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ABSTRACT

Federated learning (FL) provides an efficient paradigm to jointly
train a global model leveraging data from distributed users. As
local training data comes from different users who may not be
trustworthy, several studies have shown that FL is vulnerable to
poisoning attacks. Meanwhile, to protect the privacy of local users,
FL is usually trained in a differentially private way (DPFL). Thus,
in this paper, we ask: What are the underlying connections between
differential privacy and certified robustness in FL against poisoning
attacks? Can we leverage the innate privacy property of DPFL to
provide certified robustness for FL? Can we further improve the privacy
of FL to improve such robustness certification? We first investigate
both user-level and instance-level privacy of FL and provide formal
privacy analysis to achieve improved instance-level privacy. We
then provide two robustness certification criteria: certified prediction
and certified attack inefficacy for DPFL on both user and instance
levels. Theoretically, we provide the certified robustness of DPFL
based on both criteria given a bounded number of adversarial users
or instances. Empirically, we conduct extensive experiments to
verify our theories under a range of poisoning attacks on different
datasets. We find that increasing the level of privacy protection
in DPFL results in stronger certified attack inefficacy; however, it
does not necessarily lead to a stronger certified prediction. Thus,
achieving the optimal certified prediction requires a proper balance
between privacy and utility loss.
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1 INTRODUCTION

Federated Learning (FL), which aims to jointly train a global model
with distributed local data, has been widely deployed in different
applications, such as finance [81] and medical analysis [14]. How-
ever, the fact that the local data and the training process are entirely
controlled by the local users, who may be adversarial, raises great
concerns from both security and privacy perspectives. In particu-
lar, recent studies show that FL is vulnerable to different types of
training-time attacks, such as model poisoning [8, 24, 67], backdoor
attacks [4, 72, 79], and label-flipping attacks [27].

Several defenses have been proposed to defend against poison-
ing attacks in FL. For instance, various robust aggregation meth-
ods [11, 23, 57, 61, 83] identify and down-weight the malicious
updates during aggregation, or estimate a true “center” of the re-
ceived updates instead of taking a weighted average directly. Other
defenses include robust FL protocols (e.g., clipping [69], noisy per-
turbation [69], and additional evaluation during training [80]) and
post-training strategies (e.g., fine-tuning and pruning [77]) that
repair the poisoned global model. However, as these works mainly
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focus on providing empirical robustness on specific types of attacks,
they have been shown to be vulnerable to newly proposed strong
adaptive attacks [24, 72, 79]. Recently, some certified defenses have
been proposed against poisoning attacks [38, 39, 43, 65, 76], while
they mainly focus on centralized setting.

In the meantime, privacy concerns have motivated FL training,
where the sensitive raw data is kept on local devices without sharing.
However, sharing other indirect information such as gradients or
model updates during the FL training process can also leak sensitive
user information [85]. As a result, approaches based on differen-
tial privacy (DP) [22], homomorphic encryption [66], and secure
multiparty computation [7, 13] have been proposed to protect the
privacy of users in FL. In particular, differentially private federated
learning (DPFL) [28, 53, 56] provides strong privacy guarantees for
user privacy, and has been deployed to real-world FL applications
such as Google’s Gboard [63] and Apple’s Siri [64].

Recent studies observe that differential privacy (DP) is related to
the robustness of ML models. Intuitively, DP is designed to protect
the privacy of individual data, such that the output of an algorithm
should not change much when one individual record is modified.
Hence, the prediction of a DP model will be less impacted by a
small amount of perturbation. Consequently, several studies have
been conducted to provide empirical and certified defenses against
evasion attacks [42, 47, 74] and data poisoning attacks [34, 50] based
on DP properties in the centralized ML setting. Empirical defense
against backdoor attacks [32] based on DP has also been studied in
federated learning without theoretical guarantees [4, 56, 69]. To the
best of our knowledge, despite the widespread use of DP in FL, there
is no study exploring the underlying connections between DP and
certified robustness in FL against poisoning attacks, or providing
certified robustness for DPFL leveraging its privacy properties.

Hence, in this paper, we aim to bridge this gap and answer the
research questions: Can we quantitatively uncover the underlying
connections between differential privacy and the certified robust-
ness of FL against poisoning attacks? Can we improve the privacy
of FL to improve its certified robustness?

To explore and exploit the inherent privacy properties of DPFL
for robustness certifications of FL, we mainly focus on two goals:
(1) conducting thorough privacy analysis of DPFL algorithmso_ver
multiple rounds of training; (2) providing certified robustness of
DPFL as a function of its privacy parameters (e, §) under differ-
ent robustness criteria. In terms of privacy analysis, we revisit
existing DPFL algorithms and provide improved privacy analy-
sis. We investigate user-level DP, which is commonly guaranteed
in cross-device FL to protect the sensitive information of each
user [2, 3, 28, 46, 53], as well as instance-level DP which is more
suitable for cross-silo FL to protect sensitive information in each
data instance [49, 51, 86]. Moreover, we carry out privacy analy-
sis for instance-level DPFL algorithms, and provide an improved
guarantee for FedSGD [52]-based algorithm with privacy ampli-
fication of user and batch subsampling. We also provide a formal
privacy guarantee for FedAvg [52]-based algorithm with parallel
composition [54] considering local privacy budget accumulation
and global privacy budget aggregation over training rounds. In
terms of certified robustness of FL, we introduce two robustness
criteria: certified prediction and certified attack inefficacy, which can
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be adapted to different threat models in DPFL. We prove that user-
level (instance-level) DPFL is certifiably robust against a bounded
number of adversarial users (instances). We also show that our
analysis on certified robustness is agnostic to the type of poison-
ing attack strategies as long as the number of adversarial users or
instances is bounded. Empirically, we quantitatively measure the
relationship between privacy guarantee and the certified robustness
of FL based on different robustness criteria. We present the first set
of certified robustness for DPFL on image datasets MNIST, CIFAR
and text dataset Tweets against various FL poisoning attacks, in-

cluding backdoor attacks [4, 69], distributed backdoor attacks [79],

label-flipping attacks [27], model replacement attacks [4, 8], and

optimization-based model poisoning attacks [67]. From our theo-
retical and empirical results, we provide the following insights:

(1) Certified robustness in terms of certified prediction is influenced
by both the privacy guarantee and model utility. Moderately
strong privacy protection enhances certified prediction, while
overly strong privacy protection can harm. This is potentially
caused by the significant loss of model utility. Thus, optimal
certified prediction is achieved by balancing privacy protection
and utility.

(2) Certified attack inefficacy is always enhanced by stronger pri-
vacy protection. The certified lower bounds of attack inefficacy
are generally tight when the number of poisoned users or in-
stances is small, or the attack strategy is strong.

(3) Different DPFL algorithms yield varying certification robust-
ness under the same privacy guarantee due to distinct training
mechanisms (e.g., per-layer clipping or flat clipping).

(4) Larger FL data heterogeneity leads to a smaller number of toler-
able adversaries for certified prediction, due to degraded utility.

Contributions. In this paper, we take the first step to characterize

the underlying connections between privacy guarantees and cer-

tified robustness in FL. We hope our work can pave the way for
more private and robust FL applications.

e We provide two criteria for certified robustness of FL against
poisoning attacks (Section 4.2).

e Given an FL model satisfying user-level DP, we prove that it
is certifiably robust against arbitrary poisoning attacks with a
bounded number of adversarial users (Section 4.2).

o We revisit two instance-level DPFL algorithms and provide the
improved privacy analysis (Section 5.1). We further prove that
instance-level DPFL is certifiably robust against a bounded num-
ber of poisoning instances during training (Section 5.2).

e We systematically evaluate the certified robustness for user-level
and instance-level DPFL based on two robustness criteria on both
image and text datasets against five types of poisoning attacks.
We provide a series of ablation studies to further analyze the
factors that affect the certified robustness, such as different DPFL
algorithms and data heterogeneity. Our results also indicate that
our certification approach offers strong empirical robustness
when compared to six empirical FL defenses (Section 6).

2 RELATED WORK

2.1 Differentially Private Federated Learning

To guarantee user-level privacy for FL, McMahan et al. [53] in-
troduce user-level DP-FedAvg and DP-FedSGD to train language



Unraveling the Connections between Privacy and Certified Robustness in FL Against Poisoning Attacks

Table 1: Comparison between our work and existing studies
on privacy and robustness in the context of poisoning attacks.

L Empirical Certifed Certifed
Robustness Prediction  Attack Inefficacy

[43,65,73,76] x X X

[34] X X X

[50] X X

[15, 78] X x

[4, 56, 69, 72] X X

Our work

models with millions of users, where the server clips the norm of
each local update, then adds Gaussian noise on the summed update.
User-level DP-FedAvg is also proposed independently by Geyer
et al. [28]. Both of these works calculate the privacy budget via the
moment accountant [1]. In CpSGD [2], each user clips and quantizes
the model update, and adds noise drawn from Binomial distribution,
achieving both communication efficiency and DP. Bhowmick et al.
[9] derive DP for FL via Rényi divergence [55] and study its re-
silience against data reconstruction attacks. Liang et al. [46] utilize
Laplacian smoothing for each local update to enhance model util-
ity. Asoodeh and Calmon [3] propose a different way to calculate
the privacy budget by interpreting each round as a Markov kernel
and quantifying its impact on privacy parameters. Recent studies
propose different regularization and sparsification techniques to
improve utility [17] and leverage sharpness-aware optimizer [25]
to make the model less sensitive to weight perturbation [68].

In terms of instance-level privacy for FL, Dopamine [51] provides
instance-level privacy guarantee for FedSGD [52] where each user
only performs one step of DP-SGD [1] at each FL round. Girgis
et al. [29] introduce variants of instance-level DP-FedSGD with a
trusted shuffler between the server and users to randomly permutes
user gradients for privacy amplification through anonymization.
Nonetheless, both works cannot be applied to the more general set-
ting (e.g., FedAvg [52]) where each user performs multiple steps of
SGD. Zhu et al. [86] privately aggregate the label predictions from
users in a voting scheme and provide DP guarantees on both user
and instance levels. However, it does not allow aggregating the gra-
dients or updates and is thus not applicable to standard FL. Recent
works combine local DP-SGD training of clients with personalized
FL algorithms [48, 49, 58, 82] to address the user heterogeneity
issue in FL and improve privacy-utility tradeoff.

In summary, the above works focus on privacy in FL while leav-
ing its robustness unexplored. Our goal is to uncover the underlying
connections between privacy guarantees with certified robustness.

2.2 Certified Robustness against Evasion
Attacks

Machine learning models are susceptible to test-time evasion at-
tacks [31], and different defenses have been proposed to enhance
the robustness of models and provide certifications to guarantee
consistent predictions under a specified perturbation radius [44].
Pixel-DP [42] first connects DP to certified robustness against ad-
versarial examples by adding noise on the test sample O times and
taking the expectation over the corresponding outputs. Later on,
randomized smoothing [18] is proposed to provide a tight robust-
ness certification. Wang et al. [74] extends Pixel-DP [42] to NLP
tasks, and Liu et al. [47] improves the certification based on Rényi
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DP [55]. However, such an approach of adding noise to test samples
does not guarantee that the training algorithm itself satisfies DP.
In contrast, our certification against poisoning attacks focuses on
DPFL, which requires the training algorithm to satisfy DP. Such
analysis requires careful privacy budget analysis of DPFL models
across multiple training rounds and aggregation.

2.3 Certified Robustness against Poisoning
Attacks

Compared to test-time certifications against evasion attacks, training-
time certifications against poisoning attacks have been less explored
due to the notably different threat models and the complexity of
analyzing model training dynamics, even in a centralized setting.

In centralized setting, current approaches primarily utilize ran-
domized smoothing to certify the model robustness under a bounded
number of poisoned instances. Weber et al. [76] and Rosenfeld et al.
[65] propose to add noise directly to the training dataset, train mul-
tiple models on the randomized datasets, and take majority vote for
the final prediction for certification. Levine and Feizi [43] and Wang
et al. [73] propose to partition a centralized dataset into disjoint
subsets, train an independent model on each partition, and make
majority predictions among all models. However, these certifica-
tions do not apply to FL, where each local model can influence other
users’ local models through periodic global model aggregation, so
the malicious effect of one poisoned local model could spread to
all local models, making the certified robustness in FL a far more
challenging task. To achieve certified robustness in FL, CRFL [78]
clips the aggregated FL model parameters and adds noise, but it
does not consider the properties provided by DPFL. Emsemble [15]
trains numerous FL global models (e.g., 500) on different subsets
of users and takes majority prediction. Similarly, it only leverages
the randomness in user-subsampling and does not consider data
privacy property during training. Our goal is to explore the under-
lying connections between DP properties of DPFL algorithms and
their certified robustness, as well as provide recipes for achieving
higher certified robustness.

Several studies have explored the robustness against poisoning
attacks induced by DP, either in centralized learning or only empir-
ically in FL. Ma et al. [50] first demonstrate that private learners are
resistant to data poisoning for centralized regression models and
analyze the lower bound of attack inefficacy. Here we extend such a
lower bound of attack inefficacy from DP in centralized setting [50]
to user-level DP in FL, and further derive the upper bound of the
attack inefficacy. We also provide certified prediction guarantees
as another robustness certification criterion for general classifica-
tion tasks in FL based on the privacy properties. Meanwhile, some
empirical studies [4, 34, 56, 69] show that DP property can miti-
gate backdoor attacks. For instance, in the centralized setting,
Hong et al. [34] show that the off-the-shelf mechanism DP-SGD [1]
can serve as a defense against poisoning attacks; in FL, [4, 69, 72]
show that bounding the norm and adding Gaussian noise on model
updates can mitigate backdoor attacks. Recently, Naseri et al. [56]
revealed that both user-level DP and instance-level DP can defend
against backdoor attacks empirically with varying levels of pri-
vacy protection. However, none of these studies provides certified
robustness guarantees for DPFL or characterizes the quantitative
relationships between privacy guarantees and certified robustness
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in FL. In contrast, our work offers robustness certifications, which
can be represented as a function of DP parameters (¢, §) based on
different robustness criteria. We provide an overall comparison
between our work and existing studies in Table 1.

3 PRELIMINARIES

We start by providing some background on Differential Privacy
(DP) and Federated Learning (FL).

Differential Privacy. DP provides a mathematically rigorous guar-
antee for privacy, which ensures that the output of a random al-
gorithm is close no matter whether an individual data record is
included in the input.

Definition 1 ((¢, §)-DP [21]). A randomized mechanism M : D —
© with domain D and output set © satisfies (e, 5)-DP if for any pair
of two adjacent datasets d,d’ € D, and for any possible (measurable)
output set E C ©, it holds that

Pr[M(d) € E] < e“Pr[M (d) € E] +6. 1)

Group DP follows immediately Definition 1, where the privacy
guarantee decreases with the size of the group.

