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Abstract—In this paper, we consider the problem of adaptive
beamforming (ABF) for intelligent reflecting surface (IRS)-
assisted systems, where a single antenna receiver, aided by a
close-by IRS, tries to decode signals from a legitimate transmitter
in the presence of multiple unknown interference signals. Such a
problem is formulated as an ABF problem with the objective of
minimizing the average received signal power subject to certain
constraints. Unlike canonical ABF in array signal processing,
we do not have direct access to the covariance matrix that is
needed for solving the ABF problem. Instead, for our problem,
we only have some quadratic compressive measurements of the
covariance matrix. To address this challenge, we propose a
sample-efficient method that directly solves the ABF problem
without explicitly inferring the covariance matrix. Compared
with the methods which explicitly recover the covariance matrix
from its quadratic compressive measurements, our proposed
method achieves a substantial improvement in terms of sample
efficiency. Simulation results show that our method, using a small
number of measurements, can effectively nullify the interference
signals and enhance the signal-to-interference-plus-noise ratio
(SINR).

Index Terms—Intelligent reflecting surface (IRS), adaptive
beamforming, interference cancellation.

[. INTRODUCTION

In recent years, intelligent reflecting surface (IRS), ak.a.,
reconfigurable intelligent surface (RIS), has emerged as a
revolutionary technology for future wireless communications
[1]-[7], owing to its capability in reshaping the wireless propa-
gation environment. Generally, an IRS comprises of a massive
number of reflecting elements, each capable of independently
introducing a controllable amplitude and phase shift to the
impinging signal [8]. By intelligently adjusting the reflection
coefficients of the IRS, a smart propagation environment can
be created for various purposes, such as boosting system
capacity [9], [10], mitigating user interference [2], enhancing
physical layer security [11], [12], among others.

Most existing studies require accurate channel state in-
formation (CSI) for jointly optimizing the transceiver and
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the IRS’s reflection coefficients. Nonetheless, CSI acquisition
for IRS-assisted systems remains a significant challenge in
practice [13]-[18]. The reasons for this are as follows. Firstly,
the IRS is usually a passive device that cannot transmit or
receive signals and is incapable of signal processing. Secondly,
the number of channel parameters increases linearly with the
number of reflection elements, entailing a substantial amount
of training overhead. Thirdly, full CSI acquisition often incurs
a high computational complexity due to the need of matrix
inversion. Last but not least, in some applications involving
non-cooperative sources, it is almost impossible to acquire the
CSI associated with these non-cooperative signals.

Recently, some efforts have been made to address the
CSI acquisition challenge by leveraging blind beamforming
techniques that do not require CSI [19]-[23]. Specifically,
[19] proposed an approach that determines the ON/OFF states
of each reflecting element based on the conditional sample
mean (CSM) of the received signal power. This method was
further refined and analyzed for scenarios where the IRS
employs discrete phase shifters [20], and extended to systems
involving multiple IRSs [21]. The CSM method was shown
to achieve the well-known quadratic power scaling law even
without full CSI. However, achieving such a gain requires a
sample complexity of O(L?(log L)?), where L is the number
of reflecting elements. This high sample complexity poses a
significant implementation challenge, particularly when chan-
nels vary rapidly or the number of reflecting elements is large.
To address this issue, [22] proposed to maximize the long-
term channel power for fast-fading channels. On the other
hand, [23] found that the CSM method can be interpreted as
the e-greedy algorithm used to solve the multi-armed bandit
problem in reinforcement learning, and proposed a gradient
bandit method to enhance the efficiency of blind beamforming.

In contrast to existing works that primarily focused on
enhancing the received signal power, this paper is concerned
with the problem of suppressing unknown interference sig-
nals with the aid of the IRS. To this end, we propose to
minimize the average received signal power, subject to a
constraint placed on the desired signal’s received power. The
formulated problem has a form similar to canonical ABF in
array signal processing. Nevertheless, an important distinction
between our IRS-assisted ABF problem and the traditional
ABF problem is that our problem cannot directly obtain
the signal-plus-interference covariance matrix that is needed
for ABF. Instead, we only have access to some quadratic
compressive measurements of the covariance matrix. Recov-
ering the covariance matrix from its quadratic compressive
measurements, a problem known as “covariance sketching”
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[24]-[26], is sample-costly. Specifically, it was reported in
[26] that the number of measurements should exceed the order
of O((L + 1)(K + 1)*) to recover the covariance matrix
with theoretical guarantees, where L denotes the number
of reflection elements and K is the number of interference
signals. Such a sample complexity becomes problematic in
rapidly-changing channel environments. To address this issue,
we propose an analytical sample-efficient solution that can au-
tomatically nullify the interference signals using only (K +2)?
measurements. This significant sample complexity reduction
makes the proposed algorithm more suitable for fast-changing
propagation environments.

Specifically, the contributions of this work are summarized
as follows:

o The formulation presented in this work is new and has
not been reported before. To the best of our knowledge,
this is the first work to formulate IRS-assisted blind
interference cancellation as an ABF problem. We also
clarify the key distinctions between our formulated ABF
problem and the canonical one.

e We propose a novel analytical method to solve the
formulated ABF problem without the need to explicitly
infer the knowledge of the covariance matrix, which is
needed for the canonical ABF. Compared with methods
that first reconstruct the covariance matrix and then solve
the ABF problem, our approach achieves a significant
improvement in terms of sample complexity.

The rest of the paper is organized as follows. Section II
describes the system model and problem formulation. The
proposed analytical solution is introduced and analyzed in
Section III, and subsequently extended to fully passive IRS
in Section I'V. Simulation results are presented in Section V,
followed by concluding remarks in Section VI.

II. SYSTEM MODEL
A. Signal Model

As illustrated in Fig. 1, we consider an IRS-assisted point-
to-point wireless communication system, where a single an-
tenna receiver, aided by an IRS, tries to decode signals from
a legitimate transmitter in the presence of multiple (say, K)
unknown strong interference signals. The basic idea is that

the receiver, based on its received signal samples, adaptively
adjusts the IRS’s reflection coefficients such that the unknown
interference signals are canceled at the receiver whereas
the desired signal can be well preserved. Such an idea is
reminiscent of the well-known ABF technique in array signal
processing, and therefore we refer to the proposed technique
developed in this work as “IRS-assisted ABF”.

We have the following assumptions concerning the legiti-
mate signal and the interference signals:

Al The legitimate signal and interference signals are uncor-
related with each other.

A2 The legitimate signal and interference signals are as-
sumed to be zero-mean and wide-sense stationary.

