rpull
m

, ppull)T .

2. The Adhesion ABM, which consists of rules C and D. This model has parameters p = (radh
m

, padh)T .

3. The Pulling & Adhesion ABM, which consists of rules A-F. This model has parameters p =

(rpull
m

, r
adh

m
, ppull, padh,ω)T .

2.2 ABM notation

All parameters used to configure ABM simulations are summarized in Table 2. Each model is simulated

in the spatial domain (x, y) ↑ [0, X] ↓ [0, Y]. We represent this space with a two-dimensional lattice

with square lattice sites of length ! = 1 to imitate a typical cell length. Let N
(r)
P

(xi, tj) and N
(r)
H

(xi, tj)

denote the number of pulling and adhesive agents, respectively, in the i
th column at the j

th timepoint for

i = 1, . . . , X and j = 1, . . . , Tf from the r
th of R identically prepared ABM simulations (the input model

parameters are fixed but the R model initializations and subsequent agent behaviors are stochastic). Here,

X and Tf denote the number of spatial columns and temporal grid points, respectively. To estimate the

spatiotemporal pulling and adhesive agent densities from the r
th simulation, we compute

P
(r)(xi, tj) =

N
(r)
P

(xi, tj)

Y
and H

(r)(xi, tj) =
N

(r)
H

(xi, tj)

Y
, for i = 1, . . . , X, and j = 1, . . . , Tf ,

respectively. The total agent density in the r
th simulation is then estimated by

T
(r)(xi, tj) = P

(r)(xi, tj) +H
(r)(xi, tj).

7

Variable Description Value

R Number of averaged ABM simulations per dataset 25

tf Ending simulation time 1000

!t Spacing between temporal gridpoints 10

Tf Number of total timepoints 100

T
train

f
Number of training timepoints 75

T
test

f
Number of testing timepoints 25

X Number of horizontal lattice sites 200

Y Number of vertical lattice sites 40

!x Spacing between spatial points 1

Table 2: ABM configuration parameters. We describe each parameter used for ABM configuration and

present the values used throughout this study.

To estimate the averaged pulling, adhesive, and total agent density in the i
th column from R identically

prepared ABM simulations over time, we compute:

↔P
ABM (xi, tj)↗ =

1

R

R∑

r=1

P
(r)(xi, tj);

↔H
ABM (xi, tj)↗ =

1

R

R∑

r=1

H
(r)(xi, tj); and

↔T
ABM (xi, tj)↗ =

1

R

R∑

r=1

T
(r)(xi, tj), for i = 1, . . . , X and j = 1, . . . , Tf .

3 Methods to forecast and predict ABM data

In this section, we outline our methodologies for forecasting future ABM data and predicting ABM data

at new parameter values. This begins with a description of how we generate ABM data in Section 3.1

followed by an overview of the four methods we use for ABM forecasting in Section 3.2. We then describe

our approaches for ABM forecasting and prediction in Sections 3.3 and 3.4, respectively. We visualize how

BINNs can be used for these processes in Figure 2. All methods are implemented using Python (version

3.9.12) with code available on GitHub at https://github.com/johnnardini/Forecasting_predicting_ABMs.

8

https://github.com/johnnardini/Forecasting_predicting_ABMs

Figure 2: Forecasting and predicting ABM data with BINNs. 1. Simulating ABM data. For a given parameter, p,

we simulate the Pulling, Adhesion, or Pulling & Adhesion ABM. Each model outputs snapshots of agent locations over

time; we summarize this data by estimating the average total agent density along the x-direction for each snapshot.

We perform R total ABM simulations (shown as thin lines) for each p and average the total spatiotemporal agent

density to obtain →TABM (x, t;p)↑; in this figure, R = 5. The first T train
f timepoints are placed into a training ABM

dataset, and the final T test
f timepoints are placed into a testing ABM dataset. 2. Training biologically-informed

neural networks (BINNs) to ABM data. Each BINN model consists of a data-approximating MLP, TMLP (x, t), and

a di!usion-rate-approximating MLP, DMLP (T). BINN models are trained so that TMLP (x, t) ↓ →TABM (x, t;p)↑train
while TMLP

and DMLP
satisfy Equation (7). After model training, the inferred DMLP (T) estimates the agent

di!usion rate. 3a. Forecasting ABM data. Simulating the di!usion PDE framework with DMLP (T) allows us to

forecast the ABM training and testing data. 3b. Predicting new ABM data. We predict the rate of agent di!usion

at a new parameter, pnew
, by interpolating DMLP (T ;p) over several p values to create Dinterp(T ;p). Simulating the

di!usion PDE framework with Dinterp(T ;pnew) allows us to predict the new ABM training and testing data.

9

3.1 Simulating ABM data

The process of simulating ABM data is illustrated in Part 1 of Figure 2. At the parameter value p, we

calculate ↔T
ABM (x, t;p)↗ = {↔T

ABM (xi, tj ;p)↗}
j=1,...,Tf

i=1,...,X . For subsequent model training and validation

purposes, we split ↔T
ABM (x, t;p)↗ into training and testing datasets by setting

↔T
ABM (x, t;p)↗train =

{
↔T

ABM (xi, tj ;p)↗
}j=1,...,T train

f

i=1,...,X
, and

↔T
ABM (x, t;p)↗test =

{
↔T

ABM (xi, tj ;p)↗
}j=T

train
f +1,...,T train

f +T
test
f

i=1,...,X
. (1)

Here, T train

f
and T

test

f
denote the number of training and testing timepoints, respectively, and Tf = T

train

f
+

T
test

f
.

3.2 Models to forecast ABM data

We now describe the four models we use to forecast future ABM data. Namely, these models are the

mean-field PDE, ANN, BINN, and BINN-guided PDE models.

The mean-field and BINN-guided PDE models consist of simulating a PDE of the form1:

εT

εt
=

ε

εx

(
D(T)

εT

εx

)
, (2)

where T = T (x, t) = P (x, t) + H(x, t) denotes the total agent density over space and time. The form of

D(T) in Equation (2) changes based on the ABM and the modeling approach being used. For the mean-field

PDE, we determine the form of D(T) by converting discrete ABM rules into their continuous counterparts

and invoking the mean-field assumption, which may be invalid at some parameter values. BINNs, on the

other hand, are a data-driven approach to infer D(T) from the data without any such a priori assumptions.

The ANN and BINN models consist of training a prescribed neural network to ABM data and then using

the trained neural network to forecast future data.

3.2.1 Mean-field PDE Models

Here, we present the mean-field PDE models for each case study ABM. More detailed information on how

the ABM rules are coarse-grained into these models are provided in electronic supplementary material D.
1with the exception of the mean-field PDE for the Pulling & Adhesion ABM, which requires simulating the two-compartment

PDE given by Equation (5) in Section 3.2.1

10

Our numerical method to numerically integrate these PDE models is provided in electronic supplementary

material F.

The Pulling ABM: The Pulling ABM includes only pulling agents and consists of Rules A-B from

Figure 1. In electronic supplementary material D.1, we show that these rules can be coarse grained into the

Pulling ABM’s mean-field PDE model:

εP

εt
= ↘ ·

(
D

pull(P)↘P
)
, D

pull(P) =
r
pull

m

4

(
1 + 3ppullP

2
)

(3)

where P = P (x, y, t) denotes the spatiotemporal pulling agent density.

The Adhesion ABM: The Adhesion ABM includes only adhesive agents and consists of Rules C-D

from Figure 1. In electronic supplementary material D.2, we show that these rules can be coarse grained

into the Adhesion ABM’s mean-field PDE model:

εH

εt
= ↘ ·

(
D

adh(H)↘H
)
, D

adh(H) =
3radh

m

4

(
padh

(
H ≃

2

3

)2

+ 1≃
4padh
3

)
(4)

where H = H(x, y, t) denotes the spatiotemporal adhesive agent density.

Notice that D
adh(H) from Equation (4) becomes negative for some density values when padh > 0.75.

This PDE thus fails to provide an ABM prediction at these parameter values because negative di"usion is

ill-posed [1].

The Pulling & Adhesion ABM: The Pulling & Adhesion ABM includes both pulling and adhesive

agents, and consists of Rules A-F from Figure 1. In electronic supplementary material D.3, we show that

these rules can be coarse-grained into the Pulling & Adhesion ABM’s mean-field PDE model:

εP

εt
=
r
pull

m

4
↘ ·

(
(1≃ T)↘P + P↘T

)

+ padh
r
pull

m

4
↘ ·

(
≃ 3P (1≃ T)↘H ≃H(1≃ T)↘P ≃HP↘T

)

+ ppull
r
pull

m

4
↘ ·

(
3P 2

↘T

)

εH

εt
=
r
adh

m

4
↘ ·

(
(1≃ T)↘H +H↘T

)

+ padh
r
adh

m

4
↘ ·

(
≃ 4(1≃ T)H↘H ≃H

2
↘T

)

+ ppull
r
pull

m

4
↘ ·

(
≃ (1≃ T)H↘P + (1≃ T)P↘H + 3HP↘T

)
. (5)

11

This two-compartment PDE describes the spatiotemporal densities of pulling agents, P (x, y, t), and adhesive

agents, H = H(x, y, t). The total agent density is given by T = T (x, y, t) = H(x, y, t) + P (x, y, t). To

the best of our knowledge, it is not possible to convert Rules A-F into a single-compartment PDE model

describing T (x, y, t)

3.2.2 The ANN model

ANNs have recently gained traction as surrogate models for ABMs [16, 47]. Here, we consider a simple

multilayer perceptron (MLP) model, TMLP (x, t), to predict the total agent density at the spatiotemporal

point (x, t). We provide a brief description of the model architecture and training procedure in this section;

more detailed information can be found in electronic supplementary material E.

The ANN architecture: T
MLP (x, t) has a two-dimensional input, (x, t), and one-dimensional output,

T (x, t). This model has three hidden layers, each with 128 neurons. The hidden layers all have sigmoidal

activation functions, and the output layer has a softplus activation function.

ANN model training: The ANN model is trained to minimize

LANN = LWLS , (6)

where LWLS is given by Equation (29) in electronic supplementary material E and computes a weighted

mean-squared error (MSE) between T
MLP (x, t) and ↔T

ABM (x, t)↗train. Here, extra weight is assigned to

data from the first timepoint to ensure that T
MLP closely agrees with the ABM’s initial data.

We use the ADAM optimizer with default hyperparameter values to minimize Equation (6). We perform

104 epochs with an early stopping criterion of 103 epochs.

3.2.3 The BINN model

We provide a brief overview of our BINN model architecture and training procedure, which closely follow

the implementation from the original BINN model study in [28]. More detailed information can be found in

electronic supplementary material E.

The BINN architecture: We construct BINN models that consist of two sequential MLP models:

T
MLP (x, t) predicts the total agent density at the point (x, t), and D

MLP (T) predicts the agent di"usion

12

rate at the density value T (Part 2 of Figure 2). The architecture for T
MLP (x, t) here is identical to the

ANN architecture. The architecture for DMLP (T) also has three hidden layers (each with 128 neurons), and

the same hidden and output activation functions. However, this model has a one-dimensional input, T , and

one-dimensional output, D(T).

BINN model training: The two MLPs comprising the BINN model are trained to concurrently fit the

given dataset, ↔TABM (x, t)↗train, and solve the PDE given by

ε

εt
T

MLP =
ε

εx

(
D

MLP (TMLP)
ε

εx
T

MLP

)
. (7)

This is achieved by minimizing the following multi-term loss function:

LBINN = LWLS + ϑLPDE + Lconstr. (8)

The equation for LWLS is identical to Equation (6), LPDE computes the MSE between the left- and right-

hand sides of Equation (7) to ensure both MLPs satisfy this di"usion framework, and Lconstr penalizes the

two MLPs for violating user-defined criteria (such as lower and upper bounds on D
MLP). The equations for

these three terms are provided in Equations (29), (30), and (31) from electronic supplementary material E.

The ϑ parameter is chosen to ensure the LWLS and LPDE terms are weighted equally.

Following [36], we minimize Equation (28) in a two-step process. In the first process, we minimize

Equation (6) over 104 epochs with an early stopping criterion of 103 epochs. In the second process, we

minimize Equation (28) over 106 epochs with an early stopping criterion of 105 epochs. The ADAM optimizer

is used during both steps with its default hyperparameter values.

3.2.4 The BINN-guided PDE model

BINN models are trained to satisfy Equation (7). The BINN-guided PDE model computes this learned

equation by simulating Equation (2) with D(T) = D
MLP (T). Our numerical method to numerically integrate

this PDE is provided in electronic supplementary material F.