Definition 2 (Group DP). For mechanism M that satisfies (e, 5)-
DP, it satisfies (ke, 11__6:66 8)-DP for groups of size k. That is, for any
d,d’ € D that differ by k individuals and any E C O, it holds that

ke
Pr[M(d) € E] < ek€ pr [M(d') e E] + 11_ ¢

5. ()

— e€

Federated Learning. The standard instantiation of FL is FedAvg [52],
which trains a shared global model in FL without directly accessing
the local training data of users. We consider an FL system consisting
of N users, with B representing the set of all users (i.e., B := [N])
and D := {Dy,...,Dn} denoting the union of local datasets across
all users. At round ¢, the server sends the current global model
wt—1 to users in the selected user set U, where |U;| = m = gN
and g is the user sampling probability. Each selected user i € U;
then locally updates the model for E local epochs with its dataset
D; and learning rate n to obtain a new local model. Then, the user
sends the local model updates Awi to the server. Finally, the server
aggregates over the updates from all selected users into the new
global model: w; = wy—1 + % 2ieU; Aw;.

4 USER-LEVEL DP AND CERTIFIED
ROBUSTNESS

4.1 User-level DP and Background

Definition 1 leaves the definition of adjacent datasets flexible, which
is application-dependent. When DP is used for the privacy protec-
tion of individual users, the adjacency relation is defined as that
differing by data from one user [53].

Definition 3 (User-level (¢, 5)-DP). Let B, B’ be two user sets. Let D
and D’ be the datasets that are the union of local training examples
from all users in B and B', respectively. Then, D and D’ are adjacent
if B and B’ differ by one user. The mechanism M satisfies user-level
(e,8)-DP if it meets Definition 1 with D and D’ as adjacent datasets.

Following the standard user-level DPFL [28, 53], we introduce
UserDP-FedAvg (Algorithm 1 in Appendix A). Specifically, at each
round, the server first clips the model update from each user with a
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threshold S such that its #»-sensitivity is upper bounded by S. Next,
the server sums up the updates, adds Gaussian noise sampled from
N(o, 0'282), and takes the average:

1 .
Wi — Wi+ — Z Clip(Aw;, S) +N(0, 0'252) . (3)
m\ :
ieU;
During FL training, the users repeatedly query private datasets
over training rounds; thus, the privacy guarantee composes. We
use the existing accountant [75] based on Rényi Differential Privacy
(RDP) [55] for a tight privacy budget accumulation over T rounds.

4.2 Certified Robustness of User-level DPFL

4.2.1 Threat Model. We consider there are k adversarial users

(attackers) out of N users.

e Attack Goal: The goal of attackers is to fool the trained FL
global model on the server side with specific attack objectives
(e.g., misclassification).

e Attack Capability: In line with prior works [56, 69], for attacker
capability, we consider the attacker with full control of its local
training data/model. The attacker can arbitrarily manipulate the
features and labels of the local data and modify the weights of
the local model before submitting it to the server. However, the
attacker has no control over the server operations nor over the
local training process of other users. The trusted server conducts
DP-related operations [28], including model update clipping and
noise perturbing, so that the trained FL global model satisfies
user-level DP even in the presence of attackers.

e Attack Strategy: The attacker strategies include backdoor at-
tacks [16, 32], which alter local data to embed a backdoor trigger
with a targeted adversarial label during local training, causing
the FL global model to misclassify any test data with the back-
door trigger as the target label [4, 69, 72, 79]; label flipping at-
tacks [10, 36] which switch the labels of local training data from
one source class to a target class while keeping the data features
unchanged, causing the FL global model to misclassify any test
data from source class to target class [26]; and model poisoning
attacks that directly manipulate local model weights to tamper
global model convergence [24] or amplify the malicious effects
of the attacker’s model updates derived from poisoning data by
scaing the updates by a factor of y [4, 8]. Note that by providing
certified robustness for FL, which is agnostic to the actual attack
strategies, our work is able to explore the worst-case robustness
of FL and its relationship to privacy properties.

We denote B’ as the set of all users, among which k users are

adversarial, and D" := {D’4,...,D’f_1,D’}, Dj41, - - -» DN} as the

corresponding union of local datasets.
Next, we introduce two criteria for robustness certification in

FL: certified prediction and certified attack inefficacy.

4.2.2  Certified Prediction. Consider the classification task with C
classes. We define the classification scoring function f : (©,R9) —
Y€ which maps model parameters § € © and an input data x € R¢
to a confidence vector f(0,x), and fz(6, x) € [0, 1] represents the
confidence of class ¢c. We mainly focus on the confidence after
normalization, i.e., f(6,x) € Y€ = {p € RSO : |lplli = 1} in the
probability simplex. Since the DP mechanism M is randomized
and produces a stochastic FL global model 8 = M(D)), it is natural
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to resort to a probabilistic expression as a bridge for quantitative
robustness certifications. In particular, we will use the expectation
of the model’s predictions to provide a quantitative guarantee on
the robustness of M. Concretely, we define the expected scoring
function F : (6,R9) — Y€ where F.(M(D),x) = E[fz(M(D),x)]
is the expected confidence for class c. The expectation is taken over
DP training randomness, e.g., random Gaussian noise and random
user subsampling. The corresponding prediction H : (6,R%) — [C]
is defined by

H(M(D),x) := arg Dax, Fe(M(D), x), ©)

which is the top-one class based on expected prediction confidence.
We prove that such prediction allows robustness certification.
Certified Prediction under One Adversarial User. Follow-
ing our threat model above and the DPFL training mechanism
in Algorithm 1, we denote the trained global model exposed to a
poisoned dataset D’ as M (D’). When the number of adversarial
users k = 1, D and D’ are user-level adjacent datasets according to
Definition 3. Given that mechanism M satisfies user-level (e, §)-
DP, based on the DP property, the distribution of the stochastic
model M(D’) is “close” to the distribution of M (D). Intuitively,
according to the post-processing property of DP [21], during testing,
given a test sample x, we would expect the values of the expected
confidence for each class ¢, i.e., F.(M(D’), x) and F.(M (D), x), to
be close, and hence the returned most likely class to be the same,
ie., HWM(D),x) = H(M(D’), x), indicating robust prediction.

Theorem 1 (Certified Prediction under One Adversarial User).
Suppose a randomized mechanism M satisfies user-level (e, 3)-
DP. For two user sets B and B’ that differ by one user, let D and
D’ be the corresponding training datasets. For a test input x, sup-
pose A B € [C] satisfy A = argmaxcc[c] Fe(M(D),x) and
B = argmax;c[c]cza Fe(M(D), x). Then, it is guaranteed that
H(M(D'),x) = HM(D),x) = A if:

Fu(M(D),x) > €2 Fg (M(D),x) + (1+ ¢4, (5)

Proor skeTCH. The proof generalizes the analysis of pixel-
level DP in test-time [42]. Specifically, with DP property for
two FL neighboring datasets, we can lower bound F4 (M(D’), x)
based on Fa (M (D), x), and upper bound Fg (M (D’), x) based on
Fg(M(D), x). When the lower-bound of Fs (M (D’), x) is strictly
higher than the upper-bound of Fg (M (D’), x), the predicted class
will be provably A even under poisoning attack. Equation (5) states
the condition for achieving such robustness. Full proofs are in Ap-
pendix C. O

Remark. In Theorem 1, if € is large, i.e., weak privacy guarantee,
such that the RHS of Equation (5) > 1, the robustness condition
cannot hold since the expected confidence Fp (M(D),x) € [0,1].
On the other hand, to achieve small ¢, i.e., strong privacy guarantee,
large noise is required during training, which would hurt model
utility and thus result in a small confidence margin between the
top two classes (e.g., F4 (M(D), x) and Fg (M (D), x)), making it
hard to meet the robustness condition. This indicates that achieving
certified prediction requires a reasonable privacy level e.

Certified Prediction under k Adversarial Users. When the
number of adversarial users k > 1, we resort to group DP. Ac-
cording to Definition 2, given mechanism M satisfying user-level
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(€, 0)-DP, it also satisfies user-level (ke, 11__8:: 8)-DP for groups of

size k. When k is smaller than a certain threshold, leveraging the
group DP property, we would expect that the distribution of the
stochastic model M (D’) is not too far away from the distribution
of M(D) such that they would make the close prediction for a
test sample with high probability. Next, we present the correspond-
ing robustness certificate by studying the sufficient condition of k,
such that the prediction for a test sample is consistent between the
stochastic FL models trained from D and D’ separately.

Theorem 2 (Upper Bound of k for Certified Prediction). Suppose a
randomized mechanism M satisfies user-level (€, §)-DP. For two user
sets B and B’ that differ by k users, let D and D’ be the corresponding
training datasets. For a test input x, suppose A, B € [C] satisfy A =
arg max;c(c] Fe(M(D), x) andB = argmaxcc(cy:cza Fe(M(D), x),
then HLM(D’),x) = H(M(D),x) = A, Yk < K where K is the cer-
tified number of adversarial users:
1 Fa(M(D),x)(e€ —1)+6

K= o3¢ log Fa(M(D),x)(e€ —1) +0 (©)

PRrooOF sKETCH. By solving Theorem 1 combined with Group DP
definition, we derive the above robustness condition. Full proofs
are in Appendix C. O

Remark. (1) In Theorem 2, if we fix Fa(M(D),x) and
Fg(M(D), x), the smaller e of FL can certify larger K. However,
smaller € also induces lower confidence due to the model perfor-
mance drop, thus reducing the tolerable K instead. As a result,
properly choosing € would help to improve the certified robustness
and tolerate more adversaries during training (e.g. certify against
a large K). (2) Theorem 2 provide a unified certification against k
adversarial users built upon €, which remains valid regardless of
how € is achieved. It thus offers the flexibility of choosing various
types of noise, clipping, subsampling strategies, and FL training
algorithms to achieve user-level e. DPFL mechanisms that can re-
tain a larger prediction confidence margin under the same € can
certify a larger K. (3) Theorem 2 is distinct from the maximum
adversarial perturbation magnitude against test-time attacks pro-
vided by Pixel-DP [42] in three important aspects. First, we employ
group DP to provide certifications against a discrete k number of
adversarial users under the threat model of FL poisoning attacks,
while Pixel-DP measures maximum perturbation magnitude us-
ing the £,-norm due to the continuous nature of pixels. Second,
the certification from Pixel-DP is based on the one-time noise in
the direct input perturbation during test time, leading to different
closed-form solutions for different types of noise distributions such
as Laplace and Gaussian. In contrast, Theorem 2 based on € is a
unified certification applicable to any user-level DP FL mechanisms.
Third, the analysis of € in DPFL takes into account more factors
than sorely the noise, such as user subsampling and the privacy
accountant techniques for DP composition over training rounds.

Certified Prediction via Rényi DP. In addition to the theo-
retical guarantees of DP-based certified prediction, we also derive
the certified prediction based on RDP [55] with the randomized
smoothing technique via Rényi Divergence [20] in Appendix D. Yet,
compared to DP-based certifications, RDP-based certifications are
more intricate, due to the additional parameter, RDP order «, and
its foundational Rényi Divergence-based definition, which makes it
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more challenging to derive a straightforward upper bound K as in
Theorem 2. In our main paper, we focus on DP-based certifications
for the convenience of illustration.

4.2.3 Certified Attack Inefficacy. In addition to the certified predic-
tion, we define a bounded attack inefficacy for attacker C: © — R,
which quantifies the difference between the attack performance
of the poisoned model and the attack goal, following [50]. In gen-
eral, the attacker aims to minimize the expected attack inefficacy
J(D’) =E[C(M(D’))] where M(D’) is the global model trained
from poisoned dataset D’, and the expectation is taken over the
randomness of DP training. The inefficacy function can be instan-
tiated according to the concrete attack goal in different types of
poisoning attacks, and we provide some examples below. For in-
stance, in Example 1 of backdoor attack, the attack inefficacy is
defined as the loss of the poisoned FL model 8’ = M (D”) evaluated
on a backdoor testset. During the FL training stage, the attacker
optimizes the poisoned FL model §’ with poisoned training data,
so as to minimize the attack inefficacy C(6”) during the test phase.
The lower the attack inefficacy, the stronger the attack is.

Given a global FL model M (D’) satisfying user-level (e, §)-DP,

we prove the lower bound of the attack inefficacy J(D’) when there
are at most k users. The existence of the lower bound implies that
J(D’) can not be arbitrarily low under the constraint of k adver-
sarial users, i.e., the attack can not be arbitrarily successful, which
reflects the robustness of the trained global model. A higher lower
bound of the attack inefficacy (i.e., less effective attack) indicates a
more certifiably robust global model.
Example 1. (Backdoor attack [32]) C(6’) = % S U8, 2]), where
2] = (xi + Ox,y"), Ox is the backdoor pattern, y* is the target adver-
sarial label. Minimizing J(D’) over model parameters 0" drives the
prediction on test data with backdoor pattern 8y to y*.

Example 2. (Label Flipping attack [10]) C(6") = % S 0,2,
where z; = (x;,y*) and y* is the target adversarial label. Minimizing
J(D’) over model 0" drives the prediction on test data to y*.

Certified Attack Inefficacy under k Adversarial Users. We
discuss our main results on certified attack inefficacy below.

Theorem 3 (Attack Inefficacy with k Attackers). Suppose a ran-
domized mechanism M satisfies user-level (€, §)-DP. For two user
sets B and B’ that differ k users, D and D’ are the corresponding
training datasets. Let J(D) be the expected attack inefficacy where
|C(0)| < C, V0. Then,

eke —1

e€ —1

min{e*€J (D) + 8C,C} > J(D')

_ ,—ke
> max{e_kej(D) - %5@,0}, if C(-)=0

-1
‘ @)

min{e € J(D) + %6@ 0} > J(D)
3 eke -1 _ _
> max{e"¢J(D) — ] 8C,-C}, if C()<0

Proor skeTcH. Theorem 3 contains the lower bound and upper
bound for attack inefficacy. For the lower bound, we generalize the
proof from DP in centralized learning [50] to the user-level DP in FL.
Concretely, we derive the lower bound of J(D’) based on J(D) ac-
cording to the satisfied condition in the Group DP definition for the
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neighboring datasets differing k users. In addition, we prove the up-
per bound by leveraging the symmetric property of DP neighboring
datasets. The full proofs are omitted to Appendix C. O

Remark. In Theorem 3, (1) the lower bounds show to what extent
the attack can reduce J(D’) by manipulating up to k users, i.e.,
how successful the attack can be. The lower bounds depend on
J(D), k, and €. Here J(D) is the attack inefficacy evaluated on the
global model trained from clean dataset D, which is unrelated to
the adversarial users and is only influenced by DPFL mechanism
M. When J(D) is higher (i.e., the clean model M (D) is more ro-
bust), the DPFL model under poisoning attacks M (D’) is more
robust because the lower bounds are accordingly higher; a tighter
privacy guarantee, i.e., smaller €, can also lead to higher robustness
certification as it increases the lower bounds. On the other hand,
with larger k, the attacker ability grows and thus leads to lower
J(D’). (2) The upper bounds indicate the minimal adversarial im-
pact caused by k attackers, demonstrating the vulnerability of DPFL
models in the most optimistic case (e.g., the backdoor pattern is less
distinguishable). (3) Leveraging the above lower bounds, we can
lower bound the minimum number of attackers required to reduce
attack inefficacy to a certain level associated with hyperparameter
7 in Corollary 1.

