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ABSTRACT

Federated learning (FL) provides an e�cient paradigm to jointly

train a global model leveraging data from distributed users. As

local training data comes from di�erent users who may not be

trustworthy, several studies have shown that FL is vulnerable to

poisoning attacks. Meanwhile, to protect the privacy of local users,

FL is usually trained in a di�erentially private way (DPFL). Thus,

in this paper, we ask: What are the underlying connections between

di�erential privacy and certi�ed robustness in FL against poisoning

attacks? Can we leverage the innate privacy property of DPFL to

provide certi�ed robustness for FL? Canwe further improve the privacy

of FL to improve such robustness certi�cation? We �rst investigate

both user-level and instance-level privacy of FL and provide formal

privacy analysis to achieve improved instance-level privacy. We

then provide two robustness certi�cation criteria: certi�ed prediction

and certi�ed attack ine�cacy for DPFL on both user and instance

levels. Theoretically, we provide the certi�ed robustness of DPFL

based on both criteria given a bounded number of adversarial users

or instances. Empirically, we conduct extensive experiments to

verify our theories under a range of poisoning attacks on di�erent

datasets. We �nd that increasing the level of privacy protection

in DPFL results in stronger certi�ed attack ine�cacy; however, it

does not necessarily lead to a stronger certi�ed prediction. Thus,

achieving the optimal certi�ed prediction requires a proper balance

between privacy and utility loss.
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1 INTRODUCTION

Federated Learning (FL), which aims to jointly train a global model

with distributed local data, has been widely deployed in di�erent

applications, such as �nance [81] and medical analysis [14]. How-

ever, the fact that the local data and the training process are entirely

controlled by the local users, who may be adversarial, raises great

concerns from both security and privacy perspectives. In particu-

lar, recent studies show that FL is vulnerable to di�erent types of

training-time attacks, such as model poisoning [8, 24, 67], backdoor

attacks [4, 72, 79], and label-�ipping attacks [27].

Several defenses have been proposed to defend against poison-

ing attacks in FL. For instance, various robust aggregation meth-

ods [11, 23, 57, 61, 83] identify and down-weight the malicious

updates during aggregation, or estimate a true “center” of the re-

ceived updates instead of taking a weighted average directly. Other

defenses include robust FL protocols (e.g., clipping [69], noisy per-

turbation [69], and additional evaluation during training [80]) and

post-training strategies (e.g., �ne-tuning and pruning [77]) that

repair the poisoned global model. However, as these works mainly
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focus on providing empirical robustness on speci�c types of attacks,

they have been shown to be vulnerable to newly proposed strong

adaptive attacks [24, 72, 79]. Recently, some certi�ed defenses have

been proposed against poisoning attacks [38, 39, 43, 65, 76], while

they mainly focus on centralized setting.

In the meantime, privacy concerns have motivated FL training,

where the sensitive raw data is kept on local deviceswithout sharing.

However, sharing other indirect information such as gradients or

model updates during the FL training process can also leak sensitive

user information [85]. As a result, approaches based on di�eren-

tial privacy (DP) [22], homomorphic encryption [66], and secure

multiparty computation [7, 13] have been proposed to protect the

privacy of users in FL. In particular, di�erentially private federated

learning (DPFL) [28, 53, 56] provides strong privacy guarantees for

user privacy, and has been deployed to real-world FL applications

such as Google’s Gboard [63] and Apple’s Siri [64].

Recent studies observe that di�erential privacy (DP) is related to

the robustness of ML models. Intuitively, DP is designed to protect

the privacy of individual data, such that the output of an algorithm

should not change much when one individual record is modi�ed.

Hence, the prediction of a DP model will be less impacted by a

small amount of perturbation. Consequently, several studies have

been conducted to provide empirical and certi�ed defenses against

evasion attacks [42, 47, 74] and data poisoning attacks [34, 50] based

on DP properties in the centralized ML setting. Empirical defense

against backdoor attacks [32] based on DP has also been studied in

federated learning without theoretical guarantees [4, 56, 69]. To the

best of our knowledge, despite the widespread use of DP in FL, there

is no study exploring the underlying connections between DP and

certi�ed robustness in FL against poisoning attacks, or providing

certi�ed robustness for DPFL leveraging its privacy properties.

Hence, in this paper, we aim to bridge this gap and answer the

research questions: Can we quantitatively uncover the underlying

connections between di�erential privacy and the certi�ed robust-

ness of FL against poisoning attacks? Can we improve the privacy

of FL to improve its certi�ed robustness?

To explore and exploit the inherent privacy properties of DPFL

for robustness certi�cations of FL, we mainly focus on two goals:

(1) conducting thorough privacy analysis of DPFL algorithms over

multiple rounds of training; (2) providing certi�ed robustness of

DPFL as a function of its privacy parameters (n, X) under di�er-
ent robustness criteria. In terms of privacy analysis, we revisit

existing DPFL algorithms and provide improved privacy analy-

sis. We investigate user-level DP, which is commonly guaranteed

in cross-device FL to protect the sensitive information of each

user [2, 3, 28, 46, 53], as well as instance-level DP which is more

suitable for cross-silo FL to protect sensitive information in each

data instance [49, 51, 86]. Moreover, we carry out privacy analy-

sis for instance-level DPFL algorithms, and provide an improved

guarantee for FedSGD [52]-based algorithm with privacy ampli-

�cation of user and batch subsampling. We also provide a formal

privacy guarantee for FedAvg [52]-based algorithm with parallel

composition [54] considering local privacy budget accumulation

and global privacy budget aggregation over training rounds. In

terms of certi�ed robustness of FL, we introduce two robustness

criteria: certi�ed prediction and certi�ed attack ine�cacy, which can

be adapted to di�erent threat models in DPFL. We prove that user-

level (instance-level) DPFL is certi�ably robust against a bounded

number of adversarial users (instances). We also show that our

analysis on certi�ed robustness is agnostic to the type of poison-

ing attack strategies as long as the number of adversarial users or

instances is bounded. Empirically, we quantitatively measure the

relationship between privacy guarantee and the certi�ed robustness

of FL based on di�erent robustness criteria. We present the �rst set

of certi�ed robustness for DPFL on image datasets MNIST, CIFAR

and text dataset Tweets against various FL poisoning attacks, in-

cluding backdoor attacks [4, 69], distributed backdoor attacks [79],

label-�ipping attacks [27], model replacement attacks [4, 8], and

optimization-based model poisoning attacks [67]. From our theo-

retical and empirical results, we provide the following insights:
(1) Certi�ed robustness in terms of certi�ed prediction is in�uenced

by both the privacy guarantee and model utility. Moderately

strong privacy protection enhances certi�ed prediction, while

overly strong privacy protection can harm. This is potentially

caused by the signi�cant loss of model utility. Thus, optimal

certi�ed prediction is achieved by balancing privacy protection

and utility.

(2) Certi�ed attack ine�cacy is always enhanced by stronger pri-

vacy protection. The certi�ed lower bounds of attack ine�cacy

are generally tight when the number of poisoned users or in-

stances is small, or the attack strategy is strong.

(3) Di�erent DPFL algorithms yield varying certi�cation robust-

ness under the same privacy guarantee due to distinct training

mechanisms (e.g., per-layer clipping or �at clipping).

(4) Larger FL data heterogeneity leads to a smaller number of toler-

able adversaries for certi�ed prediction, due to degraded utility.

Contributions. In this paper, we take the �rst step to characterize

the underlying connections between privacy guarantees and cer-

ti�ed robustness in FL. We hope our work can pave the way for

more private and robust FL applications.
• We provide two criteria for certi�ed robustness of FL against

poisoning attacks (Section 4.2).

• Given an FL model satisfying user-level DP, we prove that it

is certi�ably robust against arbitrary poisoning attacks with a

bounded number of adversarial users (Section 4.2).

• We revisit two instance-level DPFL algorithms and provide the

improved privacy analysis (Section 5.1). We further prove that

instance-level DPFL is certi�ably robust against a bounded num-

ber of poisoning instances during training (Section 5.2).

• We systematically evaluate the certi�ed robustness for user-level

and instance-level DPFL based on two robustness criteria on both

image and text datasets against �ve types of poisoning attacks.

We provide a series of ablation studies to further analyze the

factors that a�ect the certi�ed robustness, such as di�erent DPFL

algorithms and data heterogeneity. Our results also indicate that

our certi�cation approach o�ers strong empirical robustness

when compared to six empirical FL defenses (Section 6).

2 RELATED WORK

2.1 Di�erentially Private Federated Learning

To guarantee user-level privacy for FL, McMahan et al. [53] in-

troduce user-level DP-FedAvg and DP-FedSGD to train language
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Table 1: Comparison between our work and existing studies

on privacy and robustness in the context of poisoning attacks.

FL DP
Empirical

Robustness

Certifed

Prediction

Certifed

Attack Ine�cacy

[43, 65, 73, 76] × × ✓ ✓ ×
[34] × ✓ ✓ × ×
[50] × ✓ ✓ × ✓

[15, 78] ✓ × ✓ ✓ ×
[4, 56, 69, 72] ✓ ✓ ✓ × ×
Our work ✓ ✓ ✓ ✓ ✓

models with millions of users, where the server clips the norm of

each local update, then adds Gaussian noise on the summed update.

User-level DP-FedAvg is also proposed independently by Geyer

et al. [28]. Both of these works calculate the privacy budget via the

moment accountant [1]. In CpSGD [2], each user clips and quantizes

the model update, and adds noise drawn from Binomial distribution,

achieving both communication e�ciency and DP. Bhowmick et al.

[9] derive DP for FL via Rényi divergence [55] and study its re-

silience against data reconstruction attacks. Liang et al. [46] utilize

Laplacian smoothing for each local update to enhance model util-

ity. Asoodeh and Calmon [3] propose a di�erent way to calculate

the privacy budget by interpreting each round as a Markov kernel

and quantifying its impact on privacy parameters. Recent studies

propose di�erent regularization and sparsi�cation techniques to

improve utility [17] and leverage sharpness-aware optimizer [25]

to make the model less sensitive to weight perturbation [68].

In terms of instance-level privacy for FL, Dopamine [51] provides

instance-level privacy guarantee for FedSGD [52] where each user

only performs one step of DP-SGD [1] at each FL round. Girgis

et al. [29] introduce variants of instance-level DP-FedSGD with a

trusted shu�er between the server and users to randomly permutes

user gradients for privacy ampli�cation through anonymization.

Nonetheless, both works cannot be applied to the more general set-

ting (e.g., FedAvg [52]) where each user performs multiple steps of

SGD. Zhu et al. [86] privately aggregate the label predictions from

users in a voting scheme and provide DP guarantees on both user

and instance levels. However, it does not allow aggregating the gra-

dients or updates and is thus not applicable to standard FL. Recent

works combine local DP-SGD training of clients with personalized

FL algorithms [48, 49, 58, 82] to address the user heterogeneity

issue in FL and improve privacy-utility tradeo�.

In summary, the above works focus on privacy in FL while leav-

ing its robustness unexplored. Our goal is to uncover the underlying

connections between privacy guarantees with certi�ed robustness.

2.2 Certi�ed Robustness against Evasion
Attacks

Machine learning models are susceptible to test-time evasion at-

tacks [31], and di�erent defenses have been proposed to enhance

the robustness of models and provide certi�cations to guarantee

consistent predictions under a speci�ed perturbation radius [44].

Pixel-DP [42] �rst connects DP to certi�ed robustness against ad-

versarial examples by adding noise on the test sample $ times and

taking the expectation over the corresponding outputs. Later on,

randomized smoothing [18] is proposed to provide a tight robust-

ness certi�cation. Wang et al. [74] extends Pixel-DP [42] to NLP

tasks, and Liu et al. [47] improves the certi�cation based on Rényi

DP [55]. However, such an approach of adding noise to test samples

does not guarantee that the training algorithm itself satis�es DP.

In contrast, our certi�cation against poisoning attacks focuses on

DPFL, which requires the training algorithm to satisfy DP. Such

analysis requires careful privacy budget analysis of DPFL models

across multiple training rounds and aggregation.

2.3 Certi�ed Robustness against Poisoning
Attacks

Compared to test-time certi�cations against evasion attacks, training-

time certi�cations against poisoning attacks have been less explored

due to the notably di�erent threat models and the complexity of

analyzing model training dynamics, even in a centralized setting.

In centralized setting, current approaches primarily utilize ran-

domized smoothing to certify the model robustness under a bounded

number of poisoned instances. Weber et al. [76] and Rosenfeld et al.

[65] propose to add noise directly to the training dataset, train mul-

tiple models on the randomized datasets, and take majority vote for

the �nal prediction for certi�cation. Levine and Feizi [43] andWang

et al. [73] propose to partition a centralized dataset into disjoint

subsets, train an independent model on each partition, and make

majority predictions among all models. However, these certi�ca-

tions do not apply to FL, where each local model can in�uence other

users’ local models through periodic global model aggregation, so

the malicious e�ect of one poisoned local model could spread to

all local models, making the certi�ed robustness in FL a far more

challenging task. To achieve certi�ed robustness in FL, CRFL [78]

clips the aggregated FL model parameters and adds noise, but it

does not consider the properties provided by DPFL. Emsemble [15]

trains numerous FL global models (e.g., 500) on di�erent subsets

of users and takes majority prediction. Similarly, it only leverages

the randomness in user-subsampling and does not consider data

privacy property during training. Our goal is to explore the under-

lying connections between DP properties of DPFL algorithms and

their certi�ed robustness, as well as provide recipes for achieving

higher certi�ed robustness.

Several studies have explored the robustness against poisoning

attacks induced by DP, either in centralized learning or only empir-

ically in FL. Ma et al. [50] �rst demonstrate that private learners are

resistant to data poisoning for centralized regression models and

analyze the lower bound of attack ine�cacy. Here we extend such a

lower bound of attack ine�cacy from DP in centralized setting [50]

to user-level DP in FL, and further derive the upper bound of the

attack ine�cacy. We also provide certi�ed prediction guarantees

as another robustness certi�cation criterion for general classi�ca-

tion tasks in FL based on the privacy properties. Meanwhile, some

empirical studies [4, 34, 56, 69] show that DP property can miti-

gate backdoor attacks. For instance, in the centralized setting,

Hong et al. [34] show that the o�-the-shelf mechanism DP-SGD [1]

can serve as a defense against poisoning attacks; in FL, [4, 69, 72]

show that bounding the norm and adding Gaussian noise on model

updates can mitigate backdoor attacks. Recently, Naseri et al. [56]

revealed that both user-level DP and instance-level DP can defend

against backdoor attacks empirically with varying levels of pri-

vacy protection. However, none of these studies provides certi�ed

robustness guarantees for DPFL or characterizes the quantitative

relationships between privacy guarantees and certi�ed robustness
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in FL. In contrast, our work o�ers robustness certi�cations, which

can be represented as a function of DP parameters (n, X) based on

di�erent robustness criteria. We provide an overall comparison

between our work and existing studies in Table 1.

3 PRELIMINARIES

We start by providing some background on Di�erential Privacy

(DP) and Federated Learning (FL).

Di�erential Privacy. DP provides a mathematically rigorous guar-

antee for privacy, which ensures that the output of a random al-

gorithm is close no matter whether an individual data record is

included in the input.

De�nition 1 ((n, X)-DP [21]). A randomized mechanismM : D→
Θ with domain D and output set Θ satis�es (n, X)-DP if for any pair

of two adjacent datasets 3,3′ ∈ D, and for any possible (measurable)

output set � ¦ Θ, it holds that

Pr[M(3) ∈ �] f 4n Pr
[
M

(
3′
)
∈ �

]
+ X. (1)

Group DP follows immediately De�nition 1, where the privacy

guarantee decreases with the size of the group.

De�nition 2 (Group DP). For mechanismM that satis�es (n, X)-
DP, it satis�es (:n, 1−4ġĊ1−4Ċ X)-DP for groups of size : . That is, for any
3, 3′ ∈ D that di�er by : individuals and any � ¦ Θ, it holds that

Pr[M(3) ∈ �] f 4:n Pr
[
M

(
3′
)
∈ �

]
+ 1 − 4:n

1 − 4n X. (2)

Federated Learning. The standard instantiation of FL is FedAvg [52],

which trains a shared global model in FL without directly accessing

the local training data of users. We consider an FL system consisting

of # users, with � representing the set of all users (i.e., � := [# ])
and � := {�1, . . . , �# } denoting the union of local datasets across

all users. At round C , the server sends the current global model

FC−1 to users in the selected user set *C , where |*C | = < = @#

and @ is the user sampling probability. Each selected user 8 ∈ *C

then locally updates the model for � local epochs with its dataset

�8 and learning rate [ to obtain a new local model. Then, the user

sends the local model updates �F8
C to the server. Finally, the server

aggregates over the updates from all selected users into the new

global model:FC = FC−1 + 1
<

∑
8∈*Ī

�F8
C .

