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Abstract—This work addresses the problem of intelligent
reflecting surface (IRS) assisted target sensing in a non-line-of-
sight (NLOS) scenario, where an IRS is employed to facilitate
the radar/access point (AP) to sense the targets when the line-
of-sight (LOS) path between the AP and the target is blocked
by obstacles. To sense the targets, the AP transmits a train
of uniformly-spaced orthogonal frequency division multiplexing
(OFDM) pulses, and then perceives the targets based on the
echoes from the AP-IRS-targets-IRS-AP channel. To resolve an
inherent scaling ambiguity associated with IRS-assisted NLOS
sensing, we propose a two-phase sensing scheme by exploiting
the diversity in the illumination pattern of the IRS across two
different phases. Specifically, the received echo signals from the
two phases are formulated as third-order tensors. Then a canon-
ical polyadic (CP) decomposition-based method is developed to
estimate each target’s parameters including the direction of
arrival (DOA), Doppler shift and time delay. Our analysis reveals
that the proposed method achieves reliable NLOS sensing using a
modest quantity of pulse/subcarrier resources. Simulation results
are provided to show the effectiveness of the proposed method
under the challenging scenario where the degrees-of-freedom
provided by the AP-IRS channel are not enough for resolving
the scaling ambiguity.

Index Terms—Intelligent reflecting surface (IRS), NLOS wire-
less sensing, OFDM, canonical polyadic (CP) decomposition.
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I. INTRODUCTION

A. Background

NTELLIGENT reflecting surface (IRS) has received a great

amount of attention in wireless communications due to its
ability of reconfiguring wireless propagation channels [1], [2],
[3]. Specifically, IRS is made of a newly developed metamate-
rial comprising a large number of reconfigurable passive com-
ponents. Through a smart controller, the phase and amplitude of
each unit on the IRS can be flexibly adjusted. By properly de-
signing the reflection coefficients, the propagation environment
can be customized to enhance/diminish signals of interest. This
allows for coherent or destructive addition of reflected signals at
the receiver, enabling passive beamforming, increased spectral
efficiency, interference suppression, and other benefits [4], [5],
[6], [7]. In recent years, the integration of wireless sensing as
a new functionality into future sixth-generation (6G) wireless
networks has attracted increasing research attention [8], [9],
[10], [11]. Wireless sensing typically involves extracting target
information, such as the angle and distance, through the line-
of-sight (LOS) path between the target and the wireless node.
However, in some urban scenarios, the targets of interest may be
distributed in the non-line-of-sight (NLOS) region of the wire-
less node, rendering LOS path-based target sensing ineffective.
To address this challenge, IRS was introduced as an energy-
efficient and cost-effective anchor node with known locations,
creating a virtual LOS link between the sensing node and the
target to enhance performance [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25].

B. Related Works

There have been some prior works investigating IRS-enabled
wireless sensing (i.e., NLOS detection/estimation) [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22] and IRS-
assisted integrated sensing and communication (ISAC) systems
[23], [24], [25]. For the IRS-aided NLOS detection problem, the
work [12] developed a radar equation for the IRS-aided NLOS
scenario, and evaluated the sensing performance in terms of
signal-to-noise ratio (SNR) and signal-to-clutter ratio (SCR). In
[13], [14], [15], an IRS-aided multi-input multi-output (MIMO)
radar detection problem was considered, in which the IRS is
placed in the vicinity of radar transmitter (or receiver) to help il-
luminate (observe) prospective targets. A generalized likelihood
ratio test (GLRT) detector was derived and the IRS phase shifts
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were optimized to maximize the probability of detection given
a fixed false alarm probability. An IRS-assisted radar system
for target surveillance in a cluttered environment was studied
in [16], where the active beamformer at the radar transmitter and
the passive phase-shift matrices at IRSs are jointly optimized
to maximize the minimum target illumination power at multi-
ple target locations. The moving target detection problem in a
multi-IRS-aided OFDM radar system was considered in [17],
where the authors derived a bi-quadratic program which jointly
designs the OFDM signal and IRS phase shifts to optimize the
target detection performance.