3.3 Forecasting future ABM data

We use the four models introduced in Section 3.2 to forecast future ABM data (Part 3a of Figure 2). In

forecasting, we assess the ability of a model to compute future ABM data at a fixed parameter value from

13

previous ABM data. This could correspond to inferring the future behavior of a computationally-intensive

ABM simulation or an expensive experimental procedure.

We perform ABM forecasting by training each model to the training ABM dataset and then computing

the model prediction over all space- and timepoints. The mean-field PDE model does not require any model

training because we can directly compute it from the ABM parameter values. We then partition each model’s

prediction into training and testing datasets to match the ABM training and testing datasets from Equation

(1). We report the training MSE from each model prediction as:

1

XT
train

f

X∑

i=1

T
train
f∑

j=1

(
T

model(xi, tj)≃ ↔T
ABM (xi, tj)↗

)2
,

and the testing MSE as:

1

XT
test

f

X∑

i=1

Tf∑

j=T
train
f +1

(
T

model(xi, tj)≃ ↔T
ABM (xi, tj)↗

)2
.

3.4 Predicting new ABM data using BINN-guided PDE models

We combine BINN modeling, multivariate interpolation, and numerical integration of PDEs to predict new

ABM data (Part 3b of Figure 2). In predicting, we assess the ability of our proposed approach to compute

ABM data at a parameter value that has not been seen previously. This could correspond to exploring an

ABMs’ parameter space, or predicting the output of an experimental procedure for di"erent experimental

conditions, such as drug concentration or the initial number of agents.

We perform multivariate interpolation using BINNs’ computed di"usion rates to predict density-dependent

di"usion rates for new ABM data. We define a prior parameter collection and a new parameter collection as

P
prior = {pk}

K1
k=1 and P

new = {pnew

k
}
K2
k=1.

Our workflow for predicting ABM data from P
new proceeds as follows:

1. Generate the prior and new ABM data collections by simulating the ABM at all parameters from the

prior and new parameter collections:

T
prior =

{
↔T

ABM (x, t;pk)↗

}K1

k=1

and T
new =

{
↔T

ABM (x, t;pnew

k
)↗

}K2

k=1

.

14

2. Train a BINN model to each k
th training ABM dataset from T

prior and extract D
MLP (T ;pk) from

the trained BINN model.

3. Perform multivariate interpolation on {D
MLP (T ;pk)}

K1
k=1 to create an interpolant, Dinterp(T ;p), that

matches the concatenated vector [T,pk] to the di"usion rate D
MLP (T ;pk) for k = 1, . . . ,K1.

4. Predict the new ABM dataset, ↔TABM (x, t;pnew

k
)↗, by simulating Equation (7) with D = D

interp(T ;pnew

k
)

to create T
interp(x, t;pnew

k
). Partition T

interp(x, t;pnew

k
) into its training and testing datasets to match

the ABM data’s training and testing datasets.

5. Compute the training and testing MSEs between T
interp(x, t;pnew

k
) and ↔T

ABM (x, t;pnew

k
)↗ to sum-

marize the predictive performance of T interp(x, t;pnew

k
) for k = 1, . . . ,K2.

We implement multi-dimensional radial basis function interpolation using Sci-kit Learn’s (version 0.24.2)

RBFInterpolator command to create D
interp(T ;p).

4 Results

4.1 Mean-field and BINN-guided PDEs accurately forecast baseline ABM sim-

ulations

We simulated the three case study ABMs using the configuration values provided in Table 2. These values

were chosen to match previous studies [12, 13]. For ABMs of collective migration, one often chooses a

large spatiotemporal domain to ensure ample ABM behavior is observed (e.g., the population spreads) while

ensuring the boundary does not a"ect this behavior. In Table 3, we provide baseline model parameter

values for each case study ABM; these values were arbitrarily chosen to demonstrate typical ABM behavior

characterized by moderate population spread. The ABM outputs are depicted against each ABM’s mean-

field PDE in Figure 3. The mean-field PDE models accurately describe the baseline simulations for all three

ABMs.

We investigate the performance of the mean-field PDE, ANN, BINN, and BINN-guided PDE models in

forecasting Pulling ABM data from the baseline parameter values provided in Table 3. Visual inspection

15

Figure 3: Baseline ABM simulation snapshots and the mean-field PDE models for the Pulling, Adhesion,

and Pulling & Adhesion ABMs. Blue pixels denote pulling agents and red pixels denote adhesive agents.

All ABMs were simulated on rectangular 200↓40 lattices. (a-c) Snapshots of the Pulling ABM for r
pull

m
=

1.0, ppull = 0.5. (d-f) The output spatiotemporal pulling agent density (blue ‘x’ marks) is plotted against

the solution of the mean-field PDE (solid blue line) given by Equation (3). (g-i) Snapshots of the Adhesion

ABM for radh
m

= 1.0, padh = 0.5. (j-l) The output spatiotemporal adhesive agent density (red dots) is plotted

against the solution of the mean-field PDE (dashed red line) given by Equation (4). (m-o) Snapshots of the

Pulling & Adhesion ABM for r
pull

m
= 1.0, radh

m
= 0.25, ppull = 0.33, padh = 0.33,ω = 0.5. (p-r) The output

spatiotemporal pulling and adhesive agent densities are plotted against the solution of the mean-field PDE

given by Equation (5).

16

Figure 4: Forecasting Pulling ABM data with neural networks and PDEs. ANN and BINN models were

trained to fit ↔T
ABM (x, t)↗train from the Pulling ABM with p = (rpull

m
, ppull)T = (1.0, 0.5)T . These two

neural networks and the mean-field and BINN-guided PDE simulations were then used to forecast (a-b)

↔T
ABM (x, t)↗train and (c) ↔T

ABM (x, t)↗test.

suggests that all four models match the ABM training data well (Figure 4(a-b)). The computed training

MSE values reveal that the mean-field and BINN-guided PDEs outperform the neural networks in describing

this data (Table 3). The BINN, BINN-guided PDE, and mean-field PDE all accurately forecast the testing

data (Figure 4(c)), but the two PDE models achieve smaller testing MSE values than the BINN model (Table

3). The ANN’s prediction for the testing data has a protrusion that overpredicts all data for x > 125 (Figure

4(c) inset), which causes this model’s computed testing MSE value to be almost an order of magnitude higher

than all others. We obtain similar results when using the four models to predict data from the Adhesion

ABM and Pulling & Adhesion ABM at their baseline parameter values (Table 3 and Supplementary Figure

12).

4.2 Forecasting ABM data for many parameter values with BINN-guided and

mean-field PDE simulations

We now investigate the performance of BINN-guided and mean-field PDE simulations in forecasting ABM

datasets over a wide range of parameter values for all three case study ABMs. We only consider the two PDE

models (and exclude the neural network models) in this section due to their strong forecasting performance

in Section 4.1.

17

Forecasting model Training MSE Testing MSE

The Pulling ABM

with baseline parameters p = (rpull
m

, ppull)T = (1.0, 0.5)T

ANN 1.17↓ 10→4 9.36↓ 10→4

BINN 9.32↓ 10→5 1.47↓ 10→4

Mean-field PDE 7.45↓ 10→5 1.00↓ 10→4

BINN-guided PDE 7.64↓ 10→5 1.02↓ 10→4

The Adhesion ABM

with baseline parameters p = (radh
m

, padh)T = (1.0, 0.5)T

ANN 1.55↓ 10→4 1.84↓ 10→3

BINN 8.54↓ 10→5 1.50↓ 10→4

Mean-field PDE 7.18↓ 10→5 9.21↓ 10→5

BINN-guided PDE 7.43↓ 10→5 1.02↓ 10→4

The Pulling & Adhesion ABM

with baseline parameters

p = (rpull
m

, r
adh

m
, ppull, padh,ω)T = (1.0, 0.25, 0.33, 0.33, 0.5)T

ANN 1.25↓ 10→4 2.67↓ 10→3

BINN 9.65↓ 10→5 9.96↓ 10→5

Mean-field PDE 7.50↓ 10→5 8.55↓ 10→5

BINN-guided PDE 6.55↓ 10→5 9.11↓ 10→5

Table 3: Computed training and testing MSE values. Computed MSE values when forecasting

↔T
ABM (x, t)↗train and ↔T

ABM (x, t)↗test from the three ABMs at their baseline parameter values. We used

an ANN, BINN, mean-field PDE, and BINN-guided PDE to forecast each baseline ABM dataset.

18

4.2.1 The BINN-guided and mean-field PDEs both accurately forecast Pulling ABM data

The parameters for the Pulling ABM are p = (rpull
m

, ppull)T . To evaluate the BINN-guided and mean-field

PDE models’ performances in forecasting Pulling ABM data over a range of agent pulling parameter values,

we computed eleven ABM datasets by varying ppull = 0.0, 0.1, 0.2, . . . , 1.0 while fixing r
pull

m
at its baseline

value of 1.0. The inferred rates of agent di"usion from both models propose that agents di"use slower for

low densities and faster for high densities (Figure 5(a)). While the mean-field di"usion rate at ppull = 0 is

constant, BINNs do not use this a priori information. Instead, their flexible nature leads to them learning

a di"erent di"usion rate from the data. The two PDE models achieve comparable training and testing

MSE values for all values of ppull, though the mean-field PDE usually attains slightly smaller values (Figure

5(b)). Snapshots of both simulated PDE models against data shows that their ABM predictions are visually

indistinguishable (Supplementary Figure 13(a-c)).

To evaluate both PDE models’ performances over a range of pulling agent migration values, we computed

10 Pulling ABM datasets with r
pull

m
= 0.1, 0.2, . . . , 1.0 while fixing ppull at its baseline value of 0.5. We find

close agreement between both models’ inferred di"usion rates for all values (Figure 5(c)). Both models

achieve similar computed training and testing MSE values (Figure 5(d)). Snapshots of both simulated PDE

models against data reveals that their ABM predictions are visually indistinguishable (Supplementary Figure

13(d-f)).

4.2.2 BINN-guided PDEs accurately forecast Adhesion ABM data when the mean-field PDE

is ill-posed

The parameters for the pulling ABM are p = (radh
m

, padh)T . To evaluate the BINN-guided and mean-field

PDE models’ performances over a range of agent adhesion parameter values, we computed eleven ABM

datasets by varying padh = 0.0, 0.1, 0.2, . . . , 1.0 while fixing r
adh

m
at its baseline value of 1.0. The inferred

rates of agent di"usion from both models decrease with agent density for most values of padh (Figure 6(a)).

When padh = 0, the BINN-guided di"usion rate is slightly increasing and the mean-field model’s di"usion

rate is constant. The BINN-guided di"usion rates decline faster with agent density than the corresponding

mean-field di"usion rates for low density values. We computed the training and testing MSEs for both

19

Figure 5: Forecasting Pulling ABM data with the mean-field (MF) and BINN-guided PDEs. (a) Plots of the

mean-field di"usion rate, Dpull(T), from Equation (3) and the BINN-guided di"usion rate, DMLP (T), for

ppull = 0.1, 0.3, . . . , 0.9 (results not shown for ppull = 0.0, 0.2, . . . , 1.0 for visual ease) while fixing r
pull

m
at its

baseline value of 1.0. The horizontal axis ends at 0.75 instead of 1.0 because the ABM simulations begin with

a density of 0.75 and will rarely exceed this initial value. The BINN cannot reliably predict the di"usion

rate for densities outside the values observed in the data. (b) Plots of the mean-field and BINN-guided

PDEs’ computed training and testing MSE values while varying ppull and fixing r
pull

m
= 1.0. (c) Plots of

D
pull(T) and D

MLP (T) for r
pull

m
= 0.2, 0.4, . . . , 1.0 while fixing ppull at its baseline value of 0.5. (d) Plots of

the mean-field and BINN-guided PDEs’ computed training and testing MSE values while varying r
pull

m
and

fixing ppull = 0.5.

20

models for all values of padh (Figure 6(b)) and partition the results as follows :

• When padh < 0.5: both models achieve similar training MSE values near 7↓ 10→5 and testing MSE

values around 10→4.

• When 0.5 → padh → 0.75: the mean-field PDE models’ training and testing MSE values increase

with padh, with a maximum computed value above 3↓ 10→4. The BINN-guided PDE model’s training

and testing MSE values remain near 7↓ 10→5 and 10→4, respectively.

• When padh > 0.75: the mean-field PDE model is ill-posed and cannot forecast this ABM data. The

BINN-guided PDE model’s computed training and testing MSE values increase with padh and have a

maximum computed value of 2↓ 10→4.

Close inspection of snapshots from both PDE model simulations against ABM data from padh = 0.7 reveals

that the mean-field PDE model slightly overpredicts the data at high densities above 0.5 and low densities

below 0.1, whereas the BINN-guided PDE closely matches the data (Supplementary Figure 14(a-c)).