4 USER-LEVEL DP AND CERTIFIED
ROBUSTNESS

4.1 User-level DP and Background

De�nition 1 leaves the de�nition of adjacent datasets �exible, which

is application-dependent. When DP is used for the privacy protec-

tion of individual users, the adjacency relation is de�ned as that

di�ering by data from one user [53].

De�nition 3 (User-level (n, X)-DP). Let �, �′ be two user sets. Let �
and �′ be the datasets that are the union of local training examples

from all users in � and �′, respectively. Then, � and �′ are adjacent
if � and �′ di�er by one user. The mechanism M satis�es user-level

(n, X)-DP if it meets De�nition 1 with � and �′ as adjacent datasets.

Following the standard user-level DPFL [28, 53], we introduce

UserDP-FedAvg (Algorithm 1 in Appendix A). Speci�cally, at each

round, the server �rst clips the model update from each user with a

threshold ( such that its ℓ2-sensitivity is upper bounded by ( . Next,

the server sums up the updates, adds Gaussian noise sampled from

N (0, f2(2), and takes the average:

FC ← FC−1 +
1

<

©­
«
∑
8∈*Ī

Clip(�F8
C , () +N

(
0, f2(2

)ª®¬
. (3)

During FL training, the users repeatedly query private datasets

over training rounds; thus, the privacy guarantee composes. We

use the existing accountant [75] based on Rényi Di�erential Privacy

(RDP) [55] for a tight privacy budget accumulation over ) rounds.

4.2 Certi�ed Robustness of User-level DPFL

4.2.1 Threat Model. We consider there are : adversarial users

(attackers) out of # users.

• Attack Goal: The goal of attackers is to fool the trained FL

global model on the server side with speci�c attack objectives

(e.g., misclassi�cation).

• Attack Capability: In line with prior works [56, 69], for attacker

capability, we consider the attacker with full control of its local

training data/model. The attacker can arbitrarily manipulate the

features and labels of the local data and modify the weights of

the local model before submitting it to the server. However, the

attacker has no control over the server operations nor over the

local training process of other users. The trusted server conducts

DP-related operations [28], including model update clipping and

noise perturbing, so that the trained FL global model satis�es

user-level DP even in the presence of attackers.

• Attack Strategy: The attacker strategies include backdoor at-

tacks [16, 32], which alter local data to embed a backdoor trigger

with a targeted adversarial label during local training, causing

the FL global model to misclassify any test data with the back-

door trigger as the target label [4, 69, 72, 79]; label �ipping at-

tacks [10, 36] which switch the labels of local training data from

one source class to a target class while keeping the data features

unchanged, causing the FL global model to misclassify any test

data from source class to target class [26]; and model poisoning

attacks that directly manipulate local model weights to tamper

global model convergence [24] or amplify the malicious e�ects

of the attacker’s model updates derived from poisoning data by

scaing the updates by a factor of W [4, 8]. Note that by providing

certi�ed robustness for FL, which is agnostic to the actual attack

strategies, our work is able to explore the worst-case robustness

of FL and its relationship to privacy properties.

We denote �′ as the set of all users, among which : users are

adversarial, and �′ := {�′1, . . . , �′:−1, �′: , �:+1, . . . , �# } as the
corresponding union of local datasets.

Next, we introduce two criteria for robustness certi�cation in

FL: certi�ed prediction and certi�ed attack ine�cacy.

4.2.2 Certified Prediction. Consider the classi�cation task with �

classes. We de�ne the classi�cation scoring function 5 : (Θ,R3 ) →
§
� which maps model parameters \ ∈ Θ and an input data G ∈ R3

to a con�dence vector 5 (\, G), and 52 (\, G) ∈ [0, 1] represents the
con�dence of class 2 . We mainly focus on the con�dence after

normalization, i.e., 5 (\, G) ∈ §
�

= {? ∈ R�g0 : ∥? ∥1 = 1} in the

probability simplex. Since the DP mechanism M is randomized

and produces a stochastic FL global model \ = M(�), it is natural
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to resort to a probabilistic expression as a bridge for quantitative

robustness certi�cations. In particular, we will use the expectation

of the model’s predictions to provide a quantitative guarantee on

the robustness of M. Concretely, we de�ne the expected scoring

function � : (\,R3 ) → §
� where �2 (M(�), G) = E[52 (M(�), G)]

is the expected con�dence for class 2 . The expectation is taken over

DP training randomness, e.g., random Gaussian noise and random

user subsampling. The corresponding prediction � : (\,R3 ) → [�]
is de�ned by

� (M(�), G) := arg max
2∈[� ]

�2 (M(�), G), (4)

which is the top-one class based on expected prediction con�dence.

We prove that such prediction allows robustness certi�cation.

Certi�ed Prediction under One Adversarial User. Follow-

ing our threat model above and the DPFL training mechanism

in Algorithm 1, we denote the trained global model exposed to a

poisoned dataset �′ as M(�′). When the number of adversarial

users : = 1, � and �′ are user-level adjacent datasets according to

De�nition 3. Given that mechanism M satis�es user-level (n, X)-
DP, based on the DP property, the distribution of the stochastic

model M(�′) is “close” to the distribution of M(�). Intuitively,
according to the post-processing property of DP [21], during testing,

given a test sample G , we would expect the values of the expected

con�dence for each class 2 , i.e., �2 (M(�′), G) and �2 (M(�), G), to
be close, and hence the returned most likely class to be the same,

i.e., � (M(�), G) = � (M(�′), G), indicating robust prediction.

Theorem 1 (Certi�ed Prediction under One Adversarial User).

Suppose a randomized mechanism M satis�es user-level (n, X)-
DP. For two user sets � and �′ that di�er by one user, let � and

�′ be the corresponding training datasets. For a test input G , sup-

pose A,B ∈ [�] satisfy A = argmax2∈[� ] �2 (M(�), G) and
B = argmax2∈[� ]:2≠A �2 (M(�), G). Then, it is guaranteed that

� (M(�′), G) = � (M(�), G) = A if:

�A (M(�), G) > 42n�B (M(�), G) + (1 + 4n )X, (5)

Proof sketch. The proof generalizes the analysis of pixel-

level DP in test-time [42]. Speci�cally, with DP property for

two FL neighboring datasets, we can lower bound �A (M(�′), G)
based on �A (M(�), G), and upper bound �B (M(�′), G) based on

�B (M(�), G). When the lower-bound of �A (M(�′), G) is strictly
higher than the upper-bound of �B (M(�′), G), the predicted class

will be provably A even under poisoning attack. Equation (5) states

the condition for achieving such robustness. Full proofs are in Ap-

pendix C. □

Remark. In Theorem 1, if n is large, i.e., weak privacy guarantee,

such that the RHS of Equation (5) > 1, the robustness condition

cannot hold since the expected con�dence �A (M(�), G) ∈ [0, 1].
On the other hand, to achieve small n , i.e., strong privacy guarantee,

large noise is required during training, which would hurt model

utility and thus result in a small con�dence margin between the

top two classes (e.g., �A (M(�), G) and �B (M(�), G)), making it

hard to meet the robustness condition. This indicates that achieving

certi�ed prediction requires a reasonable privacy level n .

Certi�ed Prediction under : Adversarial Users.When the

number of adversarial users : > 1, we resort to group DP. Ac-

cording to De�nition 2, given mechanism M satisfying user-level

(n, X)-DP, it also satis�es user-level (:n, 1−4ġĊ1−4Ċ X)-DP for groups of

size : . When : is smaller than a certain threshold, leveraging the

group DP property, we would expect that the distribution of the

stochastic model M(�′) is not too far away from the distribution

of M(�) such that they would make the close prediction for a

test sample with high probability. Next, we present the correspond-

ing robustness certi�cate by studying the su�cient condition of : ,

such that the prediction for a test sample is consistent between the

stochastic FL models trained from � and �′ separately.

Theorem 2 (Upper Bound of : for Certi�ed Prediction). Suppose a

randomized mechanismM satis�es user-level (n, X)-DP. For two user
sets � and �′ that di�er by : users, let � and �′ be the corresponding
training datasets. For a test input G , suppose A,B ∈ [�] satisfy A =

argmax2∈[� ] �2 (M(�), G) andB = argmax2∈[� ]:2≠A �2 (M(�), G),
then � (M(�′), G) = � (M(�), G) = A, ∀: < K where K is the cer-

ti�ed number of adversarial users:

K =
1

2n
log

�A (M(�), G) (4n − 1) + X
�B (M(�), G) (4n − 1) + X

(6)

Proof sketch. By solving Theorem 1 combined with Group DP

de�nition, we derive the above robustness condition. Full proofs

are in Appendix C. □

Remark. (1) In Theorem 2, if we �x �A (M(�), G) and

�B (M(�), G), the smaller n of FL can certify larger K. However,

smaller n also induces lower con�dence due to the model perfor-

mance drop, thus reducing the tolerable K instead. As a result,

properly choosing n would help to improve the certi�ed robustness

and tolerate more adversaries during training (e.g. certify against

a large K). (2) Theorem 2 provide a uni�ed certi�cation against :

adversarial users built upon n , which remains valid regardless of

how n is achieved. It thus o�ers the �exibility of choosing various

types of noise, clipping, subsampling strategies, and FL training

algorithms to achieve user-level n . DPFL mechanisms that can re-

tain a larger prediction con�dence margin under the same n can

certify a larger K. (3) Theorem 2 is distinct from the maximum

adversarial perturbation magnitude against test-time attacks pro-

vided by Pixel-DP [42] in three important aspects. First, we employ

group DP to provide certi�cations against a discrete : number of

adversarial users under the threat model of FL poisoning attacks,

while Pixel-DP measures maximum perturbation magnitude us-

ing the ℓ? -norm due to the continuous nature of pixels. Second,

the certi�cation from Pixel-DP is based on the one-time noise in

the direct input perturbation during test time, leading to di�erent

closed-form solutions for di�erent types of noise distributions such

as Laplace and Gaussian. In contrast, Theorem 2 based on n is a

uni�ed certi�cation applicable to any user-level DP FL mechanisms.

Third, the analysis of n in DPFL takes into account more factors

than sorely the noise, such as user subsampling and the privacy

accountant techniques for DP composition over training rounds.

Certi�ed Prediction via Rényi DP. In addition to the theo-

retical guarantees of DP-based certi�ed prediction, we also derive

the certi�ed prediction based on RDP [55] with the randomized

smoothing technique via Rényi Divergence [20] in Appendix D. Yet,

compared to DP-based certi�cations, RDP-based certi�cations are

more intricate, due to the additional parameter, RDP order U , and

its foundational Rényi Divergence-based de�nition, which makes it
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more challenging to derive a straightforward upper bound K as in

Theorem 2. In our main paper, we focus on DP-based certi�cations

for the convenience of illustration.
4.2.3 Certified A�ack Ine�icacy. In addition to the certi�ed predic-

tion, we de�ne a bounded attack ine�cacy for attacker � : Θ→ R,
which quanti�es the di�erence between the attack performance

of the poisoned model and the attack goal, following [50]. In gen-

eral, the attacker aims to minimize the expected attack ine�cacy

� (�′) := E[� (M(�′))] where M(�′) is the global model trained

from poisoned dataset �′, and the expectation is taken over the

randomness of DP training. The ine�cacy function can be instan-

tiated according to the concrete attack goal in di�erent types of

poisoning attacks, and we provide some examples below. For in-

stance, in Example 1 of backdoor attack, the attack ine�cacy is

de�ned as the loss of the poisoned FL model \ ′ = M(�′) evaluated
on a backdoor testset. During the FL training stage, the attacker

optimizes the poisoned FL model \ ′ with poisoned training data,

so as to minimize the attack ine�cacy � (\ ′) during the test phase.

The lower the attack ine�cacy, the stronger the attack is.

Given a global FL model M(�′) satisfying user-level (n, X)-DP,
we prove the lower bound of the attack ine�cacy � (�′) when there

are at most : users. The existence of the lower bound implies that

� (�′) can not be arbitrarily low under the constraint of : adver-

sarial users, i.e., the attack can not be arbitrarily successful, which

re�ects the robustness of the trained global model. A higher lower

bound of the attack ine�cacy (i.e., less e�ective attack) indicates a

more certi�ably robust global model.

Example 1. (Backdoor attack [32]) � (\ ′) = 1
=

∑=
8=1 ; (\ ′, I∗8 ), where

I∗8 = (G8 + XG , ~∗), XG is the backdoor pattern, ~∗ is the target adver-
sarial label. Minimizing � (�′) over model parameters \ ′ drives the
prediction on test data with backdoor pattern XG to ~∗.

Example 2. (Label Flipping attack [10]) � (\ ′) = 1
=

∑=
8=1 ; (\ ′, I∗8 ),

where I∗8 = (G8 , ~∗) and ~∗ is the target adversarial label. Minimizing

� (�′) over model \ ′ drives the prediction on test data to ~∗.

Certi�ed Attack Ine�cacy under : Adversarial Users. We

discuss our main results on certi�ed attack ine�cacy below.

Theorem 3 (Attack Ine�cacy with : Attackers). Suppose a ran-

domized mechanism M satis�es user-level (n, X)-DP. For two user
sets � and �′ that di�er : users, � and �′ are the corresponding
training datasets. Let � (�) be the expected attack ine�cacy where

|� (\ ) | f �̄ , ∀\ . Then,

min{4:n � (�) + 4:n − 1
4n − 1 X�̄, �̄} g � (�′)

g max{4−:n � (�) − 1 − 4−:n
4n − 1 X�̄, 0}, if � (·) g 0

min{4−:n � (�) + 1 − 4−:n
4n − 1 X�̄, 0} g � (�′)

g max{4:n � (�) − 4:n − 1
4n − 1 X�̄,−�̄}, if � (·) f 0

(7)

Proof sketch. Theorem 3 contains the lower bound and upper

bound for attack ine�cacy. For the lower bound, we generalize the

proof from DP in centralized learning [50] to the user-level DP in FL.

Concretely, we derive the lower bound of � (�′) based on � (�) ac-
cording to the satis�ed condition in the Group DP de�nition for the

neighboring datasets di�ering : users. In addition, we prove the up-

per bound by leveraging the symmetric property of DP neighboring

datasets. The full proofs are omitted to Appendix C. □

Remark. In Theorem 3, (1) the lower bounds show to what extent

the attack can reduce � (�′) by manipulating up to : users, i.e.,

how successful the attack can be. The lower bounds depend on

� (�), : , and n . Here � (�) is the attack ine�cacy evaluated on the

global model trained from clean dataset � , which is unrelated to

the adversarial users and is only in�uenced by DPFL mechanism

M. When � (�) is higher (i.e., the clean modelM(�) is more ro-

bust), the DPFL model under poisoning attacks M(�′) is more

robust because the lower bounds are accordingly higher; a tighter

privacy guarantee, i.e., smaller n , can also lead to higher robustness

certi�cation as it increases the lower bounds. On the other hand,

with larger : , the attacker ability grows and thus leads to lower

� (�′). (2) The upper bounds indicate the minimal adversarial im-

pact caused by : attackers, demonstrating the vulnerability of DPFL

models in the most optimistic case (e.g., the backdoor pattern is less

distinguishable). (3) Leveraging the above lower bounds, we can

lower bound the minimum number of attackers required to reduce

attack ine�cacy to a certain level associated with hyperparameter

g in Corollary 1.

Corollary 1 (Lower Bound of : Given g , extended from [50]). Sup-

pose a randomized mechanismM satis�es user-level (n, X)-DP. Let
attack ine�cacy function be � (·), the expected attack ine�cacy be

� (·). In order to achieve � (�′) f 1
g � (�) for g g 1when 0 f � (·) f �̄ ,

or achieve � (�′) f g � (�) for 1 f g f − �̄
� (� ) when −�̄ f � (·) f 0,

the number of adversarial users should satisfy the following:

: g 1

n
log
(4n − 1) � (�)g + �̄Xg
(4n − 1) � (�) + �̄Xg

or : g 1

n
log
(4n − 1) � (�)g − �̄X
(4n − 1) � (�) − �̄X

,

Proof sketch. The proof generalizes the proof of DP in cen-

tralized learning [50] to the user-level DP in FL. Consider the case

0 f � (·) f �̄ , when the lower bound of � (�′) in Theorem 3 is

smaller than the desired attack ine�cacy 1
g � (�), the current attack

ine�cacy � (�′) will be smaller than the desired attack ine�cacy,

i.e., � (�′) f 1
g � (�), indicating the desired attack e�ectiveness

under : adversarial users. Corollary 1 states the aforementioned

condition. The full proofs are omitted to Appendix C. □

Remark. Corollary 1 shows that stronger privacy guarantee (i.e.,

smaller n) requires more attackers to achieve the same e�ect of the

attack, indicating higher robustness.