Corollary 1 (Lower Bound of k Given 7, extended from [50]). Sup-
pose a randomized mechanism M satisfies user-level (e, 5)-DP. Let
attack inefficacy function be C(-), the expected attack inefficacy be
J(-). Inorderto achieve J(D") < %](D)forf > 1when0 < C(+) < C,

or achieve J(D") < tJ(D) for1 <t < —](LD) when —C < C(+) <0,
the number of adversarial users should satisfy the following:

(e€ = 1) J(D)r + Cé7 . ll (e€ —1) J(D)r - C§
(e€ — 1) J(D) + Cér - (e —=1)J(D)-CS’

k>llog

Proor skeTcH. The proof generalizes the proof of DP in cen-
tralized learning [50] to the user-level DP in FL. Consider the case
0 < C(-) < C, when the lower bound of J(D’) in Theorem 3 is
smaller than the desired attack inefficacy % J(D), the current attack
inefficacy J(D’) will be smaller than the desired attack inefficacy,
ie, J(D’) < %](D), indicating the desired attack effectiveness
under k adversarial users. Corollary 1 states the aforementioned
condition. The full proofs are omitted to Appendix C. O

Remark. Corollary 1 shows that stronger privacy guarantee (i.e.,
smaller €) requires more attackers to achieve the same effect of the
attack, indicating higher robustness.

5 INSTANCE-LEVEL DP AND CERTIFIED
ROBUSTNESS

5.1 Instance-level Privacy

We start by introducing instance-level DP definition that protects
privacy of individual instances, and guarantees that the trained sto-
chastic FL model should not differ much if one instance is modified.
Definition 4 (Instance-level (¢, §)-DP). Let D be the dataset that is
the union of local training examples from all users. Then, D and D’
are adjacent if they differ by one instance. The randomized mechanism
M is instance-level (€, §)-DP if it meets Definition 1 with D and D’
as adjacent datasets.
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Next, we revisit InsDP-FedSGD [51] and InsDP-FedAvg, where
each user adds noise in each training step using DP-SGD [1] when
training its local model based on Fed-SGD and Fed-Avg, respectively.
Then, we formally provide the corresponding privacy analysis.

5.1.1 Instance-level DP for FedSGD. Dopamine [51] provides the
first instance-level DP guarantee for the DP-SGD [1] training of
FedSGD [52]. Although FedSGD performs the user sampling on
the server and the batch sampling in each user during training,
Dopamine neglects the privacy gain provided by random user
sampling, unlike the privacy analysis in user-level DP. There-
fore, we improve the privacy guarantee via privacy amplifica-
tion [1, 6] with user sampling. In addition, we use the Rényi DP
(RDP) accountant [75], instead of the moment accountant [1] used
in Dopamine [51], for a tighter privacy budget analysis, given its
tighter compositions rules based on Rényi divergence [55].
Specifically, in InsDP-FedSGD (Algorithm 2 in Appendix A), each
user updates its local model by one step of DP-SGD [1] to protect the
privacy of each training instance, the randomized mechanism M
that outputs the global model preserves the instance-level DP. The
one-step update for the global model can be described as follows:

Wp — Wpo1 — L Z % Z Clip(VI; (we-15x5), S) +N(0,0252) ,
" i€Ur xjebl
) ®
where b;, is a local batch randomly sampled from the local dataset
of user i, L is the batch size, VI;(w;—1; x;) is the gradient for local
sample x; € b; calculated upon the current FL. model w;_1, and
N (0,052S?) is the Gaussian noise added to the per-sample gradient.
Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability p without replacement, and user sampling prob-
ability q = §; without replacement, FL rounds T, the clipping thresh-
old S, the noise parameter o, the randomized mechanism M in
Algorithm 2 satisfies (Te’(a) + log “T_l - %, 8)-DP with
e(a) = a/(2mo?) where a is the RDP order and

T 2 @ . e(2) _ €2).
po— log(1+(pq) ( 9 )mm{4(e 1),e

€ (a) <

min {2, (ee(w) - 1)2}} + Za:(}’q)j ( l; )e(j_l)e(j) min {2, (ee(m) - 1)j})
=3

Proor skETCH. We use pq to represent instance-level sampling
probability, T to represent FL training rounds, oy/m to represent the
equivalent global noise level. The rest of the proof follows (1) RDP
subsampling amplification [75], (2) RDP composition for privacy
budget accumulation over T rounds based on the RDP composi-
tion [55] and (3) transferring RDP guarantee to DP guarantee based
on the conversion theorem [5]. O

5.1.2  Instance-level DP for FedAvg. Dopamine only allows users
to perform one step of DP-SGD [1] during each FL round, while in
practice, users are typically allowed to update their local models for
many steps before submitting updates to reduce communication
costs. To solve this problem, we introduce InsDP-FedAvg (Algo-
rithm 3 in Appendix A), where each user i performs local DP-SGD
for multiple steps so that the local training mechanism M sat-
isfies instance-level DP. Then, the server aggregates the updates
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by FedAvg. We prove that the global mechanism M preserves
instance-level DP using DP parallel composition theorem [54].

In InsDP-FedAvg, before FL training, local privacy costs
{eé}ie[N] are initialized as 0. At round ¢, if user i is not selected, its
local privacy cost is kept unchanged e; — 6;71 since local dataset
D; is not accessed. Otherwise, user i updates the local model by
running DP-SGD for V local steps with batch sampling probability
p, noise level ¢ and clipping threshold S, and e; is accumulated
upon ei_l via its local RDP accountant. Next, the server aggre-
gates the updates from selected users and leverages the parallel
composition in Proposition 2 to calculate the global privacy cost
€+ = maX;e[N] eg. After T rounds, the mechanism M that outputs
the final FL global model satisfies instance-level (er, §)-DP.

To derive the privacy guarantee for InsDP-FedAvg, we analyze
the privacy cost accumulation for each local model across FL train-
ing rounds, as well as the privacy cost aggregation during model
aggregation on the server side at each round.

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,
during round t, the local mechanism M satisfies (eg, 5i)—DR and
the global mechanism M satisfies (maxiE[N] ei, 5i)—DP.

ProOF SKETCH. When D’ and D differ in one instance, the modi-
fied instance only falls into one user’s local dataset for any ¢ training
round, and thus parallel composability of DP [54] applies. Moreover,
server aggregation does not increase privacy costs due to DP post-
processing property. The local cost €; is only accumulated via the
local RDP accountant. Finally, the privacy guarantee corresponds
to the worst case and is obtained by taking the maximum local
privacy cost across all the users. Proof is in Appendix A. O

Remark. Proposition 2 provides the privacy guarantee for trained
FL global model when users perform local DP-SGD training. To
achieve that, we examine the outcomes from FL local and global
randomized mechanisms and analyze the accumulation of local
privacy costs and subsequent aggregation of global privacy costs
over different training rounds. In the centralized setting, Yu et al.
[84] analyzes disjoint data batching and presents similar results.
Recent studies [48, 49, 82] directly apply the results from [84] for
instance-level DPFL. However, these studies lack a thorough privacy
analysis in the context of FL, and our analysis fills this gap.

5.2 Certified Robustness of Instance-level DPFL

5.2.1 Threat Model. We consider there are in total k poisoned

instances that the same or multiple users could control.

e Attack Goal. The goal of attackers is to mislead the trained
global model to make mispredictions by injecting poisoning data
during local training.

e Attack Capability. In accordance with prior work [56], for
attack capability, we consider that local users, including adver-
saries, follow the DP training protocol to protect data privacy.
That means the adversaries need to follow the training protocol
to sample local data randomly during training. This scenario
is realistic for instance-level DPFL because FL users often run
pre-defined programs [12, 40] that implement DP mechanisms.
For example, according to Bonawitz et al. [12], “If the device has
been selected, the FL runtime receives the FL plan, queries the
app’s example store for data requested by the plan, and computes
plan-determined model updates and metrics.” On the other hand,
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the users have full control over their training data, so they can
arbitrarily manipulate the local training data. Under this setting,
the trained FL model is guaranteed to satisfy instance-level DP.
o Attack Strategy. It includes data poisoning attacks, e.g., back-
door [16, 32] or label-flipping [10, 36]. Our analysis of certified
robustness is agnostic to the specific attack strategy employed.

5.2.2 Certified Robustness. According to the group DP property
and the post-processing property for the FL model with instance-
level (e, §)-DP, we prove that our robust certification results for
user-level DP are also applicable to instance-level DP. Below is the
formal theorem (proof is given in Appendix C).

Theorem 4. Suppose D and D’ differ by k instances, and mechanism
M satisfies instance-level (€, )-DP. The results on user-level DPFL
in Theorem 1, Theorem 2, Theorem 3, and Corollary 1 still hold for
the instance-level DPFL M, D, and D’.

Remark. We analyze the underlying relationship between privacy
and certified robustness under both user-level DPFL and instance-
level DPFL, as well as the relationship between these two levels of
privacy in FL. From the privacy perspective, the same € for these
two different privacy levels signifies different privacy scopes. One
straightforward way to convert instance-level DP to user-level
DP is to use Group DP [22] to incorporate all instances of a user,
which could lead to a loose privacy bound. On the other hand,
a randomized mechanism that satisfies (¢, §) user-level DP also
satisfies (¢, §) instance-level DP based on their definitions. From the
certified robustness perspective, the same € on two different privacy
levels implies different levels of robustness. When considering the
ability to tolerate adversarial poisoning instances, instance-level
DPFL provides rigorous certified robustness as a function of the
number of poisoning instances, while user-level DPFL may indicate
stronger robustness if we consider injecting all poisoning instances
with one user. The user-level DPFL, however, might compromise
the model utility when controlling per-user sensitivity during DP
training. Thus, different types of DPFL mechanisms and algorithms
may be chosen to protect both privacy and robustness considering
several factors such as adversarial strategies, data types, and trained
model sensitivity. Our evaluation on diverse datasets and different
DPFL algorithms in Section 6 will validate our analysis and findings
on both user-level and instance-level DP, as well as provide more
observational insights.

6 EXPERIMENTS

In this section, we conduct the evaluation on three datasets (both
image and text data) for the certified robustness of different DPFL
algorithms against various poisoning attacks to verify the insights
from our theorems. We highlight our main results and present some
interesting findings and ablation studies.

6.1 Experimental Setup

6.1.1 Datasets and Models. We consider three datasets: image
classification on MNIST, CIFAR and text sentiment analysis on
tweets from Sentiment140 [30] (Sent140), which involves classi-
fying Twitter posts as positive or negative. For MNIST, we use a
CNN model with two Conv-ReLu-MaxPooling layers and two lin-
ear layers; for CIFAR, we use the CNN architecture from PyTorch
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Table 2: Dataset description and parameters.

Algorithm Dataset N m E V. batchsize 17 S S C
UserDP-FedAvg MNIST 200 20 10 / 60 0.02 0.7 0.0029 0.5
UserDP-FedAvg CIFAR 200 40 5 / 50 005 1 0.0029 0.2
UserDP-FedAvg Sent140 805 10 1 / 10 03 0.5 0.000001 1.4
InsDP-FedAvg MNIST 10 10 / 25 50 0.02 0.7 0.00001 0.5
InsDP-FedAvg CIFAR 10 10 / 100 50 005 1 0.00001 2

differential privacy library [62] which consists of four Conv-ReLu-
AveragePooling layers and one linear layer. In line with previous
work on DP ML [37, 50] and backdoor attacks [70, 76], we mainly
discuss the binary classification for MNIST (digit 0 and 1) and CIFAR
(airplane and bird) in the main text, and defer their 10-class results
to Appendix B. For Sent140, we use a two-layer LSTM classifier
containing 256 hidden units with pretrained 300D GloVe embed-
ding [60] following [45].

6.1.2 Training Setups. Unless otherwise specified, we split the
training datasets for N FL users in an i.i.d manner for MNIST and
CIFAR. For Sent140, the local datasets are naturally non-i.i.d, where
each Twitter account corresponds to an FL user. We also study
the effect of data heterogeneity degrees on certified robustness by
simulating FL non-i.i.d setting based on Dirichlet distribution [35]
in Section 6.2.3. FL users run SGD with learning rate 7, momen-
tum 0.9, and weight decay 0.0005 to update the local models. The
training parameter setups, including the number of total users N,
the number of selected users per round m, local epochs E, the num-
ber of local SGD steps V, local learning rate 7, batch size, etc., are
summarized in Table 2.

To simulate cross-device settings for UserDP-FedAvg, we follow
the FL settings in previous studies and use Sent140 data with ~ 800
clients [45], and CIFAR/MNIST with 200 clients [52]. To simulate
cross-silo FL settings for InsDP-FedAvg, we train DPFL models on
MNIST and CIFAR with 10 users. Following [53] that use § ~ ﬁ
as privacy parameter, for UserDP-FedAvg we set § = 0.0029 for
MNIST and CIFAR, and § = 0.000001 for Sent140 according to
the total number of users; for InsDP-FedAvg we set § = 0.00001
according the total number of training samples. When training on
CIFAR10, we follow the standard practice for differential privacy [1,
37] that fine-tunes a whole model pre-trained non-privately on
CIFAR100 [41]. We refer the readers to Appendix B for more details
about detailed hyperparameters for differential privacy.

6.1.3 Poisoning Attacks. We evaluate four poisoning attacks
against our DPFL mechanisms, which represent the common threats
in FL research. We consider backdoor attacks (BKD) on image
datasets [4] and label flipping attacks (LF) on image and text
datasets [27] against both levels of DPFL. For InsDP-FedAvg, we
evaluate the worst-case where k backdoored or label-flipped in-
stances are injected into the dataset of one user. For UserDP-FedAvg,
we additionally evaluate the static optimization attacks (STAT-
OPT) [67], which solve the adversarial optimization problem to
find poisoning model updates, as well as distributed backdoor attack
(DBA) [79], which decomposes the backdoor pattern into several
smaller ones and embeds them into different local training sets
for different adversarial users. Moreover, we also consider BKD,
LF, and DBA via model replacement attack [4, 8] where k attack-
ers train the local models using local datasets with « fraction of
poisoned instances, and scale the malicious updates directly with
hyperparameter y, i.e., Aw! < yAw!, before sending them to the
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server. This way, the malicious updates would have a stronger
impact on the FL model. Note that even when attackers perform
scaling after server clipping, the sensitivity of each model update
is still upper-bounded by the clipping threshold S, so the privacy
guarantee of user-level DPFL still holds under poisoning attacks
via model replacement.

Specifically, for the attacks against UserDP-FedAvg, by default,
the local poison fraction is & = 100%, and the scale factor is y = 50.
We use the same parameters setups for all k attackers. In terms
of label flipping attacks, the attackers swap the label of images in
the source class (digit 1 for MNIST; bird for CIFAR; positive for
Sent140) into the target label (digit 0 for MNIST; airplane for CIFAR;
negative for Sent140). In terms of backdoor attacks in MNIST and
CIFAR, the attackers add a triangle pattern in the right lower corner
of the image as the backdoor pattern and swap the label of any
sample with such pattern into the target label (digit 0 for MNIST;
airplane for CIFAR). In terms of distributed backdoor attacks, the
triangle pattern is evenly decomposed and injected by the k attack-
ers. For the attacks against InsDP-FedAvg, the same target classes
and backdoor patterns are used as UserDP-FedAvg.