Assumption Al is commonly used in ABF and usually holds
valid as the legitimate transmitted signal and the interference
signals are from independent sources. Assumption A2 is a
widely adopted assumption and usually satisfied in practice as
communication signals are known to be cyclostationary and
can be treated as stationary over a short time interval.

Suppose the IRS consists of L reflecting elements. Each
element on the IRS behaves like a single physical point which
combines all the received signals and then re-scatters the
combined signal with a certain amplitude and phase shift.
Specifically, let 6; and 3; < 1,VI respectively denote the
phase shift and amplitude associated with the [th reflecting
element of the IRS. Note that here we assume that the
phase shift and the reflection amplitude can be individually
controlled. In fact, recent efforts have led to breakthroughs in
designing reconfigurable metasurfaces that can simultaneously
manipulate both the reflection amplitude and the phase, e.g.
[27]. Also, we define the following notations:

e Let » € C denote the direct-link channel between the
legitimate transmitter and the receiver, and g, € C de-
note the direct-link channel between the kth interference
source and the receiver.

o Let u € C* denote the channel between the legitimate
transmitter and the IRS, and p;, € CE denote the channel
between the kth interference source and the IRS.

o Let g € CF denote the channel between the IRS and the
receiver.

With the above notations, the received signal at the receiver
can be written as

y(t) =

(r+q"Ou)s(t) +> (gx + " Opy)jn(t) + €(t),
— —

k=1

desired signal noise

interference signals
K

@ GHhs(t) + > ahji(t) + €(t) (1)

k=1
where s(t) ~ CN(0,1) and ji(t) ~ CN(0,0%) respectively
represent the signal of interest (SOI) and the kth interference
signal,! @ £ diag(B1e’%, ..., Bre??") is the reflection matrix

Here, without loss of generality, the signal power is fixed at 1, and ai
represents the power of the kth interference source.



of the IRS, and €(t) ~ CN(0,02) is the additive Gaussian
noise; in (a), we have
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with v £ [Be?% Brel?t 17 denoting the reflection
vector, ® denoting the Hadamard product and a = [1 v]#
denoting the augmented reflection vector with its first entry
equal to one. We also have the following assumptions regard-
ing the cascaded channels {h), € C(LTDE

A3 The cascaded channels {hj}X_, between the legitimate
transmitter/the interfering sources and the receiver are
assumed to be linearly independent.

A4 The cascaded channel between the legitimate transmitter
and the receiver, ie., hy € CUAD s assumed to
be known a priori, whereas the cascaded interference
channels {h; }X_| are unknown.

Assumption A3 is generally satisfied when signal sources
are spatially separated. In Assumption A4, we assume the
cascaded communication channel hgy is known a priori. In
practice, the legitimate channel hy can be obtained from
prior knowledge or estimated during the jamming reaction
period when no interference signal is present [28]. Note that
to estimate hg, there is no need to separately estimate the
transmitter-IRS channel w and the IRS-receiver channel gq.
Many existing methods were proposed to directly estimate
the cascaded channel, e.g. [13]-[17].

Note that the above model is a narrowband model which
holds valid when §,B < 1, where B denotes the receiver
bandwidth and §, denotes the delay spread of the channel
between a source and the receiver. Given 6,B < 1, we can
arrive at the above narrowband model even when the interfer-
ence signal has a bandwidth far greater than B. A detailed
derivation of this narrowband signal model is provided in
Appendix A.

Our objective is to adaptively adjust the reflection vector v
(i.e. a) in order to nullify the received interference signals and
guarantee the successful recovery of the desired signal s(t).
Such a problem finds a variety of applications in wireless
communications, radar and other fields.

B. Problem Formulation

For noncooperative interference sources, it is challenging
to estimate the cascaded interference channels. To address
this difficulty, a natural strategy for interference cancelation
is to find a reflection vector v to minimize the average

received signal power, meanwhile subject to a received power
constraint placed on the desired signal:
min

in E[Jy(1)]
st. a'hy =,
a=[1 0"
| <1, Vi=1,...,L 4)

where y(t) is defined in (1), the first constraint is equivalent
to placing a received signal power constraint on the desired
signal, v is a pre-specified constant, v; denotes the [th entry
of v, and |v;| = B, < 1 is a constraint placed on the reflection
coefficient such that the reflection amplitude /3; cannot exceed
1. Based on Assumptions A1-A2, the average received signal
power E[|y()|?] can be expressed as

K
Elly(t)]’] =a" (hohg') a+a™ (D oihihyl) a+ o,
N——

k=1
Ry
R,
=a"Roa+ a"Rja + 0'3),
=a"Ra + cr?u, )

where R £ R+ R} is the signal-plus-interference covariance
matrix.
Hence, the problem (4) can be further simplified as

min a” Ra
a

st. aflhg =7,

| <1, Vl=1,...,L (6)

By ignoring the constraints |v;| < 1, we see that the above
problem has a form similar to canonical ABF in array signal
processing. Nevertheless, there is an important distinction
between these two problems. For conventional ABF, the
covariance matrix R is assumed known a priori since it
can be readily estimated from the received signal samples.
In contrast, for our considered problem, R is not directly
available. Instead, the receiver can only observe quadratic
compressive measurements of R, i.e. {z; £ aZHRal-}, i.e.,
we can configure the IRS with a pre-designed augmented re-
flection vector a; and then measure its average received signal
power at the receiver, which yields a quadratic compressive
measurement of R: z; £ a’ Ra;. Overall, the lack of the
knowledge of R imposes a great challenge for solving (6).
A straightforward approach to address the above problem
is to estimate R first and then solve (6) using the estimated
R. In fact, estimating a covariance matrix from its quadratic
sketches {z;} is known as “covariance sketching” and has
been investigated in some prior works, e.g. [24], [26]. It
was reported in [26] that the number of measurements (i.e.
quadratic sketches) should exceed the order of O((L+1)(K +
1)*) to recover the covariance matrix R with theoretical
guarantees. Such a sample complexity, however, is excessive
for practical applications. Note that R, a function of the
channel vectors {hy}, changes as the wireless channels vary.
Therefore, the covariance matrix R should be estimated within
a time duration that is smaller than the channel coherence time
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so that the estimated R will not become obsolete. Considering
the fact that the channel coherence time is usually small, it is
almost impossible to collect as many quadratic sketches of R
as required for recovering R.

To address the above difficulty, we will develop a sample-
efficient solution to solve (6) without explicitly inferring R.