In addition to detection, the estimation problem was studied
for IRS-aided NLOS sensing systems. The work [18] consid-
ered an IRS-self-sensing architecture, where an IRS controller
is employed to transmit probing signals, and dedicated sensors
are installed at the IRS for location/angle estimation based on
the echo signals via the BS-IRS-target-IRS sensor link and the
BS-target-IRS sensor link. An IRS-enabled pulse-Doppler radar
system was considered in [19], where the minimum variance
for the best linear unbiased estimator (BLUE) of the target
back-scattering coefficient is derived, and then the IRS phase
shifts were optimized by minimizing the mean squared error
of estimated target parameter. In [20], a multi-IRS assisted
sensing system was introduced, where the IRS forms a passive
directional beam to scan the space to locate the potential target
that is beyond the sight of the AP. Following [20], the work [21]
explored semi-passive IRS-based sensing as a means to mitigate
the high signal attenuation issue inherent in passive IRS sensing
systems. Moreover, the work [22] examined the estimation of
the DOA in an IRS-enabled NLOS sensing system, where the
transmit beamformer at the AP and the passive beamformer
at the IRS were jointly optimized by minimizing the Cramér-
Rao bound (CRB). It is noted in [22] that an inherent scaling
ambiguity exists in IRS-assisted NLOS sensing when the rank
of the AP-IRS channel matrix is equal to one. This is because
at least two degrees-of-freedom (DoFs) are required to identify
both the complex path gain and the angular parameter of the
target, otherwise the scaling ambiguity arises [26]. To resolve
the inherent scaling ambiguity, the work [22] needs that the
AP-IRS channel matrix contains at least two prominent singu-
lar values. Such a requirement, however, may not be satisfied
in practice. Specifically, for IRS-assisted sensing, in order to
compensate for the path loss caused by multiple reflections, the
IRS is usually located within the sight of the AP and the AP-
IRS channel is dominated by the LOS path, in which case the
work [22] will experience a substantial amount of performance
degradation. For this reason, it holds practical significance to
study the scenario where the AP-IRS channel is dominated by
the LOS path.

C. Our Contributions

In this paper, we consider the problem of target parameter es-
timation via an IRS-assisted sensing system. The AP transmits
a train of uniformly-spaced OFDM pulses, and then perceives
the targets based on the echo signal from the AP-IRS-targets-
IRS-AP channel. To resolve the scaling ambiguity inherent in
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IRS-assisted sensing, we, in this paper, propose a two-phase
sensing method, where the entire sensing cycle consists of two
phases, and each phase is assigned an individual IRS-phase-
shift profile. By utilizing the diversity of the IRS illumination
pattern across two phases, the received OFDM signals in two
phases are represented by two third-order tensors, and a CP
decomposition-based method is developed to uniquely identify
the DOAs, time delays, and Doppler shifts of the targets even
when there is only a single dominant path between the AP
and the IRS. Additionally, a theoretical analysis is presented
to provide a performance bound for the proposed sensing sys-
tem. Simulation results demonstrate that the proposed method
achieves an estimation accuracy that is close to the CRB,
thereby validating the effectiveness of the proposed method.

In addition to the ability of resolving the inherent scaling
ambiguity, our work presents some other advantages over [22].
First of all, the work [22] only studied the problem of DOA
estimation, whereas our proposed method can identify not only
the DOA, but also the distance and the Doppler shift parameters
of the targets. Secondly, the work [22] considered only a single
target scenario, and it is difficult to extend the proposed maxi-
mum likelihood estimator (MLE) to multi-target scenarios. As
a comparison, our proposed method can handle multiple targets
simultaneously.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model as well as the signal model
of the proposed IRS-assisted NLOS sensing system. Section III
develops a two-phase sensing scheme, based on which the CP
formulation, uniqueness conditions and CP decomposition are
discussed. Section I'V discuss how to estimate the target param-
eters from the estimated factor matrices. Section V presents the
CRB analysis for the considered estimation problem. Simula-
tion results are presented in Section VI, followed by concluding
remarks in Section VII.