To evaluate both PDE models’ performances over a range of adhesive agent migration values, we computed

ten ABM datasets with r
adh

m
= 0.1, 0.2, . . . , 1.0 while fixing padh at its baseline value of 0.5. Both PDEs

achieve similar computed training and testing MSE values for most values of r
adh

m
(Figure 6(d)). When

r
adh

m
= 0.1, however, the BINN-guided PDE’s testing MSE value is close to 10→4, whereas the mean-field

PDE attains a lower testing MSE value near 6↓ 10→5. Despite these di"erences, the two model simulations

appear similar at these parameter values (Supplementary Figure 14(d-f)).

4.2.3 BINN-guided PDEs accurately forecast Pulling & Adhesion ABM data with a one-

compartment model

The parameters for the Pulling & Adhesion ABM are p = (rpull
m

, r
adh

m
, ppull, padh,ω)T . We evaluate the perfor-

mance of the BINN-guided and mean-field DE models in forecasting data from the Pulling & Adhesion ABM.

We created 48 ABM datasets by fixing the baseline parameter values at pbase = (1.0, 0.25, 0.33, 0.33, 0.5)T

and then varying each parameter individually. We vary r
pull

m
= 0.5, 0.6, . . . , 1.5; r

adh

m
= 0.0, 0.1, . . . , 1.0;

ppull = 0.1, 0.2, . . . , 0.6, 0.67; padh = 0.1, 0.2, . . . , 0.6, 0.67; and ω = 0.0, 0.1, . . . , 1.0. These parameter values

were chosen to always satisfy ppull + padh ⇐ 1.

21

Figure 6: Forecasting Adhesion ABM data with the mean-field (MF) and BINN-guided PDEs. (a) Plots of

the mean-field di"usion rate, Dadh(T), from Equation (4) and the BINN-guided di"usion rate, DMLP (T),

for padh = 0.1, 0.3, . . . , 0.9 (results not shown for padh = 0.0, 0.2, . . . , 1.0 for visual ease) while fixing r
adh

m

at its baseline value of 1.0. (b) Plots of the mean-field and BINN-guided PDEs’ computed training and

testing MSE values while varying padh and fixing r
adh

m
= 1.0. (c) Plots of D

adh(T) and D
MLP (T) for

r
adh

m
= 0.2, 0.4, . . . , 1.0 while fixing padh at its baseline value of 0.5. (d) Plots of the mean-field and BINN-

guided PDEs’ computed training and testing MSE values while varying r
adh

m
and fixing padh = 0.5.

22

Figure 7: The BINN-guided di"usion rates for the Pulling & Adhesion ABM data. Plots of the BINN-guided

di"usion rate, DMLP (T), when varying (a) r
pull

m
, (b) r

adh

m
, (c) ppull, (d) padh, and (e) ω.

The BINN models’ inferred di"usion rates, DMLP (T ;p), are often U-shaped with larger di"usion values

at low and high agent densities and smaller values at intermediate densities (Figure 7). This U-shape tends

to increase for larger values of rpull
m

, r
adh

m
, and ppull and decrease for larger values of padh and ω. The inferred

di"usion rates appear most sensitive to changes in the ω parameter: at ω = 0.0, DMLP (T ;p) strictly increases

with agent density and attains an average value of 0.289; at ω = 1.0, DMLP (T ;p) is strictly decreasing and

has an average value of 0.051. The inferred di"usion rate is also sensitive to the r
adh

m
and r

pull

m
parameters:

varying r
adh

m
primarily alters the BINN di"usion rate at intermediate agent density values, whereas varying

r
pull

m
changes the BINN di"usion rate at low and high agent densitiy values.

The BINN-guided PDE computes a single compartment to forecast the total agent density, T (x, t),

whereas the mean-field PDE computes two compartments forecasting the Pulling and Adhesive agent densi-

ties, P (x, t) and H(x, t), respectively. We forecast the total agent density with the mean-field PDE by setting

T (x, t) = P (x, t) +H(x, t). The two PDE models achieve similar training MSE values for most parameter

values that we considered (Figure 8). The mean-field model’s testing MSE values are often smaller than the

BINN-guided testing MSE values, though the BINN-guided PDE also achieves small testing MSE values. For

example, both PDE simulations accurately predict ABM data when padh is set to 0.4, but visualizing both

PDE simulations shows that the mean-field PDE better matches the elbow of the data than the BINN-guided

23

Figure 8: Forecasting Pulling & Adhesion ABM data with the mean-field and BINN-guided PDEs. Plots

of the mean-field and BINN-guided PDEs’ computed training and testing values while varying (a) r
pull

m
, (b)

r
adh

m
, (c) ppull, (d) padh, and (e) ω.

PDE (Supplementary Figure 15(a-c)). The BINN-guided PDE outperforms the mean-field PDE in forecast-

ing data for small values of radh
m

: plotting both PDE simulations against data from r
adh

m
= 0.1 shows that

the mean-field PDE underpredicts the largest agent density values, while the BINN-guided PDE accurately

matches this data (Supplementary Figure 15(d-f)).

4.3 Predicting ABM data at new parameter values

We now examine how performing multivariate interpolation on several BINN-guided di"usion rates, DMLP (T ;p),

can aid the prediction of previously-unseen ABM data at new parameter values (see Section 3.4 for imple-

mentation details).

We predict new data from the Adhesion and Pulling & Adhesion ABMs in this section. We do not include

the Pulling ABM in this work because the mean-field PDE model accurately forecasted ABM data for all

parameter values that we considered in Section 4.2.1.

24

4.3.1 Predicting Adhesion ABM data

The parameters for the Adhesion ABM are p = (radh
m

, padh)T . We perform ABM data prediction for padh ⇒

0.5 in this section because we found that the mean-field PDE model accurately forecasted ABM data for

padh ⇐ 0.5 in Section 4.2.2.

We first predict ABM data when varying padh and fixing r
adh

m
. The prior data collection consists of

K1 = 6 ABM datasets generated by varying padh = 0.5, 0.6, 0.7, . . . , 1.0 while fixing r
adh

m
at its baseline

value of 1.0; the new data collection consists of K2 = 5 ABM datasets generated by varying padh =

0.55, 0.65, 0.75, 0.85, and 0.95 while fixing r
adh

m
at its baseline value of 1.0. We performed multivariate in-

terpolation over the six inferred D
MLP (T ;p) terms from the prior data collection to generate D

interp(T ;p).

We use this interpolant to predict the di"usion rates for all parameters from the new data collection (Figure

9(a)). All interpolated di"usion rates decrease with agent density and tend to fall with larger padh values.

Most of the computed training and testing MSE values on the new data collection are comparable to their

counterparts from the prior data collection (Figure 9(b)). The lone exception occurs at padh = 0.95, where

the testing MSE exceeds 5 ↓ 10→4 while the testing MSEs at padh = 0.9 and 1.0 do not exceed 2.5 ↓ 10→4.

Visual inspection of the simulated PDE prediction against ABM data at padh = 0.95 reveals that it matches

the data well but slightly mispredicts the data’s heel at later time points (Supplementary Figure 16(a-c)).

We next predict ABM data when varying both r
adh

m
and padh. The prior data collection consists of

K1 = 18 ABM datasets generated by varying r
adh

m
= 0.1, 0.5, 1.0 and padh = 0.5, 0.6, . . . , 1.0; the new data

collection consists of K2 = 10 ABM datasets generated from a latin hypercube sampling of (radh
m

, padh) ↑

[0.1, 1.0]↓ [0.5, 1.0] (Figure 10(a) and Supplementary Table 7). We performed multivariate interpolation over

each D
MLP (T ;p) from the prior data collection to generate D

interp(T ;p). The predicted di"usion rates for

the new data collection decrease with agent density, rise for larger radh
m

values, and decrease faster for larger

padh values (Figure 10(b)). We order the parameters from the new data collection by increasing training

MSE values (Figure 10(c)). The four lowest training and testing MSE values are all below 1↓10→4, the eight

lowest are all below 2↓10→4, and the highest testing MSE value reaches 1.6↓10→3. Visual inspection of the

interpolated PDE prediction with the highest testing MSE value reveals that this simulation mispredicts the

data’s heel but otherwise matches the ABM data well (Supplementary Figure 17(a-c)). Visual inspection

25

Figure 9: Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new

padh values. The parameters for the Adhesion ABM are given by p = (radh
m

, padh)T . Here, we vary padh while

fixing r
adh

m
at its baseline value of 1.0. The prior data collection consists of padh = 0.5, 0.6, . . . , 1.0 and the

new data collection consists of padh = 0.55, 0.65, . . . , 0.95 (a) Plots of the learned D
MLP (T ;p) di"usion rates

for the prior data collection. We performed multivariate interpolation on these rates to obtain D
interp(T ;p),

which we plot for the new data collection. (b) Plots of the BINN-guided PDEs’ computed training and

testing values on the prior data collection, and the interpolated PDE’s training and testing values on the

new data collection.

26

Figure 10: Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new

r
adh

m
and padh values. The parameters for the Adhesion ABM are given by p = (radh

m
, padh)T . Here, we vary

both parameters. (a) The prior data collection consists of radh
m

= 0.1, 0.5, 1.0 and padh = 0.5, 0.6, . . . , 1.0 and

the new data collection consists of a Latin hypercube (LHC) sampling of p ↑ [0.1, 1.0]↓[0.5, 1.0] with K2 = 10

samples. (b) We performed multivariate interpolation on the D
MLP (T ;p) rates on the prior data collection

to obtain D
interp(T ;p). We plot three illustrative D

interp(T ;p) values from the new data collection. (c)

Plots of the interpolated PDE’s training and testing values on the new data collection.

of the interpolated PDE prediction with the third-highest MSE value shows that this simulation accurately

matches the ABM data (Supplementary Figure 17(d-f)).

4.3.2 Predicting Adhesion & Pulling ABM data

The parameters for the Pulling & Adhesion ABM are p = (rpull
m

, r
adh

m
, ppull, padh,ω)T . We perform ABM

data prediction over a large range of parameter values to determine if the one-compartment BINN-guided

PDE simulations can predict this ABM’s data, which results from two interacting subpopulations.

We perform multivariate interpolation over the ppull, padh, and ω parameters while fixing r
pull

m
and r

adh

m
at

their baseline values of 1.0 and 0.25, respectively. The prior and new data collections consist of K1 = 40 and

K2 = 20 ABM parameter combinations, respectively, that were generated from Latin hypercube samplings

of (ppull, padh,ω) ↑ [0, 0.67] ↓ [0, 0.67] ↓ [0, 1] (Figure 11(a) and Supplementary Tables 8 and 9). We chose

samplings where ppull + padh ⇐ 1.0 for all samples. The computed training and testing MSE values for the

new parameter collection suggest all simulated PDE predictions accurately match the ABM data at those

parameters (Figure 11(b)). Of the K2 = 20 computed testing MSE values in the new data collection, four

27

Figure 11: Predicting Pulling & Adhesion ABM data for new ppull, padh, and ω values. The parameters for

the Adhesion ABM are given by p = (radh
m

, r
pull

m
, padh, ppull,ω)T . Here, we vary ppull, padh, and ω while fixing

r
pull

m
and r

adh

m
at their baseline values of 1.0 and 0.25, respectively. (a) The prior data consists of a Latin

hypercube (LHC) sampling of (ppull, padh,ω) ↑ [0, 0.67]↓ [0, 0.67]↓ [0, 1] with K1 = 40 samples and the new

data consists of a LHC sampling of the same domain with K2 = 20 samples. (b) Plots of the interpolated

PDE’s training and testing values on the new data, arranged by increasing training MSE values.

are below 1 ↓ 10→4, 16 are below 2 ↓ 10→4, and all are below 5 ↓ 10→4. The highest and third highest

testing MSE value results from (ppull, padh,ω) = (0.218, 0.553, 0.675) and (0.251, 0.486, 0.975), respectively.

Visually inspecting the interpolated PDE predictions from these parameter values against ABM data reveals

that both match the data well, though the worst prediction overpredicts the largest ABM density values

(Supplementary Figure 18).