III. PROPOSED ABF METHOD

To facilitate the exposition of our idea, we first ignore
the amplitude constraint |v;| < 1,VI placed on the reflecting
elements. We will discuss in the next section how to extend the
proposed method to realize ABF with amplitude constraints.
By neglecting the amplitude constraints, problem (6) can be
simplified as

min a” Ra
a

st. ahy =7,
a=[1 v, (7
Clearly, the optimum solution a* to (7) should satisfy the
following conditions:

®)
©))

It is evident that the optimal a* must lie in the null space
of R ;. While obtaining a* is straightforward if R ; is known,
the challenge lies in that the knowledge of R ; is unavailable.
Since estimating R; = R— Ry is sample costly, we attempt to
directly find a vector a that satisfies (8)—(9) without explicitly
inferring R or R.

Before proceeding to the detailed development of the algo-
rithm, we first provide a general framework for the proposed
method. Specifically, as illustrated in Fig. 2, the proposed
method consists of a measurement stage and an optimization
stage. The objective of the measurement stage is to collect a
set of quadratic compressive measurements of R ;. Specifi-
cally, in the measurement stage, the receiver first constructs
a set of reflection vectors {v,,}*_,. Here, M denotes the
number of quadratic compressive measurements collected
during the measurement stage. These reflection vectors are
then successively configured to the IRS. For each reflection

vector v,,, the receiver calculates its average received signal
power:

T
1
n = ; lym ()* = all Roam, + all Rja,, + o2, (10)

£ [1 vH)H, y,,(t) denotes the tth received data

where a,, m

sample when the reflection vector v,, is employed, and T'
denotes the total number of data samples used to calculate
the average received signal power. As Ry = hohéq is known
and the noise variance o2, can be estimated a priori, from 2,,

we can obtain an estimate of aﬂR JQo,:

H
Um = amRJam + Ny

(11

where n,, is used to represent the estimation error.

Based on the collected quadratic compressive measurements
{um }M_,, the optimization stage calculates an augmented
reflection vector that satisfies (8)—(9). In the following, we
will delve into the details of the proposed method. Particularly,
we will show how to construct these M reflection vectors
{a,, }M_, that are used in the measurement stage, and based
on the measured data {u,, }»_,, how to determine an optimal
augmented reflection vector that satisfies (8)—(9).

A. Problem Simplification

The objective of this subsection is to reduce the dimension-
ality of problem (7) by leveraging the low-rank property of
R;.

First, define H 2 [h; hs hi] € CEFDXE Tt can
be easily verified that (8) is equivalent to

H%a* = 0. (12)

We first randomly generate [ (L + 1 > I > K) mutually
independent vectors {@;}!_, that are linearly independent of
hg. Define

A2y a ay aj) € CEHDxU+D),

13)

We will show that the vector a* which satisfies (8)—(9) can
be obtained as a linear combination of columns of A, i.e.
a* = Aw*.

Define T 2 H"A ¢ CE*U+1)_ Since I > K, there
must exist a nonzero vector w* such that Tw* = 0, which
means that H? Aw* = 0. Hence, Aw* satisfies (12),
and consequently (8). Note that since {a,}._, are mutually
independent and L.+1 > I, A is a matrix of full column rank.



Therefore Aw must be a nonzero vector for any w # 0.
On the other hand, if the matrix A has linearly dependent
columns, the augmented reflection vector a* = Aw* could
be a zero vector even for a nonzero solution w?*, which is
undesirable. This is the reason why we need to construct a
full column-rank matrix A.

Substituting a* = Aw™* into (9), we have

(w ) A" hy = ~. (14)

So far we have shown that the vector a* which satisfies (8)—
(9) can be expressed in a form of a* = Aw*. The problem
now becomes, given a pre-specified A, how to find a vector
w*. To this objective, substituting a* = Aw™* into (8), we
arrive at

(w)? A" R;Aw* = (w*)? Gw* = 0. (15)

where G 2 ATR; A e CUHD*U+D) s a compressive ob-
servation of the covariance matrix R; € CLADX(L+D) From
(15), we know that once G is known, w* can be accordingly
determined. Therefore our objective in the following is to
recover GG. Note that since G has a dimension much smaller
than the dimension of R ;, recovering GG is more amiable than
recovering R ; in terms of sample complexity.

B. Recover Matrix G

Specifically, considering the Hermitian property of G, we
only need to recover the diagonal and half of its off-diagonal
elements. To this goal, we generate a set of augmented
reflection vectors according to

a, =Aw,,, Ym=1,... M (16)

where Wy, = [Wm,1 Wm2 ... Wpyr+1))" - These M vectors
{w,,}M_, can be randomly generated as long as the first
element of each a,, is equal to 1, as required by its definition.
As discussed earlier, these M augmented reflection vectors
{a, }M_, are then used in the measurement stage to obtain
a set of measurements {u,, }M_,.

Combining (16) and (11), we have

U, :wﬁGwm + N

I+171+1
*
=3 wh, ;G jwin j + N,
i=1 j=1
I+1 I+171+1
2 *
= fwmil?Gii +2) Y R{w), jwm ;G i} + nm,
i=1 i=1 j>i
I+1 I+11+1
2
S DITNLCIRED ) B CIERI S
i=1 i=1 j>i

- \C‘y{w;ﬂwmd}S{Gm}> + MNm (17)
where G;; denotes the (4, j)th element of G, R{-} and 3{-}
respectively denote the real and imaginary components of a
complex number.

To re-express (17) into a more tractable form, we re-arrange
the elements in G and w,,. Let

gq = [Gl,l G2,2 . GI+1,I+1]T (18)

denote a vector consisting of the diagonal elements of G. Let

. Gryi—ig)t e CIH
i=1,2,....1 (19)

A
9a; = [Gi1tvi Goayi

denote a vector comprised of the ith superdiagonal entries
of G. Put all elements above the main diagonal of G into a
vector as

I(I+1)

Goa=1901 9is --- gy €C > (20)

Finally, the matrix G can be characterized by a vector
defined as

g=197 ®g, a}" g, a}"1" e RV

Clearly, the vector g consists of (I +1)+2x (I(I+1)/2) =
(I +1)? entries.

Define W,, £ w,w? ¢ CU+tDxU+D)  Similarly, we
define a vector w,, € CU+D’ as

2
)

2

W, = (W), g 2R{Wm,0—a}’ 23{Wm.o—a}"]". (22)

where w,, 4 € RU+D is a vector consisting of the main
diagonal elements of W,,, and @, , 4 € C/U+D/2 js a
vector consisting of entries above the main diagonal of W ,,.