5 INSTANCE-LEVEL DP AND CERTIFIED
ROBUSTNESS

5.1 Instance-level Privacy

We start by introducing instance-level DP de�nition that protects

privacy of individual instances, and guarantees that the trained sto-

chastic FL model should not di�er much if one instance is modi�ed.

De�nition 4 (Instance-level (n, X)-DP). Let � be the dataset that is

the union of local training examples from all users. Then, � and �′

are adjacent if they di�er by one instance. The randomized mechanism

M is instance-level (n, X)-DP if it meets De�nition 1 with � and �′

as adjacent datasets.
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Next, we revisit InsDP-FedSGD [51] and InsDP-FedAvg, where

each user adds noise in each training step using DP-SGD [1] when

training its local model based on Fed-SGD and Fed-Avg, respectively.

Then, we formally provide the corresponding privacy analysis.

5.1.1 Instance-level DP for FedSGD. Dopamine [51] provides the

�rst instance-level DP guarantee for the DP-SGD [1] training of

FedSGD [52]. Although FedSGD performs the user sampling on

the server and the batch sampling in each user during training,

Dopamine neglects the privacy gain provided by random user

sampling, unlike the privacy analysis in user-level DP. There-

fore, we improve the privacy guarantee via privacy ampli�ca-

tion [1, 6] with user sampling. In addition, we use the Rényi DP

(RDP) accountant [75], instead of the moment accountant [1] used

in Dopamine [51], for a tighter privacy budget analysis, given its

tighter compositions rules based on Rényi divergence [55].

Speci�cally, in InsDP-FedSGD (Algorithm 2 in Appendix A), each

user updates its local model by one step of DP-SGD [1] to protect the

privacy of each training instance, the randomized mechanismM

that outputs the global model preserves the instance-level DP. The

one-step update for the global model can be described as follows:

FĪ ← FĪ−1 −
1

<

∑
ğ∈đĪ

[

!

©­­
«
∑

Į Ġ ∈ĘğĪ

Clip(∇;ğ (FĪ−1;G Ġ ), ( ) +N
(
0, f2(2

)ª®®
¬
,

(8)

where 18C is a local batch randomly sampled from the local dataset

of user 8 , ! is the batch size, ∇;8 (FC−1;G 9 ) is the gradient for local
sample G 9 ∈ 18C calculated upon the current FL model FC−1, and
N

(
0, f2(2

)
is the Gaussian noise added to the per-sample gradient.

Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability ? without replacement, and user sampling prob-
ability @ =

<
# without replacement, FL rounds ) , the clipping thresh-

old ( , the noise parameter f , the randomized mechanism M in

Algorithm 2 satis�es ()n′ (U) + log U−1
U − logX+logU

U−1 , X)-DP with

n (U) = U/(2<f2) where U is the RDP order and

n′ (U ) f 1

U − 1
· log

(
1 + (?@)2

(
U

2

)
min

{
4
(
4Ċ (2) − 1

)
, 4Ċ (2) ·

min

{
2,
(
4Ċ (∞) − 1

)2}}
+

Ă∑
Ġ=3

(?@) Ġ
(
U

9

)
4 ( Ġ−1)Ċ ( Ġ ) min

{
2,
(
4Ċ (∞) − 1

) Ġ })

Proof sketch. We use ?@ to represent instance-level sampling

probability,) to represent FL training rounds, f
√
< to represent the

equivalent global noise level. The rest of the proof follows (1) RDP

subsampling ampli�cation [75], (2) RDP composition for privacy

budget accumulation over ) rounds based on the RDP composi-

tion [55] and (3) transferring RDP guarantee to DP guarantee based

on the conversion theorem [5]. □

5.1.2 Instance-level DP for FedAvg. Dopamine only allows users

to perform one step of DP-SGD [1] during each FL round, while in

practice, users are typically allowed to update their local models for

many steps before submitting updates to reduce communication

costs. To solve this problem, we introduce InsDP-FedAvg (Algo-

rithm 3 in Appendix A), where each user 8 performs local DP-SGD

for multiple steps so that the local training mechanism M8 sat-

is�es instance-level DP. Then, the server aggregates the updates

by FedAvg. We prove that the global mechanism M preserves

instance-level DP using DP parallel composition theorem [54].

In InsDP-FedAvg, before FL training, local privacy costs

{n80}8∈[# ] are initialized as 0. At round C , if user 8 is not selected, its
local privacy cost is kept unchanged n8C ← n8C−1 since local dataset
�8 is not accessed. Otherwise, user 8 updates the local model by

running DP-SGD for + local steps with batch sampling probability

? , noise level f and clipping threshold ( , and n8C is accumulated

upon n8C−1 via its local RDP accountant. Next, the server aggre-

gates the updates from selected users and leverages the parallel

composition in Proposition 2 to calculate the global privacy cost

nC = max8∈[# ] n
8
C . After ) rounds, the mechanism M that outputs

the �nal FL global model satis�es instance-level (n) , X)-DP.
To derive the privacy guarantee for InsDP-FedAvg, we analyze

the privacy cost accumulation for each local model across FL train-

ing rounds, as well as the privacy cost aggregation during model

aggregation on the server side at each round.

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,

during round C , the local mechanism M8 satis�es (n8C , X8 )-DP, and
the global mechanismM satis�es

(
max8∈[# ] n

8
C , X

8
)
-DP.

Proof sketch. When �′ and � di�er in one instance, the modi-

�ed instance only falls into one user’s local dataset for any C training

round, and thus parallel composability of DP [54] applies. Moreover,

server aggregation does not increase privacy costs due to DP post-

processing property. The local cost n8 is only accumulated via the

local RDP accountant. Finally, the privacy guarantee corresponds

to the worst case and is obtained by taking the maximum local

privacy cost across all the users. Proof is in Appendix A. □

Remark. Proposition 2 provides the privacy guarantee for trained

FL global model when users perform local DP-SGD training. To

achieve that, we examine the outcomes from FL local and global

randomized mechanisms and analyze the accumulation of local

privacy costs and subsequent aggregation of global privacy costs

over di�erent training rounds. In the centralized setting, Yu et al.

[84] analyzes disjoint data batching and presents similar results.

Recent studies [48, 49, 82] directly apply the results from [84] for

instance-level DPFL. However, these studies lack a thorough privacy

analysis in the context of FL, and our analysis �lls this gap.

5.2 Certi�ed Robustness of Instance-level DPFL

5.2.1 Threat Model. We consider there are in total : poisoned

instances that the same or multiple users could control.

• Attack Goal. The goal of attackers is to mislead the trained

global model to make mispredictions by injecting poisoning data

during local training.

• Attack Capability. In accordance with prior work [56], for

attack capability, we consider that local users, including adver-

saries, follow the DP training protocol to protect data privacy.

That means the adversaries need to follow the training protocol

to sample local data randomly during training. This scenario

is realistic for instance-level DPFL because FL users often run

pre-de�ned programs [12, 40] that implement DP mechanisms.

For example, according to Bonawitz et al. [12], “If the device has

been selected, the FL runtime receives the FL plan, queries the

app’s example store for data requested by the plan, and computes

plan-determined model updates and metrics.” On the other hand,
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the users have full control over their training data, so they can

arbitrarily manipulate the local training data. Under this setting,

the trained FL model is guaranteed to satisfy instance-level DP.

• Attack Strategy. It includes data poisoning attacks, e.g., back-

door [16, 32] or label-�ipping [10, 36]. Our analysis of certi�ed

robustness is agnostic to the speci�c attack strategy employed.

5.2.2 Certified Robustness. According to the group DP property

and the post-processing property for the FL model with instance-

level (n, X)-DP, we prove that our robust certi�cation results for

user-level DP are also applicable to instance-level DP. Below is the

formal theorem (proof is given in Appendix C).

Theorem 4. Suppose� and�′ di�er by : instances, and mechanism

M satis�es instance-level (n, X)-DP. The results on user-level DPFL

in Theorem 1, Theorem 2, Theorem 3, and Corollary 1 still hold for

the instance-level DPFLM, � , and �′.

Remark.We analyze the underlying relationship between privacy

and certi�ed robustness under both user-level DPFL and instance-

level DPFL, as well as the relationship between these two levels of

privacy in FL. From the privacy perspective, the same n for these

two di�erent privacy levels signi�es di�erent privacy scopes. One

straightforward way to convert instance-level DP to user-level

DP is to use Group DP [22] to incorporate all instances of a user,

which could lead to a loose privacy bound. On the other hand,

a randomized mechanism that satis�es (n, X) user-level DP also

satis�es (n, X) instance-level DP based on their de�nitions. From the

certi�ed robustness perspective, the same n on two di�erent privacy

levels implies di�erent levels of robustness. When considering the

ability to tolerate adversarial poisoning instances, instance-level

DPFL provides rigorous certi�ed robustness as a function of the

number of poisoning instances, while user-level DPFL may indicate

stronger robustness if we consider injecting all poisoning instances

with one user. The user-level DPFL, however, might compromise

the model utility when controlling per-user sensitivity during DP

training. Thus, di�erent types of DPFL mechanisms and algorithms

may be chosen to protect both privacy and robustness considering

several factors such as adversarial strategies, data types, and trained

model sensitivity. Our evaluation on diverse datasets and di�erent

DPFL algorithms in Section 6 will validate our analysis and �ndings

on both user-level and instance-level DP, as well as provide more

observational insights.

6 EXPERIMENTS

In this section, we conduct the evaluation on three datasets (both

image and text data) for the certi�ed robustness of di�erent DPFL

algorithms against various poisoning attacks to verify the insights

from our theorems. We highlight our main results and present some

interesting �ndings and ablation studies.

6.1 Experimental Setup

6.1.1 Datasets and Models. We consider three datasets: image

classi�cation on MNIST, CIFAR and text sentiment analysis on

tweets from Sentiment140 [30] (Sent140), which involves classi-

fying Twitter posts as positive or negative. For MNIST, we use a

CNN model with two Conv-ReLu-MaxPooling layers and two lin-

ear layers; for CIFAR, we use the CNN architecture from PyTorch

Table 2: Dataset description and parameters.

Algorithm Dataset # < � + batch size [ ( X �̄

UserDP-FedAvg MNIST 200 20 10 / 60 0.02 0.7 0.0029 0.5

UserDP-FedAvg CIFAR 200 40 5 / 50 0.05 1 0.0029 0.2

UserDP-FedAvg Sent140 805 10 1 / 10 0.3 0.5 0.000001 1.4

InsDP-FedAvg MNIST 10 10 / 25 50 0.02 0.7 0.00001 0.5

InsDP-FedAvg CIFAR 10 10 / 100 50 0.05 1 0.00001 2

di�erential privacy library [62] which consists of four Conv-ReLu-

AveragePooling layers and one linear layer. In line with previous

work on DP ML [37, 50] and backdoor attacks [70, 76], we mainly

discuss the binary classi�cation forMNIST (digit 0 and 1) and CIFAR

(airplane and bird) in the main text, and defer their 10-class results

to Appendix B. For Sent140, we use a two-layer LSTM classi�er

containing 256 hidden units with pretrained 300D GloVe embed-

ding [60] following [45].

6.1.2 Training Setups. Unless otherwise speci�ed, we split the

training datasets for # FL users in an i.i.d manner for MNIST and

CIFAR. For Sent140, the local datasets are naturally non-i.i.d, where

each Twitter account corresponds to an FL user. We also study

the e�ect of data heterogeneity degrees on certi�ed robustness by

simulating FL non-i.i.d setting based on Dirichlet distribution [35]

in Section 6.2.3. FL users run SGD with learning rate [, momen-

tum 0.9, and weight decay 0.0005 to update the local models. The

training parameter setups, including the number of total users # ,

the number of selected users per round<, local epochs �, the num-

ber of local SGD steps + , local learning rate [, batch size, etc., are

summarized in Table 2.

To simulate cross-device settings for UserDP-FedAvg, we follow

the FL settings in previous studies and use Sent140 data with ∼ 800

clients [45], and CIFAR/MNIST with 200 clients [52]. To simulate

cross-silo FL settings for InsDP-FedAvg, we train DPFL models on

MNIST and CIFAR with 10 users. Following [53] that use X ≈ 1
# 1.1

as privacy parameter, for UserDP-FedAvg we set X = 0.0029 for

MNIST and CIFAR, and X = 0.000001 for Sent140 according to

the total number of users; for InsDP-FedAvg we set X = 0.00001

according the total number of training samples. When training on

CIFAR10, we follow the standard practice for di�erential privacy [1,

37] that �ne-tunes a whole model pre-trained non-privately on

CIFAR100 [41]. We refer the readers to Appendix B for more details

about detailed hyperparameters for di�erential privacy.

6.1.3 Poisoning A�acks. We evaluate four poisoning attacks

against our DPFLmechanisms, which represent the common threats

in FL research. We consider backdoor attacks (BKD) on image

datasets [4] and label �ipping attacks (LF) on image and text

datasets [27] against both levels of DPFL. For InsDP-FedAvg, we

evaluate the worst-case where : backdoored or label-�ipped in-

stances are injected into the dataset of one user. For UserDP-FedAvg,

we additionally evaluate the static optimization attacks (STAT-

OPT) [67], which solve the adversarial optimization problem to

�nd poisoning model updates, as well as distributed backdoor attack

(DBA) [79], which decomposes the backdoor pattern into several

smaller ones and embeds them into di�erent local training sets

for di�erent adversarial users. Moreover, we also consider BKD,

LF, and DBA via model replacement attack [4, 8] where : attack-

ers train the local models using local datasets with U fraction of

poisoned instances, and scale the malicious updates directly with

hyperparameter W , i.e., �F8
C ← W�F8

C , before sending them to the
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server. This way, the malicious updates would have a stronger

impact on the FL model. Note that even when attackers perform

scaling after server clipping, the sensitivity of each model update

is still upper-bounded by the clipping threshold ( , so the privacy

guarantee of user-level DPFL still holds under poisoning attacks

via model replacement.

Speci�cally, for the attacks against UserDP-FedAvg, by default,

the local poison fraction is U = 100%, and the scale factor is W = 50.

We use the same parameters setups for all : attackers. In terms

of label �ipping attacks, the attackers swap the label of images in

the source class (digit 1 for MNIST; bird for CIFAR; positive for

Sent140) into the target label (digit 0 for MNIST; airplane for CIFAR;

negative for Sent140). In terms of backdoor attacks in MNIST and

CIFAR, the attackers add a triangle pattern in the right lower corner

of the image as the backdoor pattern and swap the label of any

sample with such pattern into the target label (digit 0 for MNIST;

airplane for CIFAR). In terms of distributed backdoor attacks, the

triangle pattern is evenly decomposed and injected by the : attack-

ers. For the attacks against InsDP-FedAvg, the same target classes

and backdoor patterns are used as UserDP-FedAvg.

6.1.4 Evaluation Metrics. We consider two evaluation metrics

based on our robustness certi�cation criteria.

• Certi�ed Accuracy. To evaluate the certi�ed prediction, we cal-

culate certi�ed accuracy, which is the fraction of the test set for

which the poisoned DPFL model makes correct and the same

prediction compared with that of the clean model. The test set

can be either poisoned or clean based on Theorem 2. Given that

the certi�cations are agnostic to the actual attack strategy, and

certain attacks, such as model poisoning and label �ipping, do

not produce poisoned test input samples G , we use the clean

test samples to calculate the certi�cation following the standard

setting of certi�ed robustness in centralized systems [19]. Given

a test set of size =, for the 8-th test sample G8 , the ground truth

label is ~8 , the output prediction is 28 , and the number of ad-

versarial users/instances that can be certi�ably tolerated is K8
based on Equation 6. We calculate the certi�ed accuracy given :

adversarial users/instances as 1
=

∑=
8=1 1{28 = ~8 and K8 g :}.

• Lower bound of attack ine�cacy. To evaluate the certi�ed

attack ine�cacy, we calculate the lower bound of attack ine�-

cacy in Theorem 3: � (�′) = max{4−:n � (�) − 1−4−ġĊ
4Ċ−1 X�̄, 0}. This

lower bound represents the cost of the attacker for performing

poisoning attacks. The lower the certi�ed attack ine�cacy is, the

less robust the model is. We evaluate the tightness of � (�′) by
comparing it with the empirical attack ine�cacy � (�′) under
di�erent attacks.