4.4 Comparing the computational expense of each modeling approach

We finish with a discussion on the computational expense of all approaches discussed in this work (Table

4 and Supplementary Figure 19). We recorded the computed wall times to simulate each ABM, train

each BINN model, and simulate each PDE from Section 4.2. Averaging across all ABMs suggests that the

average ABM dataset took 40.0 minutes to generate with a standard deviation of 15.6 minutes. The average

mean-field PDE model simulations for the Pulling ABM and the Adhesion ABM took 0.6 and 0.5 seconds

to complete, respectively, which are about 4,000 and 4,500 times faster than the average ABM simulation

28

ABM Name ABM simulation MF PDE simulation BINN Training BG PDE simulation

Adhesion 37.5 (15.4) minutes 0.5 (0.15) seconds 10.6 (4.44) hours 16.9 (23.65) seconds

Pulling 39.9 (15.8) minutes 0.6 (0.20) seconds 10.0 (3.99) hours 164.8 (156.9) seconds

Pulling & Adhesion 42.5 (15.52) minutes 4.7 (1.20) seconds 13.1 (4.54) hours 66.9 (50.81) seconds

Average 40.0 minutes 1.9 seconds 11.2 hours 82.9 seconds

Table 4: Computational expenses of each modeling approach. The mean wall time computations (standard

deviation in parentheses) for ABM simulations, BINN training, mean-field (MF) PDE simulations, and

BINN-guided (BG) PDE simulations for all three ABMs. The last row depicts the average mean computation

time across all three ABMs.

time. The average mean-field PDE model simulation time for the Pulling & Adhesion ABM was 4.7 seconds,

which is 542 times faster than the average ABM simulation time. Training a BINN model is the most time-

consuming task with an average time of 11.2 hours across all ABMs with a standard deviation of 4.32 hours.

The average BINN-guided PDE simulation takes 82.9 seconds with a standard deviation of 77.12 seconds,

which is approximately 28 times faster than simulating the ABM.

5 Discussion and Future Work

In this work, we introduced how BINNs can be used to learn BINN-guided PDE models from simulated

ABM data. BINN-guided PDE model simulations provide a new approach for forecasting and predicting

ABM data. This methodology works by training a BINN model to match simulated ABM data while also

obeying a pre-specified PDE model framework. After model training, future ABM data can be forecasted by

simulating the BINN-guided PDE. Predicting ABM data at new parameters can be performed by simulating

the pre-specified PDE framework with an interpolated modeling term. This model term is computed by

interpolating over several learned BINN model terms and the parameter values that led to these terms.

It is challenging to predict how model parameters a"ect ABMs’ output behavior due to their heavy

computational nature. Mathematical modelers often address this limitation by coarse-graining ABM rules

into computationally-e!cient mean-field DE models. Unfortunately, these DE models may give misleading

29

ABM predictions; furthermore, they can be ill-posed for certain parameter values [1, 8]. Here, we demon-

strated that BINN-guided PDE models accurately forecast future ABM data and predict ABM data from

new parameter values. One benefit of this BINN-guided approach for ABM prediction is that BINNs can, in

theory, be trained to simulated data from complex ABMs because BINN models are agnostic to the ABM

rules. This is in contrast to the coarse-graining approach, which is limited to ABMs with simple rules to

ensure a final PDE model can be recovered.

A limitation of the BINN-guided approach for ABM forecasting and prediction is the computational

expense of BINN model training. The average BINN training procedure in this study took 11.2 hours, which

is 17 times longer than the average ABM data generation time of 40 minutes. Once a BINN model has been

trained, however, the average BINN-guided PDE simulation took 83 seconds, which is 28 times faster than

the average time to generate an ABM dataset. One possible source of these long BINN training times is our

chosen BINN model architecture, which consists of over over 50,000 parameters to train. Kaplarevi-Malii

et al. [35] proposed a genetic algorithm to identify the optimal model archictecture for PINN models. In

future work, we plan to implement this algorithm to identify simpler BINN model architectures that can be

e!ciently trained to learn predictive PDE models for ABMs.

This work was purely computational, as we applied all prediction methodologies to simulated ABM

data. It will be interesting in the future to validate the BINN-guided methodology on experimental data.

Performing data-driven modeling techniques, such as parameter estimation, is challenging for ABMs due to

their long simulation times. Our results suggest that BINN-guided PDE models may advance parameter

estimation for ABMs by providing an accurate and e!cient ABM surrogate model. For example, a

typical approximate Bayesian computation (ABC) for parameter estimation requires performing 10,000 ABM

simulations [48], which would require more than 6,600 computational hours. If we instead simulate the ABM

at 10 parameter combinations, train BINN models to these data, and then use 10,000 interpolated BINN-

guided PDE model simulations for ABC, then this total process would take 349 hours, a 19-fold reduction

in time. This process will become even more e!cient with new methodologies to expedite BINN model

training.

Case study: collective migration. We studied three case study ABMs that are applicable to cell

30

ABM prediction Interpretability

Pulling ABM
MF PDE accurate for all parameters MF PDE is interpretable

BG PDE accurate for all parameters BG PDE is interpretable

Adhesion ABM
MF PDE accurate for padh ⇐ 0.5 MF PDE is interpretable

BG PDE accurate for padh ⇐ 0.9 BG PDE is interpretable

Pulling & Adhesion ABM
MF PDE accurate for all parameters MF PDE not interpretable

BG PDE accurate for all parameters BG PDE is interpretable

Table 5: Highlighting the ability of mean-field (MF) and BINN-guided (BG) PDEs to accurately forecast

simulated ABM data with interpretable PDE models.

biological experiments, such as barrier and scratch assays. Each ABM consists of rules governing how key

cellular interactions (namely, pulling and adhesion) impact the collective migration of cell populations during

these experiments [5, 17]. Table 5 summarizes the predictive and interpretative capabilities of the mean-

field and BINN-guided PDE models for the three case study ABMs. For the Pulling ABM, both models

use interpretable one-compartment PDEs that accurately predict ABM behavior for all parameter values.

For the Adhesion ABM, the mean-field PDE predictions become less accurate for padh ↑ [0.5, 0.75] and are

ill-posed for padh > 0.75, whereas the BINN-guided PDEs make accurate predictions for padh ⇐ 0.9. For

the Pulling & Adhesion ABM, both PDE models accurately forecast the total ABM data for most parameter

values considered. The mean-field PDE model is not interpretable, as it contains two compartments that

consist of many terms. The BINN-guided PDE, on the other hand, achieves similar accuracy to the mean-field

PDE with an interpretable one-compartment PDE model.

We compared the performance of the mean-field and BINN-guided PDE models throughout this work.

We emphasize, however, that these two approaches are complementary, and our thorough investigation

highlights the strengths and limitations of each model. The mean-field PDE is fast to simulate but can

provide inaccurate, ill-posed, and/or uninterpretable ABM predictions. The BINN-guided PDE accurately

predicts ABM behavior with an interpretable PDE, but current BINN model training times are lengthy.

We encourage modelers to refer to these guidelines when deciding which approach to use for their future

31

applications.

Acknowledgements: The author thanks R. Baker, J. Gevertz, and S. Nardini for helpful discussion and

commentary.

Data Availability statement: All code and simulated data for this work is publicly available at

https://github.com/johnnardini/Forecasting_predicting_ABMs.

Conflict of interest: The author declares no conflict of interest

Funding Statement: The author acknowledges use of the ELSA high performance computing cluster at

The College of New Jersey for conducting the research reported in this paper. This cluster is funded in part

by the National Science Foundation under grant numbers OAC-1826915 and OAC-2320244.

References

[1] Kathleen Anguige and Christian Schmeiser. A one-dimensional model of cell di"usion and aggregation,

incorporating volume filling and cell-to-cell adhesion. Journal of Mathematical Biology, 58(3):395, March

2009.

[2] Fred Brauer, Carlos Castillo-Chavez, and Zhilan Feng. Mathematical models in epidemiology, volume 69

of Texts in Applied Mathematics. Springer, New York, NY, 2019.

[3] Theo Gibbs, Simon A. Levin, and Jonathan M. Levine. Coexistence in diverse communities with higher-

order interactions. Proceedings of the National Academy of Sciences, 119(43):e2205063119, October 2022.

Publisher: Proceedings of the National Academy of Sciences.

[4] A. Huppert and G. Katriel. Mathematical modelling and prediction in infectious disease epidemiology.

Clinical Microbiology and Infection, 19(11):999–1005, November 2013.

[5] John T. Nardini, Douglas A. Chapnick, Xuedong Liu, and David M. Bortz. Modeling keratinocyte wound

healing: cell-cell adhesions promote sustained migration. Journal of Theoretical Biology, 400:103–117,

July 2016.

32

https://github.com/johnnardini/Forecasting_predicting_ABMs

[6] Shahzeb Raja Noureen, Jennifer P. Owen, Richard L. Mort, and Christian A. Yates. Swapping in

lattice-based cell migration models. Physical Review E, 107(4):044402, April 2023.

[7] Yanni Xiao and Lansun Chen. Modeling and analysis of a predator–prey model with disease in the prey.

Mathematical Biosciences, 171(1):59–82, May 2001.

[8] Ruth E. Baker and Matthew J. Simpson. Correcting mean-field approximations for birth-death-

movement processes. Physical Review E, 82(4):041905, October 2010.

[9] Volker Grimm, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M. Mooij, Steven F. Railsback, Hans-

Hermann Thulke, Jacob Weiner, Thorsten Wiegand, and Donald L. DeAngelis. Pattern-oriented model-

ing of agent-based complex systems: lessons from ecology. Science, 310(5750):987–991, November 2005.

Publisher: American Association for the Advancement of Science.

[10] Brandon D. L. Marshall and Sandro Galea. Formalizing the role of agent-based modeling in causal

inference and epidemiology. American Journal of Epidemiology, 181(2):92–99, January 2015.

[11] Melissa Tracy, Magdalena Cerdá, and Katherine M. Keyes. Agent-based modeling in public health:

current applications and future directions. Annual Review of Public Health, 39(1):77–94, 2018. _eprint:

https://doi.org/10.1146/annurev-publhealth-040617-014317.

[12] George Chappelle and Christian A. Yates. Pulling in models of cell migration. Physical Review E,

99(6):062413, June 2019.

[13] Matthew J. Simpson, Ruth E. Baker, Pascal R. Buenzli, Ruanui Nicholson, and Oliver J. Maclaren.

Reliable and e!cient parameter estimation using approximate continuum limit descriptions of stochastic

models. Journal of Theoretical Biology, 549:111201, September 2022.

[14] John T. Nardini, Ruth E. Baker, Matthew J. Simpson, and Kevin B. Flores. Learning di"erential

equation models from stochastic agent-based model simulations. Journal of The Royal Society Interface,

18(176):rsif.2020.0987, 20200987, March 2021.

[15] Le-Minh Kieu, Nicolas Malleson, and Alison Heppenstall. Dealing with uncertainty in agent-based

models for short-term predictions. Royal Society Open Science, 7(1):191074, January 2020.

33

[16] Dale Larie, Gary An, and R. Chase Cockrell. The use of artificial neural networks to forecast the

behavior of agent-based models of pathophysiology: an example utilizing an agent-based model of

sepsis. Frontiers in Physiology, 12:716434, October 2021.

[17] Robin N. Thompson, Christian A. Yates, and Ruth E. Baker. Modelling cell migration and adhesion

during development. Bulletin of Mathematical Biology, 74(12):2793–2809, December 2012.

[18] Daniel J. VandenHeuvel, Pascal R. Buenzli, and Matthew J. Simpson. Pushing coarse-grained models

beyond the continuum limit using equation learning. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 480(2281):20230619, January 2024.

[19] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from

data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of

Sciences, 113(15):3932–3937, April 2016.

[20] E. Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear dynamics for model

predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 474(2219):20180335, November 2018.

[21] Samuel Rudy, Alessandro Alla, Steven L. Brunton, and J. Nathan Kutz. Data-driven identification of

parametric partial di"erential equations. SIAM Journal on Applied Dynamical Systems, 18(2):643–660,

January 2019. Publisher: Society for Industrial and Applied Mathematics.

[22] Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of

coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):22445–

22451, November 2019. Publisher: National Academy of Sciences Section: Physical Sciences.

[23] Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Inferring biological

networks by sparse identification of nonlinear dynamics. IEEE Transactions on Molecular, Biological

and Multi-Scale Communications, 2(1):52–63, June 2016. Conference Name: IEEE Transactions on

Molecular, Biological and Multi-Scale Communications.

34

[24] Niall M. Mangan, J. Nathan Kutz, Steven L. Brunton, and Joshua L. Proctor. Model selection for

dynamical systems via sparse regression and information criteria. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 473(2204):20170009, August 2017.

[25] Daniel A. Messenger and David M. Bortz. Weak SINDy: galerkin-based data-driven model selection.

Multiscale Modeling & Simulation, 19(3):1474–1497, January 2021.

[26] Daniel A. Messenger and David M. Bortz. Weak SINDy for partial di"erential equations. Journal of

Computational Physics, 443:110525, October 2021.