Based on the above notations, (17) can be written in a
compact form as

Uy = wﬁg + Ny, (23)

Note that for each a,, = Aw,,, we can obtain its corre-
sponding measurement u,, and construct the corresponding
vector w,, from w,,. The collected measurements {u,, %:1
are then used in the optimization stage to find an optimal
augmented reflection vector a*. By stacking the measurements

{um }M_,, we have

U1 ﬁ){ n1
=T
N U2 ws »)
u=| =] . |g+ =Wg+n. (24)
U ’l]]?\ﬂ/[ [3Ys

There exists (I+1)? unknown variables in the above equation.
By choosing M > (I + 1)? and letting {w,,}M_, linearly
independent, the unknown vector g can be estimated via a
simple least-squares (LS) method, i.e.,

g=W'u, (25)

where W denotes the Moore-Penrose inverse of W. After
g is estimated, the matrix G can be accordingly recovered.

C. Determining w*

After recovering G, we now discuss how to obtain w*. Note
that w™* needs to satisfy (15). Also, the vector w™* is supposed
to meet (14) in order to satisfy (9). In addition, notice that we
have to make sure that the first entry of a* = Aw* is equal to
one, as required by the definition of the augmented reflection
vector a.

In the following, we discuss how to obtain w* to meet
the above requirements. Since different channels are linearly
independent, the rank of G = AR JA is equal to K. Thus,



the null space of G € CU+1xU+1) hag a dimension of I +
1 — K > 2. For simplicity, denote z; and z5 as two basis
vectors of the null space of G. Thus, we can express

w* = 0121 + 0222 (26)

Clearly, such a w* automatically satisfies (15). Here p; and
02 are variables to be determined, such that the vector w*
satisfies (14) and the first entry of a* = Aw* equals to one,
ie.

0127 AP hg + 0228 AP By =,
01[Az1]1 + 02[Azs]1 =1,

27)
(28)

where [Az1]; and [Azs]; represent the first elements of the
vectors Az and Az,, respectively. From the above equations,
the variables p; and go can be readily determined.

Note that due to the presence of the estimation error n,
the estimated matrix G may have a rank greater than K.
This could cause a problem in obtaining the correct bases
of the null space of G. To address this issue, we can
increase the dimension of the matrix G by generating more
mutually independent vectors {a;}!_,. We can then choose
the eigenvectors corresponding to the smallest eigenvalues as
the basis vectors. In doing this way, the proposed method
can enhance its numerical stability and robustness against
estimation errors.

D. Summary

So far we have provided an analytical solution to problem
(7). In summary, the proposed method first randomly generates
I > K independent vectors {@;} and construct a matrix A
according to (13). Then, it generates M > (I + 1)? indepen-
dent vectors {w,,}M_,. Based on {w,,}M_,, it calculates
M reflection vectors {a,, }*_, according to (16). These M
reflection vectors are successively employed by the IRS. For
each augmented reflection vector a,,, the receiver calculates
its average received signal power and obtains an estimate of
U, After all measurements {u,,}M_, are obtained, we can
recover the matrix G according to (25). Finally the weighting
vector w* can be accordingly determined and the augmented
reflection vector which satisfies (8)-(9) can be obtained as
a* = Aw*. For clarity, we summarize the proposed method
in Algorithm 1.

Note that the minimum value of I can be chosen as [ =
K + 1. Therefore the proposed method requires a minimum
of M = (I +1)? = (K + 2)? measurements (i.e. quadratic
sketches of R) to find a qualified augmented reflection vector
a”*. This sample complexity is independent of the number of
reflecting elements of the IRS, and thus achieves a remarkable
sample complexity reduction as compared to the covariance
sketching method which aims to recover the covariance matrix
R. Specifically, if there is only a single interference signal, i.e.
K =1, then our proposed method only needs 9 measurements
to identify an augmented reflection vector which nullifies
the interference signal. Such a sample efficiency enables the
proposed algorithm to accommodate fast-changing channel
environments.

Remark: Note that the proposed method does not require
the precise number of interference signals. Instead, an upper
bound on the number of interference signals, i.e., K, is enough
for the proposed method. Specifically, we can choose I > K
for our proposed method. This, however, leads to an increase
in sample complexity from (K + 2)? to (K + 2)? for the
proposed method.

Algorithm 1 Proposed Solution for ABF
Inputs: K and M, first generate the measurement matrix
A according to (13).
Do

Stage-1 (Measurement):

1. Randomly generate M linear independent vectors
{w,, }M_, and obtain the corresponding augmented reflec-
tion vectors {a,, }M_, via a,, = Aw,,;

2. Estimate the average received signal power measure-
ments {2, }_, via (10) and then obtain {u,,}*’_, based
on the prior knowledge of Ry and o2 ;

Stage-2 (Optimization):

1. Obtain the vector g via (25) and reshape it to recover
G,

3. Obtain the vector w* via solving (27) and (28) and
obtain a* = Aw* accordingly;

End
Output a*;

IV. REALIZING ABF VviA PASSIVE IRS

In the previous section, to facilitate the exposition of our
idea, we ignored the practical constraint imposed on the
reflection coefficients. In practice, due to the passive nature
of the IRS, the reflection amplitude [5; cannot exceed one.
This means in Algorithm 1, the generated measurement vector
{a,,} and the obtained optimal solution a* are supposed to
satisfy the following constraints

ama =1, |ami| <1L,Ym=1,2,... M,i=2,3,...,L+1,
(29)

ar =1, a¥| <1,Vi=2,3,... L+1, (30)

where a,,; (a}) denote the ith element of a,, (a*). The
constraints a,,; = 1,Ym and a] = 1 are a result of
the definition @ = [1 v#]¥, which has been considered
in the design of Algorithm 1. Unfortunately, the reflection
amplitude constraints |a.,, ;| < 1,Vi = 2,...,L + 1 and
la¥] <1,V¥i=2,...,L+1 were not considered by Algorithm
1. In the following, we will elaborate how to adapt our
proposed solution to the passive IRS scenario.

A. Generating {a,}M_,

In Algorithm 1, the first step is to generate M augmented
reflection vectors {a,,}, where a,, = Aw,,,Vm. In the
following, we propose an efficient method for generating a
set of vectors {a,,}M_; that satisfy the constraints specified
in (29).



First of all, any vector w,, that satisfies the constraint
am,1 = 1 can be expressed as:

where wy is any vector satisfying A(l,:)wo = 1, D €
CU+DXI js a matrix spanning the null space of A(1,:), i.e.,
A(1,:)D =0, and d,,, € C! is an arbitrary vector.

Our goal is to generate a set of vectors {d,, }}/_, such that
the amplitude of each entry in the vector a,, = Aw,, =
Awqy + ADd,, remains within the unit circle, i.e., less than
1. To this goal, we first normalize the matrix A such that
|[A]lF = 1. Subsequently, we generate each vector d,, by
drawing samples from a complex Gaussian distribution with
zero mean and unit variance.