6.1.5 Robustness Certification with Monte Carlo Approximation.

The robustness certi�cations presented in our theorems depend on

the expected con�dence �2 (M(�), G) for class 2 or expected attack
ine�cacy � (�). We take �2 (M(�), G) as an example here, and de-

note �2 (M(�), G) as � (M) for simplicity. In practice, � (M) is not
directly used for prediction because the true expectation cannot

be analytically computed for deep neural networks. To empirically

verify the insights provided by our theorems, we follow the conven-

tion in prior work on certi�ed robustness [15, 18, 42, 50, 65, 76]

to use �̃ (M), which is a Monte Carlo approximation of � (M) by
taking the average over $ models outputs for utility evaluation in

(a) MNIST (b) CIFAR (c) Sent140
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Figure 1: Certi�ed accuracy of UserDP-FedAvg under di�erent pri-

vacy budgets n .

our experiments. Note that (1) from the DP perspective, increasing

$ increases the overall privacy budget as the sampling process

re-accesses the sensitive data and consumes the privacy budget.

Based on standard DP composition theory [21], calculating �̃ (M)
costs $n privacy budget, where n is the privacy budget consumed

by training one model; (2) From the robustness certi�cation perspec-

tive, the estimation of �̃ (M) will be more accurate with higher

con�dence when we use larger $ ; (3) Using a single model for

prediction is equivalent to computing �̃ (M) with $ = 1, leading

to strong privacy protection but low con�dence for the robustness

certi�cation.

Speci�cally, we estimate the expected class con�dence by

�2 (M(�), G) ≈ 1
$

∑$
B=1 5

B
2 to evalute Theorem 2, where each

5 B2 = 52 (M(�), G) is obtained from one DPFL model. Similarly,

we approximate the attack ine�cacy to evaluate Theorem 3 and

Corollary 1. We use a relatively large $ = 1000 for certi�ed accu-

racy and $ = 100 for certi�ed attack ine�cacy in experiments so

as to obtain an accurate approximation of the expectation follow-

ing [50] and precisely reveal the connections between the privacy

parameters (n ,X) and certi�ed robustness under di�erent criteria.

In Section 6.3.3, we use Hoe�ding’s inequality [33] to calibrate the

empirical estimation with con�dence level parameterk .

6.2 Evaluation Results of User-level DPFL

Here we present our main results on user-level DPFL based on

the certi�ed accuracy under di�erent (1) privacy budget n , (2)

DPFL algorithms, and (3) data heterogeneity degrees; empirical

accuracy under (1) di�erent poisoning attacks and (2) comparison

to empirical FL defenses; certi�ed and empircal attack ine�cacy

under (1) di�erent : and poisoning attacks, and (2) di�erent n .

6.2.1 Certified Accuracy under Di�erent n . Figure 1 presents

the user-level certi�ed accuracy under di�erent n by training

UserDP-FedAvg with di�erent noise scale f . (The uncerti�ed accu-

racy of UserDP-FedAvg under non-DP training and DP training is

deferred to Appendix B.1.2.) Since each test sample G8 has its own

certi�ed K8 , the largest : that an FL model can reach is a threshold

that none of the test samples have a larger K8 than it, i.e., K8 < :,∀8 ,
which can be observed as the largest value on the x-axis of Figure 1.

Note that here we calculate the certi�ed K8 as the numerical upper

bound in Theorem 2, which could be fractional.

We observe that (1) the largest number of adversaries : can be

certi�ed when n is around 0.6298 (0.1451, 0.2238) on MNIST (CIFAR,

Sent140), which veri�es the relationship between n and certi�ed

accuracy as discussed in Section 4.2. In particular, when n is too

large, K8 decreases since n is in the denominator of Equation 6;

when n is too small, large noise is added during training, which

hurts the model utility, and the model is not con�dent in predicting

the top-1 class, thus decreasing the margin between �A and �B and
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flat clipping (UserDP-FedAvg)
per-layer clipping (McMahan et al., 2018)

flat median clipping (Geyer et al., 2017)
per-layer median clipping (Geyer et al., 2017)

(a) MNIST (n = 0.63) (b) CIFAR (n = 0.53) (c) Sent140 (n = 0.40)
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Figure 2: Certi�ed accuracy of UserDP-FedAvg under di�erent user-

level DPFL algorithms with the same n .

decreasing K8 . (2) Additionally, for each �xed : , there is an optimal

n that yields the maximum certi�ed accuracy due to similar reasons.

For example, to certify : = 2 adversaries, the n with highest certi-

�ed accuracy is around 0.6298 (0.2444, 0.2234) on MNIST (CIFAR,

Sent140). (3) Given that there is a n achieving maximal certi�ed

number of adversaries : or yielding the maximum certi�ed accu-

racy under a �xed : , properly choosing n would be important for

certi�ed accuracy. As the optimal n is data/task-dependent, one can

�nd it automatically as hyperparameter tuning. Our evaluation can

serve as a guide for similar data/tasks to narrow down the search

space of n . (4)We also notice that for certain datasets like CIFAR,

the ideal n for certi�ed accuracy can be small, primarily because

the datasets are inherently di�cult to learn. Nevertheless, on sim-

pler datasets like MNIST, using n= 0.6298 to train DPFL models

remains feasible (with 97% clean accuracy) and yields the maximal

certi�ed : ≈ 4. When DPFL algorithms o�er improved utility and

a larger con�dence margin, a larger n can be used to certify the

same : , as indicated in Theorem 2. Moreover, enhanced privacy

accountants that produce a tighter DP bound naturally result in a

smaller n without impacting model utility. As our paper focuses on

deciphering the privacy-robustness interplay, our �ndings — both

theoretical and empirical — imply opportunities to further improve

the utility of current DPFL algorithms or the tightness of privacy

accountants in order to achieve higher certi�ed robustness for FL.

6.2.2 Certified Accuracy under Di�erent DPFL Algorithms. Given

that our certi�cations are agnostic to DPFL algorithms (i.e., the

certi�cations hold no matter how (n, X) is achieved), we are able
to compare the certi�ed results of di�erent DPFL algorithms given

the same privacy budget n . Speci�cally, we consider the following

four DPFL algorithms with di�erent clipping mechanisms:

• �at clipping (UserDP-FedAvg) clips the concatenation of all the

layers of model update with the L2 norm threshold ( .

• per-layer clipping [53] clips each layer of model update with the

L2 norm threshold ( .

• �at median clipping [28] uses the median1 of the norms of clients’

model updates as the threshold ( for �at clipping.

• per-layer median clipping [28] uses the median of each layer’s

norms of model updates as threshold ( for per-layer clipping.

We defer the detailed experimental parameters to Appendix B.1.3.

As shown in Figure 2, the models trained by di�erent DPFL algo-

rithms satisfying the same n can have di�erent certi�ed robustness

results. The �at clipping is able to certify the largest number of

1Strictly speaking, the median norm information can leak privacy and this slight
looseness would extend to robustness certi�cations which leverage the DP guarantee.
Nevertheless, the information leakage through the median is small, so median-clipping-
based methods claimed to be DPFL in [28].

(a) MNIST i.i.d (b) CIFAR i.i.d
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(e) MNIST Dir(0.5) (f) CIFAR Dir(0.5)
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Figure 3: Certi�ed accuracy of UserDP-FedAvg under varying

levels of data heterogeneity. We use Dirichlet distribution

Dir(U) to create FL heterogeneous data distributions, where

smaller U indicates greater heterogeneity.

adversaries : on MNIST; while on CIFAR and Sent140, the median

clipping certi�es the largest : instead. Moreover, �at clipping and

per-layer clipping with the same ( lead to di�erent certi�cation

results on all datasets, while the results of �at median clipping

and per-layer median clipping are nearly identical on MNIST and

CIFAR. We observe that no clipping mechanism is strictly better

than others on all datasets. This is likely due to the signi�cant dif-

ference in the norm of model updates when training on di�erent

datasets, which consequently a�ects the e�ectiveness of di�erent

clipping mechanisms, and thus the DP utility is dataset-dependent.

Under the same DP guarantee n , if one DPFL algorithm has higher

utility and is more con�dent in predicting the ground-truth class,

then it can increase the margin between the class con�dences �A
and �B in Theorem 2 and lead to a larger certi�ed number of ad-

versaries. Therefore, advanced DPFL protocols that have fewer

clipping constraints or require less noise while achieving the same

level of privacy are favored to improve both utility and certi�ed

robustness. The practitioner can use our certi�cations to conduct

o�ine comparisons of di�erent DPFL algorithms under the same

n , and better understand which DPFL algorithm provides better

protection against poisoning attacks before real-world deployment.

6.2.3 Certified Accuracy under Di�erent Data Heterogeneity De-

grees. Recent studies [58, 82] show that DP makes the utility of the

FL global model degraded more under heterogeneous data distri-

butions among users, compared to the i.i.d data setting. Motivated

by those �ndings, we study the impact of heterogeneity on the
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certi�ed accuracy of DPFL models. We simulate varying levels of

data heterogeneity on MNIST and CIFAR using the Dirichlet dis-

tribution Dir(U), which create FL heterogeneous data partitions

with di�erent local data sizes and label distributions for users, and

smaller U indicates greater heterogeneity (more non-i.i.d).

From the results in Figure 3, we �nd that (1) di�erent non-i.i.d

degrees have di�erent optimal n and the largest number of adver-

saries can be certi�ed when n is around 0.62, 0.28, 0.41 under the

i.i.d, Dir(1), Dir(0.5) settings on MNIST, respectively. The optimal

n for CIFAR is around 0.14, 0.14, 0.24 under the i.i.d,Dir(1),Dir(0.5)
settings, respectively. (2) Moreover, when FL data is more non-i.i.d,

the largest number of adversaries that can be certi�ed is smaller.

This is mainly because the utility of the global model trained from

the FedAvg-based DPFL degrades when FL data is more non-i.i.d,

leading to a smaller con�dence gap between �A and �B in The-

orem 2. This suggests that advanced FL algorithms designed for

training more accurate FL models that tackle data heterogeneity

issues can be applied to DPFL settings [49, 58, 82]. By doing so, it

is possible to amplify the class con�dences margin between �A, �B
under non-i.i.d data and certify a larger : , subsequently improving

both privacy-utility tradeo� and certi�ed robustness.

6.2.4 Empircal Robust Accuracy against State-of-the-Art Poisoning

A�acks. In addition to the robustness certi�cation, our DPFL cer-

ti�cation process that produces prediction based on Equation 4,

exhibits e�ective robustness empirically against state-of-the-art

poisoning attacks, even without theoretical guarantees. Table 9 in

Appendix B.2.3 show that DPFL certi�cation achieves high empiri-

cal robust accuracy on CIFAR when : = 2, 3, 5, 10 against di�erent

attack strategies including STAT-OPT attacks [67], BKD and LF

attacks boosted by the model replacement strategy [4, 8]. Moreover,

we see that the certi�ed accuracy serves as the lower bound for the

empirical robust accuracy. Details are deferred to Appendix B.2.3.

6.2.5 Comparison to Empirical FL Defenses. Another line of re-

search is to develop empirical defenses such as robust aggregation

mechanisms [11, 23, 27, 57] to detect and remove malicious users.

Compared to empirical FL defenses, our work provides robustness

certi�cations, while existing studies only o�er empirical robust-

ness. One key advantage of our analysis is that our robustness

certi�cations provide lower bounds for model accuracy or attack

ine�ciency against constrained attacks, and such certi�cation is

agnostic to actual attack strategies, which means there are no future

attacks that can break the certi�cation as long as the : is within the

certi�ed range. Conversely, empirical countermeasures are typically

designed against speci�c types of attacks, leaving them potentially

vulnerable to stronger or adaptive attacks in unknown environ-

ments [24, 72]. Moreover, our certi�cations are general and uncover

the inherent relations between DPFL and certi�ed robustness, and

DPFL algorithms with better utility or tighter privacy accountants

can further enhance the certi�cation results.

As existing FL defenses do not provide robustness guarantees

and hence cannot be directly compared under our certi�ed cri-

teria, we compare the empirical robust accuracy of our certi�ca-

tion method with six FL robust aggregations, including Krum [11],

Multi-krum [11], Trimmed-mean [83], Median [83], Bulyan [23],

RFA [61]. Table 9 in Appendix B.2.4 shows that our certi�cation

method achieves similar and even higher robust accuracy than

empirical defenses under the state-of-the-art poisoning attacks on

CIFAR, while our approach can further provide robustness guaran-

tees under di�erent criteria.We defer detailed results and discussion

to Appendix B.2.4.

Moreover, it is worth noting that our certi�cations still hold

when DPFL is combined with other empirical defense strategies.

Theoretically, in the presence of such defensive mechanisms, the

(n, X) privacy guarantee holds due to the post-processing property

of DP, and therefore certi�ed robustness guarantee given (n, X)-
DP still holds. Combining DPFL with other robust aggregations

would further enhance the empirical robustness, which remains an

interesting future direction.

6.2.6 Computational Overhead and Overall Privacy Costs of Ro-

bustness Certifications. Our robustness certi�cations are based on

DPFL, and we do not impose additional operations for DPFL, so

the certi�cations are applicable for practical FL scenarios where

the DPFL algorithm is implemented [63]. The major overhead of

our certi�cations comes from re-training the DPFL algorithm $

times for Monte-Carlo approximation (see Section 6.1.5). Notably,

retraining is a common requirement when providing certi�cations

against poisoning attacks [65, 76]. In addition, the multiple runs of

re-training are parallelizable and can be speeded up with multiple

GPUs. We report the running time for certi�cations on Sent140 in

Appendix B.2.1. The re-training for Monte-Carlo approximation

also increases the overall privacy costs, as discussed in Section 6.1.5.

In practice, one can adjust $ to prioritize robustness (i.e., a larger

$ for higher certi�cation con�dence), or privacy (i.e., a smaller

$ for fewer times of re-training). As a result, certi�ed robustness

(a) MNIST BKD (n = 0.43) (b) CIFAR BKD (n = 0.53) (c) MNIST LF (n = 0.40) (d) CIFAR LF (n = 0.59) (e) Sent140 LF (n = 0.41)
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Figure 4: Certi�ed attack ine�cacy of UserDP-FedAvg given di�erent ġ , under various attacks with di�erent Ă or Ā .
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(a) MNIST (b) MNIST BKD (n = 0.23) (c) MNIST LF (n = 0.23) (d) MNIST BKD (: = 10) (e) MNIST LF (: = 10)
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Figure 5: Certi�ed accuracy (a) and certi�ed attack ine�cacy of InsDP-FedAvg on MNIST under di�erent attacks given di�erent : (b-c) and
di�erent n (d-e).

(a) CIFAR (b) CIFAR BKD (n = 0.31) (c) CIFAR LF (n = 0.31) (d) CIFAR BKD (: = 4) (e) CIFAR LF (: = 4)
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Figure 6: Certi�ed accuracy (a) and certi�ed attack ine�cacy of InsDP-FedAvg on CIFAR given di�erent : (b-c) and di�erent n (d-e).
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Figure 7: Certi�ed attack ine�cacy of UserDP-FedAvgwith di�erent
n (a-c), and the lower bound of : given di�erent n under di�erent
attack e�ectiveness g (d-f).

can be achieved by balancing the privacy budget and robustness

con�dence. For example, as shown in Appendix B.2.2, the maximal

certi�ed number of adversaries on CIFAR is : = 4 with the overall

privacy cost 10.15 (calculated by n$) under a con�dence level of

80% (details about con�dence level are deferred to Section 6.3.3).

6.2.7 Certified A�ack Ine�icacy under Di�erent : and Di�erent

Poisoning A�acks. To evaluate Theorem 3 and characterize the

tightness of our theoretical lower bound � (�′), we compare it with

the empirical attack ine�cacy � (�′) under di�erent local poison
fraction U , attack methods and scale factor W in Figure 4. Note that

when : = 0, the model is benign, so the empirical attack ine�cacy

equals the certi�ed one.

(1) When : increases, the attack ability grows, and both the empir-

ical attack ine�cacy and theoretical lower bound decrease.

(2) In Figure 4 row 1, given the same: , higherU , i.e., poisoningmore

local instances for each attacker, achieves a stronger attack,

under which the empirical � (�) can be achieved and is closer to

the certi�ed lower bound. This indicates that the lower bound

appears tighter when the poisoning attack is stronger.

(3) In Figure 4 row 2, we �x U = 100% and evaluate UserDP-FedAvg

under di�erentW and attack methods. It turns out that DP serves

as a strong defense empirically for FL, given that � (�) did
not vary much under di�erent W (1,50,100) and di�erent attack

methods (BKD, DBA, LF). This is because the clipping operation

restricts the magnitude of malicious updates, rendering the

model replacement ine�ective; the Gaussian noise perturbs the

malicious updates and makes the DPFL model stable, and thus

the FL model is less a�ected by poisoning instances.