6.1.4 Evaluation Metrics. We consider two evaluation metrics

based on our robustness certification criteria.

o Certified Accuracy. To evaluate the certified prediction, we cal-
culate certified accuracy, which is the fraction of the test set for
which the poisoned DPFL model makes correct and the same
prediction compared with that of the clean model. The test set
can be either poisoned or clean based on Theorem 2. Given that
the certifications are agnostic to the actual attack strategy, and
certain attacks, such as model poisoning and label flipping, do
not produce poisoned test input samples x, we use the clean
test samples to calculate the certification following the standard
setting of certified robustness in centralized systems [19]. Given
a test set of size n, for the i-th test sample x;, the ground truth
label is y;, the output prediction is ¢; , and the number of ad-
versarial users/instances that can be certifiably tolerated is K;
based on Equation 6. We calculate the certified accuracy given k
adversarial users/instances as % >t e = yiand K; > k}.

e Lower bound of attack inefficacy. To evaluate the certified
attack inefficacy, we calculate the lower bound of attack ineffi-
cacy in Theorem 3: J(D’) = max{e k€ J(D) - 1;5;1;6 5C,0}. This
lower bound represents the cost of the attacker for performing
poisoning attacks. The lower the certified attack inefficacy is, the
less robust the model is. We evaluate the tightness of J(D’) by
comparing it with the empirical attack inefficacy J(D’) under
different attacks.

6.1.5 Robustness Certification with Monte Carlo Approximation.
The robustness certifications presented in our theorems depend on
the expected confidence F. (M (D), x) for class c or expected attack
inefficacy J(D). We take F.(M (D), x) as an example here, and de-
note F.(M(D), x) as F(M) for simplicity. In practice, F(M) is not
directly used for prediction because the true expectation cannot
be analytically computed for deep neural networks. To empirically
verify the insights provided by our theorems, we follow the conven-
tion in prior work on certified robustness [15, 18, 42, 50, 65, 76]
to use F(M), which is a Monte Carlo approximation of F(M) by
taking the average over O models outputs for utility evaluation in
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Figure 1: Certified accuracy of UserDP-FedAvg under different pri-
vacy budgets €.

our experiments. Note that (1) from the DP perspective, increasing
O increases the overall privacy budget as the sampling process
re-accesses the sensitive data and consumes the privacy budget.
Based on standard DP composition theory [21], calculating F(M)
costs Oe privacy budget, where € is the privacy budget consumed
by training one model; (2) From the robustness certification perspec-
tive, the estimation of F(M) will be more accurate with higher
confidence when we use larger O; (3) Using a single model for
prediction is equivalent to computing F(M) with O = 1, leading
to strong privacy protection but low confidence for the robustness
certification.

Specifically, we estimate the expected class confidence by
Fe(M(D),x) = % ZSO=1 f3 to evalute Theorem 2, where each
f3 = fe(M(D),x) is obtained from one DPFL model. Similarly,
we approximate the attack inefficacy to evaluate Theorem 3 and
Corollary 1. We use a relatively large O = 1000 for certified accu-
racy and O = 100 for certified attack inefficacy in experiments so
as to obtain an accurate approximation of the expectation follow-
ing [50] and precisely reveal the connections between the privacy
parameters (€,6) and certified robustness under different criteria.
In Section 6.3.3, we use Hoeffding’s inequality [33] to calibrate the
empirical estimation with confidence level parameter .

6.2 Evaluation Results of User-level DPFL

Here we present our main results on user-level DPFL based on
the certified accuracy under different (1) privacy budget e, (2)
DPFL algorithms, and (3) data heterogeneity degrees; empirical
accuracy under (1) different poisoning attacks and (2) comparison
to empirical FL defenses; certified and empircal attack inefficacy
under (1) different k and poisoning attacks, and (2) different e.
6.2.1 Certified Accuracy under Different €. Figure 1 presents
the user-level certified accuracy under different € by training
UserDP-FedAvg with different noise scale o. (The uncertified accu-
racy of UserDP-FedAvg under non-DP training and DP training is
deferred to Appendix B.1.2.) Since each test sample x; has its own
certified K;, the largest k that an FL model can reach is a threshold
that none of the test samples have a larger K; than it, i.e., K; < k, Vi,
which can be observed as the largest value on the x-axis of Figure 1.
Note that here we calculate the certified K; as the numerical upper
bound in Theorem 2, which could be fractional.

We observe that (1) the largest number of adversaries k can be
certified when € is around 0.6298 (0.1451, 0.2238) on MNIST (CIFAR,
Sent140), which verifies the relationship between € and certified
accuracy as discussed in Section 4.2. In particular, when € is too
large, K; decreases since € is in the denominator of Equation 6;
when € is too small, large noise is added during training, which
hurts the model utility, and the model is not confident in predicting
the top-1 class, thus decreasing the margin between F, and Fp and
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Figure 2: Certified accuracy of UserDP-FedAvg under different user-
level DPFL algorithms with the same €.
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decreasing K;. (2) Additionally, for each fixed k, there is an optimal
€ that yields the maximum certified accuracy due to similar reasons.
For example, to certify k = 2 adversaries, the € with highest certi-
fied accuracy is around 0.6298 (0.2444, 0.2234) on MNIST (CIFAR,
Sent140). (3) Given that there is a € achieving maximal certified
number of adversaries k or yielding the maximum certified accu-
racy under a fixed k, properly choosing € would be important for
certified accuracy. As the optimal € is data/task-dependent, one can
find it automatically as hyperparameter tuning. Our evaluation can
serve as a guide for similar data/tasks to narrow down the search
space of €. (4) We also notice that for certain datasets like CIFAR,
the ideal € for certified accuracy can be small, primarily because
the datasets are inherently difficult to learn. Nevertheless, on sim-
pler datasets like MNIST, using e= 0.6298 to train DPFL models
remains feasible (with 97% clean accuracy) and yields the maximal
certified k ~ 4. When DPFL algorithms offer improved utility and
a larger confidence margin, a larger € can be used to certify the
same k, as indicated in Theorem 2. Moreover, enhanced privacy
accountants that produce a tighter DP bound naturally result in a
smaller € without impacting model utility. As our paper focuses on
deciphering the privacy-robustness interplay, our findings — both
theoretical and empirical — imply opportunities to further improve
the utility of current DPFL algorithms or the tightness of privacy
accountants in order to achieve higher certified robustness for FL.

6.2.2 Certified Accuracy under Different DPFL Algorithms. Given

that our certifications are agnostic to DPFL algorithms (i.e., the

certifications hold no matter how (¢, §) is achieved), we are able

to compare the certified results of different DPFL algorithms given

the same privacy budget e. Specifically, we consider the following

four DPFL algorithms with different clipping mechanisms:

o flat clipping (UserDP-FedAvg) clips the concatenation of all the
layers of model update with the L2 norm threshold S.

o per-layer clipping [53] clips each layer of model update with the
L2 norm threshold S.

e flat median clipping [28] uses the median’ of the norms of clients’
model updates as the threshold S for flat clipping.

o per-layer median clipping [28] uses the median of each layer’s
norms of model updates as threshold S for per-layer clipping.
We defer the detailed experimental parameters to Appendix B.1.3.

As shown in Figure 2, the models trained by different DPFL algo-
rithms satisfying the same € can have different certified robustness
results. The flat clipping is able to certify the largest number of

IStrictly speaking, the median norm information can leak privacy and this slight
looseness would extend to robustness certifications which leverage the DP guarantee.
Nevertheless, the information leakage through the median is small, so median-clipping-
based methods claimed to be DPFL in [28].
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Figure 3: Certified accuracy of UserDP-FedAvg under varying
levels of data heterogeneity. We use Dirichlet distribution
Dir(a) to create FL heterogeneous data distributions, where
smaller o indicates greater heterogeneity.

adversaries k on MNIST; while on CIFAR and Sent140, the median
clipping certifies the largest k instead. Moreover, flat clipping and
per-layer clipping with the same S lead to different certification
results on all datasets, while the results of flat median clipping
and per-layer median clipping are nearly identical on MNIST and
CIFAR. We observe that no clipping mechanism is strictly better
than others on all datasets. This is likely due to the significant dif-
ference in the norm of model updates when training on different
datasets, which consequently affects the effectiveness of different
clipping mechanisms, and thus the DP utility is dataset-dependent.
Under the same DP guarantee ¢, if one DPFL algorithm has higher
utility and is more confident in predicting the ground-truth class,
then it can increase the margin between the class confidences Fy
and Fg in Theorem 2 and lead to a larger certified number of ad-
versaries. Therefore, advanced DPFL protocols that have fewer
clipping constraints or require less noise while achieving the same
level of privacy are favored to improve both utility and certified
robustness. The practitioner can use our certifications to conduct
offline comparisons of different DPFL algorithms under the same
€, and better understand which DPFL algorithm provides better
protection against poisoning attacks before real-world deployment.

6.2.3 Certified Accuracy under Different Data Heterogeneity De-
grees. Recent studies [58, 82] show that DP makes the utility of the
FL global model degraded more under heterogeneous data distri-
butions among users, compared to the i.i.d data setting. Motivated
by those findings, we study the impact of heterogeneity on the
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certified accuracy of DPFL models. We simulate varying levels of
data heterogeneity on MNIST and CIFAR using the Dirichlet dis-
tribution Dir(«a), which create FL heterogeneous data partitions
with different local data sizes and label distributions for users, and
smaller & indicates greater heterogeneity (more non-i.i.d).

From the results in Figure 3, we find that (1) different non-ii.d
degrees have different optimal € and the largest number of adver-
saries can be certified when € is around 0.62, 0.28, 0.41 under the
ii.d, Dir(1), Dir(0.5) settings on MNIST, respectively. The optimal
€ for CIFAR is around 0.14, 0.14, 0.24 under the i.i.d, Dir(1), Dir(0.5)
settings, respectively. (2) Moreover, when FL data is more non-i.i.d,
the largest number of adversaries that can be certified is smaller.
This is mainly because the utility of the global model trained from
the FedAvg-based DPFL degrades when FL data is more non-i.i.d,
leading to a smaller confidence gap between Fy and Fg in The-
orem 2. This suggests that advanced FL algorithms designed for
training more accurate FL models that tackle data heterogeneity
issues can be applied to DPFL settings [49, 58, 82]. By doing so, it
is possible to amplify the class confidences margin between Fu, Fp
under non-i.i.d data and certify a larger k, subsequently improving
both privacy-utility tradeoff and certified robustness.

6.2.4 Empircal Robust Accuracy against State-of-the-Art Poisoning
Attacks. In addition to the robustness certification, our DPFL cer-
tification process that produces prediction based on Equation 4,
exhibits effective robustness empirically against state-of-the-art
poisoning attacks, even without theoretical guarantees. Table 9 in
Appendix B.2.3 show that DPFL certification achieves high empiri-
cal robust accuracy on CIFAR when k = 2, 3, 5, 10 against different
attack strategies including STAT-OPT attacks [67], BKD and LF
attacks boosted by the model replacement strategy [4, 8]. Moreover,
we see that the certified accuracy serves as the lower bound for the
empirical robust accuracy. Details are deferred to Appendix B.2.3.

6.2.5 Comparison to Empirical FL Defenses. Another line of re-
search is to develop empirical defenses such as robust aggregation
mechanisms [11, 23, 27, 57] to detect and remove malicious users.
Compared to empirical FL defenses, our work provides robustness
certifications, while existing studies only offer empirical robust-
ness. One key advantage of our analysis is that our robustness
certifications provide lower bounds for model accuracy or attack
inefficiency against constrained attacks, and such certification is
agnostic to actual attack strategies, which means there are no future
attacks that can break the certification as long as the k is within the

(a) MNIST BKD (€ = 0.43) (b) CIFAR BKD (€ = 0.53)

(c) MNIST LF (€ = 0.40)
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certified range. Conversely, empirical countermeasures are typically
designed against specific types of attacks, leaving them potentially
vulnerable to stronger or adaptive attacks in unknown environ-
ments [24, 72]. Moreover, our certifications are general and uncover
the inherent relations between DPFL and certified robustness, and
DPFL algorithms with better utility or tighter privacy accountants
can further enhance the certification results.

As existing FL defenses do not provide robustness guarantees
and hence cannot be directly compared under our certified cri-
teria, we compare the empirical robust accuracy of our certifica-
tion method with six FL robust aggregations, including Krum [11],
Multi-krum [11], Trimmed-mean [83], Median [83], Bulyan [23],
RFA [61]. Table 9 in Appendix B.2.4 shows that our certification
method achieves similar and even higher robust accuracy than
empirical defenses under the state-of-the-art poisoning attacks on
CIFAR, while our approach can further provide robustness guaran-
tees under different criteria. We defer detailed results and discussion
to Appendix B.2.4.

Moreover, it is worth noting that our certifications still hold
when DPFL is combined with other empirical defense strategies.
Theoretically, in the presence of such defensive mechanisms, the
(€, 8) privacy guarantee holds due to the post-processing property
of DP, and therefore certified robustness guarantee given (e, §)-
DP still holds. Combining DPFL with other robust aggregations
would further enhance the empirical robustness, which remains an
interesting future direction.

6.2.6 Computational Overhead and Overall Privacy Costs of Ro-
bustness Certifications. Our robustness certifications are based on
DPFL, and we do not impose additional operations for DPFL, so
the certifications are applicable for practical FL scenarios where
the DPFL algorithm is implemented [63]. The major overhead of
our certifications comes from re-training the DPFL algorithm O
times for Monte-Carlo approximation (see Section 6.1.5). Notably,
retraining is a common requirement when providing certifications
against poisoning attacks [65, 76]. In addition, the multiple runs of
re-training are parallelizable and can be speeded up with multiple
GPUs. We report the running time for certifications on Sent140 in
Appendix B.2.1. The re-training for Monte-Carlo approximation
also increases the overall privacy costs, as discussed in Section 6.1.5.
In practice, one can adjust O to prioritize robustness (i.e., a larger
O for higher certification confidence), or privacy (i.e., a smaller
O for fewer times of re-training). As a result, certified robustness

(d) CIFAR LF (€ = 0.59) (e) Sent140 LF (€ = 0.41)
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Figure 4: Certified attack inefficacy of UserDP-FedAvg given different k, under various attacks with different o or y.
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Figure 7: Certified attack inefficacy of UserDP-FedAvg with different
€ (a-c), and the lower bound of k given different € under different
attack effectiveness 7 (d-f).

can be achieved by balancing the privacy budget and robustness
confidence. For example, as shown in Appendix B.2.2, the maximal
certified number of adversaries on CIFAR is k = 4 with the overall
privacy cost 10.15 (calculated by €O) under a confidence level of
80% (details about confidence level are deferred to Section 6.3.3).

6.2.7 Certified Attack Inefficacy under Different k and Different

Poisoning Attacks. To evaluate Theorem 3 and characterize the
tightness of our theoretical lower bound J(D’), we compare it with

the empirical attack inefficacy J(D’) under different local poison
fraction «, attack methods and scale factor y in Figure 4. Note that
when k = 0, the model is benign, so the empirical attack inefficacy
equals the certified one.

(1) When k increases, the attack ability grows, and both the empir-
ical attack inefficacy and theoretical lower bound decrease.