Notations: In this paper, scalars, column vectors, matrices
and tensors are denoted by italic, lowercase boldface, upper-
case boldface and calligraphic boldface letters, respectively.
The symbols (-)*, ()7, (), (-)=%, (-) denote the conjugate,
transpose, conjugate transpose, inverse and pseudo-inverse, re-
spectively. || - |2 and || - || » denote the 2-norm and Frobenius
norm, respectively. diag(a) denotes a diagonal matrix whose
main diagonal elements are the elements of a. I, denotes
the identity matrix of size M. [a];, [A]i . [A];... [A].; denote
the ith element of a, the (i,)th element of A, the ith row
of A and the Ith column of A, respectively. rank(A) and k4
denote the rank and Kruskal-rank of A, respectively. ®, ®, ®
and o denote the Kronecker, Khatri-Rao, Hadamard and outer
products, respectively. j denotes the imaginary unit. *{-} and
-} denote the real and imaginary parts of a complex number,
respectively.

II. PROBLEM FORMULATION
A. System Model

Consider an IRS-assisted wireless sensing (i.e., radar) sys-
tem, where the LOS path between the radar/access point and the
target is blocked by obstacles (see Fig. 1). The access point (AP)
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Tllustration of the considered IRS-assisted wireless communication

transmits a sensing signal and then perceives the targets based
on the echo signal propagating through the AP-IRS-targets-
IRS-AP channel. Suppose the AP is equipped with a uniform
linear array (ULA) of M antennas, and the IRS is equipped
with a ULA of N reflecting elements. Note that to facilitate
the exposition of our proposed method, we consider the ULA
configuration at the IRS. The proposed method can also be
extended to planar array scenarios.

We assume that there are K targets located in the area that are
illuminated by the IRS. Let z(t) € C* denote the transmitted
signal, and G € CN*M denote the channel matrix from the AP
to the IRS. Since the locations of the AP and the IRS are pre-
determined, we assume that the channel matrix G is known
a priori. Each reflecting element of the IRS can independently
reflect the incident signal with a reconfigurable phase shift.
Define 9J,, € [0, 27] as the phase shift associated with the nth
reflecting element of the IRS. Also, define the phase shift matrix
of the IRS as

® = diag(e’?r, ..., e/n) e VXN (1)

Let 6 denote a target’s DOA with respect to the IRS. The
corresponding steering vector at the IRS can be written as

a(f) = L

dsin(6)

<- T
. .o (N—1)dsin(0)
[1 DR O e

@)

where d denotes the spacing between adjacent reflection el-
ements, and A is the wavelength of the carrier signal. For
the kth target, the cascaded IRS-target-IRS channel can be
written as

H,. = aia(f)a” (6y) (3)

where &y, € C is used to characterize the round-trip path loss
as well as the radar cross section (RCS) coefficient of the kth
target. Define H £ Ele H . In this paper, we consider the
challenging scenario where the AP-IRS channel is rank-one
or approximately rank-one, i.e., rank(G) = 1. Nevertheless, as
discussed later in this paper, our proposed algorithm can be
readily adapted to the less challenging scenario where the rank
of the AP-IRS channel is greater than one.

B. Signal Model

1) Transmit Signal Model: In this paper, we employ OFDM
signals to probe potential targets. The advantage of using
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Fig. 2. One complete OFDM block.

OFDM signals for sensing lies in its ability in mitigating pos-
sible fading and providing additional frequency diversity, as
different scattering centers of a target resonate at different fre-
quencies [27], [28], [29], [30], [31]. Moreover, since OFDM
is widely adopted in communication systems, using OFDM
signals for sensing can help realize sensing and communication
functionality on a same hardware platform [32], [33], [34], [35].
Specifically, in a coherent processing interval (CPI), the AP
transmits a train of P uniformly-spaced OFDM pulses. In each
pulse, the AP transmits one OFDM block and then receives the
echo form potential targets. Here we assume the AP operates in
a half-duplex mode, i.e., at any given time instant, it can only
either transmit signals or receive echo signals. Thus, the AP,
when receiving its echo signal, will not be interfered by its own
transmitted signals.