(4) In both rows, the lower bounds are tight when : is small. When

: is large, there remains a gap between our lower bounds and

empirical attack ine�cacy under di�erent attacks, suggesting

that there is room for improvement in either devising more

e�ective poisoning attacks or developing tighter robustness

certi�cation techniques.

6.2.8 Certified A�ack Ine�icacy under Di�erent n . We further ex-

plore the impacts of di�erent factors on the certi�ed attack ine�-

cacy. Figure 7 (a-c) present the empirical attack ine�cacy and the

certi�ed attack ine�cacy lower bound given di�erent n of user-

level DP. As the privacy guarantee becomes stronger (smaller n),

the model is more robust, achieving higher � (�′) and � (�′). The
results under the BKD attack are omitted to Appendix B.2.5.

In Figure 7 (d-f), we train user-level (n , X) DPFL models, calculate

corresponding � (�), and plot the lower bound of : given di�erent
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Figure 8: Certi�ed accuracy under 99% con�dence of FL satisfying user-level DP (a,b), and instance-level DP (c,d).
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Figure 10: Lower bound of : under instance-level n given attack
e�ectiveness g .

attack e�ectiveness hyperparameter g according to Corollary 1. It

shows that (1) when the required attack e�ectiveness is higher

(larger g), more attackers are required. (2) To achieve the same

e�ectiveness of the attack, a fewer number of attackers is needed

for larger n , which means a DPFL model with weaker privacy is

more vulnerable to poisoning attacks.

6.3 Evaluation Results of Instance-level DPFL
Here, we start by comparing the privacy protection between our

InsDP-FedSGD and Dopamine, and then present certi�ed robust-

ness for InsDP-FedAvg based on certi�ed accuracy under (1) dif-

ferent n , (2) given con�dence level; and certi�ed attack ine�cacy
under (1) di�erent : and attacks, and (2) di�erent n .

6.3.1 Privacy Bound Comparison. We compare InsDP-FedSGD

with Dopamine, both under RDP accountant [55] for convenience of

comparison, to validate the privacy ampli�cation of InsDP-FedSGD

provided by user subsampling. With the same noise level (f = 3.0),

clipping threshold (( = 1.5), and batch sampling probability

(? = 0.4), we calculate the privacy budget under di�erent user

sampling probability @ =</# . Figure 9 shows that InsDP-FedSGD

achieves tighter privacy bound over training rounds. For instance,

at round 200, with @ = 10/30, our method (n = 0.87) achieves a

much tighter privacy guarantee than Dopamine (n = 2.70), which

comes from user subsampling @ < 1, while Dopamine neglects it.

6.3.2 Certified Accuracy under Di�erent n . We report the certi�ed

accuracy of InsDP-FedAvg under di�erent n on MNIST and CIFAR

in Figure 5 (a) and Figure 6 (a). We note that the optimal n that is

able to certify the largest number of poisoned instances : is around

0.3593 for MNIST and 0.6546 for CIFAR. Despite the di�erent FL

setups (e.g., the total number of users) under user/instance DP, we

can approximately compare the certi�ed robustness in terms of the

number of tolerable poisoned instances for the two DP levels under

the same n . When n ≈ 0.4 on MNIST, UserDP-FedAvg can certify a

maximum of : ≈ 5 attackers, translating to a total of roughly 1250

poisoned instances, while InsDP-FedAvg can certify up to : ≈ 12

poisoned instances. Therefore, UserDP-FedAvg can certify many

more poisoned instances under the same n than InsDP-FedAvg,

though with a di�erent privacy scope. We report the (uncerti�ed)

accuracy of InsDP-FedAvg in Appendix B.

6.3.3 Certified Accuracy with a Confidence Level. Here, we

present the certi�ed accuracy with the con�dence level for

both user and instance-level DPFL. We use Hoe�ding’s inequal-

ity [33] to calibrate the empirical estimation with one-sided

error tolerance k , i.e., one-sided con�dence level 1 − k . We

denote the empirical estimation of the class con�dence for

class 2 as �̃2 (M(�), G) =
1
$

∑$
>=1 5

B
2 . For a test input G , sup-

pose A,B ∈ [�] satisfy A = argmax2∈[� ] �̃2 (M(�), G) and
B = argmax2∈[� ]:2≠A �̃2 (M(�), G). For a given error tolerance

k , we use Hoe�ding’s inequality to compute a lower bound

�A (M(�), G) = �̃A (M(�), G) −
√

log(1/k )
2$ for A, as well as a up-

per bound �B (M(�), G) = �̃B (M(�), G) +
√

log(1/k )
2$ for B. We

usek = 0.01 (i.e., 99% con�dence).

From the results in Figure 8, we observe similar trends between

n and certi�ed accuracy as in Figure 1, Figure 5 (a) and Figure 6

(a). In general, the largest number of certi�ed adversarial users in

Figure 8 is smaller than the previous results because we calibrate

the empirical estimation, leading to the narrowed class con�dence

gap between classes A and B.

6.3.4 Certified A�ack Ine�icacy under Di�erent : . We report the

certi�ed attack ine�cacy of InsDP-FedAvg on MNIST and CIFAR

in Figure 5 and Figure 6. We see that from Figure 5 (b)(c) and

Figure 6 (b)(c), poisoning more instances (i.e., a larger :) induces

lower theoretical and empirical attack ine�cacy lower bounds.

6.3.5 Certified A�ack Ine�icacy under Di�erent n . From Figure 5

(d)(e) and Figure 6 (d)(e), it is clear that instance-level DPFL with a

stronger privacy guarantee ensures higher attack ine�cacy both

empirically and theoretically, meaning that it is more robust against

poisoning attacks. In Figure 10, we train instance-level (n, X) DPFL
models, calculate corresponding � (�), and plot the lower bound of

: given di�erent attack e�ectiveness hyperparameter g according

to Corollary 1. We can observe that fewer poisoned instances are
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required to reduce the � (�′) to a similar level for a less private

DPFL model, indicating that the model is easier to be attacked.

7 DISCUSSION & CONCLUSION
In this work, we take the �rst step to characterize the connections

between certi�ed robustness against poisoning attacks and DP in

FL. We introduce two certi�cation criteria, based on which we

prove that an FL model satisfying user-level (instance-level) DP is

certi�ably robust against a bounded number of adversarial users

(instances). We also provide formal privacy analysis to achieve

improved instance-level privacy. Through comprehensive evalua-

tions, we validate our theories and establish a general measurement

framework to assess the certi�ed robustness yielded by DPFL.

Limitations & Future Work. One limitation of our work is

that we focus on the “central” DP with a trusted server for user-

level DPFL, where the FL server clips and adds noise, as opposed to

a “local” DP setting, where each client clips and adds their noise

locally [56]. While we follow [28, 53] to consider a trusted server in

the central DP regime, it o�ers weaker privacy protection than local

DP, since the privacy guarantee does not hold against the server

who can see raw client updates. It would be interesting to further

extend the analysis to FL with local DP guarantees. Another limi-

tation is that our certi�cations could add computational overhead.

Certifying training-time robustness necessitates training multiple

models, demonstrated in prior certi�cation studies [65, 76], though

this can be accelerated using parallelization and multiple GPUs.

The future directions include (1) extending our analysis to

more complicated DP settings, such as scenarios where only non-

attackers apply local DP in FL while attackers do not [56]; (2) com-

bining DPFL with robust FL aggregations to further boost robust-

ness; (3) investigating the certi�ed robustness of advanced FL al-

gorithms [17, 58, 68] that would maintain higher utility under DP

in non-IID data settings; (4) developing tighter privacy accountant

techniques over FL training to improve the certi�ed robustness

from the DP theory perspective; (5) investigating advanced model

architectures and pretraining techniques to further improve the

certi�ed robustness of DPFL. We hope our work will help provide

more insights into the relationships between privacy and certi�ed

robustness in the context of FL, paving the way for more secure

and privacy-preserving FL applications in practice.
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The Appendix is organized as follows:

• Appendix A provides the proofs for the privacy guarantees

of our DPFL algorithms.

• Appendix B provides more details on experimental setups

and the additional experimental results on robustness certi-

�cations.

• Appendix C provides the proofs for the certi�ed robustness-

related analysis, including De�nition 2, Theorem 1, Theo-

rem 2, Theorem 3, Theorem 4 and Corollary 1.

• Appendix D provides the theoretical results and correspond-

ing proofs for certi�ed robustness against FL poisoning at-

tacks derived from Rényi DP and Randomized Smoothing

via Rényi Divergence.

A DIFFERENTIALLY PRIVATE FEDERATED
LEARNING

We �rst present all the notations used in our paper in Table 3.

A.1 UserDP-FedAvg

To calculate the privacy costs for Algorithm 1, existing works utilize

moments accountant [1] for privacy analysis [28, 53]. We note that

Rényi Di�erential Privacy (RDP) [55] supports a tighter composi-

tion of privacy budget than the moments accounting technique for

DP [55]. Therefore, we utilize RDP [55] to perform the privacy anal-

ysis in Algorithm 1. Speci�cally,M.accum_priv_spending() is the

call on RDP accountant [75], and M.get_privacy_spent() transfers

RDP guarantee to DP guarantee based on the RDP to DP conversion

theorem of [5].

A.2 InsDP-FedSGD

Here, we present the algorithm InsDP-FedSGD.

Next, we recall Proposition 1 and present its proof.

Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability ? without replacement, and user sampling prob-
ability @ =

<
# without replacement, FL rounds ) , the clipping thresh-

old ( , the noise parameter f , the randomized mechanism M in

Algorithm 2 satis�es ()n′ (U) + log U−1
U − logX+logU

U−1 , X)-DP with

Algorithm 1: UserDP-FedAvg.

1

Input: Initial model F0, user sampling probability

@, privacy parameter X , clipping threshold ( ,

noise level f , local datasets �1, ..., �# , local

epochs �, learning rate [.

Output: FL modelF) and privacy cost n

2 Server executes:
for each round C = 1 to ) do

3 < ← max(@ · #, 1);
4 *C ← (random subset of< users);

5 for each user 8 ∈ *C in parallel do
6 �F8

C ← UserUpdate(8,FC−1) ;

7 FC ← FC−1 +
1
<

(∑
8∈*Ī

Clip(�F8
C , () +N

(
0, f2(2

) )
;

8 M.accum_priv_spending(f, @, X) ;
9 n = M.get_privacy_spent() ;

10 returnF) , n

11 Procedure UserUpdate(8,FC−1)
12 F ← FC−1 ;
13 for local epoch 4 = 1 to � do
14 for batch 1 ∈ local dataset �8 do
15 F ← F − [∇; (F ;1)

16 �F8
C ← F −FC−1 ;

17 return �F8
C

18 Procedure Clip(�, ()

19 return �/max
(
1,
∥�∥2
(

)

n (U) = U/(2<f2) where U is the RDP order and

n′ (U ) f 1

U − 1
· log

(
1 + (?@)2

(
U

2

)
min

{
4
(
4Ċ (2) − 1

)
, 4Ċ (2) ·

min

{
2,
(
4Ċ (∞) − 1

)2}}
+

Ă∑

Ġ=3

(?@) Ġ
(
U

9

)
4 ( Ġ−1)Ċ ( Ġ ) min

{
2,
(
4Ċ (∞) − 1

) Ġ }
)

Proof. (1) In instance-level DP, we consider the sampling proba-

bility of each instance under the combination of user-level sampling

and batch-level sampling. Since the user-level sampling probability

is @ and the batch-level sampling probability is ? , each instance

is sampled with probability ?@. (2) Additionally, since the sensi-
tivity of instance-wise gradient w.r.t one instance is ( , after local

gradient descent and server FL aggregation, the equivalent sensi-

tivity of global model w.r.t one instance is ( ′ = [(
!< according to

Eq (8). (3)Moreover, since the local noise is =8 ∼ N (0, f2(2) , the
“virtual” global noise is = =

[
<!

∑
8∈*Ī

=8 according to Eq (8), so

= ∼ N (0, [
2f2(2

<!2
). Let [2f2(2

<!2
= f′2( ′2 such that = ∼ N (0, f′2( ′2).

Since ( ′ = [(
!< , the equivalent global noise level is f′2 = f2<, i.e.,

f′ = f
√
<. Then, we use ?@ to represent instance-level sampling

probability,) to represent FL training rounds, f
√
< to represent the

equivalent global noise level. The rest of the proof follows (1) RDP
subsampling ampli�cation [75], (2) RDP composition for privacy
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Table 3: Table of notations.

Notation Description

# number of FL users

�1, . . . , �# local datasets of # users

� {�1, . . . , �# } clean FL dataset

) total number of communication rounds

[ learning rate

� local epochs

@ user sampling probability

< number of selected users at each round

*C selected user set at round C

FC global model at round C

�F8
C local update of client 8 at round C

�′ poisoned FL dataset

: number of adversarial users or adversarial instances

( clipping threshold

f noise level

X DP privacy parameter

n DP privacy budget

M DPFL training protocol

M(�) clean DPFL model at round )

M(�′) poisoned DPFL model at round )

52 (M(�), G) con�dence for class 2 on test sample G

�2 (M(�), G) expected con�dence for class 2 on test sample G

� (M(�), G) prediction, i.e., top-1 class based on the expected con�dence

� (M(�′)) attack cost on the poisoned modelM(�′)
� (�′) expected attack cost on the poisoned modelM(�′)
�̄ bound on attack cost � (·)
6̄(G 9 ) clipped gradient for sample G 9 in InsDP-FedSGD

6̃ noise-perturbed and clipped gradient for sample G 9 in InsDP-FedAvg

W scale factor in model replacement attack

$ number of Monte Carlo samples

k one-sided error tolerance in Monte-Carlo sampling

K theoretical upper bound for the number of adversarial users/instances that can satisfy the certi�ed prediction

� (�′) theoretical lower bound of the attack cost for poisoned DPFL model based on the certi�ed cost

n (U) RDP parameter

U RDP order

budget accumulation over ) rounds based on the RDP composi-

tion [55] and (3) transferring RDP guarantee to DP guarantee based

on the conversion theorem [5]. □

A.3 InsDP-FedAvg

Next, we will �rst consider the special case of one FL training round

(i.e., ) = 1) to showcase the privacy cost aggregation. Then, we

will combine local privacy cost accumulation in each user and the

privacy cost aggregation in the server for the general case with any

C FL rounds. When) = 1, the relationship between the privacy cost

of the local model n8 , 8 ∈ [# ] and the privacy cost of global model

n for one FL training round is characterized in Lemma 1. For the

general case of any C FL rounds, we provide the privacy guarantee

by combing the RDP accountant for the local model and the parallel

composition for the global model in Proposition 2.

Lemma 1 (InsDP-FedAvg Privacy Guarantee when ) = 1). In

Algorithm 3, when ) = 1, suppose local mechanism M8 satis�es

(n8 , X8 )-DP, then global mechanism M satis�es (max8∈[# ] n
8 , X8 )-

DP.

Proof. We can regard FL as partitioning a dataset � into #

disjoint subsets {�1, �2, . . . , �# }. # local randomized mechanisms

{M1, . . . ,M# } are operated on these # parts separately and each

M8 satis�es its own n8 -DP for 8 ∈ [1, # ]. Without loss of generality,

we assume the modi�ed data sample G ′ (G → G ′ causes � → �′) is
in the local dataset of :-th client �: . Then �, �′ are two neighbor-

ing datasets, and�: , �
′
:
are also two neighboring datasets. Consider

a sequence of outcomes (i.e., local model updates) from local mech-

anisms {I1 = M1 (�1), I2 = M2 (�2; I1), I3 = M3 (�3; I1, I2), . . .}.
The global mechanism consists of a series of linear operators on

the sequence I = M(�) = F0 + 1
<

∑#
8=1 I8 . Note that if 8-th user is
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Algorithm 2: InsDP-FedSGD.

1

Input: Initial modelF0, user sampling probability @, privacy pa-

rameter X , local clipping threshold ( , local noise level f ,

local datasets �1, ..., �# , learning rate [, batch sampling

probability ? .

Output: FL modelF) and privacy cost n

2 Server executes:
for each round C = 1 to ) do

3 < ← max(@ · #, 1);
4 *C ← (random subset of< clients);

5 for each user 8 ∈ *C in parallel do
6 �F8

C ← UserUpdate(8,FC−1) ;

7 FC ← FC−1 + 1
<

∑
8∈*Ī

�F8
C ;

8 M.accum_priv_spending(
√
<f, ?@, X)

9 n = M.get_privacy_spent() ;

10 returnF) , n

11 Procedure UserUpdate(8,FC−1)
12 F ← FC−1 ;
13 18C ←(uniformly sample a batch from �8 with probability ? =

!/|�8 |);
14 for each G 9 ∈ 18C do
15 6(G 9 ) ← ∇; (F ;G 9 );
16 6̄(G 9 ) ← Clip(6(G 9 ), () ;

17 6̃← 1
!