[27] John H. Lagergren, John T. Nardini, G. Michael Lavigne, Erica M. Rutter, and Kevin B. Flores. Learn-

ing partial di"erential equations for biological transport models from noisy spatio-temporal data. Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2234):20190800,

February 2020.

[28] John H. Lagergren, John T. Nardini, Ruth E. Baker, Matthew J. Simpson, and Kevin B. Flores.

Biologically-informed neural networks guide mechanistic modeling from sparse experimental data. PLOS

Computational Biology, 16(12):e1008462, December 2020. Publisher: Public Library of Science.

[29] John T. Nardini, John H. Lagergren, Andrea Hawkins-Daarud, Lee Curtin, Bethan Morris, Erica M.

Rutter, Kristin R. Swanson, and Kevin B. Flores. Learning equations from biological data with limited

time samples. Bulletin of Mathematical Biology, 82(9):119, September 2020.

[30] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery

of partial di"erential equations. Science Advances, 3(4):e1602614, April 2017. Publisher: American

Association for the Advancement of Science Section: Research Article.

[31] Daniel A. Messenger, Graycen E. Wheeler, Xuedong Liu, and David M. Bortz. Learning anisotropic

interaction rules from individual trajectories in a heterogeneous cellular population. Journal of The

Royal Society Interface, 19(195):20220412, October 2022.

[32] Daniel A. Messenger and David M. Bortz. Learning mean-field equations from particle data using

WSINDy. Physica D: Nonlinear Phenomena, 439:133406, November 2022.

35

[33] Rohit Supekar, Boya Song, Alasdair Hastewell, Gary P. T. Choi, Alexander Mietke, and Jörn Dunkel.

Learning hydrodynamic equations for active matter from particle simulations and experiments. Pro-

ceedings of the National Academy of Sciences, 120(7):e2206994120, February 2023.

[34] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-

informed neural networks for heat transfer Problems. Journal of Heat Transfer, 143(6):060801, June

2021.

[35] Ana Kaplarevi#-Malisi#, Branka Andrijevi#, Filip Bojovi#, Srdan Nikoli#, Lazar Krsti#, Boban Sto-

janovi#, and Milo$ Ivanovi#. Identifying optimal architectures of physics-informed neural networks by

evolutionary strategy. Applied Soft Computing, page 110646, July 2023.

[36] Kevin Linka, Amelie Schäfer, Xuhui Meng, Zongren Zou, George Em Karniadakis, and Ellen Kuhl.

Bayesian physics informed neural networks for real-world nonlinear dynamical systems. Computer

Methods in Applied Mechanics and Engineering, 402:115346, December 2022.

[37] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: a deep learning

framework for solving forward and inverse problems involving nonlinear partial di"erential equations.

Journal of Computational Physics, 378:686–707, February 2019.

[38] Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence of physics informed

neural networks for linear second-order elliptic and parabolic type PDEs. Communications in Compu-

tational Physics, 28(5):2042–2074, June 2020. arXiv: 2004.01806.

[39] Stuart T. Johnston, Matthew J. Simpson, and Ruth E. Baker. Mean-field descriptions of collective

migration with strong adhesion. Physical Review E, 85(5):051922, May 2012.

[40] Christine Decaestecker, Olivier Debeir, Philippe Van Ham, and Robert Kiss. Can anti-migratory drugs

be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration.

Medicinal Research Reviews, 27(2):149–176, March 2007.

[41] Asha M. Das, Alexander M. M. Eggermont, and Timo L. M. ten Hagen. A ring barrier–based migration

36

assay to assess cell migration in vitro. Nature Protocols, 10(6):904–915, June 2015. Number: 6 Publisher:

Nature Publishing Group.

[42] Jubin Kashef and Clemens M. Franz. Quantitative methods for analyzing cell–cell adhesion in develop-

ment. Developmental Biology, 401(1):165–174, May 2015.

[43] Jan-Hendrik Venhuizen and Mirjam M. Zegers. Making heads or tails of it: cell–cell adhesion in cel-

lular and supracellular polarity in collective migration. Cold Spring Harbor Perspectives in Biology,

9(11):a027854, November 2017.

[44] Medhavi Vishwakarma, Joachim P. Spatz, and Tamal Das. Mechanobiology of leader-follower dynamics

in epithelial cell migration. Current Opinion in Cell Biology, 66:97–103, October 2020.

[45] Michalina Janiszewska, Marina C. Primi, and Tina Izard. Cell adhesion in cancer: beyond the migration

of single cells. Journal of Biological Chemistry, 295(8):2495–2505, February 2020.

[46] Katheryn E. Rothenberg, Yujun Chen, Jocelyn A. McDonald, and Rodrigo Fernandez-Gonzalez. Rap1

coordinates cell-cell adhesion and cytoskeletal reorganization to drive collective cell migration in vivo.

Current Biology, 33(13):2587–2601.e5, July 2023.

[47] Claudio Angione, Eric Silverman, and Elisabeth Yaneske. Using machine learning as a surrogate model

for agent-based simulations. PLOS ONE, 17(2):e0263150, February 2022.

[48] Kyle C. Nguyen, Carter D. Jameson, Scott A. Baldwin, John T. Nardini, Ralph C. Smith, Jason M.

Haugh, and Kevin B. Flores. Quantifying collective motion patterns in mesenchymal cell populations

using topological data analysis and agent-based modeling. Mathematical Biosciences, 370:109158, April

2024.

[49] Alexander Kurganov and Eitan Tadmor. New high-resolution central schemes for nonlinear conservation

laws and convection–di"usion equations. Journal of Computational Physics, 160(1):241–282, May 2000.

[50] Linda Petzold. Automatic selection of methods for solving sti" and nonsti" systems of ordinary di"er-

ential equations. SIAM Journal on Scientific and Statistical Computing, 4(1):136–148, March 1983.

37

Contents

1 Introduction 2

2 The case study ABMs 4

2.1 Brief introduction to the case study ABMs and their model rules 5

2.2 ABM notation . 7

3 Methods to forecast and predict ABM data 8

3.1 Simulating ABM data . 10

3.2 Models to forecast ABM data . 10

3.2.1 Mean-field PDE Models . 10

3.2.2 The ANN model . 12

3.2.3 The BINN model . 12

3.2.4 The BINN-guided PDE model . 13

3.3 Forecasting future ABM data . 13

3.4 Predicting new ABM data using BINN-guided PDE models 14

4 Results 15

4.1 Mean-field and BINN-guided PDEs accurately forecast baseline ABM simulations 15

4.2 Forecasting ABM data for many parameter values with BINN-guided and mean-field PDE

simulations . 17

4.2.1 The BINN-guided and mean-field PDEs both accurately forecast Pulling ABM data . 19

4.2.2 BINN-guided PDEs accurately forecast Adhesion ABM data when the mean-field PDE

is ill-posed . 19

4.2.3 BINN-guided PDEs accurately forecast Pulling & Adhesion ABM data with a one-

compartment model . 21

4.3 Predicting ABM data at new parameter values . 24

4.3.1 Predicting Adhesion ABM data . 25

4.3.2 Predicting Adhesion & Pulling ABM data . 27

38

4.4 Comparing the computational expense of each modeling approach 28

5 Discussion and Future Work 29

A ABM Rules 40

A.1 The Pulling Model . 40

A.2 The Adhesion Model . 40

A.3 The Pulling & Adhesion Model . 41

B ABM implementation 42

C Gillespie algorithm 43

D Coarse-graining ABM rules into PDE models 46

D.1 Coarse-graining the Pulling ABM . 46

D.2 Coarse-graining the Adhesion ABM . 48

D.3 Coarse-graining the Pulling & Adhesion ABM . 49

E BINN implementation and training 52

E.1 BINNs architecture . 52

E.2 Loss Function . 52

E.3 BINN Training Procedure . 53

E.4 Comments on BINN training convergence . 54

F Numerical integration of PDEs 56

G Supplementary figures 57

39

A ABM Rules

A.1 The Pulling Model

The Pulling model consists of pulling agents that migrate with rate2
r
pull

m
and perform rules A and B from

Figure 1. Suppose a pulling agent at lattice site (i, j) chooses to move rightwards into site (i+ 1, j). If the

lattice site (i ≃ 1, j) is unoccupied, then the agent performs Rule A and moves into site (i + 1, j). If the

lattice site (i≃ 1, j) is occupied, then the agent attempts Rule B on agent pulling. This event succeeds with

probability ppull, and the agent moves to site (i + 1, j) and pulls its neighbor into lattice site (i, j). This

event fails with probability 1≃ ppull, in which the agent moves into site (i+ 1, j) but the neighbor remains

at lattice site (i≃ 1, j). These rules can be described by the following trimolecular reaction rates:

0i→1,j + Pi,j + 0i+1,j
r
pull
m /4

≃≃≃≃⇑ 0i→1,j + 0i,j + Pi+1,j , (Rule A)

Pi→1,j + Pi,j + 0i+1,j
ppullr

pull
m /4

≃≃≃≃≃≃≃≃⇑ 0i→1,j + Pi,j + Pi+1,j , (Rule B.1)

Pi→1,j + Pi,j + 0i+1,j
(1→ppull)r

pull
m /4

≃≃≃≃≃≃≃≃≃≃⇑ Pi→1,j + 0i,j + Pi+1,j . (Rule B.2)

Equivalent reactions govern agent migration and pulling in the other three directions.

A.2 The Adhesion Model

The Adhesion model consists of adhesive agents that migrate with rate r
adh

m
and perform rules C and D from

Figure 1. Suppose an adhesive agent at lattice site (i, j) chooses to move rightwards into site (i + 1, j). If

the lattice site (i≃ 1, j) is unoccupied, then the agent performs Rule C and moves into site (i+ 1, j). If the

lattice site (i ≃ 1, j) is occupied, then the neighboring agent attempts Rule D to adhere to the migrating

agent and abort their movement. This event succeeds with probability padh, and neither agent changes its

location. This adhesion event fails with probability 1≃ padh, and the migrating agent moves to site (i+1, j)

and the neighbor remains at lattice site (i≃ 1, j). These rules can be described by the following trimolecular

2Meaning that pulling agents attempt to migrate over an infinitesimal time interval of length dt with probability rpullm dt.

40

reaction rates:

0i→1,j +Hi,j + 0i+1,j
r
adh
m /4

≃≃≃≃⇑ 0i→1,j + 0i,j +Hi+1,j , (Rule C)

Hi→1,j +Hi,j + 0i+1,j
(1→padh)r

adh
m /4

≃≃≃≃≃≃≃≃≃≃⇑ Hi→1,j + 0i,j +Hi+1,j . (Rule D)

A.3 The Pulling & Adhesion Model

The Pulling & Adhesion model consists of both pulling and adhesive agents. This model implements Rules

A-F from Figure 1. Rules A-D are unchanged from their descriptions in Sections A.1 and A.2. If a pulling

agent at lattice site (i, j) chooses to move rightwards into site (i+1, j) while an adhesive agent occupies site

(i≃ 1, j), then Rule E dictates the agents’ attempts to pull and adhere to each other. The migrating pulling

agent succeeds with probability ppull and moves to site (i+1, j) while pulling the neighboring adhesive agent

into site (i, j); the neighboring adhesive agent successfully aborts the pulling agent’s migration event with

probability padh; both agents fail with probability 1≃padh≃ppull and the pulling agent moves to site (i+1, j)

while the adhesive agent remains at site (i≃ 1, j). Based on our definition of this rule, it is not possible that

both the pulling and adhesion events succeed, so the parameters must satisfy 0 ⇐ ppull + padh ⇐ 1. Rule E

can be described by the following trimolecular reaction rate:

Hi→1,j + Pi,j + 0i+1,j
ppullr

pull
m /4

≃≃≃≃≃≃≃≃⇑ 0i→1,j +Hi,j + Pi+1,j , (Rule E.1)

Hi→1,j + Pi,j + 0i+1,j
(1→padh→ppull)r

pull
m /4

≃≃≃≃≃≃≃≃≃≃≃≃≃≃≃⇑ Hi→1,j + 0i,j + Pi+1,j . (Rule E.2)

If an adhesive agent at lattice site (i, j) chooses to move rightwards into site (i + 1, j) while a pulling

agent occupies site (i≃ 1, j), then Rule F dictates that the adhesive agent moves into site (i+ 1, j) and the

pulling agent remains at site (i≃ 1, j). Rule F can be described by the following trimolecular reaction rate:

Pi→1,j +Hi,j + 0i+1,j
r
adh
m /4

≃≃≃≃⇑ Pi→1,j + 0i,j +Hi+1,j . (Rule F)

41

B ABM implementation

Each model is simulated in the spatial domain (x, y) ↑ [0, X] ↓ [0, Y]. We choose X = 200 and Y = 40

to represent a thin rectangle where collective migration primarily occurs along the x-dimension and is not

a"ected by the boundary in this dimension. We represent this space with a two-dimensional lattice with

square lattice sites with length ! = 1 to imitate a typical cell length. The (i, j)th lattice site is centered at

(xi, yj), where xi = (i≃ 0.5)!, i = 1, . . . , X, and yj = (j ≃ 0.5)!, j = 1, . . . , Y. Each model is an exclusion

process, meaning that each agent can only occupy one lattice site at a time, and each lattice site is occupied

by at most one agent. The parameter ω ↑ (0, 1) denotes the proportion of nonempty lattice sites that are

occupied by adhesive agents in the simulation, and (1≃ ω) denotes the proportion of nonempty lattice sites

that are occupied by pulling agents in the simulation.