Suppose there are L orthogonal subcarriers in each block
and the subcarrier spacing is set as Af = 1/Ty. The duration
of one block is T'= T, + Ty, where Tt is the length of the
cyclic prefix and Ty is the duration of an OFDM symbol.
The cyclic prefix is a replica of the end part of the OFDM
symbol (see Fig. 2). Note in communications, the duration
of the cyclic prefix, T¢,, should be larger than the time dis-
persion in a radio channel with multipath propagation in or-
der to avoid the inter-symbol interference (ISI). While in this
paper, the length of cyclic prefix determines the maximum
sensing distance from the IRS to the target, which will be
elaborated later.

Define Tpgy as the pulse repetition interval (PRI). The base-
band signal in the pth pulse can be expressed as

L
sp(t) = B ™A (t — pTiy) )

=1

where pTpr; < t < pTpr1 + T, £(t) is the rectangular function
that takes 1 for ¢ € [0, 7] and O otherwise [29], and [3; is the
unit-energy modulated symbol which satisfies |3;|> = 1, VI. For
such a signal, it can be readily verified that the cyclic prefix part
is a repetition of the end part of the OFDM block for any T¢, =
w1 > p>0. Also, for simplicity, we assume 3; = [3,VI in
this paper. Suppose we use an individual transmit beamforming
vector w, € CM to transmit the pth pulse. Then the transmitted
signal can be expressed as

x,(t) =/ Paw,s,(t)exp(j2m fet) 3)
where P; denotes the transmit power and f. denotes the carrier

frequency.
2) Received Signal Model: Assume that the kth target is lo-
cated at a distance of R, meters (m) from the IRS and the target
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AP 2%
RECEIVE ¢ T FFT INTERVAL see
L, T,
TPR]
Fig. 3. A schematic of signal transmission in one pulse repetition interval.

is moving towards the IRS with a radial velocity of vy (m/s).
In each PRI, the reception during the interval [0, 7" + 275 /c]
is inhibited to avoid the interference signal directly reflected
from the IRS (see Fig. 3), and the AP starts to listen to its
echo signal at time 7" + 275 /c. Here T is the duration of the
transmitted pulse, and 274 /c is the time for a radar signal to
travel to the IRS and back to the AP. This guard interval also
determines the minimum sensing distance from the target to the
IRS, which will be elaborated in the next section. Also, we make
the following assumption in order to acquire the complete echo
signal reflected from the targets.

Assumption 1: The echo signals from all potential targets
are assumed to lie within the interval of [2r14 /¢ + T, 2r1a/c +
2T + Tep).

Below we explain why we assume the echo signals lie within
the i nterval [2ria/c+ T, 2ria/c+ 2T + T¢p). Note that our
proposed algorithm starts by taking a Fourier transform of the
received signal over a time window of length Ty =T — T,
(cf. (8)). This time window cannot be arbitrarily placed. In-
stead, it has to be placed at an appropriate place to process
both the earliest possible echo signal and the latest possible
echo signal. Recall that, to avoid collision, the earliest possible
echo signal is assumed to arrive at the AP over the interval
[2ria/c + T,2r1a/c + 2T). To process this earliest echo signal
without any information lost, the latest time point from which
this time window starts is 2ria/c + T + T¢p. In other words,
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a replica of the end part of the OFDM block, the information
of the earliest echo signal remains complete over the interval
[2ra/c+ T + Tep, 2r1a/c + 2T). From this time window, we
know that the latest possible echo signal that can be processed
by the AP starts at time 2715 /c + T + T, and ends at 21y /¢ +
2T + T¢p. If the echo signal arrives at the AP after this time
point 2114 /¢ + T + T¢p, the information of this echo signal will
be lost. From the above analysis, we know that the echo signals
have to lie within the interval [2r(a /c + T, 2ria /¢ + 2T + T¢p).