(2) InFigure 4 row 1, given the same k, higher «, i.e., poisoning more
local instances for each attacker, achieves a stronger attack,
under which the empirical J(D) can be achieved and is closer to
the certified lower bound. This indicates that the lower bound
appears tighter when the poisoning attack is stronger.
In Figure 4 row 2, we fix @ = 100% and evaluate UserDP-FedAvg
under different y and attack methods. It turns out that DP serves
as a strong defense empirically for FL, given that J(D) did
not vary much under different y (1,50,100) and different attack
methods (BKD, DBA, LF). This is because the clipping operation
restricts the magnitude of malicious updates, rendering the
model replacement ineffective; the Gaussian noise perturbs the
malicious updates and makes the DPFL model stable, and thus
the FL model is less affected by poisoning instances.

(4) In both rows, the lower bounds are tight when k is small. When
k is large, there remains a gap between our lower bounds and
empirical attack inefficacy under different attacks, suggesting
that there is room for improvement in either devising more
effective poisoning attacks or developing tighter robustness
certification techniques.

3

~

6.2.8 Certified Attack Inefficacy under Different e. We further ex-
plore the impacts of different factors on the certified attack ineffi-
cacy. Figure 7 (a-c) present the empirical attack inefficacy and the
certified attack inefficacy lower bound given different € of user-
level DP. As the privacy guarantee becomes stronger (smaller €),
the model is more robust, achieving higher J(D’) and J(D’). The
results under the BKD attack are omitted to Appendix B.2.5.

In Figure 7 (d-f), we train user-level (¢, §) DPFL models, calculate
corresponding J(D), and plot the lower bound of k given different
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Figure 10: Lower bound of k under instance-level € given attack
effectiveness 7.

attack effectiveness hyperparameter r according to Corollary 1. It
shows that (1) when the required attack effectiveness is higher
(larger 7), more attackers are required. (2) To achieve the same
effectiveness of the attack, a fewer number of attackers is needed
for larger €, which means a DPFL model with weaker privacy is
more vulnerable to poisoning attacks.

6.3 Evaluation Results of Instance-level DPFL

Here, we start by comparing the privacy protection between our
InsDP-FedSGD and Dopamine, and then present certified robust-
ness for InsDP-FedAvg based on certified accuracy under (1) dif-
ferent ¢, (2) given confidence level; and certified attack inefficacy
under (1) different k and attacks, and (2) different e.

6.3.1 Privacy Bound Comparison. We compare InsDP-FedSGD
with Dopamine, both under RDP accountant [55] for convenience of
comparison, to validate the privacy amplification of InsDP-FedSGD
provided by user subsampling. With the same noise level (o = 3.0),
clipping threshold (S = 1.5), and batch sampling probability
(p = 0.4), we calculate the privacy budget under different user
sampling probability ¢ = m/N. Figure 9 shows that InsDP-FedSGD
achieves tighter privacy bound over training rounds. For instance,
at round 200, with ¢ = 10/30, our method (¢ = 0.87) achieves a
much tighter privacy guarantee than Dopamine (e = 2.70), which
comes from user subsampling g < 1, while Dopamine neglects it.

6.3.2 Certified Accuracy under Different e. We report the certified
accuracy of InsDP-FedAvg under different ¢ on MNIST and CIFAR
in Figure 5 (a) and Figure 6 (a). We note that the optimal € that is

able to certify the largest number of poisoned instances k is around
0.3593 for MNIST and 0.6546 for CIFAR. Despite the different FL
setups (e.g., the total number of users) under user/instance DP, we
can approximately compare the certified robustness in terms of the
number of tolerable poisoned instances for the two DP levels under
the same €. When € = 0.4 on MNIST, UserDP-FedAvg can certify a
maximum of k = 5 attackers, translating to a total of roughly 1250
poisoned instances, while InsDP-FedAvg can certify up to k = 12
poisoned instances. Therefore, UserDP-FedAvg can certify many
more poisoned instances under the same e than InsDP-FedAvg,
though with a different privacy scope. We report the (uncertified)
accuracy of InsDP-FedAvg in Appendix B.

6.3.3 Certified Accuracy with a Confidence Level. Here, we
present the certified accuracy with the confidence level for
both user and instance-level DPFL. We use Hoeftding’s inequal-
ity [33] to calibrate the empirical estimation with one-sided
error tolerance ¥, ie., one-sided confidence level 1 — . We
denote the empirical estimation of the class confidence for
class ¢ as Fo(M(D),x) = % Z(?:lfcs. For a test input x, sup-
pose A B € [C] satisfy A = argmaxce[C]FC(M(D),x) and
B = argmaXce[C].c£A F.(M(D),x). For a given error tolerance
Y, we use Hoeffding’s inequality to compute a lower bound

Fp (M(D), x) = Fo (M(D),x) — \ W for A, as well as a up-

per bound Fg (M(D),x) = Fg(M(D),x) + +/ % for B. We
use ¢ = 0.01 (i.e., 99% confidence).

From the results in Figure 8, we observe similar trends between
€ and certified accuracy as in Figure 1, Figure 5 (a) and Figure 6
(a). In general, the largest number of certified adversarial users in
Figure 8 is smaller than the previous results because we calibrate
the empirical estimation, leading to the narrowed class confidence
gap between classes A and B.

6.3.4 Certified Attack Inefficacy under Different k. We report the
certified attack inefficacy of InsDP-FedAvg on MNIST and CIFAR
in Figure 5 and Figure 6. We see that from Figure 5 (b)(c) and
Figure 6 (b)(c), poisoning more instances (i.e., a larger k) induces
lower theoretical and empirical attack inefficacy lower bounds.

6.3.5 Certified Attack Inefficacy under Different €. From Figure 5
(d)(e) and Figure 6 (d)(e), it is clear that instance-level DPFL with a
stronger privacy guarantee ensures higher attack inefficacy both
empirically and theoretically, meaning that it is more robust against
poisoning attacks. In Figure 10, we train instance-level (¢, §) DPFL
models, calculate corresponding J(D), and plot the lower bound of
k given different attack effectiveness hyperparameter 7 according
to Corollary 1. We can observe that fewer poisoned instances are
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required to reduce the J(D’) to a similar level for a less private
DPFL model, indicating that the model is easier to be attacked.

7 DISCUSSION & CONCLUSION

In this work, we take the first step to characterize the connections
between certified robustness against poisoning attacks and DP in
FL. We introduce two certification criteria, based on which we
prove that an FL model satisfying user-level (instance-level) DP is
certifiably robust against a bounded number of adversarial users
(instances). We also provide formal privacy analysis to achieve
improved instance-level privacy. Through comprehensive evalua-
tions, we validate our theories and establish a general measurement
framework to assess the certified robustness yielded by DPFL.

Limitations & Future Work. One limitation of our work is
that we focus on the “central” DP with a trusted server for user-
level DPFL, where the FL server clips and adds noise, as opposed to
a “local” DP setting, where each client clips and adds their noise
locally [56]. While we follow [28, 53] to consider a trusted server in
the central DP regime, it offers weaker privacy protection than local
DP, since the privacy guarantee does not hold against the server
who can see raw client updates. It would be interesting to further
extend the analysis to FL with local DP guarantees. Another limi-
tation is that our certifications could add computational overhead.
Certifying training-time robustness necessitates training multiple
models, demonstrated in prior certification studies [65, 76], though
this can be accelerated using parallelization and multiple GPUs.

The future directions include (1) extending our analysis to
more complicated DP settings, such as scenarios where only non-
attackers apply local DP in FL while attackers do not [56]; (2) com-
bining DPFL with robust FL aggregations to further boost robust-
ness; (3) investigating the certified robustness of advanced FL al-
gorithms [17, 58, 68] that would maintain higher utility under DP
in non-IID data settings; (4) developing tighter privacy accountant
techniques over FL training to improve the certified robustness
from the DP theory perspective; (5) investigating advanced model
architectures and pretraining techniques to further improve the
certified robustness of DPFL. We hope our work will help provide
more insights into the relationships between privacy and certified
robustness in the context of FL, paving the way for more secure
and privacy-preserving FL applications in practice.
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The Appendix is organized as follows:
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e Appendix A provides the proofs for the privacy guarantees
of our DPFL algorithms.

e Appendix B provides more details on experimental setups
and the additional experimental results on robustness certi-
fications.

e Appendix C provides the proofs for the certified robustness-
related analysis, including Definition 2, Theorem 1, Theo-
rem 2, Theorem 3, Theorem 4 and Corollary 1.

e Appendix D provides the theoretical results and correspond-
ing proofs for certified robustness against FL poisoning at-
tacks derived from Rényi DP and Randomized Smoothing
via Rényi Divergence.

A DIFFERENTIALLY PRIVATE FEDERATED
LEARNING

We first present all the notations used in our paper in Table 3.

A.1 UserDP-FedAvg

To calculate the privacy costs for Algorithm 1, existing works utilize
moments accountant [1] for privacy analysis [28, 53]. We note that
Rényi Differential Privacy (RDP) [55] supports a tighter composi-
tion of privacy budget than the moments accounting technique for
DP [55]. Therefore, we utilize RDP [55] to perform the privacy anal-
ysis in Algorithm 1. Specifically, M.accum_priv_spending() is the
call on RDP accountant [75], and M.get_privacy_spent() transfers
RDP guarantee to DP guarantee based on the RDP to DP conversion
theorem of [5].

A.2 InsDP-FedSGD

Here, we present the algorithm InsDP-FedSGD.
Next, we recall Proposition 1 and present its proof.

Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability p without replacement, and user sampling prob-
ability q = §; without replacement, FL rounds T, the clipping thresh-
old S, the noise parameter o, the randomized mechanism M in

Algorithm 2 satisfies (Te'(a) + log 0‘7—1 - bgg%,é)—DP with
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Algorithm 1: UserDP-FedAvg.

Input: Initial model wy, user sampling probability
q, privacy parameter J, clipping threshold S,
noise level o, local datasets Dy, ..., Dy, local
epochs E, learning rate 7.

Output: FL model wr and privacy cost €

2 Server executes:
for each roundt =1to T do

3 m < max(q - N, 1);

4 U; « (random subset of m users);

5 for each useri € U; in parallel do

6 L Aw} « UserUpdate(i, w;—1) ;

7 Wt — Wi—1 +
L (Zicu, Clip(AWL S) + NV (0,0%52));

s | M.accum_priv_spending(o, q,6) ;

9 € = M.get_privacy_spent() ;

10 return wr, €

11 Procedure UserUpdate (i, w;—1)

12 W W1

13 for local epoch e =1 to E do

14 L for batch b € local dataset D; do

15

L w — w —nVi(w;b)

16 Aw; —W—Wi_q;

17 | return Awg
18 Procedure Clip(A,S)
L return A/max (1, @)

=
°

e(a) = a/(2ma?) where a is the RDP order and

e(a) <

. 2| @ ; €(2) _ (),
o log(1+(pq) ( 9 )mln{4(e 1),e

min {2, (ee(‘x’) - 1)2}} + i(pq)j ( (; ) el min{z, (ee(‘x’) - l)j})
=3

Proor. (1) In instance-level DP, we consider the sampling proba-
bility of each instance under the combination of user-level sampling
and batch-level sampling. Since the user-level sampling probability
is q and the batch-level sampling probability is p, each instance
is sampled with probability pq. (2) Additionally, since the sensi-
tivity of instance-wise gradient w.r.t one instance is S, after local
gradient descent and server FL aggregation, the equivalent sensi-

tivity of global model w.r.t one instance is $" = % according to
Eq (8). (3) Moreover, since the local noise is n; ~ A/ (0,525%) , the

“virtual” global noise is n = % Yieu, ni according to Eq (8), so

2 _2¢2 2 _2¢2
n ~ N(0, %) Let % = 0725’2 such that n ~ N(0, 6"25"?).

Since S’ = % the equivalent global noise level is ¢’ 2= o2m,ie,
o’ = oy/m. Then, we use pq to represent instance-level sampling
probability, T to represent FL training rounds, o+/m to represent the
equivalent global noise level. The rest of the proof follows (1) RDP

subsampling amplification [75], (2) RDP composition for privacy
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Table 3: Table of notations.
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Notation ‘ Description

N number of FL users

Dy,...,Dn local datasets of N users

D {D1,...,Dn} clean FL dataset

T total number of communication rounds

n learning rate

E local epochs

q user sampling probability

m number of selected users at each round

Uy selected user set at round t

wi global model at round ¢

Awf local update of client i at round ¢

D’ poisoned FL dataset

k number of adversarial users or adversarial instances

S clipping threshold

I noise level

) DP privacy parameter

€ DP privacy budget

M DPFL training protocol

M(D) clean DPFL model at round T

M(D") poisoned DPFL model at round T

fe(M(D),x) | confidence for class ¢ on test sample x

Fe(M(D),x) | expected confidence for class ¢ on test sample x
H(M(D),x) | prediction, i.e., top-1 class based on the expected confidence
C(M(D")) attack cost on the poisoned model M (D’)

J(D) expected attack cost on the poisoned model M (D’)

C bound on attack cost C(+)

g(xj) clipped gradient for sample x; in InsDP-FedSGD

g noise-perturbed and clipped gradient for sample x; in InsDP-FedAvg
Y scale factor in model replacement attack

(0] number of Monte Carlo samples

1/ one-sided error tolerance in Monte-Carlo sampling

K theoretical upper bound for the number of adversarial users/instances that can satisfy the certified prediction
J(D) theoretical lower bound of the attack cost for poisoned DPFL model based on the certified cost
e(a) RDP parameter

a RDP order

budget accumulation over T rounds based on the RDP composi-
tion [55] and (3) transferring RDP guarantee to DP guarantee based
on the conversion theorem [5]. o

A.3 InsDP-FedAvg

Next, we will first consider the special case of one FL training round
(i.e., T = 1) to showcase the privacy cost aggregation. Then, we
will combine local privacy cost accumulation in each user and the
privacy cost aggregation in the server for the general case with any
t FL rounds. When T = 1, the relationship between the privacy cost
of the local model €/, i € [N] and the privacy cost of global model
€ for one FL training round is characterized in Lemma 1. For the
general case of any ¢ FL rounds, we provide the privacy guarantee
by combing the RDP accountant for the local model and the parallel
composition for the global model in Proposition 2.

Lemma 1 (InsDP-FedAvg Privacy Guarantee when T = 1). In
Algorithm 3, when T = 1, suppose local mechanism M" satisfies
(€',3")-DP, then global mechanism M satisfies (max;e[n €', 6")-
DP.

Proor. We can regard FL as partitioning a dataset D into N
disjoint subsets {D1, Dy, ..., Dn}. N local randomized mechanisms
{M?, ..., MN} are operated on these N parts separately and each
M satisfies its own e!-DP for i € [1, N]. Without loss of generality,
we assume the modified data sample x” (x — x’ causes D — D’) is
in the local dataset of k-th client Dy. Then D, D’ are two neighbor-
ing datasets, and Dy, DI’c are also two neighboring datasets. Consider
a sequence of outcomes (i.e., local model updates) from local mech-
anisms {z1 = MY(D1),z0 = M?(Dg; 1), 23 = M3(D3;21,22), .. .}
The global mechanism consists of a series of linear operators on
the sequence z = M(D) = wo + % Zfil z;. Note that if i-th user is
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Algorithm 2: InsDP-FedSGD.

Algorithm 3: InsDP-FedAvg.