After generating d,,, we check whether the constraint
|am.;| < 1 is satisfied for all ¢ = 2,3,...,L + 1. If the
constraint is not met, we normalize the vector d,,, as follows:

~ dmin
dy, =dp, ) 32
dmax G2
where
ey ;. e i — 10;
b7, - A(Z7 ')wOa dIIllIl Z:2I,I.1”1)ri+1 1 ‘bl‘7 (33)
hnax = =2 L1 4G, :) Del| G4

By setting ||A||r = 1, we can ensure dp,;, > 0 with a high
probability.

Henceforth, the magnitude of the ith (L +1 > ¢ > 2) entry
of the measurement vector a,, can be upper bounded by

am.i| =|bi + A3, :) Dd,y,|

dmin

=|b; + 7 A(i,:)Dd,,|,
(a) dmin .
<|b;| + 7 |A(%,:)Dd,,|,

S|b7| + ‘dmin| S 1a (35)

where (a) comes from the triangle inequality.

B. Identifying a*

In addition to the measurement vectors {a,, }, we also need
to ensure that the vector a* satisfies the constraints (30). In
other words, we need to determine a vector w* such that the
resulting vector a* = Aw* not only satisfies (8)—(9), but
also (30). To this objective, we need to make sure that the
dimension of the null space of G, denoted as P =1 +1— K,
is greater than 3,ie. P=1+1—- K > 3.

Let Z € CU+1D*P be a matrix comprising P basis vectors

of the null space of G. Then, w* can be expressed as:
w* = Zt*. (36)

Denote B £ AZ. Then, the problem of finding a* = Aw* =
Bt~ is equivalent to:

find ¢
st. B(l,:)t=1,
hi' Bt =,
[Bt|lo < 1. (37)

This problem is convex and can be efficiently solved using
CVX tools [29]. For clarity, the proposed solution for passive
IRS scenarios is summarized in Algorithm 2.

It should be noted that the problem in (37) may not always
be feasible. There are several factors which have an effect
on the feasibility of (37). First, due to the product path loss
effect introduced by the IRS, the power of the reflected link
could be much lower than that of the direct link. In this case,
it is crucial to equip the IRS with a sufficient number of
reflecting elements to form an adequate beamforming gain
such that the direct link and the reflected link can cancel each
other out. Of course, this issue can be alleviated if the direct
link between the interference source and the receiver suffers
a similar path loss due to the lack of the line-of-sight (LOS)
component. Second, the problem in (37) may be infeasible for
a small value of P, as the limited degrees of freedom restrict
the ability to devise a vector ¢ that satisfies all constraints.
Increasing P can significantly enhance the feasibility of (37).
Finally, the parameter v must be carefully selected to ensure
that the desired gain does not exceed the system’s capability.

Algorithm 2 Proposed Solution for ABF using a passive IRS
Inputs: K and M. Generate the measurement matrix A
according to (13) and normalize A to a unit Frobenius
norm;

Do

Stage-1 (Measurement):

1. Obtain an arbitrary solution wq to A(1,:)wg = 1;

2. Randomly generate M linear independent vectors
{d,,}M_, and obtain {a,, }_, via a,, = Awo+ADd,,;

3. Estimate the average received signal power measure-
ments {2, }2/_, via (10) and then obtain {u,,}}_, based
on the prior knowledge of Ry and 02 ;

Stage-2 (Optimization):

1. Obtain the vector g via (25) and reshape it to recover
G,

2. Obtain the vector w* or t* via solving (37) and
calculate a* as a* = Aw* = Bt*;
End
Output a*;

C. Summary

So far, we have discussed how to extend our proposed
method to solve the ABF problem for the passive IRS sce-
nario. As discussed in Section III-D, we need a minimum
number of measurements M > (I + 1)? to recover G. For
the passive IRS scenario, to provide a sufficient degrees of
freedom in solving (37), I is set to I = P+ K — 1. Therefore,
for the passive IRS scenario, the minimum number of mea-
surements required by our proposed method is M > (P+K)?2.

For our proposed method, the dominant computational com-
plexity comes from solving (24) and (37). For (24), obtaining
a LS solution involves a computational complexity at the order
of O((I +1)3). For problem (37), it can be transformed into
242P=2+42(I+1-K) =2(I — K) linear constraints.
Thus, it has a computational complexity at the order of



O(8(I—K)3log(1/e)), where € is the desired precision. As a
result, the overall computational complexity of the proposed
solution is at the order of O((I 4 1)3 +8(I — K)31og(1/¢)).

V. SIMULATION RESULTS

We now provide simulation results to illustrate the per-
formance of the proposed IRS-assisted ABF method. In our
simulations, the direct-link channel from the legitimate trans-
mitter to the receiver r and the direct-link channel from each
interference source to the receiver g, Vk are assumed to be
Rayleigh fading channels and generated according to

h = V PODia%

where pg = —30 dB, D denotes the distance between
the transmitter and the receiver, o represents the path loss
exponent, and u ~ CAN(0,1). In our simulations, the path
loss exponents for both the legitimate transmitter-receiver
link and the interference sources-receiver link are set to 4.5
[30]. The IRS-associated channels, including those from the
legitimate transmitter or the interference sources to the IRS
and the channel from the IRS to the receiver, are generated
by following the Saleh-Valenzuela model

K
h :\/W(\/Eﬁobl(ea,m Oc,0)

=
Kf +1 ; /qul(eavfh oe,q))a (39)

where K is the K-factor representing the ratio of the power
of the LOS path to that of the non-line-of-sight (NLOS)
paths, 0,4 (fc,,) denote the azimuth (elevation) angles of
arrival/departure (AoA/AoD), and

(38)

b[(em 96) :[17 o 76jTr(m—l) sin(aa)7 el ejTr(Lz—l)Sin(ga)]T
® [1, s ejﬂ'(nfl) cos(@e)’ e ejﬂ'(Lyfl) COS(GE)]T
(40)

is the steering vector at the IRS, with L, and L, being the
number of reflecting elements along the z- and y-dimension
of the IRS, and @) denotes the number of paths. In our exper-
iments, the path loss exponents for the legitimate transmitter-
IRS link and the IRS-receiver link are set to 2, with a K-
factor of 10 dB. The number of paths for the legitimate
transmitter-IRS link and the IRS-receiver link is set to 2 and
3, respectively.