(∑
9 6̄(G 9 ) +N

(
0, f2(2

) )
;

18 F ← F − [6̃ ;

19 �F8
C ← F −FC−1 ;

20 return �F8
C

21 Procedure Clip(�, ()

22 return �/max
(
1,
∥�∥2
(

)

not selected, I8 = 0. According to the parallel composition [71], we

have

Pr[M(� ) = I ]
= Pr[M1 (�1 ) = I1 ] · Pr[M2 (�2;I1 ) = I2 ] · · ·

· Pr[MĊ (�Ċ ;I1, . . . , IĊ −1 ) = IĊ ]

f
(
exp(nġ ) Pr[Mġ (� ′ġ ;I1, . . . , Iġ−1 ) = Iġ ] + Xġ

)

·
∏

ğ≠ġ

Pr[Mğ (�ğ ;I1, . . . , Iğ−1 ) = Iğ ]

= exp(nġ ) Pr[Mġ (� ′ġ ;I1, . . . , Iġ−1 ) = Iġ ]
∏

ğ≠ġ

Pr[Mğ (�ğ ;I1, . . . , Iğ−1 ) = Iğ ]

+
∏

ğ≠ġ

Pr[Mğ (�ğ ;I1, . . . , Iğ−1 ) = Iğ ]Xġ

= exp(nġ ) Pr[M(� ′ ) = I ] +
∏

ğ≠ġ

Pr[Mğ (�ğ ;I1, . . . , Iğ−1 ) = Iğ ]Xġ

f exp(nġ ) Pr[M(� ′ ) = I ] + Xġ

So M satis�es n: -DP when the modi�ed data sample lies in the

subset �: . Considering the worst case where the modi�ed data

samples are sampled, we derive that M satis�es (max8∈[# ] n
8 )-

DP. □

Next, we recall Proposition 2 and present its proof.

Algorithm 3: InsDP-FedAvg.

1

Input: Initial modelF0, user sampling probability@, privacy param-

eter X , local clipping threshold ( , local noise level f , local

datasets�1, ..., �# , local steps+ , learning rate [, batch sam-

pling probability ? .

Output: FL modelF) and privacy cost n

2 Server executes:
for each round C = 1 to ) do

3 < ← max(@ · #, 1);
4 *C ← (random subset of< users);

5 for each user 8 ∈ *C in parallel do
6 �F8

C , n
8
C ← UserUpdate(8,FC−1) ;

7 for each user 8 ∉ *C do
8 n8C ← n8C−1 ;

9 FC ← FC−1 + 1
<

∑
8∈*Ī

�F8
C ;

10 nC = M.parallel_composition({n8C }8∈[# ] )
11 n = n) ;

12 returnF) , n

13 Procedure UserUpdate(8,FC−1)
14 F ← FC−1 ;
15 for each local step E = 1 to + do
16 1 ←(uniformly sample a batch from �8 with probability

? = !/|�8 |);
17 for each G 9 ∈ 1 do
18 6(G 9 ) ← ∇; (F ;G 9 );
19 6̄(G 9 ) ← Clip(6(G 9 ), () ;

20 6̃← 1
! (

∑
9 6̄(G 9 ) +N

(
0, f2(2

)
);

21 F ← F − [6̃ ;

22 M8 .accum_priv_spending(f, ?, X) ;
23 n8C = M8 .get_privacy_spent() ;

24 �F8
C ← F −FC−1 ;

25 return �F8
C , n

8
C

26 Procedure Clip(�, ()

27 return �/max
(
1,
∥�∥2
(

)

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,

during round C , the local mechanism M8 satis�es (n8C , X8 )-DP, and
the global mechanismM satis�es

(
max8∈[# ] n

8
C , X

8
)
-DP.

Proof. Again, without loss of generality, we assume the modi-

�ed data sample G ′ (G → G ′ causes� → �′) is in the local dataset of
:-th user �: . We �rst consider the case when all users are selected.

At each round C , # mechanisms are operated on # disjoint parts,

and eachM8
C satis�es its own n

8 -DP where n8 is the privacy cost for

accessing the local dataset �8 for one round (not accumulating over

previous rounds). Let�, �′ be two neighboring datasets (�: , �
′
:
are

also two neighboring datasets). Suppose I0 = MC−1 (�) is the ag-
gregated randomized global model at round C − 1, and {I1, . . . , I# }
are the randomized local updates at round C , we have a sequence

of computations {I1 = M1
C (�1; I0), I2 = M2

C (�2; I0, I1), I3 =

M3
C (�3; I0, I1, I2) . . .} and I = MC (�) = I0 + 1

<

∑#
8 I8 . We �rst

consider the sequential composition [22] to accumulate the pri-

vacy cost over FL rounds to gain intuition. According to parallel

composition, we have
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Pr[MC (�) = I]

= Pr[MC−1 (�) = I0] ·
#∏

8=1

Pr[M8
C (�8 ; I0, I1, . . . , I8−1) = I8 ]

= Pr[MC−1 (�) = I0] · Pr[M:
C (�: ; I0, I1, . . . , I:−1) = I: ]

·
∏

8≠:

Pr[M8
C (�8 ; I0, I1, . . . , I8−1) = I8 ]

f exp(nC−1) Pr[MC−1 (�′) = I0]

· exp(n: ) · Pr[M:
C (�′: ; I0, I1, . . . , I:−1) = I: ]

·
∏

8≠:

Pr[M8
C (�8 ; I0, I1, . . . , I8−1) = I8 ]

= exp(nC−1 + n: ) · Pr[MC (�′) = I]

Therefore,MC satis�es nC -DP, where nC = nC−1 +n: . Because the
modi�ed data sample always lies in �: over C rounds and n0 = 0,

we can have nC = Cn: , which means that the privacy guarantee of

global mechanism MC is only determined by the local mechanism

of :-th user over C rounds.

Moreover, RDP accountant [75] is known to reduce the privacy

cost from O(C) to O(
√
C). We can use this advanced composition,

instead of the sequential composition, to accumulate the privacy

cost for local mechanism M: over C FL rounds. In addition, we

consider user selection. As described in Algorithm 3, if the user 8 is

not selected at round C , then its local privacy cost is kept unchanged

at this round.

Take the worst case of where G ′ could lie in, at round C ,M satis-

�es nC -DP, where nC = max8∈[# ] n
8
C , local mechanismM8 satis�es

n8C -DP, and the local privacy cost n8C is accumulated via local RDP

accountant in 8-th user over C rounds.

□

B EXPERIMENTAL DETAILS AND
ADDITIONAL RESULTS

B.1 Experimental Details
B.1.1 Additional Implementation Details. We simulate the feder-

ated learning setup (1 server and N users) on a Linux machine with

Intel® Xeon® Gold 6132 CPUs and 8 NVidia® 1080Ti GPUs. All

code is implemented in Pytorch [59].

B.1.2 Training Details. Next, we summarize the privacy guaran-

tees and clean accuracy o�ered when we study the certi�ed pre-

diction and certi�ed attack ine�cacy, which are also the training

parameters setups when : = 0 in Figure 1, 4, 7, 6, 12, 10, 5.

User-level DPFL. In order to study the user-level certi�ed

prediction under di�erent privacy guarantees, for MNIST, we set

n to be 0.2808, 0.4187, 0.6298, 0.8694, 1.8504, 2.8305, 4.8913, 6.9269,

which are obtained by training UserDP-FedAvg FL model for

3 rounds with noise level f = 3.0, 2.3, 1.8, 1.5, 1.0, 0.8, 0.6, 0.5,

respectively (Figure 1(a)). For CIFAR, we set n to be

0.1083, 0.1179, 0.1451, 0.2444, 0.3663, 0.4527, 0.5460, 0.8781, which

are obtained by training UserDP-FedAvg FL model for one

round with noise level f = 10.0, 8.0, 6.0, 4.0, 3.0, 2.6, 2.3, 1.7,

respectively (Figure 1(b)). For Sent140, we set n to be

0.2234, 0.2238, 0.2247, 0.4102, 0.579, 0.7382, 1.7151, which are

obtained by training UserDP-FedAvg FL model for three rounds

with noise level f = 5, 4, 3, 2, 1.7, 1.5, 1, respectively (Figure 1(c)).

The clean accuracy (average over 1000 runs) of UserDP-FedAvg

under non-DP training (n = ∞) and DP training (varying n) on

MNIST, CIFAR, and Sent140 are reported in Table. 4, Table. 5 and

Table. 6 respectively. We note that smaller n results in lower accu-

racy, but we evaluate small n only to study the relationship between

privacy and certi�ed accuracy in Figure 1, so as to show the trade-

o�. Such extreme cases are not required for certi�cation. For other

evaluations on our paper (such as Figure 4, Figure 7), we use normal

n with reasonable clean accuracy.

To certify the attack ine�cacy under the di�erent number of

adversarial users : (Figure 4), for MNIST, we set the noise level

f to be 2.5. When : = 0, after training UserDP-FedAvg for ) =

3, 4, 5 rounds, we obtain FL models with privacy guarantee n =

0.3672, 0.4025, 0.4344 and clean accuracy (average over $ runs)

86.69%, 88.76%, 88.99%. For CIFAR, we set the noise level f to be

3.0. After training UserDP-FedAvg for ) = 3, 4 rounds under : = 0,

we obtain FL models with privacy guarantee n = 0.5346, 0.5978 and

clean accuracy 78.63%, 78.46%. For Sent140, we set the noise level

f to be 2.0. After training UserDP-FedAvg for ) = 3 rounds under

: = 0, we obtain FL models with privacy guarantee n = 0.4102 and

clean accuracy 58.00%.

With the interest of certifying attack ine�cacy under di�erent

user-level DP guarantees (Figure 7, Figure 12), we explore the empir-

ical attack ine�cacy, and the certi�ed attack ine�cacy lower bound

given di�erent n . For MNIST, we set the privacy guarantee n to be

1.2716, 0.8794, 0.6608, 0.5249, 0.4344, which are obtained by training

UserDP-FedAvg FL models for �ve rounds under noise level

f = 1.3, 1.6, 1.9, 2.2, 2.5, respectively, and the clean accuracy for the

corresponding models are 99.50%, 99.06%, 96.52%, 93.39%, 88.99%.

For CIFAR, we set the privacy guarantee n to be

1.600, 1.2127, 1.0395.0.8530, 0.7616, 0.6543, 0.5978, which are

obtained by training UserDP-FedAvg FL models for four rounds

under noise level f = 1.5, 1.8, 2.0, 2.3, 2.5, 2.8, 3.0, respectively,

and the clean accuracy for the corresponding models are

85.59%, 84.52%, 83.23%, 81.90%, 81.27%, 79.23%, 78.46%. For Sent140,

we use the same set of n as in certi�ed prediction.

Instance-level DPFL. To certify the prediction for

instance-level DPFL under di�erent privacy guar-

antees, for MNIST, we set privacy cost n to be

0.2029, 0.2251, 0.2484, 0.3593, 0.4589, 0.6373, 1.0587, 3.5691,

which are obtained by training InsDP-FedAvg FL models

for 3 rounds with noise level f = 15, 10, 8, 5, 4, 3, 2, 1, respec-

tively (Figure 5(a)). For CIFAR, we set privacy cost n to be

0.3158, 0.3587, 0.4221, 0.5130, 0.6546, 0.9067, 1.4949, 4.6978, which

are obtained by training InsDP-FedAvg FL models for one round

with noise level f = 8, 7, 6, 5, 4, 3, 2, 1, respectively (Figure 6(a)).

The clean accuracy (average over 1000 runs) of InsDP-FedAvg

under non-DP training (n = ∞) and DP training (varying n) on

MNIST and CIFAR are reported in Table 7 and Table 8 respectively.

With the aim to study certi�ed attack ine�cacy under the dif-

ferent number of adversarial instances : , for MNIST, we set the

noise level f to be 10. When : = 0, after training InsDP-FedAvg

for ) = 4 rounds, we obtain FL models with privacy guarantee
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Table 4: Clean accuracy of UserDP-FedAvg on MNIST

f 0 0.5 0.6 0.8 1.0 1.5 1.8 2.3 3.0

n ∞ 6.9269 4.8913 2.8305 1.8504 0.8694 0.6298 0.4187 0.2808

Clean Acc. 99.66% 99.72% 99.69% 99.71% 99.59% 98.86% 97.42% 89.15% 72.79%

Table 5: Clean accuracy of UserDP-FedAvg on CIFAR

f 0 1.7 2.3 2.6 3.0 4.0 6.0

n ∞ 0.8781 0.546 0.4527 0.3663 0.2444 0.1451

Clean Acc. 81.90% 81.82% 80.09% 79.27% 77.89% 73.07% 64.36%

Table 6: Clean accuracy of UserDP-FedAvg on Sent140

f 0 1 1.5 1.7 2.0 3.0

n ∞ 1.7151 0.7382 0.579 0.4102 0.2247

Clean Acc. 64.33% 62.64 % 60.76 % 59.57% 58.00% 55.28%

Table 7: Clean accuracy of InsDP-FedAvg on MNIST

f 0 1 2 3 4 5 8 10 15

n ∞ 3.5691 1.0587 0.6373 0.4589 0.3593 0.2484 0.2251 0.2029

Clean Acc. 99.85% 99.73% 99.73% 99.70% 99.65% 99.57% 97.99% 93.30% 77.12%

Table 8: Clean accuracy of InsDP-FedAvg on CIFAR

f 0 1 2 3 4 5 6 7 8

n ∞ 4.6978 1.4949 0.9067 0.6546 0.513 0.4221 0.3587 0.3158

Clean Acc. 91.15% 87.91% 86.02% 83.85% 81.43% 77.59% 72.69% 66.47% 62.26%

n = 0.2383 and clean accuracy (average over $ runs) 96.40% (Fig-

ure 5(b)(c)). For CIFAR, we set the noise level f to be 8.0. After

training InsDP-FedAvg for one round under : = 0, we obtain FL

models with privacy guarantee n = 0.3158 and clean accuracy

61.78% (Figure 6(b)(c)).

In order to study the empirical attack ine�cacy and cer-

ti�ed attack ine�cacy lower bound under di�erent instance-

level DP guarantees, we set the privacy guarantee n to be

0.5016, 0.311, 0.2646, 0.2318, 0.2202, 0.2096, 0.205 for MNIST, which

are obtained by training InsDP-FedAvg FL models for six

rounds under noise level f = 5, 8, 10, 13, 15, 18, 20, respec-

tively, and the clean accuracy for the corresponding mod-

els are 99.60%, 98.81%, 97.34%, 92.29%, 88.01%, 80.94%, 79.60% (Fig-

ure 5 (d)(e)). For CIFAR, we set the privacy guarantee n to be

1.261, 0.9146, 0.7187, 0.5923, 0.5038, 0.4385, which are obtained by

training InsDP-FedAvg FL models for two rounds under noise level

f = 3, 4, 5, 6, 7, 8, respectively, and the clean accuracy for the corre-

sponding models are 84.47%, 80.99%, 76.01%, 68.65%, 63.07%, 60.65%

(Figure 6 (d)(e)).

With the intention of exploring the upper bound for : given

g under di�erent instance-level DP guarantee, for MNIST, we

set noise level f to be 5, 8, 10, 13, 20, respectively, to obtain

instance-DP FL models after ten rounds with privacy guaran-

tee n = 0.6439, 0.3937, 0.3172, 0.2626, 0.2179 and clean accuracy

99.58%, 98.83%, 97.58%, 95.23%, 85.72% (Figure 10(a)). For CIFAR,

we set noise level f to be 3, 4, 5, 6, 7, 8 and train InsDP-FedAvg

for ) = 3 rounds to obtain FL models with privacy guarantee

n = 1.5365, 1.1162, 0.8777, 0.7238, 0.6159, 0.5361 and clean accuracy

84.34%, 80.27%, 74.62%, 66.94%, 62.14%, 59.75% (Figure 10(b)).