Based on Assumption I, the pulse repetition interval needs
to satisfy Tpri > 2ria/c + 2T + T¢p. Since the AP operates
in a listening mode within the interval [2r1a/c 4+ T, Tpri], the
received echo signal only contains signals reflected by targets.
Thus, for the pth pulse, the received signal at the mth antenna
of the AP can be written as

p.m (1) Z gL ®TH @Gz, (t — Tp i) + fip.m(t)  (6)

where g,, is the mth column of G, 7, = 20trn—virTi)

is the round-trip time delay associated with the kth target cis
the speed of light and 7, ,,, (t) is the additive Gaussian noise.
For notational simplicity, we define 7, & 28 1, £ 2”"f < and
To £ 208, We have 7, = 75, + T — I/kapRI/fc

After removing the carrier frequency, the baseband signal can
be written as (7) shown at the bottom of the page, where a;, £
\/ﬁtdke—j%rfc(‘rk-i-‘ro)’ bm(ﬁk) £ Ta(Gk), Zp(ek, I/k) £
a® (0)®Gw,e’?™PTmve and 7, ,,(¢) is the baseband noise.

Taking the Fourier transform of the received pth pulse base-
band signal over the interval [2r(a/c + T + T¢p, 2714 /¢ + 2T
(note that 79 = 2714 /c), the signal associated with the Ith sub-
carrier is given by

pTeri+T70+2T
Bonll = [
pTeri+T0+T+Tp

—j2mIAft dt

Ypm(t)e ®)

Plugging (4) and (7) into (8), we have (9) shown at the bottom
of the next page, where the approximation (a) follows from
the fact that the bandwidth of the baseband signal is far less
than the carrier frequency, i.e., LAf < f., and (b) is due to
the subcarrier orthogonality [32], i.e.

Teri+710+2T
this time window should be placed. over the inte;rval [2r1a/c + / e 2 (AT =aADt gt — Tu5(gAf — IAF) (10)
T + T¢p, 2ria/c + 2T]. Note that since the cyclic prefix part is Tori+7o+T+Tep
K
Yp,m (t) = Z V Pt&kg%'I’Ta(ek)aT(ak)‘I’Gwpsp(t - Tp,k)eﬂhfn‘rp'k + Tip,m (t)
k=1
K
= Z VPiargl ®Ta(0y)a” (0,)®Gw,s,(t — 7, 1, )e 2 PTmve g=i2nfe(rdmo) L g ()
k=1
K
= Z arg? ®"a(0r)a” (0k)®Gw,s,(t — 7k )e?2PTRVE L7 (1)
k=1
K
= Z b (O1) 2p (O, Vi) Sp(t — Tpk) + p,m (1) @)
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Fig. 4. A schematic of signal ission for th hase NLOS sensi h

Define ay, = ay, 37Ty, and ignore the common phase term 7q in

(9) as this term is known a priori, we have

K
Upmll] = D kb (04) 5 (O, vi)e 273 4y, ]
k=1
(1)
where
pTeri+710+2T )
npmll] = / Ay (e T8 g (12)
pTeri+70+T+Tep

It is assumed that n, ., [l] is a complex Gaussian variable with
zeros mean and variance 02, i.e., ny m [[] ~ CN(0,02).

III. PROPOSED SENSING SCHEME AND CP DECOMPOSITION
A. Two-Phase Sensing Scheme

The proposed two-phase sensing scheme is illustrated in
Fig. 4, in which the entire sensing cycle is divided into two
phases, say, phase 1 and phase 2, and each of them is assigned
an individual IRS phase-shift profile. In each phase, the AP
transmits P pulses in total. The pulse repetition interval is Tpg,
and the interval between the Pth pulse in phase 1 and the first
pulse in phase 2 is also set to Tpg;.

In the following, we first analyze the minimum sensing dis-
tance R, the maximum sensing distance R« and the max-
imum unambiguous velocity vpn.x With respect to the IRS.