Without loss of generality, the transmit power of the legit-
imate transmitter is set to O dB, or equivalently 30 dBm, i.e.,
E[|s(t)|?] = 1. The number of interference signals is set to
K =1 unless otherwise specified. The number of the IRS’s
reflecting elements is set to L = L, x L, =5 x 8 = 40, and
the noise power is set to —107 dBm across all experiments.
To better illustrate the efficiency of the proposed algorithm,
we include the following three methods for comparison.

The first one is the maximum ratio transmission (MRT)
solution which simply sets the augmented reflection vector as
alrr = ho/ho(1), with hg 2 exp(j arg(ho)), arg(-) being
the argument of a complex number and fzo(l) denoting the
first element of hq. We see that the MRT solution completely

ignores the interference signals, and simply utilizes the knowl-
edge of the channel hy to maximize the receive power of the
desired signal.

Another two competing methods solve the ABF problem via
directly recovering the covariance matrix R from its quadratic
compressive measurements {Z,, }. The first one estimates R
via a LS method. It can be readily verified that the LS method
requires at least M > (L + 1)2 = 1681 measurements to
recover the covariance matrix R. The second one recovers R
via a covariance sketching (CS) method [26] which utilizes the
low-rank structure of R. Specifically, the work [26] develops
a gradient descent method to find a low-rank R by minimizing
the data fitting error. It should be noted that the CS method
requires the prior knowledge the Frobenius norm of R to
ensure convergence, a requirement that is not needed by
other methods. After R is estimated, the augmented reflection
vector can be obtained via solving (7) or (6). Note that for
problem (6) where the amplitude constraints are considered,
we need to follow a similar approach discussed in IV-B to
find a qualified augmented reflection vector that satisfies the
reflection amplitude constraints.

We evaluate the performance of respective algorithms via
the signal-to-interference-plus-noise ratio (SINR) attained by
each algorithm’s augmented reflection vector a*:

(a*)HRoa*

SINR £
(a* )" Rja* + o2,

(41)

In our experiments, v is set to 0.6(a}gy)? ho. Note that
the value of ~ should not be set too large, otherwise the
problem (37) becomes infeasible. A reasonable range for -y
can be determined based on the channel gain obtained by
the MRT solution, i.e. (a}gy)™ho. Clearly, v should not
exceed the value of (af;r)™ ho. Specifically, we can choose
v = p(aymr)?ho, where 0 < p < 1. Our empirical results
suggest that a conservative but reasonable choice of p could
be within the range of [0.2,0.6].

A. Scenarios Without Amplitude Constraints

We first verify the efficacy of the proposed Algorithm
1, which ignores the amplitude constraints placed on the
reflection elements. In our experiments, the transmit power
of each interference signal is set to 15 dB. The LS-based
method and the CS method respectively use M = 1691 and
M = 820 quadratic compressive measurements to solve the
ABF problem. The total number of quadratic compressive
measurements )M used by our proposed method is set to
M = 220, and we choose I = K + 6 = 7 to obtain a
sufficiently large dimension for the null space of the matrix G,
which helps enhance the robustness against estimation errors
and noise.

Fig. 3(a) depicts the SINRs of respective algorithms versus
the number of samples 7'. Here 7" is the number of samples
used to estimate the average received signal power Z,, (cf.
(10)). Clearly, the more data samples are used, the more
accurate estimate of the statistics Z,,, can be obtained, which in
turn helps improve the interference suppression performance.
We see that the proposed method and the LS method outper-
form the MRT solution by a big margin, and the performance



—#— MRT

—A— LS (M=1691)
CS-(M=820)

—<— Proposed Method-(M=220)

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Samples

(a) SINR vs. the number of samples

Fig. 3. SINR and Average run time vs. the number of samples

—*— MRT

20 —A— LS-(M=1691) ]
CS-(M=820)

—«— Proposed Method-(M=400)

SINR (dB)

Number of Interference Sources

Fig. 4. SINR vs. Number of interference sources 7.

gap becomes more pronounced as the number of sample
increases. Also, the proposed method, even using much fewer
measurements, achieves a performance advantage over the
LS and CS methods. This result demonstrates the efficiency
of the proposed method in suppressing the interference. We
observe that the CS method does not perform as well as the
other two methods, which may be attributed to the following
reason. The CS method requires that the measurement vectors
a,, are randomly generated according to a complex Gaussian
distribution with zero mean and unit variance, a condition that
cannot be met in our experiments since the first element of
a,, is confined to be equal to 1. Fig. 3(b) plots the average
run time of respective methods as a function of 7'. Note that
we select the number of measurements, M, based on the
conditions required for these methods to function properly. We
see that the proposed method is much more computationally
efficient than the LS and CS methods. For instance, when
T = 3000, the proposed method requires only 0.09 seconds,
compared to 0.61 and 1.67 seconds for the other two methods,
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In Fig. 4, we plot the SINRs achieved by respective methods
as a function of the number of interference signals K, where
the transmit power of each interference source is set to 20 dB
and the number of samples is set to 7" = 500. The number of
measurements is set to M = 400 for our proposed method,
and set to M = 1691 and M = 820 for the LS-based
method and the CS method, respectively. As expected, all
methods experience performance degradation as the number of
interference signals increases. This is because the estimation
of the averaged received signal power Z,, becomes less
accurate as the number of signals increases, which in turn
affects the subsequent interference suppression performance.

B. Passive IRS Scenarios With Amplitude Constraints

We now present results to illustrate the performance of
ABF achieved by using a passive IRS. For the passive IRS,
the reflection amplitude of each reflecting element cannot
exceed 1. In our experiments, we conduct 500 independent
trials. In each trial, the direct link channels and IRS-associated
channels are randomly generated according to (38) and (39),
respectively. Occasionally for some trials we may not have a
feasible solution to the problem (37). These unfeasible trials
are excluded and we only average results over the successful
trials in which the problem is feasible.

To better illustrate the effectiveness of the proposed al-
gorithm, we also include the “random-max” method as a
benchmark. For the random-max method, we first randomly
generate a set of reflection coefficients, then we choose the
one which achieves the highest SINR. Fig. 5 illustrates the
performance of respective methods versus the interference
source’s transmit power, where we set the number of samples
T = 500. The number of measurements for the CS method
and the LS method are set to M = 820 and M = 1691,
respectively. The number of measurements for our proposed
method is set to M = 220 for K = 1 and M = 235
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for K = 2, where we set I = K + 6 for both cases. As
shown in Fig. 5, when K = 1, the proposed method achieves
an SINR improvement of nearly 21 dB as compared to the
MRT solution. Moreover, the proposed method presents a
clear improvement over the three competing algorithms across
all transmit power levels.