Input: Initial model wy, user sampling probability g, privacy pa-
rameter , local clipping threshold S, local noise level o,
local datasets Dy, ..., Dy, learning rate 7, batch sampling
probability p.

Output: FL model wr and privacy cost €

2 Server executes:
for each roundt =1to T do

3 m «— max(q- N, 1);
4 U; < (random subset of m clients);
5 for each useri € Uy in parallel do

6 L Aw! « UserUpdate (i, w;—1) ;
7 Wt‘_Wtfl"',anieUt Awl;
8 M.accum_priv_spending(\/mo, pq, &)
9 € = M.get_privacy_spent() ;
{0 return wr, e
11 Procedure UserUpdate (i, w;—1)
12 W — W1,
13 bl «—(uniformly sample a batch from D; with probability p =
LD
14 for each x; € b; do
15 g(xj) « VI(w;x;);
g(xj) « Clip(g(x;),S) ;

17 g % (Zj g(xj) + N (o, 0252));

18 we—w—ng;
19 Awp —w—wp_1;
20 return Aw;

Procedure Clip(A,S)
L return A/max (1, “ASHZ)

)
-

N
N

not selected, z; = 0. According to the parallel composition [71], we
have

Pr{M(D) = z]

=Pr[M! (D) = z1] - Pr[M*(Dg; 1) = 22] - - -
Pr[MN (Dys 21, ..., 2N-1) = 28]

< (exp(ek) Pr[ MK (D} 21, .. 2k 1) = 2] + 5’<)

[ [erM (Diiz - zic) = 2]

ik

= exp () Pr[MK (D21, zkm) = 2] [ [ PALM (Disz . zin) = 1)

izk
[ [orlM Disza. o zim0) = 22060
i%k

= exp(ek) Pr[M (D) = z] + n Pr[M!(Di;z1,...,zi1) = 2:]8F

i#k
< exp(eF) PrIM(D’) = 2] + 6F
So M satisfies e-DP when the modified data sample lies in the
subset Dy. Considering the worst case where the modified data

samples are sampled, we derive that M satisfies (max;c|n) €h)-
DP. O

Next, we recall Proposition 2 and present its proof.

Input: Initial model wy, user sampling probability g, privacy param-
eter §, local clipping threshold S, local noise level o, local
datasets D1, ..., Dy, local steps V, learning rate 7, batch sam-
pling probability p.

Output: FL model wr and privacy cost e

Server executes:

for each roundt =1to T do

N

3 m « max(q- N, 1);

4 U; « (random subset of m users);

5 for each useri € U; in parallel do

6 L Awl, €l — UserUpdate (i, wr—1) ;
7 for each useri ¢ U; do

8 L € — e;_l ;

9 W — w1+ % 2ieu, Awy

10 € = ,/\/l.parallelfcomposition({ef}iE[N])
11 € = €T

}2 return wr, €

13 Procedure UserUpdate (i, w;—1)

14 W — w1 ;

15 for each local stepv = 1to V do

16 b «(uniformly sample a batch from D; with probability
p=L/IDil);

17 for each xj € b do

18 g(xj) « Vi(w;x;);

19 g(xj) « Clip(g(x;),S) ;

20 g« %(Zj g(xj) + N (o, 0'252));

21 W w—ng;

22 | M.accum_priv_spending(a, p, 5) ;

23 el = M!.get_privacy_spent() ;

24 Awti —W-—wi_1;

25 return Aw;, el’;

26 Procedure Clip(A,S)
L return A/max (1, ”i‘“z)

S
N

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,
during round t, the local mechanism M" satisfies (e}, 5')-DP, and

the global mechanism M satisfies (maxie[NJ ei, Si)-DP.

Proor. Again, without loss of generality, we assume the modi-
fied data sample x” (x — x” causes D — D) is in the local dataset of
k-th user Dy.. We first consider the case when all users are selected.
At each round t, N mechanisms are operated on N disjoint parts,
and each ./\/l; satisfies its own e’-DP where €’ is the privacy cost for
accessing the local dataset D; for one round (not accumulating over
previous rounds). Let D, D’ be two neighboring datasets (D, Dl’c are
also two neighboring datasets). Suppose zp = M;_1(D) is the ag-
gregated randomized global model at round ¢ — 1, and {z1,...,zN}
are the randomized local updates at round ¢, we have a sequence
of computations {z; = M}(Dlgzo), Zy = M?(Dg; 20,21),23 =
M?(Dg;zo,zl,zz) ...} and z = My(D) = zp + % ZIN zi. We first
consider the sequential composition [22] to accumulate the pri-
vacy cost over FL rounds to gain intuition. According to parallel
composition, we have
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Pr[M;(D) = 2]

N
=Pr[M;-1(D) = zo] - nPr[Mi(Di;Zo,Zl, s zic1) =z

i=1
=Pr[M;—1(D) = zo] - Pr[./\/l];(Dk;zo,zl, s Z_1) = 2k

[ [eriMiDiszo. 21 zimn) = 21
ik
< exp(€;—1) Pr[M;—1(D") = z]
- exp(e) -Pr[/\/l];(D];;zo,zl, s Z—1) = 2k

: HPr[Mi(Di;Zo,Zl, e Zi-1) = zi
i+k
=exp(e—1 + k) - Pr[M,(D’) = 2]

Therefore, M satisfies €;-DP, where €; = €;—1 + k. Because the
modified data sample always lies in Dy over ¢ rounds and €y = 0,
we can have €; = teX, which means that the privacy guarantee of
global mechanism M; is only determined by the local mechanism
of k-th user over t rounds.

Moreover, RDP accountant [75] is known to reduce the privacy
cost from O(t) to O(Vt). We can use this advanced composition,
instead of the sequential composition, to accumulate the privacy
cost for local mechanism M¥X over ¢ FL rounds. In addition, we
consider user selection. As described in Algorithm 3, if the user i is
not selected at round ¢, then its local privacy cost is kept unchanged
at this round.

Take the worst case of where x” could lie in, at round t, M satis-
fies -DP, where €; = max;e[n e;, local mechanism M satisfies
€l-DP, and the local privacy cost €! is accumulated via local RDP
accountant in i-th user over t rounds.

m]

B EXPERIMENTAL DETAILS AND
ADDITIONAL RESULTS

B.1 Experimental Details

B.1.1 Additional Implementation Details. We simulate the feder-
ated learning setup (1 server and N users) on a Linux machine with
Intel® Xeon® Gold 6132 CPUs and 8 NVidia® 1080Ti GPUs. All
code is implemented in Pytorch [59].

B.1.2  Training Details. Next, we summarize the privacy guaran-
tees and clean accuracy offered when we study the certified pre-
diction and certified attack inefficacy, which are also the training
parameters setups when k = 0 in Figure 1, 4, 7, 6, 12, 10, 5.

User-level DPFL. In order to study the user-level certified
prediction under different privacy guarantees, for MNIST, we set
€ to be 0.2808,0.4187,0.6298, 0.8694, 1.8504, 2.8305, 4.8913, 6.9269,
which are obtained by training UserDP-FedAvg FL model for
3 rounds with noise level ¢ = 3.0,2.3,1.8,1.5,1.0,0.8,0.6,0.5,
respectively (Figure 1(a)). For CIFAR, we set € to be
0.1083,0.1179, 0.1451, 0.2444, 0.3663, 0.4527, 0.5460, 0.8781, which
are obtained by training UserDP-FedAvg FL model for one
round with noise level ¢ = 10.0,8.0,6.0,4.0,3.0,2.6,2.3,1.7,
respectively (Figure 1(b)). For Sent140, we set € to be
0.2234,0.2238,0.2247,0.4102,0.579,0.7382,1.7151, which are
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obtained by training UserDP-FedAvg FL model for three rounds
with noise level o = 5,4,3,2,1.7, 1.5, 1, respectively (Figure 1(c)).

The clean accuracy (average over 1000 runs) of UserDP-FedAvg
under non-DP training (¢ = co) and DP training (varying €) on
MNIST, CIFAR, and Sent140 are reported in Table. 4, Table. 5 and
Table. 6 respectively. We note that smaller € results in lower accu-
racy, but we evaluate small € only to study the relationship between
privacy and certified accuracy in Figure 1, so as to show the trade-
off. Such extreme cases are not required for certification. For other
evaluations on our paper (such as Figure 4, Figure 7), we use normal
€ with reasonable clean accuracy.

To certify the attack inefficacy under the different number of
adversarial users k (Figure 4), for MNIST, we set the noise level
o to be 2.5. When k = 0, after training UserDP-FedAvg for T =
3,4, 5 rounds, we obtain FL models with privacy guarantee ¢ =
0.3672,0.4025, 0.4344 and clean accuracy (average over O runs)
86.69%, 88.76%, 88.99%. For CIFAR, we set the noise level o to be
3.0. After training UserDP-FedAvg for T = 3,4 rounds under k = 0,
we obtain FL models with privacy guarantee € = 0.5346, 0.5978 and
clean accuracy 78.63%, 78.46%. For Sent140, we set the noise level
o to be 2.0. After training UserDP-FedAvg for T = 3 rounds under
k = 0, we obtain FL models with privacy guarantee € = 0.4102 and
clean accuracy 58.00%.

With the interest of certifying attack inefficacy under different
user-level DP guarantees (Figure 7, Figure 12), we explore the empir-
ical attack inefficacy, and the certified attack inefficacy lower bound
given different €. For MNIST, we set the privacy guarantee € to be
1.2716,0.8794, 0.6608, 0.5249, 0.4344, which are obtained by training
UserDP-FedAvg FL models for five rounds under noise level
0 =1.3,1.6,1.9,2.2,2.5, respectively, and the clean accuracy for the
corresponding models are 99.50%, 99.06%, 96.52%, 93.39%, 88.99%.
For CIFAR, we set the privacy guarantee € to be
1.600, 1.2127,1.0395.0.8530, 0.7616, 0.6543,0.5978, which are
obtained by training UserDP-FedAvg FL models for four rounds
under noise level ¢ = 1.5,1.8,2.0,2.3,2.5,2.8,3.0, respectively,
and the clean accuracy for the corresponding models are
85.59%, 84.52%, 83.23%, 81.90%, 81.27%, 79.23%, 78.46%. For Sent140,
we use the same set of € as in certified prediction.

Instance-level DPFL. To  certify the prediction for
instance-level DPFL  under different privacy guar-
antees, for MNIST, we set privacy cost € to be
0.2029,0.2251,0.2484, 0.3593, 0.4589, 0.6373, 1.0587, 3.5691,
which are obtained by training InsDP-FedAvg FL models
for 3 rounds with noise level ¢ = 15,10,8,5,4,3,2,1, respec-
tively (Figure 5(a)). For CIFAR, we set privacy cost € to be
0.3158,0.3587,0.4221,0.5130, 0.6546, 0.9067, 1.4949, 4.6978, which
are obtained by training InsDP-FedAvg FL models for one round
with noise level o = 8,7,6,5,4,3,2,1, respectively (Figure 6(a)).
The clean accuracy (average over 1000 runs) of InsDP-FedAvg
under non-DP training (¢ = oo) and DP training (varying €) on
MNIST and CIFAR are reported in Table 7 and Table 8 respectively.

With the aim to study certified attack inefficacy under the dif-
ferent number of adversarial instances k, for MNIST, we set the
noise level ¢ to be 10. When k = 0, after training InsDP-FedAvg
for T = 4 rounds, we obtain FL models with privacy guarantee
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Table 4: Clean accuracy of UserDP-FedAvg on MNIST

o || 0 0.5 0.6

1.0 1.5 1.8 2.3 3.0

e |l o 6.9269 4.8913  2.8305

1.8504 0.8694 0.6298 0.4187 0.2808

Clean Acc. H 99.66% 99.72% 99.69% 99.71% 99.59% 98.86% 97.42% 89.15% 72.79%

Table 5: Clean accuracy of UserDP-FedAvg on CIFAR

o || 0 1.7

2.6 3.0 4.0 6.0

el o 0.8781  0.546

0.4527 0.3663 0.2444  0.1451

Clean Acc. H 81.90% 81.82% 80.09% 79.27% 77.89% 73.07% 64.36%

Table 6: Clean accuracy of UserDP-FedAvg on Sent140

o || 0 1

1.5 1.7 2.0 3.0

el 0 17151

0.7382 0.579 0.4102 0.2247

Clean Acc. || 64.33% 62.64% 60.76% 59.57% 58.00% 55.28%

Table 7: Clean accuracy of InsDP-FedAvg on MNIST

o || 0 1 2

4 5 8 10 15

6H oo 35691 1.0587 0.6373

0.4589 0.3593 0.2484 0.2251 0.2029

Clean Acc. H 99.85% 99.73% 99.73% 99.70% 99.65% 99.57% 97.99% 93.30% 77.12%

Table 8: Clean accuracy of InsDP-FedAvg on CIFAR

o || 0 1 2

4 5 6 7 8

€ H oo 4.6978 1.4949 0.9067

0.6546 0.513 0.4221 0.3587 0.3158

Clean Acc. || 91.15% 87.91% 86.02% 83.85% 8143% 77.59% 72.69% 66.47% 62.26%

€ = 0.2383 and clean accuracy (average over O runs) 96.40% (Fig-
ure 5(b)(c)). For CIFAR, we set the noise level o to be 8.0. After
training InsDP-FedAvg for one round under k = 0, we obtain FL
models with privacy guarantee € = 0.3158 and clean accuracy
61.78% (Figure 6(b)(c)).

In order to study the empirical attack inefficacy and cer-
tified attack inefficacy lower bound under different instance-
level DP guarantees, we set the privacy guarantee € to be
0.5016, 0.311, 0.2646, 0.2318, 0.2202, 0.2096, 0.205 for MNIST, which
are obtained by training InsDP-FedAvg FL models for six
rounds under noise level ¢ = 5,8, 10,13,15,18,20, respec-
tively, and the clean accuracy for the corresponding mod-
els are 99.60%, 98.81%, 97.34%, 92.29%, 88.01%, 80.94%, 79.60% (Fig-
ure 5 (d)(e)). For CIFAR, we set the privacy guarantee € to be
1.261,0.9146,0.7187,0.5923, 0.5038, 0.4385, which are obtained by
training InsDP-FedAvg FL models for two rounds under noise level
0 =3,4,5,6,7,8, respectively, and the clean accuracy for the corre-
sponding models are 84.47%, 80.99%, 76.01%, 68.65%, 63.07%, 60.65%
(Figure 6 (d)(e)).

With the intention of exploring the upper bound for k given
7 under different instance-level DP guarantee, for MNIST, we
set noise level o to be 5,8,10, 13,20, respectively, to obtain
instance-DP FL models after ten rounds with privacy guaran-
tee € = 0.6439,0.3937,0.3172,0.2626,0.2179 and clean accuracy
99.58%, 98.83%, 97.58%, 95.23%, 85.72% (Figure 10(a)). For CIFAR,
we set noise level o to be 3,4,5,6,7,8 and train InsDP-FedAvg
for T = 3 rounds to obtain FL models with privacy guarantee
€ = 1.5365,1.1162,0.8777,0.7238, 0.6159, 0.5361 and clean accuracy
84.34%, 80.27%, 74.62%, 66.94%, 62.14%, 59.75% (Figure 10(b)).