All model simulations are initialized by populating 75% of the lattice sites in the middle 20% of columns,

e.g., 75% of the lattice sites in {(xi, yj)}Yj=1 are initially occupied for i = 80, . . . , 120. All other columns are

initially empty. This initial condition is chosen to reflect a barrier assay [41]. Reflecting boundary conditions

are used at the boundaries of lattice to enforce a no-flux condition in the spatial domain. We simulate each

ABM using the Gillespie algorithm, which we provide for the Pulling & Adhesion ABM in Supplementary

Algorithm 1 in electronic supplementary material C. All ABMs are simulated until t = 1000.

42

C Gillespie algorithm

Our implementation of the Gillespie Algorithm for the Pulling & Adhesion ABM is provided in Supplementary

Algorithm 1.

Algorithm 1: Gillespie algorithm for the Pulling & Adhesion ABM
Create an X ↓ Y lattice with user-specified placement of agents

Set t = 0

Set maximum simulation time tend

Set P (t) and H(t) equal to the number of Pulling and Adhesive agents on the lattice, respectively

while t < tend do
Calculate the following random variables, uniformly distributed on [0, 1] : ϖ1, ϖ2

Calculate the propensity function a(t) = r
pull

m
P (t) + r

adh

m
H(t)

Calculate time step ϱ = ≃ ln(ϖ1)/a(t)

t = t+ ϱ

R = a(t)ϖ2

if R < r
pull

m
P (t) then

Perform Pulling agent migration (Supplementary Algorithm 2)

else if R < r
pull

m
P (t) + r

adh

m
H(t) then

Perform Adhesive agent migration (Supplementary Algorithm 3)

end

43

Algorithm 2: Pulling Agent migration
Randomly choose a pulling agent and determine its lattice site index, ςx = (i, j)T

Choose one of the four cardinal migration directions,

ςdx = (dx, dy)T ↑ {(1, 0)T , (≃1, 0)T , (0, 1)T , (0,≃1)T }, with equal probability, 1/4. The neighboring

direction is given by d̂x = ≃ ςdx

if ςx+ ςdx is empty then

if ςx+ d̂x is empty then

/* Rule A */

Move the chosen pulling agent to lattice site ςx+ ςdx

else if ςx+ d̂x is occupied by a Pulling agent then

/* Rule B */

Calculate the random variable, ϖ3, uniformly distributed on [0, 1]

if ϖ3 ⇐ ppull then

Move the chosen pulling agent to lattice site ςx+ ςdx

Move the neighboring agent to lattice site ςx

else if ϖ3 > ppull then

Move the chosen pulling agent to lattice site ςx+ ςdx

else if ςx+ d̂x is occupied by an Adhesive agent then

/* Rule E */

Calculate the random variable, ϖ3, uniformly distributed on [0, 1]

if ϖ3 ⇐ ppull then

Move the chosen pulling agent to lattice site ςx+ ςdx

Move the neighboring agent to lattice site ςx

else if ϖ3 ⇐ ppull + 1≃ padh then

Move the chosen pulling agent to lattice site ςx+ ςdx

44

Algorithm 3: Adhesive agent migration
Randomly choose an adhesive agent and determine its lattice site index, ςx = (i, j)T

Choose one of the four cardinal migration directions,

ςdx = (dx, dy)T ↑ {(1, 0)T , (≃1, 0)T , (0, 1)T , (0,≃1)T }, with equal probability, 1/4. The neighboring

direction is given by d̂x = ≃ ςdx

if ςx+ ςdx is empty then

if ςx+ d̂x is empty then

/* Rule C */

Move the chosen adhesive agent to lattice site ςx+ ςdx

else if ςx+ d̂x is occupied by an adhesive agent then

/* Rule D */

Calculate the random variable, ϖ3, uniformly distributed on [0, 1]

if ϖ3 ⇐ (1≃ padh) then

Move the chosen adhesive agent to lattice site ςx+ ςdx

else if ςx+ d̂x is occupied by a Pulling agent then

/* Rule F */

Move the chosen adhesive agent to lattice site ςx+ ςdx

45

D Coarse-graining ABM rules into PDE models

We will coarse-grain the Pulling, Adhesion, and Pulling & Adhesion ABMs into their mean-field PDE models.

Each ABM consists of a combination of Rules A-F from Figure 1. Each rule updates the occupancies of three

consecutive lattice sites, such as {(i, j≃1), (i, j), (i, j+1)}. Let the variables Pi,j(t), Hi,j(t), and 0i,j(t) denote

the probabilities that lattice site (i, j) is occupied by a pulling agent, adhesive agent, or empty at time t,

respectively. To convert each rule into a PDE model, we invoke the mean-field assumption, which supposes

that all lattice site occupancies are independent of each other. This assumption simplifies model coarse-

graining by allowing us to replace the joint probability of three lattice site occupancies with the product of

the three individual lattice site occupancy probabilities. For example, under the mean-field assumption, we

can write the probability that lattice sites (i, j≃ 1), (i, j), and (i, j+1) are all occupied by pulling agents at

time t as Pi,j→1(t)Pi,j(t)Pi,j+1(t); otherwise, we must consider the joint occupancy probability for this triplet

of lattice sites. Mean-field DE models can poorly predict ABM behavior when the mean-field assumption is

violated during ABM simulations, see [8, 13, 14] for further details.

D.1 Coarse-graining the Pulling ABM

The Pulling ABM is composed of Rules A and B from Figure 1 and Section A.1. We begin coarse-graining

this ABM into a PDE model by writing the master equation governing how Pi,j(t) changes according to

these rules:

εPi,j(t)

εt
= K

Rule A +K
Rule B.1 +K

Rule B.2
. (9)

Rule A specifies how pulling agents migrate into an empty lattice site with rate r
pull

m
/4 when there is no

neighboring agent in the lattice site opposite the direction of migration. This rate is divided by four because

the agent randomly chooses to attempt to migrate into one of its four neighboring lattice sites. We write

this rule in the master equation as:

K
Rule A =≃

2rpull
m

4
[0i,j→1(t)Pi,j(t)0i,j+1(t) + 0i→1,j(t)Pi,j(t)0i+1,j(t)]

+
r
pull

m

4
[0i,j→2(t)Pi,j→1(t)0i,j(t) + 0i,jPi,j+10i,j+2 + 0i→2,jPi→1,j0i,j + 0i,jPi+1,j0i+2,j] , (10)

where the first line describes how a pulling agent moves out of lattice site (i, j), and the second line describes

46

how a pulling agent moves into lattice site (i, j).

Rule B.1 specifies how a pulling agent migrates into an empty neighboring lattice site and pulls its

neighbor along with it, which occurs with probability ppull. We write this rule in the master equation as:

K
Rule B.1 = ≃

ppullr
pull

m

4

[
Pi,j(t)Pi,j+1(t)0i,j+2(t) + 0i,j→2(t)Pi,j→1(t)Pi,j(t)+

Pi,j(t)Pi+1,j(t)0i+2,j(t) + 0i→2,j(t)Pi→1,j(t)Pi,j(t)

]

ppullr
pull

m

4

[
Pi,j→2(t)Pi,j→1(t)0i,j(t) + 0i,j(t)Pi,j+1(t)Pi,j+2(t)+

Pi→2,j(t)Pi→1,j(t)0i,j(t) + 0i,j(t)Pi+1,j(t)Pi+2,j(t)

]
. (11)

Rule B.2 specifies how a pulling agent migrates into an empty neighboring lattice site and fails to pull its

neighbor along with it, which occurs with probability 1≃ppull. We write this rule in the master equation as:

K
Rule B.2 = ≃

(1≃ ppull)rpullm

4

[
Pi,j→1(t)Pi,j(t)0i,j+1(t) + 0i,j→1(t)Pi,j(t)Pi,j+1(t)+

Pi→1,j(t)Pi,j(t)0i+1,j+1(t) + 0i,j→1(t)Pi,j(t)Pi+1,j(t)

]

+
(1≃ ppull)rpullm

4

[
Pi,j→2(t)Pi,j→1(t)0i,j(t) + 0i,j(t)Pi,j+1(t)Pi,j+2(t)+

Pi→2,j(t)Pi→1,j(t)0i,j(t) + 0i,j(t)Pi+1,j(t)Pi+2,j(t)

]
. (12)

To obtain the resulting PDE model for the Pulling ABM, we substitute Equations (10), (11), and (12)

into Equation (9) and set 0i,j = 1≃Pi,j . We replace each term with its Taylor expansion, up to second order:

Pi±m,j(t) = Pi,j(t)±m!(Pi,j(t))x +
m!2

2
(Pi,j(t))xx +O(!3), m = ≃2,≃1, 0, 1, 2;

Pi,j±n(t) = Pi,j(t)± n!(Pi,j(t))y +
n!2

2
(Pi,j(t))yy +O(!3), n = ≃2,≃1, 0, 1, 2; (13)

where subscripts denote di"erentiation with respect the the shown variable, and ! is the length of each

lattice site. As shown in the Mathematica notebook Pulling_model_coarse_graining.nb, taking the

limit of the resulting expression as ! ⇑ 0 leads to the mean-field PDE model for the Pulling ABM:

εP

εt
= ↘ ·

(
r
pull

m

4

(
1 + 3ppullP

2
)
↘P

)
, (14)

where P = Pi,j(t).

47

D.2 Coarse-graining the Adhesion ABM

The Adhesion ABM is composed of Rules C and D from Figure 1 and Section A.2. We begin coarse-graining

this ABM into a PDE model by writing the master equation governing how Hi,j(t) changes according to

these rules:

εHi,j(t)

εt
= K

Rule C +K
Rule D

. (15)

Rule C specifies how adhesive agents migrate into an empty lattice site with rate r
adh

m
/4 when there is

no neighboring agent in the lattice site opposite the direction of migration. We write this rule in the master

equation as:

K
Rule C = ≃

2radh
m

4

[
0i,j→1(t)Hi,j(t)0i,j+1(t) + 0i→1,j(t)Hi,j(t)0i+1,j(t)

]

+
r
adh

m

4

[
0i,j→2(t)Hi,j→1(t)0i,j(t) + 0i,j(t)Hi,j+1(t)0i,j+2(t)+

0i→2,j(t)Hi→1,j(t)0i,j(t) + 0i,j(t)Hi+1,j(t)0i+2,j(t)

]
, (16)

where the first line describes how an adhesive agent moves out of lattice site (i, j), and the second and third

lines describe how an adhesive agent moves into lattice site (i, j).

Rule D specifies how adhesive agents migrate into an empty neighboring lattice site when a neighboring

adhesive agent is in the lattice site opposite the direction of migration. The neighboring adhesive agent

attempts to adhere to the migrating agent and abort the migration event. The adhesion event succeeds with

probability padh, and neither agent changes its position. The adhesion event fails with probability 1≃ padh,

and the migrating agent shifts into the previously-empty lattice site while the neighboring agent remains in

its previous lattice site. We write this rule in the master equation as:

K
Rule D = ≃

(1≃ padh)radhm

4

[
Hi,j→1(t)Hi,j(t)0i,j+1(t) + 0i,j→1(t)Hi,j(t)Hi,j+1(t)+

Hi→1,j(t)Hi,j(t)0i+1,j(t) + 0i→1,j(t)Hi,j(t)Hi+1,j(t)

]

+
(1≃ padh)radhm

4

[
Hi,j→2(t)Hi,j→1(t)0i,j(t) + 0i,j(t)Hi,j+1(t)Hi,j+2(t)+

Hi→2,j(t)Hi→1,j(t)0i,j(t) + 0i,j(t)Hi+1,j(t)Hi+2,j(t)

]
. (17)

To obtain the resulting PDE model for the Adhesion ABM, we substitute Equations (16) and (17) into

48

Equation (15) and set 0i,j = 1≃Hi,j . We replace each term with its Taylor expansion, up to second order:

Hi±m,j(t) = Hi,j(t)±m!(Hi,j(t))x +
m!2

2
(Hi,j(t))xx +O(!3), m = ≃2,≃1, 0, 1, 2;

Hi,j±n(t) = Hi,j(t)± n!(Hi,j(t))y +
n!2

2
(Hi,j(t))yy +O(!3), n = ≃2,≃1, 0, 1, 2. (18)

As shown in the Mathematica notebook Adhesion_model_coarse_graining.nb, taking the limit of the

resulting expression as ! ⇑ 0 leads to the mean-field PDE model for the Adhesion ABM:

εH

εt
= ↘ ·

(
r
adh

m

4

(
3padh

(
H ≃

2

3

)2

+ 1≃
4padh
3

)
↘H

)
(19)

where H = Hi,j(t).