Fig. 6 illustrates the SINRs achieved by respective methods
as a function of the number of samples T'. The transmit power
of each interference source is set to 15 dB. We see that
our proposed algorithm achieves a significant performance
improvement as the number of samples 7' grows, whereas
the gain obtained by the other competing algorithms with
increasing 7' is marginal. For the case of K = 2, the
CS method exhibits a severe performance degradation and
achieves even a lower SINR than the random-max method,
while the proposed method consistently outperforms the other

approaches when T' > 500.

C. Passive IRS: Beam Patterns

To illustrate how the proposed method improves SINR
performance, we analyze beam patterns under different values
of ~. The IRS is configured as a uniform linear array with
L = 8 reflecting elements. For simplicity, the direct links
between the legitimate/interfering transmitter and the receiver
are assumed to be blocked, while the reflected links are
dominated by line-of-sight (LoS) paths.

Fig. 7(a) and (b) show the beam patterns generated by our
proposed method. In Fig. 7(a), we see that the MRT method
achieves a maximum beamforming gain in the desired direc-
tion (i.e., the SOI), which is expected as the MRT solution
is designed to match the communication channel. To better
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illustrate the performance, we normalize the beamforming
gain with respect to the maximum gain achieved by the MRT
solution. The MRT solution, however, is not optimized for
suppressing the interference signals. As a result, the MRT
method maintains a relatively high beamforming gain in the
direction of the interference source (denoted as “IS”). By
contrast, the proposed method may appear to “miss” the
desired direction but ensures a pre-specified beamforming gain
toward the SOI, meanwhile forming nulls in the directions of
the interfering sources. This interference suppression results in
a significant SINR improvement. Additionally, it is interesting
to observe that a smaller value of « yields a higher SINR, as
it provides more degrees of freedom to suppress interference
when a lower beamforming gain is required for the SOI. In
Fig. 7(b), similar results are observed in the presence of two
interference sources.
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D. Passive IRS: Robustness Against Reflection Coefficient
Discretization and Channel Uncertainty

We previously assume that the reflection coefficients can
take continuous values within its specified region. In practice,
due to hardware limitations, the phase shift as well as the
reflection amplitude may not take arbitrary values; instead,
they may have to be chosen from a finite set of discrete values.
Next, we examine the robustness against the reflection coef-
ficient discretization error. Also, we examine the robustness
of the proposed method against the communication channel
uncertainty.

When the reflection coefficients are constrained to discrete
values, both the measurement vectors {a,,})_, and the
optimized vector a* must adhere to this constraint. A natural
approach to address this is to directly project the designed
reflection coefficients onto the discretized set. Specifically,
let a and b respectively represent the number of bits used
to quantize the reflection amplitude and the phase shift. The
discrete amplitude set G and the discrete phase set F can be
expressed as:

2¢ -1
2a

2 — 1)
(QT)}-

G ={o0,..., }F

{0,..., (42)

In Fig. 8, we illustrate the SINR achieved by respective
methods as a function of the number of samples. It can be
observed that the proposed method consistently outperforms
the other methods by a big margin for the same level of quan-
tization resolution. Moreover, the performance improvement
becomes more significant with an increase in the quantization
resolution of the phase compared to that of the amplitude.
This observation reveals that the accuracy of the phase has a
greater impact on the system performance.

Next, we examine the impact of inaccurate knowledge
of the cascaded channel hq on the interference suppression
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performance. Suppose the cascaded channel ho is subject to
a certain level of estimation errors:

’A'Lo = hg -+ A X ||h0||2

||herr||2herra (43)
where hey ~ CN(0,I) and A € [0,1] is a parameter
controlling the channel uncertainty level.

Fig. 9 illustrates the SINR performance of various methods
under different levels of channel uncertainty. The SINR is
defined as:

la"holl3
a"Rja+ o2’
where a represents the optimized augmented reflection vector
obtained by different methods based on the estimated cascaded
channel ﬁo. In our simulations, the number of interference sig-
nals is set to ' = 1, the number of samples is set to 3000, and
the transmit power of the interference signal is set to 15 dB.
It is observed that the performance of all methods decreases
as the channel uncertainty ratio increases. The MRT method
demonstrates a minimal performance loss. All other methods
suffer a certain amount of performance degradation in the
presence of channel inaccuracies. Nevertheless, our proposed
method still achieves the highest SINR performance among all
methods, while requiring substantially fewer measurements.
This highlights the superiority of the proposed method over
state-of-the-art methods, even with an inaccurate knowledge
of R().

SINR(a) = (44)

VI. CONCLUSION

In this paper, we studied the problem of IRS-assisted ABF,
where the objective is to adaptively adjust the reflection coeffi-
cients of the IRS such that the unknown interference signals at
the receiver are suppressed, whereas the desired signal is well
preserved. The challenge of the IRS-assisted ABF lies in that
we do not have direct access to the covariance matrix. Instead,
only quadratic compressive measurements of the covariance
matrix are available. To address this challenge, we developed a
sample-efficient method that directly solves the ABF problem
relying solely on quadratic compressive measurements. Our
approach demonstrated significant improvements in sample ef-
ficiency, making it highly adaptable to fast-changing wireless

environments. Simulation results confirmed that the proposed
method effectively cancels interference with a modest number
of data samples, outperforming existing state-of-the-art algo-
rithms.

APPENDIX A
NARROWBAND RECEIVED SIGNAL MODEL

Here we focus on the received interference signal model.
Without loss of generality, we consider a simplified case where
only a single interference source exists. The subscript k is
omitted for brevity. Let j(P)(¢) denote the passband interfer-
ence signal with a bandwidth of B; and a carrier frequency
f1. Note that the non-cooperative interference source may
use a carrier frequency that is different from that of the
communication signal. The passband interference signal can
be expressed as

) = R{V2 O @), (45)

where j(®)(t) denotes the baseband interference signal 2.
Let g®(t), pP(t), and ¢ (t) respectively denote the
passband channel between the interference source to the
receiver, the interference source to the [th element of the IRS,
and the /th element of the IRS to the receiver. For simplicity,
here we suppose each channel contains only a line-of-sight
(LOS) path:

g P () =a,0(t — 7,), (46)
PP (8) = 16t — 7)), (47)
P () =ag 6(t — 740), (48)

where o,z € {{g},{p,!},{q,1}} denotes the real path loss.
We first consider the signal received from the direct link
between the interference source and the receiver. The received
passband signal can be represented by the linear convolution
of the transmitted passband signal j®)(¢) and the channel
g(p)(t), ie.,

u” (1) =g® (1) * 57 (0),
:agj(p) (t— Tg),
:%{O‘g\/ﬁj(b) (t— Tg)ejQ’Tff(t*Tg)}’
:%{agefj%rfﬁg \fgej%rAftj(b) (t— Tg)€j27rfct}

=R{v2y" (t)er?™/1}, (49)
where Af £ f; — f., and
ygb) (t) — ag€7j27rfITg€j2ﬂAftj(b) (t _ Tg)~ (50)

Let Yl(b) (f) denote the Fourier transform of y§b) (t).