1) Minimum Sensing Distance: To avoid the collision with
the self-interference and the signal reflected directly from the
IRS, the reception is inhibited for the AP during the interval
[pTpr1, pTpr1 + 2714 /¢ + T). In other words, we assume that
the earliest possible echo signal arrives at the AP at time t; =
T + 2115 /c. This assumption implies that there is a requirement
on the minimum distance between the target and the IRS, which
is referred to as the minimum sensing distance in our paper and
can be easily calculated as

cr
Rmm - 2

2) Maximum Sensing Distance: According to Assump-
tion 1, we know that the latest possible echo signal reflected by
a potential target will be received within the interval [2r15 /c +
T + Tep, 2r1a/c + 2T + T¢p). As a result, the maximum sens-
ing distance with respect to the IRS is given by

(T + Tep)
2

(13)

Rmax § (14)

Notably, to cover the latest possible echo signal, the PRI has to
be greater than Tpry > 2714 /¢ + 2T + Ttp. If we choose Tprr =

pTeri+70+2T
Dol = [
p

Teri+710+T+Tep k=1

K pTpri+T70+2T
= Z kb (Or) 2p Ok, Vi) /
p

k=1 Tori+70+T+Tep
(a) K pTpri+70+2T
=~ E @kbm(ek)zp(ﬁk,uk)/

k=1 pTpri+70+T+T ¢

K
= BTy Z dkbm(ek)zp(ekv Vk)e_j27rmf(m+m) + np,m[l]

K L
e_jQﬂ'lAft Z @kbm (Hk)zp(ek, Vk) Z ﬂejgﬂ_qu(t_Tp’k) dt + npﬁm[l}

q=1
L

. . Y . aAf .
. JszAftE :ﬂeﬂﬂqm‘(t e T0) B2 TR gy 4oy ]

q=1
L

o i2nlA L Z Be2maAl t=m=T0) gp 4 1]

q=1

)
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2ria/c+ 2T + T¢p, we see that the maximum sensing distance
is determined by Tpr; — 1'.

3) Unambiguous Velocity: The maximum unambiguous ve-
locity characterizes the maximum detectable radial velocity of
a target with respect to the IRS. The radial velocity can be
uniquely determined if there is no phase ambiguity in e7 27 Terivk
i.e., Tprivk < 1. Recalling vy £ 21’%}%, the maximum unam-
biguous velocity can be given as

c

2f(:,‘TPRI

s)

Umax <

B. Tensor Representation

Based on the above two-phase sensing scheme, we now show
how to formulate the received signals into tensors. Specifically,
let @, and ®,, respectively, denote the IRS phase shift matrices
employed in phase 1 and phase 2. Define

bim (0%) = gt @] a(0)
zixp(ekv Vk) = aT(ek)@iGwpejQ""PTpkwk

(16)
A7)

where 7 € {1, 2}. We first consider the signals received in phase
1. For each subcarrier [, stacking the received echo signal
from all P pulses and all M antennas, we can construct a
matrix Y (l) € CP>*M  with its (p,m)th entry denoted by
[Y'1(D)]p,m = Yp.ml[!] and given as (11)

K
Upmlll = by (61)
k=1

X 21, (O, v )e T2 AT Ly ] (18)
Consequently, we have
K
Yi(1) =Y onfilri)z1 (O, )by (06) + N1g (19)
k=1
where 21 (0k,vk) = [21.1 Ok, i) - 21.p(0k,vx)]T €CP,
b1(9k) £ [bl’l(tgk) . bl,M(9k>] c (CM, and fl(Tk) £
e—jQWlAka'

Now consider the signals received in phase 2. In phase 1,
the distance between the kth target and the IRS is denoted
as Ry. When it comes to phase 2, the distance between the
target and the IRS has changed to Rk = Ry, + Ary, where
Ary, = v PTpgy is the shift of distance during the time interval
between two phases. For a typical sensing scenario, suppose
the velocity of the target is v = 120 km/h, the number of pulses
is set to P =100 and the PRI is set to Tpg; = 10 us. We have
Arj, = vPTpg; ~ 0.03m. This distance shift generally has a
very slight influence on the distance-dependent path loss and
the target’s DOA with respect to IRS. Therefore, in phase 2, it
is reasonable to assume that the path loss a, the target’s DOA
0, as well as the time delay 7 remain the same as in phase 1.
The received signals in phase 2 can be written as