B.1.3  Detailed Setup for Different User-level DPFL Algorihtms. For
MNIST (CIFAR, Sent140), we set € to be 0.6319 (0.5346, 0.4089),
which is obtained by training all DPFL algorithms with the same
noise level o = 2.3 (6 = 3.0, o = 2.0) for same number of rounds. For
flat clipping and per-layer clipping, we set S = 0.7 (S=1,S = 0.5)
on MNIST (CIFAR, Sent140). Except for local epoch E = 1, other FL
parameter setups are the same as in Table 2. We set E = 1 because
we find that the FL model in our experiments can be trained with



Unraveling the Connections between Privacy and Certified Robustness in FL Against Poisoning Attacks

=
o

— €=0.1451

certified accuracy
© o o e
N = [e)] [ee]

o

o
[S)
—
N
w
IS
w
o
~

Figure 11: Certified accuracy of UserDP-FedAvg on CIFAR
under 80% confidence with €O = 10.15.

median norm clipping approaches [28] only when the number of
the local epoch is small. Recall that in the server aggregation step,
the noise is sampled from N (0, 0'252), so S cannot be too large in
order to keep the amount of noise reasonable and preserve a good
model utility. As more local epoch leads to a larger norm of model
updates, we set the local epoch as 1 to keep the median norm small.

B.2 Additional Experimental Results

B.2.1  Running Time Analysis for the Certifications. Compared to
non-DP FL, the mechanisms introduced by DPFL, i.e., clipping and
noise addition, are low-cost and easy to implement. In our experi-
ments, the averaged running time for each communication round
on Sent140 dataset is 6.06s for FedAvg and 6.11s for UserDP-FedAvg
(averaged over 1000 times), based on a Linux machine with Intel 8
Core i7-7820X CPU and 4 NVidia 2080Ti GPUs. The major overhead
of our certifications comes from re-training the DPFL algorithm O
times for Monte-Carlo approximation (see Section 6.1.5). Notably,
re-training is a common requirement when providing certifications
against poisoning attacks [65, 76]. Also, multiple runs of training
are parallelizable and can be speeded up with multiple GPUs. Given
all trained models and the inference results from each model, run-
ning the certifications (e.g., averaging class confidence, and making
predictions) has negligible costs, which is 0.04s on the Sent140
dataset.

B.2.2  Certifications with Moderate Overall Privacy Budget. Certi-
fied robustness can be achieved under a moderate overall privacy
budget and robustness confidence. As shown in the Figure 11, on
CIFAR, when € = 0.1451 and O = 70, the overall privacy cost is
about €O = 10.15. Under the confidence level of 80%, the maximal
number of adversaries that can be certified is about k = 4.

B.2.3  Empirical Robust Accuracy against State-of-the-art Poisoning
Attacks. In this section, we evaluate our certification method against
state-of-the-art poisoning attacks and report the empirical accuracy
and certified accuracy. Specifically, we consider the following at-
tacks. Static Optimization (STAT-OPT) attack [67] solves adversarial
optimization problems to find optimal poisoned local model updates.
We consider the “agnostic” setting of STAT-OPT attack, where the
gradients of benign devices and the server’s aggregation algorithm
are unknown to the attacker, based on the attacker’s knowledge of
our settings. We evaluate two variants of STAT-OPT attack: STAT-
OPT (Min-Max) and STAT-OPT (Min-Sum); for details please refer
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to [67]. We also consider backdoor attack (BKD) and label flipping
attack (LF) under model replacement strategy with a scale factor
y to boost malicious local update [4, 8]. For our UserDP-FedAvg
certification approach, denoted as UserDP-FedAvg-cert, the predic-
tion for each test sample is calculated based on Equation 4, and we
train UserDP-FedAvg algorithms O = 100 times for Marto-Carlo
approximation of the expected class confidence in Equation 4.

From Table 9, we see that the empirical robust accuracy of our
certification method on CIFAR is high and remains stable in the
presence of k = 2,3, 5, 10 attackers under various attacks (i.e., less
than 1%~2% accuracy drop compared with the no-attacker setting).
It shows that our DPFL certification is empirically robust against
poisoning attacks.

Table 9 also shows that the certified accuracy of UserDP-FedAvg-
cert serves as the lower bound for its empirical robust accuracy. We
notice that under relatively strong attack settings such as k = 5, 10,
our DPFL certification cannot provide non-trivial certified accuracy.
Nevertheless, our DPFL certification approach still exhibits strong
empirical effective robustness, even without theoretical guarantees.
The gap between certified robust accuracy and empirical robust ac-
curacy indicates potential advancements either in crafting stronger
poisoning attacks to further reduce empirical robust accuracy, or in
developing tighter robustness certification techniques to improve
theoretical lower bound.

B.2.4 Comparison to Empirical FL Defenses. Here, we compare
the empirical robust accuracy of our certification method with
six FL robust aggregations, including Krum [11], Multi-krum [11],
Trimmed-mean [83], Median [83], Bulyan [23], RFA [61].

show that our certification method UserDP-FedAvg-cert
achieves similar and even higher accuracy than empirical defenses
under state-of-the-art poisoning attacks, while providing privacy
and robustness guarantees. Specifically, under the optimization-
based attacks STAT-OPT (Min-Max) and STAT-OPT (Min-Sum),
UserDP-FedAvg-cert consistently achieves higher empirical ro-
bust accuracy than other FL robust aggregation methods when
k = 2,3,5,10; under BKD and LF attacks, UserDP-FedAvg-cert ex-
hibits similar robustness as FL robust aggregation methods. Note
that Multi-Krum, Trimmed-mean, and Bulyan require specifying
the number of attackers in their aggregation rules to detect the out-
liers, while our approach does not require such knowledge about
attackers during DPFL training.

We also notice that when € is too small (e.g., € = 0.3205),
UserDP-FedAvg-cert has lower empirical robust accuracy than ro-
bust aggregation defenses. This is mainly because of the noise level
being large during UserDP-FedAvg training to achieve a strong
privacy guarantee, which hurts the utility of the DPFL model, as we
can see in the no-attack setting. Therefore, we recommend adopting
areasonable e with good utility to achieve robustness, as elaborated
in Section 6.2.1.

B.2.5 Additional Robustness Evaluation of User-level DPFL. Here
we further explore the impacts of € on the certified attack inefficacy.
Similar to the results of label flipping attacks in Figure 7 (a-c), the
results of backdoor attacks in Figure 12 show that as the privacy
guarantee becomes stronger, i.e. smaller €, the model is more robust,
achieving higher J(D’) and J(D’).
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Table 9: Comparison of empirical robust accuracy between our certification approach and empirical FL defenses against
state-of-the-art poisoning attacks on CIFAR. “UserDP-FedAvg-cert” denotes our certification approach based on UserDP-FedAvg.
UserDP-FedAvg-cert provides similar or even higher empirical robust accuracy than empirical defenses. The certified accuracy
of UserDP-FedAvg-cert serves as the lower bound for its empirical robust accuracy.

k=2 k=3
Empirical Robust Acc. Certified Empirical Robust Acc. Certified
No Attack STAT-OPT [67]  STAT-OPT[67) BKD[4]  LF[8] Robust Acc.  gTAT.OPT [67] STAT-OPT [67) BKD [4] LF[g] RobustAcc.
(Min-Max) (Min-Sum) (y =100) (y =100) (Min-Max) (Min-Sum) (y =100) (y =100)
FedAvg [52] 88.08% 87.29% 87.35% 65.73% 65.47% / 86.36% 86.55% 58.39% 58.07% /
Median [83] 87.76% 87.09% 87.16% 87.73% 87.74% / 86.22% 86.42% 87.74% 87.75% /
Trimmed-mean [83] 88.08% 87.28% 87.35% 87.98% 87.98% / 86.36% 86.55% 87.94% 87.94% /
Krum [11] 85.97% 85.84% 85.96% 85.87% 85.87% / 85.12% 85.4% 85.85% 85.85% /
Multi-Krum [11]% 88.02% 87.23% 87.29% 87.99% 87.99% / 86.31% 86.51% 87.98% 87.98% /
Bulyan [23] 88.02% 87.24% 87.3% 87.93% 87.94% / 86.31% 86.52% 87.89% 87.89% /
RFA [61] 87.97% 87.21% 87.28% 87.94% 87.94% / 86.29% 86.49% 87.96% 87.95% /
UserDP-FedAvg-cert (e = 0.7693) 88.05% 87.65% 88% 88.05% 87.8% 17.65% 87.15% 87.5% 87.8% 87.85% 1.4%
UserDP-FedAvg-cert (e = 0.648) 87.35% 87.8% 87.6% 87.9% 87.5% 28.15% 86.45% 87.6% 87.2% 87.6% 4.3%
UserDP-FedAvg-cert (e = 0.5346) 86.45% 86.5% 87% 87.15% 86.8% 37.75% 87.05% 86.65% 87.15% 87.15% 11.45%
UserDP-FedAvg-cert (e = 0.3205) 85.2% 85.15% 86.05% 85.1% 85.7% 48.5% 83.9% 85.85% 85.8% 84.95% 21.85%
k=5 k=10
Empirical Robust Acc. Certified Empirical Robust Acc. Certified
No Attace STAT-OPT [67]  STAT-OPT [67] BKD [4]  LF[s] ROPUSUAC STAT.OPT[67) STAT-OPT[67] BKD[4] ~LF[s] ~RoPustAcc
(Min-Max) (Min-Sum) (y =100) (y = 100) (Min-Max) (Min-Sum) (y =100) (y =100)
FedAvg [52] 88.08% 84.58% 85.75% 54.69% 54.35% / 80.89% 84.52% 51.17% 51.21% /
Median [83] 87.76% 84.5% 85.67% 87.69% 87.69% / 80.86% 84.5% 87.56% 87.56% /
Trimmed-mean [83] 88.08% 84.58% 85.75% 87.8% 87.8% / 80.89% 84.52% 87.44% 87.43% /
Krum [11] 85.97% 83.78% 85% 85.85% 85.85% / 80.62% 84.29% 85.89% 85.88% /
Multi-Krum [11] 88.02% 84.54% 85.72% 87.94% 87.95% / 80.88% 84.52% 87.92% 87.92% /
Bulyan [23] 88.02% 84.54% 85.72% 87.79% 87.79% / 80.88% 84.52% 87.66% 87.66% /
RFA [61] 87.97% 84.54% 85.71% 87.93% 87.93% / 80.87% 84.51% 87.82% 87.82% /
UserDP-FedAvg-cert (e = 0.7693) 88.05% 86.2% 86.35% 87.4% 87.3% 0% 85.25% 86.5% 86.95% 86.75% 0%
UserDP-FedAvg-cert (e = 0.648) 87.35% 86.2% 86.3% 87.15% 87.4% 0% 85.1% 85.75% 86.75% 85.85% 0%
UserDP-FedAvg-cert (e = 0.5346) 86.45% 85.6% 86.1% 87.05% 87.1% 0% 84.65% 85.2% 86.65% 85.1% 0%
UserDP-FedAvg-cert (e = 0.3205) 85.2% 83.4% 85.25% 84.5% 85.35% 0.35% 82.35% 84.95% 84.2% 85.6% 0%
(a) MNIST (k=4) (b) CIFAR (k=4) (a) MNIST (k=4) (b) CIFAR (k=4)
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Figure 12: Certified attack inefficacy of UserDP-FedAvg with differ-
ent € under backdoor attack.

B.2.6 Robustness Evaluation on 10-class Classification. Here we
report the robustness evaluation of user-level DPFL under backdoor
attacks on 10-class classification problems. Figure 13 presents the
certified accuracy under different e. We observe the interplay be-
tween € and certified accuracy on MNIST. On CIFAR, larger k can be
certified with smaller €. The certified K is relatively small because
we set large € to preserve a reasonable accuracy for 10-class classi-
fication. Our results suggest that advanced DP mechanisms would
be preferred to provide tighter privacy guarantees (i.e., smaller €)
while achieving a similar level of accuracy. In terms of certified
attack inefficacy, as shown in Figure 14 and Figure 15, the trends
are similar to the 2-class results in Figure 7 and Figure 4,

Figure 13: Certified accuracy of FL UserDP-FedAvg on 10-class clas-

sification.
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Figure 14: Lower bound of k on 10-class classification under user-

level € given attack effectiveness 7.
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(c) MNIST BKD k = 3
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Figure 15: Certified attack inefficacy of UserDP-FedAvg on 10-class classification given the different number of malicious instances k (a)(b) and

different € (c)(d).

C PROOFS OF CERTIFIED ROBUSTNESS
ANALYSIS

We restate our Definition 2 here.

Definition 2 (Group DP). For mechanism M that satisfies (€, 5)-
DP, it satisfies (ke, 1{_%?5) -DP for groups of size k. That is, for any
d,d’ € D that differ by k individuals and any E C O, it holds that
1— ke
Pr[M(d) € E] < ¢ Pr [ M (d') € E| + - -
—e
Proor. We denote d as dy, d’ as d. d; differ i individuals with
dp. For any i € [1,k], d; and d;_1 differ by one individual, thus

Pr[M(dj—1)] < €€ Pr[M(d;)] + 6. 9)
By iteratively applying Eq. (9) k times, we have
Pr[M(do)] < eX PrM(dy)] + (1+ €€ +€*€ + ...+ kD)5

5. @

1 eke

1—e€

= ek Pr[M(dy)] + 5

O
Before we prove Theorem 1, we introduce the following lemma:

Lemma 2. Suppose a randomized mechanism M satisfies user-level
(e,8)-DP. For two user sets B and B’ that differ by one user, D and
D’ are the corresponding training datasets. For a test input x, for
anyc € [C], fe(M(D),x) € [0,1] is the class confidence, then the
expected class confidence F.(M(D),x) = E[fe(M(D),x)] meets
the following property:

F.(M(D),x) < e Fe(M(D'),x) + 6 (10)
Proor. Define O(a) := {0 : f-(0,x) > a}. Then
Fe(M(D),x) = E[fe(M(D),x)]

1
=/0 B [fs(M(D).x) > a da
=/1P[M(D) € O(a)] da
0

1
< / (eP[M(D') € ©(a)| + 8) da
0

1 1
/ P [fo(M(D),x) > a] da+/ dda
0 0
e Fe(M(D'),x) + 6

We recall Theorem 1.