D.3 Coarse-graining the Pulling & Adhesion ABM

The Pulling & Adhesion ABM is composed of Rules A to F from Figure 1 and Sections A.1-A.3. We begin

coarse-graining this ABM into a PDE model by writing the master system of equations governing how both

Pi,j(t) and Hi,j(t) change according to these rules:

εPi,j(t)

εt
= K

Rule A +K
Rule B.1 +K

Rule B.2 +K
Rule E.1
P

+K
Rule E.2 (20)

εHi,j(t)

εt
= K

Rule C +K
Rule D +K

Rule E.1
H

+K
Rule F

, (21)

where K
Rule E.1
P

denotes how Pi,j(t) is a"ected by Rule E.1 and K
Rule E.1
H

denotes how Hi,j(t) is a"ected by

Rule E.1. All other rules a"ect either Pi,j(t) or Hi,j(t), but not both. Rules A-D are described in Sections

D.1 and D.2, and we do not restate them here.

Rule E specifies how a pulling agent migrates into an empty neighboring lattice site when a neighboring

adhesive agent is present in the lattice site opposite the direction of migration. In Rule E.1, the pulling agent

successfully pulls the adhesive agent as it migrates, which occurs with probability ppull. In this scenario,

the pulling agent shifts into the previously-empty lattice site and the adhesive agent moves into the site

49

previously occupied by the pulling agent. We write this rule in the master equation for Pi,j(t) as:

K
Rule E.1
P

= ≃
ppullr

pull

m

4

[
Hi,j→1(t)Pi,j(t)0i,j+1(t) + 0i,j→1(t)Pi,j(t)Hi,j+1(t)+

Hi→1,j(t)Pi,j(t)0i+1,j(t) + 0i→1,j(t)Pi,j(t)Hi+1,j(t)

]

+
ppullr

pull

m

4

[
Hi,j→2(t)Pi,j→1(t)0i,j(t) + 0i,j(t)Pi,j+1(t)Hi,j+2(t)+

Hi→2,j(t)Pi→1,j(t)0i,j(t) + 0i,j(t)Pi+1,j(t)Hi+2,j(t)

]
, (22)

and in the master equation for Hi,j(t) as:

K
Rule E.1
H

= ≃
ppullr

pull

m

4

[
0i,j→2(t)Pi,j→1(t)Hi,j(t) +Hi,j(t)Pi,j+1(t)0i,j+2(t)+

0i→2,j(t)Pi→1,j(t)Hi,j(t) +Hi,j(t)Pi+1,j(t)0i+2,j(t)

]

+
ppullr

pull

m

4

[
Hi,j→1(t)Pi,j(t)0i,j+1(t) + 0i,j→1(t)Pi,j(t)Hi,j+1(t)+

Hi→1,j(t)Pi,j(t)0i+1,j(t) + 0i→1,j(t)Pi,j(t)Hi+1,j(t)

]
. (23)

The neighboring adhesive agent successfully adheres to the migrating pulling agent and aborts its migration

event with probability padh. Neither Pi,j(t) or Hi,j(t) changes in this scenario as no agents change their

locations in response to the adhesion event. In Rule E.2, the adhesive agent fails to adhere to the pulling

agent and the pulling agent fails to pull the adhesive agent, which occurs with probability 1≃ padh ≃ ppull.

In this scenario, the pulling agent shifts into the previously-empty lattice site while the neighboring adhesive

agent remains in its previous lattice site. We write this rule in the master equation as:

K
Rule E.2 = ≃

(1≃ padh ≃ ppull)rpullm

4

[
Hi,j→1(t)Pi,j(t)0i,j+1(t) + 0i,j→1(t)Pi,j(t)Hi,j+1(t)+

Hi→1,j(t)Pi,j(t)0i+1,j(t) + +0i→1,j(t)Pi,j(t)Hi+1,j(t)

]

+
(1≃ padh ≃ ppull)rpullm

4

[
Hi,j→2(t)Pi,j→1(t)0i,j(t) + 0i,j(t)Pi,j+1(t)Hi,j+2(t)+

Hi→2,j(t)Pi→1,j(t)0i,j(t) + 0i,j(t)Pi+1,j(t)Hi+2,j(t)

]
. (24)

Rule F specifies how adhesive agents migrate into an empty neighboring lattice site when a neighboring

pulling agent is in the lattice site opposite the direction of migration. The two agents do not interact with

each other in this scenario. As such, the adhesive agent migrates into the empty lattice site with rate r
adh

m
/4.

50

We write this rule in the master equation as:

K
Rule F = ≃

r
adh

m

4

[
Pi,j→1(t)Hi,j(t)0i,j+1(t) + 0i,j→1(t)Hi,j(t)Pi,j+1(t)+

Pi→1,j(t)Hi,j(t)0i+1,j(t) + 0i→1,j(t)Hi,j(t)Pi+1,j(t)

]

+
r
adh

m

4

[
Pi,j→2(t)Hi,j→1(t)0i,j(t) + 0i,j(t)Hi,j+1(t)Pi,j+2(t)+

Pi→2,j(t)Hi→1,j(t)0i,j(t) + 0i,j(t)Hi+1,j(t)Pi+2,j(t)

]
. (25)

To obtain the resulting system of di"erential equations for the Pulling & Adhesion ABM, we substitute

Equations (10), (11), (12), (16), (17), (22), (23), (24), and (25) into Equation (21) and set 0i,j = 1 ≃ Ti,j ,

where Ti,j = Pi,j+Hi,j . We replace each term with its Taylor expansion, up to second order, from Equations

(13) and (18). As shown in the Mathematica notebook Pulling-Adhesion_coarse_graining.nb, taking

the limit of the resulting expression as ! ⇑ 0 leads to the mean-field system of PDEs for the Pulling &

Adhesion ABM:

εP

εt
=
r
pull

m

4
↘ ·

(
(1≃ T)↘P + P↘T

)

+ padh
r
pull

m

4
↘ ·

(
≃ 3P (1≃ T)↘H ≃H(1≃ T)↘P ≃HP↘T

)

+ ppull
r
pull

m

4
↘ ·

(
3P 2

↘T

)

εH

εt
=
r
adh

m

4
↘ ·

(
(1≃ T)↘H +H↘T

)

+ padh
r
adh

m

4
↘ ·

(
≃ 4(1≃ T)H↘H ≃H

2
↘T

)

+ ppull
r
pull

m

4
↘ ·

(
≃ (1≃ T)H↘P + (1≃ T)P↘H + 3HP↘T

)
, (26)

where P = Pi,j(t), H = Hi,j(t), and T = Ti,j(t).

51

E BINN implementation and training

E.1 BINNs architecture

Following [28], we construct TMLP (x, t) using a fully-connected feed-forward MLP with three hidden layers,

which can be written as:

z0 = [x, t]

z1 = φ (z0W1 + b1)

z2 = φ (z1W2 + b2)

z3 = φ (z2W3 + b3)

T
MLP (x, t) = ↼ (z3W4 + b4) , (27)

where each zk denotes the k
th hidden layer for k = 1, 2, 3; the Wk matrices and the bk vectors provide

the weights and biases of each hidden layer, respectively; φ denotes the sigmoid activation function φ(x) =

1/(1 + exp (≃x)), and ↼ denotes the softplus activation function ↼(x) = log(1 + exp(x)). Each hidden layer

in Equation (27) has 128 neurons, meaning that W1 ↑ R2↑128;W2,W3 ↑ R128↑128;W4 ↑ R128↑1; b1, b2, b3 ↑

R128; and b4 ↑ R.

The architecture of DMLP (T) is identical to the architecture for T
MLP in Equation (27), except D

MLP

has a one-dimensional input vector, T , instead of the two-dimensional input vector, [x, t].

E.2 Loss Function

BINNs are trained to concurrently fit the given dataset, ↔TABM (x, t)↗train, and solve Equation (7) by mini-

mizing the following multi-term loss function:

Ltotal = LWLS + ϑLPDE + Lconstr. (28)

The ϑ parameter ensures the terms LWLS and LPDE are equally weighted because these terms can be of

di"erent orders of magnitude; we find good results for ϑ = 104.

The LWLS term of Equation (28) computes a weighted mean-squared error between T
MLP (x, t) and

52

↔T
ABM (x, t)↗train:

LWLS =
1

T
train

f
X

X,T
train
f∑

i=1,j=1

wi,j

(
T

MLP (xi, tj)≃ ↔T
ABM (xi, tj)↗

)2

. (29)

We set wi,1 = 10.0 for all values of i and all other wi,j values to 1.0 to ensure that T
MLP closely agrees

with the ABM’s initial data. By minimizing Equation (29), we ensure T
MLP (x, t) closely approximates

↔T
ABM (x, t)↗train.

The LPDE term of Equation (28) quantifies how closely T
MLP and D

MLP follow Equation (7). To

ensure the MLPs satisfy this PDE framework throughout the ABM’s entire spatiotemporal domain, we

uniformly sample 10,000 points, {(xk, tk)}
10,000
k=1 , from [0, X]↓ [0, 750]. For notational convenience, let T̂k =

T
MLP (xk, tk) and D̂k = D

MLP
(
T

MLP (xk, tk)
)
. We then compute the mean-squared error between the left-

and right-hand sides of Equation (7) at all sampled points:

LPDE =
1

10, 000

10,000∑

i=1

[
ε

εt
T̂k ≃

ε

εx

(
D̂k

ε

εx
T̂k

)]2
, (30)

where di"erentiation of TMLP and D
MLP is performed using automatic di"erentiation. Minimizing Equation

(30) verifies that T
MLP and D

MLP together satisfy Equation (7).

The Lconstr term of Equation (28) incorporates user knowledge into BINNs training. We penalize D
MLP

for outputting values outside of the interval [Dmin, Dmax]. We set Dmin = 0 because Equation (7) is ill-

posed if D(u) < 0, and we set Dmax = 1.0 because the mean-field rates of di"usion are below one for all

ABM simulations in this study. We compute this term by squaring any values of D̂i that are not within

[Dmin, Dmax] and weighting these values by 1010:

Lconstr =
1

10, 000

10,000∑

k=1
D̂k /↓[Dmin,Dmax]

1010(D̂k)
2
. (31)

This term regularizes the BINN training procedure to prevent D
MLP from outputting unrealistic values.

E.3 BINN Training Procedure

For BINN model training, we randomly partition the training ABM dataset into 80%/20% BINN training

and BINN validation datasets. We train the BINN parameter values (i.e., the weights and biases for T
MLP

and D
MLP) to minimize a loss function, L, using the gradient-based ADAM optimizer with its default

53

hyperparameter values on the BINN training dataset. For each new set of BINN parameters, we compute

L on the BINN validation dataset and save the BINN parameters if the newly computed L value achieves

a 1% or greater relative improvement over the previous smallest recorded value. Following [36], we perform

training in a two-step process: in the first step, we train the BINN to match the ABM data by optimizing

L = LWLS from Equation (29); in the second step, we train the BINN on L = Ltotal from Equation (28).

The first training step is performed for 104 epochs with an early stopping criterion of 103, meaning that

training ends early if the smallest-computed L value on the validation data is unchanged for 103 epochs. The

second step is performed for 106 epochs with an early stopping criterion of 105. Each epoch is computed in

minibatches of size 103. BINN model training is performed using the PyTorch deep learning library (version

1.7.1).

Following [28], we train five separate BINNs for each ABM dataset using di"erent BINN training and

validation datasets because the final trained model can be sensitive to which data is included in these two

datasets. We compute the five PDE forward simulations from these trained models and select whichever

BINN achieves the smallest mean-squared error against the ABM training data as the final selected BINN

model.