B.1.3 Detailed Setup for Di�erent User-level DPFL Algorihtms. For

MNIST (CIFAR, Sent140), we set n to be 0.6319 (0.5346, 0.4089),

which is obtained by training all DPFL algorithms with the same

noise level f = 2.3 (f = 3.0, f = 2.0) for same number of rounds. For

�at clipping and per-layer clipping, we set ( = 0.7 (( = 1, ( = 0.5)

on MNIST (CIFAR, Sent140). Except for local epoch � = 1, other FL

parameter setups are the same as in Table 2. We set � = 1 because

we �nd that the FL model in our experiments can be trained with
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Figure 11: Certi�ed accuracy of UserDP-FedAvg on CIFAR
under 80% con�dence with n$ = 10.15.

median norm clipping approaches [28] only when the number of

the local epoch is small. Recall that in the server aggregation step,

the noise is sampled fromN (0, f2(2), so ( cannot be too large in

order to keep the amount of noise reasonable and preserve a good

model utility. As more local epoch leads to a larger norm of model

updates, we set the local epoch as 1 to keep the median norm small.

B.2 Additional Experimental Results
B.2.1 Running Time Analysis for the Certifications. Compared to

non-DP FL, the mechanisms introduced by DPFL, i.e., clipping and

noise addition, are low-cost and easy to implement. In our experi-

ments, the averaged running time for each communication round

on Sent140 dataset is 6.06s for FedAvg and 6.11s for UserDP-FedAvg

(averaged over 1000 times), based on a Linux machine with Intel 8

Core i7-7820X CPU and 4 NVidia 2080Ti GPUs. The major overhead

of our certi�cations comes from re-training the DPFL algorithm $

times for Monte-Carlo approximation (see Section 6.1.5). Notably,

re-training is a common requirement when providing certi�cations

against poisoning attacks [65, 76]. Also, multiple runs of training

are parallelizable and can be speeded up with multiple GPUs. Given

all trained models and the inference results from each model, run-

ning the certi�cations (e.g., averaging class con�dence, and making

predictions) has negligible costs, which is 0.04s on the Sent140

dataset.

B.2.2 Certifications with Moderate Overall Privacy Budget. Certi-

�ed robustness can be achieved under a moderate overall privacy

budget and robustness con�dence. As shown in the Figure 11, on

CIFAR, when n = 0.1451 and $ = 70, the overall privacy cost is

about n$ = 10.15. Under the con�dence level of 80%, the maximal

number of adversaries that can be certi�ed is about : = 4.

B.2.3 Empirical Robust Accuracy against State-of-the-art Poisoning

A�acks. In this section, we evaluate our certi�cationmethod against

state-of-the-art poisoning attacks and report the empirical accuracy

and certi�ed accuracy. Speci�cally, we consider the following at-

tacks. Static Optimization (STAT-OPT) attack [67] solves adversarial

optimization problems to �nd optimal poisoned local model updates.

We consider the “agnostic” setting of STAT-OPT attack, where the

gradients of benign devices and the server’s aggregation algorithm

are unknown to the attacker, based on the attacker’s knowledge of

our settings. We evaluate two variants of STAT-OPT attack: STAT-

OPT (Min-Max) and STAT-OPT (Min-Sum); for details please refer

to [67]. We also consider backdoor attack (BKD) and label �ipping

attack (LF ) under model replacement strategy with a scale factor

W to boost malicious local update [4, 8]. For our UserDP-FedAvg

certi�cation approach, denoted as UserDP-FedAvg-cert, the predic-

tion for each test sample is calculated based on Equation 4, and we

train UserDP-FedAvg algorithms $ = 100 times for Marto-Carlo

approximation of the expected class con�dence in Equation 4.

From Table 9, we see that the empirical robust accuracy of our

certi�cation method on CIFAR is high and remains stable in the

presence of : = 2, 3, 5, 10 attackers under various attacks (i.e., less

than 1%∼2% accuracy drop compared with the no-attacker setting).

It shows that our DPFL certi�cation is empirically robust against

poisoning attacks.

Table 9 also shows that the certi�ed accuracy of UserDP-FedAvg-

cert serves as the lower bound for its empirical robust accuracy. We

notice that under relatively strong attack settings such as : = 5, 10,

our DPFL certi�cation cannot provide non-trivial certi�ed accuracy.

Nevertheless, our DPFL certi�cation approach still exhibits strong

empirical e�ective robustness, even without theoretical guarantees.

The gap between certi�ed robust accuracy and empirical robust ac-

curacy indicates potential advancements either in crafting stronger

poisoning attacks to further reduce empirical robust accuracy, or in

developing tighter robustness certi�cation techniques to improve

theoretical lower bound.

B.2.4 Comparison to Empirical FL Defenses. Here, we compare

the empirical robust accuracy of our certi�cation method with

six FL robust aggregations, including Krum [11], Multi-krum [11],

Trimmed-mean [83], Median [83], Bulyan [23], RFA [61].

show that our certi�cation method UserDP-FedAvg-cert

achieves similar and even higher accuracy than empirical defenses

under state-of-the-art poisoning attacks, while providing privacy

and robustness guarantees. Speci�cally, under the optimization-

based attacks STAT-OPT (Min-Max) and STAT-OPT (Min-Sum),

UserDP-FedAvg-cert consistently achieves higher empirical ro-

bust accuracy than other FL robust aggregation methods when

: = 2, 3, 5, 10; under BKD and LF attacks, UserDP-FedAvg-cert ex-

hibits similar robustness as FL robust aggregation methods. Note

that Multi-Krum, Trimmed-mean, and Bulyan require specifying

the number of attackers in their aggregation rules to detect the out-

liers, while our approach does not require such knowledge about

attackers during DPFL training.

We also notice that when n is too small (e.g., n = 0.3205),

UserDP-FedAvg-cert has lower empirical robust accuracy than ro-

bust aggregation defenses. This is mainly because of the noise level

being large during UserDP-FedAvg training to achieve a strong

privacy guarantee, which hurts the utility of the DPFL model, as we

can see in the no-attack setting. Therefore, we recommend adopting

a reasonable n with good utility to achieve robustness, as elaborated

in Section 6.2.1.

B.2.5 Additional Robustness Evaluation of User-level DPFL. Here

we further explore the impacts of n on the certi�ed attack ine�cacy.

Similar to the results of label �ipping attacks in Figure 7 (a-c), the

results of backdoor attacks in Figure 12 show that as the privacy

guarantee becomes stronger, i.e. smaller n , the model is more robust,

achieving higher � (�′) and � (�′).
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Table 9: Comparison of empirical robust accuracy between our certi�cation approach and empirical FL defenses against
state-of-the-art poisoning attacks on CIFAR. “UserDP-FedAvg-cert” denotes our certi�cation approach based on UserDP-FedAvg.
UserDP-FedAvg-cert provides similar or even higher empirical robust accuracy than empirical defenses. The certi�ed accuracy
of UserDP-FedAvg-cert serves as the lower bound for its empirical robust accuracy.

:=2 :=3

Empirical Robust Acc. Certi�ed

Robust Acc.

Empirical Robust Acc. Certi�ed

Robust Acc.
No Attack

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(W = 100)

LF [8]

(W = 100)

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(W = 100)

LF [8]

(W = 100)

FedAvg [52] 88.08% 87.29% 87.35% 65.73% 65.47% / 86.36% 86.55% 58.39% 58.07% /

Median [83] 87.76% 87.09% 87.16% 87.73% 87.74% / 86.22% 86.42% 87.74% 87.75% /

Trimmed-mean [83] 88.08% 87.28% 87.35% 87.98% 87.98% / 86.36% 86.55% 87.94% 87.94% /

Krum [11] 85.97% 85.84% 85.96% 85.87% 85.87% / 85.12% 85.4% 85.85% 85.85% /

Multi-Krum [11]% 88.02% 87.23% 87.29% 87.99% 87.99% / 86.31% 86.51% 87.98% 87.98% /

Bulyan [23] 88.02% 87.24% 87.3% 87.93% 87.94% / 86.31% 86.52% 87.89% 87.89% /

RFA [61] 87.97% 87.21% 87.28% 87.94% 87.94% / 86.29% 86.49% 87.96% 87.95% /

UserDP-FedAvg-cert (n = 0.7693) 88.05% 87.65% 88% 88.05% 87.8% 17.65% 87.15% 87.5% 87.8% 87.85% 1.4%

UserDP-FedAvg-cert (n = 0.648) 87.35% 87.8% 87.6% 87.9% 87.5% 28.15% 86.45% 87.6% 87.2% 87.6% 4.3%

UserDP-FedAvg-cert (n = 0.5346) 86.45% 86.5% 87% 87.15% 86.8% 37.75% 87.05% 86.65% 87.15% 87.15% 11.45%

UserDP-FedAvg-cert (n = 0.3205) 85.2% 85.15% 86.05% 85.1% 85.7% 48.5% 83.9% 85.85% 85.8% 84.95% 21.85%

:=5 :=10

Empirical Robust Acc. Certi�ed

Robust Acc.

Empirical Robust Acc. Certi�ed

Robust Acc.
No Attack

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(W = 100)

LF [8]

(W = 100)

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(W = 100)

LF [8]

(W = 100)

FedAvg [52] 88.08% 84.58% 85.75% 54.69% 54.35% / 80.89% 84.52% 51.17% 51.21% /

Median [83] 87.76% 84.5% 85.67% 87.69% 87.69% / 80.86% 84.5% 87.56% 87.56% /

Trimmed-mean [83] 88.08% 84.58% 85.75% 87.8% 87.8% / 80.89% 84.52% 87.44% 87.43% /

Krum [11] 85.97% 83.78% 85% 85.85% 85.85% / 80.62% 84.29% 85.89% 85.88% /

Multi-Krum [11] 88.02% 84.54% 85.72% 87.94% 87.95% / 80.88% 84.52% 87.92% 87.92% /

Bulyan [23] 88.02% 84.54% 85.72% 87.79% 87.79% / 80.88% 84.52% 87.66% 87.66% /

RFA [61] 87.97% 84.54% 85.71% 87.93% 87.93% / 80.87% 84.51% 87.82% 87.82% /

UserDP-FedAvg-cert (n = 0.7693) 88.05% 86.2% 86.35% 87.4% 87.3% 0% 85.25% 86.5% 86.95% 86.75% 0%

UserDP-FedAvg-cert (n = 0.648) 87.35% 86.2% 86.3% 87.15% 87.4% 0% 85.1% 85.75% 86.75% 85.85% 0%

UserDP-FedAvg-cert (n = 0.5346) 86.45% 85.6% 86.1% 87.05% 87.1% 0% 84.65% 85.2% 86.65% 85.1% 0%

UserDP-FedAvg-cert (n = 0.3205) 85.2% 83.4% 85.25% 84.5% 85.35% 0.35% 82.35% 84.95% 84.2% 85.6% 0%

(a) MNIST (k=4) (b) CIFAR (k=4)
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Figure 12: Certi�ed attack ine�cacy of UserDP-FedAvg with di�er-
ent n under backdoor attack.

B.2.6 Robustness Evaluation on 10-class Classification. Here we

report the robustness evaluation of user-level DPFL under backdoor

attacks on 10-class classi�cation problems. Figure 13 presents the

certi�ed accuracy under di�erent n . We observe the interplay be-

tween n and certi�ed accuracy onMNIST. On CIFAR, larger : can be

certi�ed with smaller n . The certi�ed K is relatively small because

we set large n to preserve a reasonable accuracy for 10-class classi-

�cation. Our results suggest that advanced DP mechanisms would

be preferred to provide tighter privacy guarantees (i.e., smaller n)

while achieving a similar level of accuracy. In terms of certi�ed

attack ine�cacy, as shown in Figure 14 and Figure 15, the trends

are similar to the 2-class results in Figure 7 and Figure 4,

(a) MNIST (k=4) (b) CIFAR (k=4)
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Figure 13: Certi�ed accuracy of FL UserDP-FedAvg on 10-class clas-
si�cation.
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Figure 14: Lower bound of : on 10-class classi�cation under user-
level n given attack e�ectiveness g .
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(a) MNIST BKD (n = 0.67) (b) CIFAR BKD (n = 0.12) (c) MNIST BKD : = 3 (d) CIFAR BKD : = 1
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Figure 15: Certi�ed attack ine�cacy of UserDP-FedAvg on 10-class classi�cation given the di�erent number of malicious instances : (a)(b) and
di�erent n (c)(d).

C PROOFS OF CERTIFIED ROBUSTNESS
ANALYSIS

We restate our De�nition 2 here.

De�nition 2 (Group DP). For mechanismM that satis�es (n, X)-
DP, it satis�es (:n, 1−4ġĊ1−4Ċ X)-DP for groups of size : . That is, for any
3, 3′ ∈ D that di�er by : individuals and any � ¦ Θ, it holds that

Pr[M(3) ∈ �] f 4:n Pr
[
M

(
3′

)
∈ �

]
+ 1 − 4:n

1 − 4n X. (2)

Proof. We denote 3 as 30, 3
′ as 3: . 38 di�er 8 individuals with

30. For any 8 ∈ [1, :], 38 and 38−1 di�er by one individual, thus

Pr[" (38−1)] f 4n Pr[" (38 )] + X. (9)

By iteratively applying Eq. (9) : times, we have

Pr[" (30)] f 4:n Pr[" (3: )] + (1 + 4n + 42n + . . . + 4 (:−1)n )X

= 4:n Pr[" (3: )] +
1 − 4:n
1 − 4n X

□

Before we prove Theorem 1, we introduce the following lemma:

Lemma 2. Suppose a randomized mechanismM satis�es user-level

(n, X)-DP. For two user sets � and �′ that di�er by one user, � and

�′ are the corresponding training datasets. For a test input G , for

any 2 ∈ [�] , 52 (M(�), G) ∈ [0, 1] is the class con�dence, then the

expected class con�dence �2 (M(�), G) := E[52 (M(�), G)] meets

the following property:

�2 (M(�), G) f 4n�2 (M(�′), G) + X (10)

Proof. De�ne Θ(0) := {\ : 52 (\, G) > 0}. Then
�2 (M(�), G) = E[52 (M(�), G)]

=

+ 1

0
P [52 (M(�), G) > 0] 30

=

+ 1

0
P [M(�) ∈ Θ(0)] 30

f
+ 1

0

(
4nP

[
M(�′) ∈ Θ(0)

]
+ X

)
30

=

+ 1

0
4nP

[
52 (M(�′), G) > 0

]
30 +

+ 1

0
X30

= 4n�2 (M(�′), G) + X
□

We recall Theorem 1.

Theorem 1 (Certi�ed Prediction under One Adversarial User).
Suppose a randomized mechanism M satis�es user-level (n, X)-
DP. For two user sets � and �′ that di�er by one user, let � and

�′ be the corresponding training datasets. For a test input G , sup-

pose A,B ∈ [�] satisfy A = argmax2∈[� ] �2 (M(�), G) and
B = argmax2∈[� ]:2≠A �2 (M(�), G). Then, it is guaranteed that

� (M(�′), G) = � (M(�), G) = A if:

�A (M(�), G) > 42n�B (M(�), G) + (1 + 4n )X, (5)

Proof. According to Lemma 2,

�A (M(�), G) f 4n�A (M(�′), G) + X (11)

�B (M(�′), G) f 4n�B (M(�), G) + X. (12)

Then

�A (M(�′), G) g
�A (M(�), G) − X

4n
(Because of Eq. 11)

g 42n�B (M(�), G) + (1 + 4n )X − X
4n

(Because of the given condition Eq. 5)

= 4n�B (M(�), G) + X

g 4n
(
�B (M(�′), G) − X

4n

)
+ X
(Because of Eq. 12)

= �B (M(�′), G),
which indicates that the prediction ofM(�′) at G isA by de�nition.

□

Before we prove Theorem 2, we introduce the following lemma:

Lemma 3. Suppose a randomized mechanismM satis�es user-level

(n, X)-DP. For two user sets � and �′ that di�er : users, � and �′ are
the corresponding training datasets. For a test input G , for any 2 ∈ [�]
, 52 (M(�), G) ∈ [0, 1] is the class con�dence, then the expected class

con�dence �2 (M(�), G) := E[52 (M(�), G)] meets the following

property:

�2 (M(�), G) f 4:n�2 (M(�′), G) +
1 − 4:n
1 − 4n X. (13)

and

�2 (M(�′), G) f 4:n�2 (M(�), G) +
1 − 4:n
1 − 4n X.
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Proof. De�ne Θ(0) := {\ : 52 (\, G) > 0}. Then

�ę (M(� ), G ) =
+ 1

0
P [ 5ę (M(� ), G ) > 0] 30

=

+ 1

0
P [M(� ) ∈ Θ(0) ] 30

f
+ 1

0

(
4ġĊP

[
M(� ′ ) ∈ Θ(0)

]
+ 1 − 4ġĊ

1 − 4Ċ X

)
30

(Because of Group DP property in De�nition 2)

=

+ 1

0
4ġĊP

[
5ę (M(� ′ ), G ) > 0

]
30 +

+ 1

0

1 − 4ġĊ
1 − 4Ċ X30

= 4ġĊ�ę (M(� ′ ), G ) +
1 − 4ġĊ
1 − 4Ċ X

Similarly, due to the symmetric property of adjacent datasets in the DP

de�nition (De�nition 1) and Group DP de�nition (De�nition 2), � and � ′

are interchangeable, and therefore we have

�ę (M(� ′ ), G ) =
+ 1

0
P

[
5ę (M(� ′ ), G ) > 0

]
30

=

+ 1

0
P

[
M(� ′ ) ∈ Θ(0)

]
30

f
+ 1

0

(
4ġĊP [M(� ) ∈ Θ(0) ] + 1 − 4ġĊ

1 − 4Ċ X

)
30

(Because of Group DP property in De�nition 2)

=

+ 1

0
4ġĊP [ 5ę (M(� ), G ) > 0] 30 +

+ 1

0

1 − 4ġĊ
1 − 4Ċ X30

= 4ġĊ�ę (M(� ), G ) +
1 − 4ġĊ
1 − 4Ċ X

□

We recall Theorem 2.