The received passband signal is then converted to a lower
frequency band by multiplying the input signal with a complex
sinusoid with a frequency of f.. The down-converted signal
is then filtered by a low-pass filter with a bandwith of B.

2We utilize subscript (p) and (b) to represent passband or baseband signals,
respectively.



Let U(f) denote the frequency response of an ideal low-pass

filter, i.e.
U = {1 f] < B/2 51

0 otherwise
The received frequency-domain baseband signal can finally be
written as

YU = (HU(f) =aPe 727 JO(f). (52)

where JO(f) = JO(f — Af)U(f), and JO)(f) is the
frequency response of the baseband interference signal j(*) ().
Here J()(f) can be considered as the equivalent baseband
transmitted interference signal. In other words, no matter how
large By is, the receiver can only receive a lowpass-filtered
version of the interference signal.

Next, we move on to the signal received from the reflected
link. Let gl(P ) (t) denote the impulse response of the [th
reflecting element of the IRS. The received signal yép ) (t) from
the IRS is a superposition of the received signals from all L
reflecting elements, i.e.,

B0 =3P 0) £ 670) P10 190,
=1

L
=2 0700 +a” W) 500 Y
=1 (ZJ) (t)
Taking the Fourier transform of y(p )( t), we arrive at
L
P =Y e (Hri ), (54)

=1

where ©")(f) and T'\P)(f) denote the Fourier Transform of
91( )( t) and 'yl( )( t), respectively.

By adopting the baseband representation 0(p )( t) =
R(20O (00271} and 1(1) = RV (D), the
passband frequency response @l(p )( f) and Fz( )( f) can be
expressed as

o (1) =0 (f — fo) + (O (—f = 1)),

T - (r§b><f )4 (OO (s - f»)*), (56)

where ()* denotes the conjugate, @l(b)( f) and Fl(b)( f) denote

the frequency response of Hl(b)(t) and fyl(b) (t), respectively.
Substituting (55) and (56) into (54), we arrive at

vy WZ( (f = £0(f = f)

+ (0 (—f = fT (- f - fc))*> (57)

(55)

It is observed that Yg(p )( f) has a form similar to (56). As a
result, the baseband frequency response YQ(b) (f) after down-
shifting and low-pass ﬁltering is given as

Z @(b)

Y0 () (s

(NUS), (58)

where U (f) is defined in (51). By reformulating (55), we have

o (NU(f) =67 (f + f)U(f), (59)

Accordin to the transmission line theory, the frequency
response ©,”(f) can be characterized by
Zi(f) — Zo

o (f) = : (60)
C =z 2

where Z;(f) denotes the reconfigurable impedance of the /th
reflecting element, which is dependent on the frequency, and
Z, denotes the free space impedance. Generally, the frequency
response of the IRS varies as the frequency changes. Never-
theless, the response of the IRS is specially designed around
the communication carrier frequency f.. If the communication
signal bandwidth B is limited by a few tens of MHz, the
phase varies approximately linearly with the frequency and
the amplitude response remains nearly constant as compared
to the large path loss induced by wireless channels [7]. Hence,
the baseband frequency response @l(b) (f) can be simplified as

o (f) ~

where 7; denotes the delay introduced by the corresponding
reflecting element. As a result, the baseband impulse response
of the [th reflecting element of IRS can be simplified as

o (1) = Bre 2 fems(t — 7).

Be™I2rlemem2mIT | f| < B/2. 6

(62)

Now, let us come back to the received signal in (53). By
substituting (45), (47), (48), and (62) into (53), we have

L

yP (1) =" p” (1)« 6P (1)

=1

Z tp 101 B P (t = Tp 1 = Tq1 — T0),

x g™ (t) % §P (1),

~

R aalsVaETS I 0

:m{f y;’> (t)ei?mfet} (63)
where

o) = et o) = o eI e,

l(b) =Be e F =, T T (64)

Thus, the frequency response of the equivalent baseband
received signal is given by

ng(b)(f) (b) (O] B(b —JQFleJ(b)(f)

alllal’) (65)

where J()(f) is defined in (52). Combining (52) and (65),
the received equivalent baseband signal at the receiver is the
summation of signals from the direct link and reflected link,
i.e.,

YO =" () + Y ()

(Z oo ®) g0 =257

+ aé”)e‘ﬂ”ffg)f(”’(f), VEE-NC

%l)ej%TfCt }a



If the two phase terms e~72™/7 and e=727f7s are nearly the
same for all frequencies |f| < B/2, it means that the received
baseband signals from the direct link and the reflected link are
the same, except for being scaled by different factors. Hence
by adjusting the reflecting coefficients { Bl(b)}, it is possible to
nullify the interference signal at the baseband of the receiver.

Let 77 = (7, + 77, +7/) denote the maximum delay
introduced by the reﬂectmg element. To ensure e ~7/27/7 and
e~927174 are nearly the same for all frequencies |f| < B/2,
it is sufficient to let

e—j27rfﬂ* B
which is equivalent to
B( l+ l+Tl —Tg) <1 (68)

Also, since the reflecting element of the IRS introduces a
much smaller delay than delays caused by wireless propaga-
tion channels, the above condition can be further simplified
as

B(ry,+715,— 1) = Bé, < 1. (69)

As a result, (66) can be further simplified as

(Zo‘(b) oF (b)+a(b)>e 3277y JO)(f),
(70)

where e77271Ts ~ eI2™IT V| f| < B/2. Accordingly, the
equivalent baseband received signal model after time synchro-
nisation and sampling at the ¢th time instant can be expressed
as

Jt) +e(), D

b b b
y(t) = +za;;a;; ®;

Let © = diag(6; (b) cey ﬂ(Lb)) denote the reflection coefficient

matrix of the IRS, g = af]b) denote the direct channel

between the interference source and the receiver, g =
b b b b

@,...,al"]" e C* and p¥ = [a ;17... ") e ct,

the received signal in (71) can be written in a more compact
form

y(t) = (g+ q"Op)j(t) + €(t),

When the legitimate transmitter sends a communication sig-
nal s(t), the overall received signal at the receiver can be
represented by (1).

(72)
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