E.4 Comments on BINN training convergence

We depict the chosen hyperparameter values for BINN model training in Table 6. Many of these values

were chosen to follow previous modeling studies [28, 36]. A current challenge in neural network training is

determining the optimal choice of such hyperparameter values [35]. In our work, we found that BINN model

training is most sensitive to the ϑ parameter as well as the number of epochs and early stopping number

used during BINN model training (results not shown). If ϑ is too small, then the BINN will prioritize fitting

the ABM data but not satisfying the PDE framework. Conversely, if ϑ is too large, then the BINN will

ensure it satisfies a PDE framework while neglecting the data. We found a good balance between the two

loss functions for ϑ = 1 ↓ 10→4. Training the BINN with a smaller number of epochs, such as 105 with an

early stopping criterion of 104 led to a model that had not fully converged to the data and we found better

convergence using 106 epochs with an early stopping criterion of 105.

54

Hyperparameter description Value

Number of hidden layers 3

Number of neurons per hidden layer 128

Weighting between LWLS and LPDE (ϑ) 10→4

Additional initial condition weighting in LWLS 10.0

Number of collocation points for LPDE 10,000

Penalty for D
MLP values outside of [Dmin, Dmax] 1010

Dmin 0.0

Dmax 1.0

ANN epochs 104

ANN early stopping 103

BINN epochs 106

BINN early stopping 105

Table 6: Hyperparameter values used to perform BINN model training.

55

F Numerical integration of PDEs

When simulating Equation (2), we populate the middle 20% of the spatial dimension with 75% confluence and

zero confluence everywhere else to match the initial ABM configurations and implement no-flux boundary

conditions:

T (x, 0) =






0.75, 80 ⇐ x ⇐ 120

0, otherwise,

,

εT

εx
(0, t) =

εu

εx
(X, t) = 0. (32)

Before integration, we discretize the spatial domain as xi = i!x with i = 0, ..., 199 and !x = 1.0. For

ease of notation, let Ti(t) = T (xi, t) and Di(t) = D(Ti(t)). We then use the method of lines approach to

integrate Equation (2). To discretize the right hand side of Equation (7), we let

εTi(t)

εx

(
Di(t)

εTi(t)

εx

)
⇓

Pi+1/2(t)≃ Pi→1/2(t)

!x
,

where Pi±1/2(t) denotes the right or left flux through location xi, respectively. Following [49], we approximate

these fluxes by

Pi+1/2(t) =
1

2

(
Di(t)

Ti+1(t)≃ Ti(t)

!x
+Di+1(t)

Ti+1(t)≃ Ti(t)

!x

)

Pi→1/2(t) =
1

2

(
Di→1(t)

Ti(t)≃ Ti→1(t)

!x
+Di(t)

Ti(t)≃ Ti→1(t)

!x

)
. (33)

To implement the no-flux boundary conditions, we incorporate the ghost points x→1 and x200 that enforce

u→1(t) = u1(t) and u198(t) = u200(t) into Equation (33). We integrate Equation (2) using the odeint com-

mand from Scipy’s integration package (version 1.8.0), which implements the Livermore Solver for Di"erential

Equations (LSODA) method [50].

56

G Supplementary figures

Figure 12: Forecasting ABM data with neural networks and PDEs. ANN and BINN models were trained

to fit ↔T
ABM (x, t)↗train. These two neural networks and the mean-field and BINN-guided PDE simula-

tions were then used to forecast ↔T
ABM (x, t)↗train and ↔T

ABM (x, t)↗test. This was performed for (a-c)

the Adhesion ABM with p = (radh
m

, padh)T = (1.0, 0.5)T and (d-f) the Pulling & Adhesion ABM with

p = (rpull
m

, r
adh

m
, ppull, padh,ω)T = (1.0, 0.25, 0.33, 0.33, 0.5)T .

57

Sample p = (radh
m

, padh)T

1 (0.145, 0.825)T

2 (0.505, 0.575)T

3 (0.415, 0.725)T

4 (0.865, 0.525)T

5 (0.955, 0.625)T

6 (0.235, 0.775)T

7 (0.685, 0.675)T

8 (0.325, 0.875)T

9 (0.775, 0.925)T

10 (0.595, 0.975)T

Table 7: Latin hypercube sampling for the Adhesion ABM. The samples from the new parameter dataset for

the Adhesion ABM when varying r
adh

m
and padh. The samples are ordered by increasing testing MSE values

(see Figure 10(c)).

58

Sample p = (rpullm , radhm , ppull, padh, ω)T

1 (1.0, 0.25, 0.394, 0.578, 0.912)T

2 (1.0, 0.25, 0.293, 0.528, 0.938)T

3 (1.0, 0.25, 0.008, 0.226, 0.988)T

4 (1.0, 0.25, 0.511, 0.477, 0.862)T

5 (1.0, 0.25, 0.41, 0.109, 0.962)T

6 (1.0, 0.25, 0.075, 0.595, 0.888)T

7 (1.0, 0.25, 0.042, 0.544, 0.838)T

8 (1.0, 0.25, 0.327, 0.059, 0.712)T

9 (1.0, 0.25, 0.444, 0.31, 0.662)T

10 (1.0, 0.25, 0.209, 0.209, 0.612)T

11 (1.0, 0.25, 0.126, 0.41, 0.762)T

12 (1.0, 0.25, 0.193, 0.042, 0.588)T

13 (1.0, 0.25, 0.059, 0.561, 0.462)T

14 (1.0, 0.25, 0.243, 0.26, 0.788)T

15 (1.0, 0.25, 0.427, 0.494, 0.512)T

16 (1.0, 0.25, 0.595, 0.327, 0.812)T

17 (1.0, 0.25, 0.025, 0.461, 0.388)T

18 (1.0, 0.25, 0.377, 0.176, 0.488)T

19 (1.0, 0.25, 0.226, 0.645, 0.538)T

20 (1.0, 0.25, 0.528, 0.126, 0.688)T

21 (1.0, 0.25, 0.561, 0.075, 0.562)T

22 (1.0, 0.25, 0.142, 0.193, 0.362)T

23 (1.0, 0.25, 0.31, 0.092, 0.738)T

24 (1.0, 0.25, 0.176, 0.662, 0.412)T

25 (1.0, 0.25, 0.645, 0.008, 0.638)T

26 (1.0, 0.25, 0.343, 0.293, 0.312)T

27 (1.0, 0.25, 0.092, 0.611, 0.238)T

28 (1.0, 0.25, 0.109, 0.628, 0.012)T

29 (1.0, 0.25, 0.159, 0.343, 0.212)T

30 (1.0, 0.25, 0.26, 0.142, 0.188)T

31 (1.0, 0.25, 0.36, 0.377, 0.262)T

32 (1.0, 0.25, 0.276, 0.36, 0.038)T

33 (1.0, 0.25, 0.578, 0.243, 0.288)T

34 (1.0, 0.25, 0.628, 0.159, 0.062)T

35 (1.0, 0.25, 0.477, 0.511, 0.138)T

36 (1.0, 0.25, 0.611, 0.276, 0.338)T

37 (1.0, 0.25, 0.461, 0.444, 0.162)T

38 (1.0, 0.25, 0.544, 0.427, 0.112)T

39 (1.0, 0.25, 0.494, 0.394, 0.088)T

40 (1.0, 0.25, 0.662, 0.025, 0.438)T

Table 8: Latin hypercube sampling for the Pulling & Adhesion ABM. The samples from the prior parameter

dataset for the Pulling & Adhesion ABM when varying ppull, padh, and ω. The samples are ordered by

increasing training MSE values.

59

Sample p = (rpull
m

, r
adh

m
, ppull, padh, ω)T

1 (1.0, 0.25, 0.285, 0.519, 0.775)T

2 (1.0, 0.25, 0.419, 0.352, 0.875)T

3 (1.0, 0.25, 0.486, 0.117, 0.525)T

4 (1.0, 0.25, 0.553, 0.285, 0.375)T

5 (1.0, 0.25, 0.385, 0.586, 0.475)T

6 (1.0, 0.25, 0.586, 0.184, 0.175)T

7 (1.0, 0.25, 0.62, 0.151, 0.325)T

8 (1.0, 0.25, 0.184, 0.084, 0.625)T

9 (1.0, 0.25, 0.352, 0.385, 0.925)T

10 (1.0, 0.25, 0.653, 0.05, 0.275)T

11 (1.0, 0.25, 0.151, 0.653, 0.075)T

12 (1.0, 0.25, 0.452, 0.251, 0.125)T

13 (1.0, 0.25, 0.084, 0.218, 0.225)T

14 (1.0, 0.25, 0.318, 0.62, 0.725)T

15 (1.0, 0.25, 0.519, 0.017, 0.825)T

16 (1.0, 0.25, 0.117, 0.419, 0.425)T

17 (1.0, 0.25, 0.251, 0.486, 0.975)T

18 (1.0, 0.25, 0.017, 0.452, 0.025)T

19 (1.0, 0.25, 0.05, 0.318, 0.575)T

20 (1.0, 0.25, 0.218, 0.553, 0.675)T

Table 9: Latin hypercube sampling for the Pulling & Adhesion ABM. The samples from the new parameter

dataset for the Pulling & Adhesion ABM when varying ppull, padh, and ω. The samples are ordered by

increasing training MSE values.

60

Figure 13: Forecasting Pulling ABM data with mean-field (MF) and BINN-guided PDE models. The mean-

field and BINN-guided PDE simulations are used to forecast Pulling ABM data for (a-c) rpull
m

= 1.0, ppull =

0.8 (d-f) r
pull

m
= 0.9, ppull = 0.5.

61

Figure 14: Forecasting Adhesion ABM data with mean-field and BINN-guided PDE models. The mean-field

and BINN-guided PDE simulations are used to forecast Adhesion ABM data for (a-c) radh
m

= 1.0, padh = 0.7

(d-f) r
adh

m
= 0.1, padh = 0.5.

62

Figure 15: Forecasting Pulling & Adhesion ABM data with mean-field (MF) and BINN-guided PDE models.

The mean-field and BINN-guided PDE simulations are used to forecast Pulling & Adhesion ABM data for

the base parameter values (rpull
m

= 1.0, radh
m

= 0.25, ppull = 0.33, padh = 0.33, and ω = 0.5), except (a-c)

padh = 0.4 (d-f) r
adh

m
= 0.1.

Figure 16: Predicting Adhesion ABM data with the interpolated PDE model. The interpolated PDE model

predicts Adhesion ABM data for (a-c) r
adh

m
= 1.0 and padh = 0.95.

63

Figure 17: Predicting Adhesion ABM data with the interpolated PDE model. The interpolated PDE model

predicts Adhesion ABM data for (a-c) radh
m

= 0.595 and padh = 0.975 and (d-f) radh
m

= 0.325 and padh = 0.875.

64

Figure 18: Predicting Pulling & Adhesion ABM data with the interpolated PDE model. The interpolated

PDE model predicts Adhesion ABM data for r
pull

m
= 1.0, radh

m
= 0.25, and (a-c) ppull = 0.218, padh = 0.553,

and ω = 0.675 (d-f) ppull = 0.251, padh = 0.486, and ω = 0.975.

Figure 19: Computational expenses of each modeling approach. Violin plots represent the distribution of

wall time computations for ABM simulations, BINN training, mean-field PDE simulations, and BINN-guided

PDE simulations for the (a) Pulling ABM, (b) Adhesion ABM, and (c) Pulling & Adhesion ABM.

65

	Introduction
	The case study ABMs
	Brief introduction to the case study ABMs and their model rules
	ABM notation

	 Methods to forecast and predict ABM data
	Simulating ABM data
	Models to forecast ABM data
	Mean-field PDE Models
	The ANN model
	The BINN model
	The BINN-guided PDE model

	Forecasting future ABM data
	Predicting new ABM data using BINN-guided PDE models

	Results
	Mean-field and BINN-guided PDEs accurately forecast baseline ABM simulations
	Forecasting ABM data for many parameter values with BINN-guided and mean-field PDE simulations
	The BINN-guided and mean-field PDEs both accurately forecast Pulling ABM data
	BINN-guided PDEs accurately forecast Adhesion ABM data when the mean-field PDE is ill-posed
	BINN-guided PDEs accurately forecast Pulling & Adhesion ABM data with a one-compartment model

	Predicting ABM data at new parameter values
	Predicting Adhesion ABM data
	Predicting Adhesion & Pulling ABM data

	Comparing the computational expense of each modeling approach

	Discussion and Future Work
	ABM Rules
	The Pulling Model
	The Adhesion Model
	The Pulling & Adhesion Model

	ABM implementation
	Gillespie algorithm
	Coarse-graining ABM rules into PDE models
	Coarse-graining the Pulling ABM
	Coarse-graining the Adhesion ABM
	Coarse-graining the Pulling & Adhesion ABM

	BINN implementation and training
	BINNs architecture
	Loss Function
	BINN Training Procedure
	Comments on BINN training convergence

	Numerical integration of PDEs
	Supplementary figures