Theorem 2 (Upper Bound of : for Certi�ed Prediction). Sup-

pose a randomized mechanism M satis�es user-level (n, X)-DP.
For two user sets � and �′ that di�er by : users, let � and

�′ be the corresponding training datasets. For a test input G ,

suppose A,B ∈ [�] satisfy A = argmax2∈[� ] �2 (M(�), G)
and B = argmax2∈[� ]:2≠A �2 (M(�), G), then � (M(�′), G) =

� (M(�), G) = A, ∀: < K where K is the certi�ed number of adver-

sarial users:

K =
1

2n
log

�A (M(�), G) (4n − 1) + X
�B (M(�), G) (4n − 1) + X

(6)

Proof. According to Lemma 3, we have

�A (M(�), G) f 4:n�A (M(�′), G) +
1 − 4:n
1 − 4n X (14)

�B (M(�′), G) f 4:n�B (M(�), G) +
1 − 4:n
1 − 4n X. (15)

We can re-write the given condition : < K according to Eq. (6) as

42:n�B (M(�), G) + (1 + 4:n )
1 − 4:n
1 − 4n X < �A (M(�), G). (16)

Then

�A (M(� ′ ), G ) g
�A (M(� ), G ) − 1−ěġĊ

1−ěĊ X

4ġĊ
(Because of Eq. 14)

>

42ġĊ�B (M(� ), G ) + (1 + 4ġĊ ) 1−ě
ġĊ

1−ěĊ X − 1−ěġĊ
1−ěĊ X

4ġĊ
(Because of the given condition Eq.16)

= 4ġĊ�B (M(� ), G ) +
1 − 4ġĊ
1 − 4Ċ X

g 4ġĊ
©­
«
�B (M(� ′ ), G ) − 1−ěġĊ

1−ěĊ X

4ġĊ
ª®
¬
+ 1 − 4ġĊ

1 − 4Ċ X

(Because of Eq. 15)

= �B (M(� ′ ), G ),

which indicates that the prediction of M(� ′ ) at G is A by de�nition. □

We recall Theorem 3.

Theorem 3 (Attack Ine�cacy with : Attackers). Suppose a ran-

domized mechanism M satis�es user-level (n, X)-DP. For two user
sets � and �′ that di�er : users, � and �′ are the corresponding
training datasets. Let � (�) be the expected attack ine�cacy where

|� (\ ) | f �̄ , ∀\ . Then,

min{4:n � (�) + 4:n − 1
4n − 1 X�̄, �̄} g � (�′)

g max{4−:n � (�) − 1 − 4−:n
4n − 1 X�̄, 0}, if � (·) g 0

min{4−:n � (�) + 1 − 4−:n
4n − 1 X�̄, 0} g � (�′)

g max{4:n � (�) − 4:n − 1
4n − 1 X�̄,−�̄}, if � (·) f 0

(7)

Proof. We �rst consider � (·) g 0. De�ne Θ(0) = {\ : � (\ ) >
0}.

� (�) =
+ �̄

0
P [� (M(�)) > 0] 30

=

+ �̄

0
P [M(�)) ∈ Θ(0)] 30

f
+ �̄

0

(
4:nP

[
M(�′)) ∈ Θ(0)

]
+ 1 − 4:n

1 − 4n X

)
30

(Because of Group DP property in De�nition 2)

=

+ �̄

0
4:nP

[
M(�′)) ∈ Θ(0)

]
30 + 1 − 4:n

1 − 4n X�̄

=

+ �̄

0
4:nP

[
� (M(�′)) > 0

]
30 + 1 − 4:n

1 − 4n X�̄

= 4:n � (�′) + 1 − 4:n
1 − 4n X�̄

i.e.,

� (�′) g 4−:n � (�) − 1 − 4−:n
4n − 1 X�̄.

Switch the role of � and �′, we have

� (�′) f 4:n � (�) + 1 − 4:n
1 − 4n X�̄.
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Also note that 0 f � (�′) f �̄ trivially holds due to 0 f � (·) f �̄ ,

thus

min{4:n � (�) + 4:n − 1
4n − 1 X�̄, �̄} g � (�′)

g max{4−:n � (�) − 1 − 4−:n
4n − 1 X�̄, 0}.

Next, we consider � (·) f 0. De�ne Θ(0) = {\ : � (\ ) < 0}.

� (�) = −
+ 0

−�̄
P [� (M(�)) < 0] 30

= −
+ 0

−�̄
P [M(�)) ∈ Θ(0)] 30

g −
+ 0

−�̄

(
4:nP

[
M(�′)) ∈ Θ(0)

]
+ 1 − 4:n

1 − 4n X

)
30

(Because of Group DP property in De�nition 2)

= −
+ 0

−�̄
4:nP

[
M(�′)) ∈ Θ(0)

]
30 − 1 − 4:n

1 − 4n X�̄

= −
+ 0

−�̄
4:nP

[
� (M(�′)) < 0

]
30 − 1 − 4:n

1 − 4n X�̄

= 4:n � (�′) − 1 − 4:n
1 − 4n X�̄

i.e.,

� (�′) f 4−:n � (�) + 1 − 4−:n
4n − 1 X�̄.

Switch the role of � and �′, we have

� (�′) g 4:n � (�) − 1 − 4:n
1 − 4n X�̄.

Also note that−�̄ f � (�′) f 0 trivially holds due to−�̄ f � (·) f 0,

thus

min{4−:n � (�) + 1 − 4−:n
4n − 1 X�̄, 0} g � (�′)

g max{4:n � (�) − 4:n − 1
4n − 1 X�̄,−�̄}

□

We recall Corollary 1.

Corollary 1 (Lower Bound of : Given g , extended from [50]). Sup-

pose a randomized mechanismM satis�es user-level (n, X)-DP. Let
attack ine�cacy function be � (·), the expected attack ine�cacy be

� (·). In order to achieve � (�′) f 1
g � (�) for g g 1when 0 f � (·) f �̄ ,

or achieve � (�′) f g � (�) for 1 f g f − �̄
� (� ) when −�̄ f � (·) f 0,

the number of adversarial users should satisfy the following:

: g 1

n
log
(4n − 1) � (�)g + �̄Xg
(4n − 1) � (�) + �̄Xg

or : g 1

n
log
(4n − 1) � (�)g − �̄X
(4n − 1) � (�) − �̄X

,

Proof. We �rst consider � (·) g 0. According to the lower

bound in Theorem 3, when �′ and � di�er : users, � (�′) g
4−:n � (�) − 1−4−ġĊ

4Ċ−1 X�̄ . Since we require � (�′) f 1
g � (�), then

4−:n � (�) − 1−4−ġĊ
4Ċ−1 X�̄ f 1

g � (�). Rearranging gives the result.
Next, we consider� (·) f 0. According to the lower bound in The-

orem 3, when �′ and � di�er : users, � (�′) g 4:n � (�) − 4ġĊ−1
4Ċ−1 X�̄ .

Since we require � (�′) f g � (�), then 4:n � (�)− 4ġĊ−1
4Ċ−1 X�̄ f g � (�).

Rearranging gives the result.

□

We note that all the above robustness certi�cation-related proofs

are built upon the user-level (n, X)-DP property and the Group DP

property. According to De�nition 3 and De�nition 4, the de�nition

of user-level DP and instance-level DP are both induced from DP

(De�nition 1) despite the di�erent de�nitions of adjacent datasets.

By applying the de�nition of instance-level (n, X)-DP and follow-

ing the proof steps of Theorem 1, 2, 3 and Corollary 1, we can

derive similar theoretical conclusions for instance-level DP, leading

to Theorem 4 to achieve the certi�ably robust FL given the DP

property.

D CERTIFIED ROBUSTNESS ANALYSIS VIA
RÉNYI DP AND RANDOMIZED SMOOTHING

D.1 Preliminary
We start by providing preliminaries on Rényi Di�erential Pri-

vacy [55] and the 5 -divergence-based randomized smoothing [20],

which is a relaxation of ℓ? -norm-based randomized smoothing [19].

De�nition 5. (Rényi Divergence) For two probability distributions

d and a , the Rényi divergence of order U > 1 is

�U (d ∥a) ≜
1

U − 1
log EG∼a

(
d (G)

a (G)

)U
(17)

De�nition 6. ((U, n',U )-RDP [55]) A randomized mechanismM :

D → Θ with domain D and output set Θ satis�es (U, n',U ) Rényi

Di�erential Privacy (RDP) if for any pair of two adjacent datasets

3, 3′ ∈ D, it holds that

�U (M(3)∥M(3′)) f n',U (18)

De�nition 7. (Group Rényi DP [55]) For mechanismM that satis�es

(U, n',U )-RDP, it satis�es (U/2
: , 3:n',U )-DP for groups of size : . That

is, for any 3, 3′ ∈ D that di�er by : individuals, it holds that

�U/2ġ (M(3)∥M(3′)) f 3:n',U (19)

Lemma 4. (Rényi DP and DP conversion [55]) The mechanismM

that satis�es (U, n',U )-RDP U > 1, also satis�es (n',U +
log 1/X
U−1 , X)-DP

for any 0 < X < 1.

Lemma 5. (Certi�cates for Rényi-divergence [Table 4 of [20]]) Given
two distributions d and a with bounded Rényi divergences (U g 0)
�U (d ∥a) f n',U , and two probabilities ?0 , ?1 that satify ?0, ?1 g 0,
?0 + ?1 f 1, and de�ne the class of speci�cation ( as

( =

{
q : X → {−1, 0, +1} s.t. P

Į∼Ā
[q (G ) = +1] g ?ė, P

Į∼Ā
[q (G ) = −1] f ?Ę

}
.

(20)

It is certi�ed that EG∼a [q (G)] g 0 for all a and q ∈ ( if

n',U f − log (1 − ?0 − ?1 + 2[) ,with [ =
©­«
?
(1−U )
0 + ?

(1−U )

1

2

ª®¬
( 1
1−Ă )

.
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D.2 Main Results on RDP-based Certi�ed
Prediction

We present our main results for certi�ed robustness against FL

poisoning attacks based on Rényi DP (RDP) [55] and Randomized

Smoothing via Rényi Divergence [20]. Theorem 5 states the certi�-

cation under one adversarial user and Theorem 6 further extends

the certi�cation to : adversarial suers.

Theorem 5 (RDP-based Certi�ed Prediction under One Adver-

sarial User). Suppose a randomized mechanism M satis�es user-

level (U, n',U )-RDP, which also satis�es user-level (n',U +
log 1/X
U−1 , X)-

DP, where U > 1 and 0 < X < 1. For two user sets � and �′

that di�er by one user, let � and �′ be the corresponding train-

ing datasets. De�ne the classi�er as ℎ : (\,R3 ) → [�] with the

�nite set of labels [�], and the randomly smoothed classi�er ℎB as

ℎB (M(�), G) := argmax2∈[� ] P[ℎ(M(�), G) = 2]. For a test input

G , suppose that

P[ℎ(M(�), G) = A] g ?0 g ?1 g arg max
2∈[� ]:2≠A

P[ℎ(M(�), G) = 2] .

Then, it is guaranteed that ℎB (M(�′), G) = ℎB (M(�), G) = A if:

n',U f − log
©­­
«
1 − ?0 − ?1 + 2

©­«
?
(1−U )
0 + ?

(1−U )

1

2

ª®¬
( 1
1−Ă )ª®®

¬
.

Theorem 6 (RDP-based Certi�ed Prediction under : Adversarial

User). Using the same setting as in Theorem 5 but let two user sets �

and �′ di�er by : users, and � and �′ be the corresponding training

datasets. Then, it is guaranteed thatℎB (M(�′), G) = ℎB (M(�), G) =

A if:

n',U f −
1

3:
log

©­­­
«
1 − ?0 − ?1 + 2

©­
«
?
(1−U/2ġ )
0 + ?

(1−U/2ġ )

1

2

ª®
¬

(
1

1−Ă/2ġ

)
ª®®®
¬
.

Remark. From Theorem 5 and Theorem 6, we observe that (1)
RDP-based certi�cations are more complex than DP-based certi�-

cations due to the additional tunable parameter, the RDP order U ,

and its foundational Rényi Divergence-based privacy de�nition. (2)
Theorem 6 presents a more intricate RHS, making it challenging to

derive a simple closed-form upper bound K for the certi�ed num-

ber of attackers where : < K, as seen in Theorem 2. Nevertheless,

Theorem 6 can be utilized to perform a binary check for certi�ed ro-

bustness by verifying if the current RDP privacy budget satis�es the

inequality. (3) Di�erent from DP-based certi�cations in Theorem 1

and Theorem 2 that are built upon the expected class con�dence ��
and �� , RDP-based certi�cations are built upon the probability of

model prediction, e.g., the probability of the model predicting a cer-

tain class P[ℎ(M(�), G) = A], where ℎ(M(�), G) is the predicted

class. To compute RDP-based certi�cations in practice, one can also

use Marto Carlo sampling to approximate P[ℎ(M(�), G) = A].

D.3 Proofs
We now provide the proofs for Theorem 5 and Theorem 6 below.

Proof for Theorem 5. Recall that we de�ne the classifer ℎ :

(\,R3 ) → [�] with the �nite set of labels [�], and the randomly

smoothed classifer ℎB as

ℎB (M(�), G) := arg max
2∈[� ]

P[ℎ(M(�), G) = 2], (21)

where G is a test sample, M(�) is the stochastic model trained

from the randomized DP mechanismM on a training dataset � .

For a test input G , suppose that

P[ℎ(M(�), G) = A] g ?0 g ?1 g arg max
2∈[� ]:2≠A

P[ℎ(M(�), G) = 2] .

Therefore, A = ℎB (M(�), G).

Let B = argmax2∈[� ]:2≠A P[ℎ(M(�), G) = 2]. We de�ne the

speci�cation qA,B as follows:

qA,B (M(�)) =



+1 if ℎ(M(�), G) = A

−1 if ℎ(M(�), G) = B

0 otherwise

(22)

Based on the certi�cates for Rényi-divergence in Lemma 5 and

De�nition 6 for Rényi DP, if

n',U f − log (1 − ?0 − ?1 + 2[) ,with [ =
©­«
?
(1−U )
0 + ?

(1−U )

1

2

ª®¬
( 1
1−Ă )

,

and if the mechanismM satis�es (U, n',U )-RDP (U > 1)

�U (M(�)∥M(�′)) f n',U , (23)

it is certi�ed that E[qA,B (M(�′))] = P[ℎ(M(�′), G) = A] −

P[ℎ(M(�′), G) = B] g 0, that is,

P[ℎ(M(�′), G) = A] g P[ℎ(M(�′), G) = B] .

It further implies that

ℎB (M(�′), G) = ℎB (M(�), G) = A.

Finally, we can convert Rényi DP to DP by Lemma 4 □

Proof for Theorem 6. According to the group Rényi DP in Def-

inition 7, the mechanismM that sati�es user-level (U, n',U )-RDP

also sati�es user-level (U/2: , 3:n',U )-RDP for two user sets � and

�′ that di�er by : users. That is,

�U/2ġ (M(�)∥M(�′)) f 3:n',U . (24)

For a test input G , suppose that

P[ℎ(M(�), G) = A] g ?0 g ?1 g arg max
2∈[� ]:2≠A

P[ℎ(M(�), G) = 2] .

Then, according to Lemma 5 and following similar steps in the

proofs of the Theorem 5, if

3:n',U f − log (1 − ?0 − ?1 + 2[) ,

with [ =
©­
«
?
(1−U/2ġ )
0 + ?

(1−U/2ġ )

1

2

ª®
¬

(
1

1−Ă/2ġ

)
,

it is certi�ed that

ℎB (M(�′), G) = ℎB (M(�), G) = A.

□
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