Theorem 1 (Certified Prediction under One Adversarial User).
Suppose a randomized mechanism M satisfies user-level (e, J)-
DP. For two user sets B and B’ that differ by one user, let D and
D’ be the corresponding training datasets. For a test input x, sup-
pose AB € [C] satisfy A = argmaxcc[c] Fe(M(D),x) and
B = argmaXce[C]icza Fe(M(D), x). Then, it is guaranteed that
H(M(D'),x) = HM(D),x) = A if:

Fu(M(D),x) > e*Fg(M(D), x) + (1 + )8, (5)
ProOF. According to Lemma 2,

Fu(M(D),x) < eFy(M(D'),x) +68 (11)

Fp(M(D’"),x) < e€Fg(M(D),x) + 6. (12)

Then
Fy(M(D),x) -6
eS
S e2Fg(M(D),x) + (1 +€€)5 -6
(Because o%ethe given condition Eq. 5)
= e Fg(M(D),x) +6

S o Fg(M(D’),x) - 8

Fo(M(D'),x)

\%

(Because of Eq. 11)

+6
(Because of Eq. 12)

eE

= Fg (M(D"),x),

which indicates that the prediction of M(D’) at x is A by definition.
m|

Before we prove Theorem 2, we introduce the following lemma:

Lemma 3. Suppose a randomized mechanism M satisfies user-level
(e, 8)-DP. For two user sets B and B’ that differ k users, D and D’ are
the corresponding training datasets. For a test input x, for anyc € [C]
, fe(M(D),x) € [0,1] is the class confidence, then the expected class
confidence Fc(M(D),x) = E[fe(M(D),x)] meets the following
property:

_ ke
Fo(M(D), x) < ek Fo(M(D'), x) + 11 s W)
and
1— eke
Fo(M(D’),x) < e*F.(M(D),x) + —
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Proor. Define ©(a) := {0 : f-(0,x) > a}. Then

1
FC(M<D>,x):/0 PLL(M(D),x) > a] da

:/11@[/\4(1)) c 0(a)] da
0

1 ke , l_eke
s/o (e ]P[M(D)e@(a)]+ﬁ§)da

(Because of Group DP property in Definition 2)

1 ll_eke
=/ ekEP[fC(M(D’),x)>a]da+/ Sda
0 0o 1-e€
1- ke
= e*F (M(D'),x) + 8
1—e€

Similarly, due to the symmetric property of adjacent datasets in the DP
definition (Definition 1) and Group DP definition (Definition 2), D and D’
are interchangeable, and therefore we have

1
Fe(M(D'),x) :/0 P[fe(M(D'),x) > a] da

:/111»[/\/1(1)') € 0(a)] da
0

1 - eke

1
< / (eke]P’ [M(D) € ©a)] + —
0 -e
(Because of Group DP property in Definition 2)

5) da

1 " 19 _ gke
:/ e““P[f.(M(D),x) > a] da+/ ———&da
0 o 1—e€
% 1_eke
= e"“F.(M(D),x) + e S

We recall Theorem 2.

Theorem 2 (Upper Bound of k for Certified Prediction). Sup-
pose a randomized mechanism M satisfies user-level (e, d)-DP.
For two user sets B and B’ that differ by k users, let D and
D’ be the corresponding training datasets. For a test input x,
suppose A,B € [C] satisfy A = argmax.e[c] Fe(M(D),x)
and B = argmax.e[cy.cza Fe(M(D),x), then H(M(D'),x) =
H(M(D),x) = A, Yk < K where K is the certified number of adver-
sarial users:
1 Fpo(M(D),x)(e€ —1)+6

K= e 8 o (MD) 1) (e = 1)+ 0 ©)

PRrROOF. According to Lemma 3, we have

l— ke

FA(M(D),x) < FFu(M(D).x) + ——=8 (1)
L 1— ke
Fg(M(D'),x) < e"“Fg(M(D),x) + g S. (15)

We can re-write the given condition k < K according to Eq. (6) as

1 - eke
8§ < Fx(M(D),x). (16)

e?k€ Fg (M(D), x) + (1 + €¥€)
1—e€

Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Arash Nourian, Sanmi Koyejo, and Bo Li

Then

ke
Fu(M(D),x) - 1756

Fy(M(D"),x) 2 (Because of Eq. 14)

eke
ke ke
e2keFg (M(D),x) + (1+eke) =5 - L=e 5
> eke
(Because of the given condition Eq.16)
1-— eke
= M Fg (M(D),x) + ———8
1-e€
, _ ke
o ke | FEMD),x) - L€=6) 1-eke
e +
- eke 1 — e€

(Because of Eq. 15)
= Fs (M(D"), x),

which indicates that the prediction of M (D’) at x is A by definition. O

We recall Theorem 3.

Theorem 3 (Attack Inefficacy with k Attackers). Suppose a ran-
domized mechanism M satisfies user-level (€, §)-DP. For two user
sets B and B that differ k users, D and D’ are the corresponding
training datasets. Let J(D) be the expected attack inefficacy where
|C(0)| < C, V0. Then,

eke

min{eke](D) +

“1s¢.¢y > J(D)
e —1
ke 1—e ke _ .
> max{e ““J(D) — 66—15@0}, if C()=0

B (7)
_ ,—ke
min{e_kej(D) + %5@0} > J(D")

ke

> max{ekej(D) - eee __11 8C,-C}, if C()<o0

Proor. We first consider C(-) > 0. Define ©(a) = {0 : C(6) >

a}.
c
1) = [P leMD) > al da
0
c
:/ P[M(D)) € ©(a)] da
0
C 1 — eke
< / kP [M(D)) € ©(a)] + 5|da
0 1—e€
(Because of Group DP property in Definition 2)
e} 1—eke
:/ kP [M(D')) € ©(a)] da + sC
0 1—e€
C 1— eke ~
- / kB [CM(D) > a] da+ ~—5C
0 —e
ke ’ 1- ke
=e°J(D") + T 6C
ie.,
B 1-— e—ke ~
J(D") = e7*€J(D) = ———4C.
e€ -1
Switch the role of D and D’, we have
1 — ekE _
J(D') < k€ J(D) + 5C.
1—e€
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Also note that 0 < J(D’) < C trivially holds due to 0 < C(+) < C,
thus

i eke -1 _ _
min{e"“J(D) + ———=6C,C} 2 J(D')
o€ —
B 1— e*ke _
> max{e *¢J(D) - E—5C,0}~
e -1

Next, we consider C(-) < 0. Define ©(a) = {0 : C(0) < a}.
0
J(D) = —/_P[C(M(D)) <alda
-C

0
= —/ "P[M(D)) € O(a)] da
-C

ke
1-e
6|da
€

0
ke ’ -
Z—IC(e P[M(D))e@)(a)]+l_

(Because of Group DP property in Definition 2)
ke
1

0 —
:—/_ekE]P [M(D) € 0(@)] da - ~—*—5¢
-C €

0 ke , 1- ke
:—/_e P[C(M(D')) < a]da— — —5C
-C €

_ ke
= ke j(p’) - 11 _eee Ple

ie.,
1— e—ke ~
J(D') < e*€ (D) + ———6C.
e -1
Switch the role of D and D’, we have
1 eke

J(D) > ek J(D) - 5C.

1-—e€
Alsonote that —C < J(D’) < 0 trivially holds dueto —C < C(+) <0,
thus

A 1— e*ke ~
min{e_ e](D) + 6—1CSC, O} > ](DI)
e€ —
B eke -1 .
> max{e“¢J(D) — - 56C,—C}
e€ —1

We recall Corollary 1.

Corollary 1 (Lower Bound of k Given 7, extended from [50]). Sup-
pose a randomized mechanism M satisfies user-level (e, 5)-DP. Let
attack inefficacy function be C(-), the expected attack inefficacy be
J(). In order to achieve J(D’) < LJ(D) forr > 1 when0 < C(-) < C,
or achieve J(D’) < J(D) for1 <7 < —](LD) when —C < C(-) <0,
the number of adversarial users should satisfy the following:

1 (e€ = 1) J(D)r + Cé7 o1 (e —1) J(D)r - C§

k> —log —log

T e (e€ — 1) J(D) + Cér B (e =1)J(D)-CS°

Proor. We first consider C(-) > 0. According to the lower
bound in Theorem 3, when B’ and B differ k users, J(D’) >

l_e—ks

e ke (D) - " 8C. Since we require J(D’) < %](D), then
e ke (D) - 1;‘?16 5C < %](D). Rearranging gives the result.
Next, we consider C(+) < 0. According to the lower bound in The-

orem 3, when B’ and B differ k users, J(D’) > ek€J(D) — eek:__ll SC.
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Since we require J(D’) < 7J(D), then e¥€ J(D) - eek;__ll 8C < tJ(D).
Rearranging gives the result.
[m]

We note that all the above robustness certification-related proofs
are built upon the user-level (¢, §)-DP property and the Group DP
property. According to Definition 3 and Definition 4, the definition
of user-level DP and instance-level DP are both induced from DP
(Definition 1) despite the different definitions of adjacent datasets.
By applying the definition of instance-level (e, §)-DP and follow-
ing the proof steps of Theorem 1, 2, 3 and Corollary 1, we can
derive similar theoretical conclusions for instance-level DP, leading
to Theorem 4 to achieve the certifiably robust FL given the DP

property.

D CERTIFIED ROBUSTNESS ANALYSIS VIA
RENYI DP AND RANDOMIZED SMOOTHING

D.1 Preliminary
We start by providing preliminaries on Rényi Differential Pri-

vacy [55] and the f-divergence-based randomized smoothing [20],
which is a relaxation of £,-norm-based randomized smoothing [19].

Definition 5. (Rényi Divergence) For two probability distributions
p and v, the Rényi divergence of order a > 1 is

p(x)\*
v(x)

Definition 6. ((@, €g 4)-RDP [55]) A randomized mechanism M :
D — O with domain D and output set © satisfies (a, €R o) Rényi
Differential Privacy (RDP) if for any pair of two adjacent datasets
d,d’ € D, it holds that

Da(pllv) £

: 1 10gEx~v( (17)

o —

Dg(M(d)IM(d)) < era (18)

Definition 7. (Group Rényi DP [55]) For mechanism M that satisfies
(o, €r o) -RDP, it satisfies (o) 2%, SkeR’a) -DP for groups of size k. That
is, for any d,d’ € D that differ by k individuals, it holds that

Dy (M(D)M(d)) < 3Fegq (19)

Lemma 4. (Rényi DP and DP conversion [55]) The mechanism M
that satisfies (e, €g o )-RDP o > 1, also satisfies (€g o + 105_1{5, §)-DP
forany0 <6< 1.

Lemma 5. (Certificates for Rényi-divergence [Table 4 of [20]]) Given
two distributions p and v with bounded Rényi divergences (a > 0)
Dga(pllv) < €Rr o, and two probabilities pq, py, that satify pa, pp > 0,
Ppa + pp < 1, and define the class of specification S as

S= {(f) £X = (-10.41) st P [$(x) =+1] 2 pa, P [$(x) = -1] < pb}.
(20)
It is certified that Ex~y[¢(x)] = 0 forallv and ¢ € S if

pa " +p,

(-a) . (1-a)\ ()
2 ) ’

€Ra < —log (1= pa — pp +2n), with qz(
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D.2 Main Results on RDP-based Certified
Prediction

We present our main results for certified robustness against FL
poisoning attacks based on Rényi DP (RDP) [55] and Randomized
Smoothing via Rényi Divergence [20]. Theorem 5 states the certifi-
cation under one adversarial user and Theorem 6 further extends
the certification to k adversarial suers.

Theorem 5 (RDP-based Certified Prediction under One Adver-
sarial User). Suppose a randomized mechanism M satisfies user-
level (a, €g o)-RDP, which also satisfies user-level (eg o + 1053{5, d)-
DP, where « > 1 and 0 < 8§ < 1. For two user sets B and B’
that differ by one user, let D and D’ be the corresponding train-
ing datasets. Define the classifier as h : (0, RY) — [C] with the
finite set of labels [C], and the randomly smoothed classifier hs as
hs(M(D), x) := arg max e [c] P[A(M(D),x) = c]. For a test input
X, suppose that

P[A(M(D),x) = A] = pg > pp > arg E[rélax AIF’[h(/\/l(D),x) =c].

c

Jie#

Then, it is guaranteed that hy(M(D’), x) = hs(M(D),x) = A if:

pa 7 +p,

€Ra < —log|1—=pa—pp+2 5

(1—a) (1-a) )(1_1,,)

Theorem 6 (RDP-based Certified Prediction under k Adversarial
User). Using the same setting as in Theorem 5 but let two user sets B
and B’ differ by k users, and D and D’ be the corresponding training
datasets. Then, it is guaranteed that hs (M (D’), x) = hg(M(D),x) =
Aif

P 1

1
6R5a5—3—klogl—pa—pb+2 5

(1—ar/2%) )(1—allz’<)
b .

Remark. From Theorem 5 and Theorem 6, we observe that (1)
RDP-based certifications are more complex than DP-based certifi-
cations due to the additional tunable parameter, the RDP order «,
and its foundational Rényi Divergence-based privacy definition. (2)
Theorem 6 presents a more intricate RHS, making it challenging to
derive a simple closed-form upper bound K for the certified num-
ber of attackers where k < K, as seen in Theorem 2. Nevertheless,
Theorem 6 can be utilized to perform a binary check for certified ro-
bustness by verifying if the current RDP privacy budget satisfies the
inequality. (3) Different from DP-based certifications in Theorem 1
and Theorem 2 that are built upon the expected class confidence F4
and Fg, RDP-based certifications are built upon the probability of
model prediction, e.g., the probability of the model predicting a cer-
tain class P[h(M (D), x) = A], where h(M(D), x) is the predicted
class. To compute RDP-based certifications in practice, one can also
use Marto Carlo sampling to approximate P[A(M (D), x) = A].

D.3 Proofs

We now provide the proofs for Theorem 5 and Theorem 6 below.

PRroOOF FOR THEOREM 5. Recall that we define the classifer h :
(6,R9) — [C] with the finite set of labels [C], and the randomly

Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Arash Nourian, Sanmi Koyejo, and Bo Li

smoothed classifer hg as
hs(M(D), x) := arg m[aé(] P[h(M(D),x) =], (21)
ce

where x is a test sample, M(D) is the stochastic model trained
from the randomized DP mechanism M on a training dataset D.
For a test input x, suppose that

P[R(M(D),x) = Al = pg > pp = arg ma
c

P[R(M(D),x) = c].
€[Cl:c2A

Therefore, A = hs(M(D), x).
Let B = argmax;e[c]:cxa P[A(M(D),x) = c]. We define the
specification ¢ p as follows:
+1  if A(M(D),x) = A
$as(M(D)) =1-1 fh(M(D),x) =B (22)
0 otherwise
Based on the certificates for Rényi-divergence in Lemma 5 and

Definition 6 for Rényi DP, if

p{gl—a)+pl(71—a) (=2)

€Ra < —log(1—pa—pp+2n),with n= 5

and if the mechanism M satisfies (a, €g o)-RDP (o > 1)
Da(M(D)IM(D")) < €ra, (23)

it is certified that E[¢p4 g(M(D’))] = P[A(M(D’),x) = A] -
P[A(M(D’),x) = B] > 0, that is,

P[A(M(D’),x) = A] = P[h(M(D’),x) = B].
It further implies that
hs(M(D’),x) = hs(M(D),x) = A.
Finally, we can convert Rényi DP to DP by Lemma 4 O

ProOF FOR THEOREM 6. According to the group Rényi DP in Def-
inition 7, the mechanism M that satifies user-level (a, eg o)-RDP
also satifies user-level (ar/2%, 3keR,a)—RDP for two user sets B and
B’ that differ by k users. That is,

Dy (M(D)|M(D")) < 3Feq. (24)
For a test input x, suppose that

P[A(M(D),x) = A] = pg = pp = arg max P[h(M(D),x) =c].
ce[Cl:c£A

Then, according to Lemma 5 and following similar steps in the
proofs of the Theorem 5, if

3Fepe < —log (1 - pa — pp +21),
p‘(ll—a/Zk) +Pl(,1_a/2k) (Ifal/zk)

with 5=

>

2

it is certified that
hs(M(D"), x) = hs(M(D), x) = A.
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