K
Vo mll] =D kb m(61)
k=1

X Z27P(9k7 Vk)eijQﬂ’lAka + N2 pm m (20)
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During phase 2, let Y5(l) € CP*M denote the matrix con-
structed by stacking the received echo signal from all P pulses
and all M antennas for each subcarrier /. We have

K
Yo(l) = arfilri) 20k, vi)b5 (0k) + N2y (21)
k=1

where  zo(0p, ) £ [22.1(0k,vk) -+ 22.p(Ok, k)] €CF,

ba(01) = [ba1(0) -+ baai (k)] € CM, fi(7y,) = e 92mATx
and [N is the additive Gaussian noise.

For phase 7, by concatenating the received signals across
L subcarriers, we can naturally obtain a third-order tensor
Vi € CPXMxL with its (p,m, )th entry given by [Y;(1)]p.m»
whose three modes respectively stand for the pulses, the AP’s
antennas and the subcarriers. Note that each slice of the tensor
Y, is Y, (l), which is a weighted sum of a common set of
rank-one outer products. Therefore the tensor Y; admits a CP
decomposition as

K
Y= Zzi(ak, vk) 0 bi(0k) o oy f (1) + N

(22)
k=1
where o denotes the outer product, and we have
.f(Tk‘) L [efj2ﬂ'Aka . eijTrLAka]T (23)
b;(0) = GT®;a(h) (24)
zi(0,v) = (WTG"®;a(h)) ® (d(v)) (25)
in which W 2 [w;, - wp]eCMXP, d(v) =
[e2m Ty ... ei2nPTw]T ¢ CP and  ®  denotes  the
Hadamard product.
Define
A; &2 ([zi(01,11) - zi(0k,vi)] €CPXE(26)
B; £ [bz(91) s bl((gK)] S (CIMXK 27
C2lanf(n) - axf(rx) € CHF (28)

Here {A;, B;,C} are the factor matrices of the tensor Y,
where i € {1,2}. We see that the factor matrices contain in-
formation about the DOAs, Doppler shifts and time delays of
the targets. Leveraging the two phases’ observations, we, in the
following, develop a two-stage method which first estimates
the factor matrices of the tensor Y; and then jointly recovers
the target’s DOAs, time delays and Doppler shifts based on the
estimated factor matrices. Before proceeding, we first discuss
the uniqueness of CP decomposition as it plays a crucial role
in the identifiability of the proposed method.

C. Identifiability Condition

A well-known condition to ensure the uniqueness of CP
decomposition is Kruskal’s condition [36], [37], [38], i.e.

kao) +kae +kae >2R+2

where AW € CIxXR AP c C/xR and A®) € CEXR yre
factor matrices associated with the third-order tensor X &€
CI*I*K L 4 denotes the k-rank of a matrix A, which is defined
as the largest value of k 4 such that every subset of k4 columns
of the matrix A is linearly independent.

(29)
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For our problem, recall that b;(0) = G* ®;a(f), and G is a
rank-one matrix. Writing G' = cuv”, we have b;(6) = ¢;(0)v,
where ¢;(0) = ocu” ®;a(0) is a scalar. Therefore, we can see
that columns of the factor matrix B; are linearly dependent.
Thus, we have kg, = 1. In this case, even A; and C are full
k-rank, the Kruskal’s condition cannot be satisfied.

Meanwhile, we notice that the factor matrix C has a Van-
dermonde structure. Previous studies found that, when one of
the factor matrices, say A® has a Vandermonde structure, the
uniqueness of the CP decomposition can be guaranteed if the
following conditions are satisfied [39], [40]:

rank (A(S) O] A(z)) =R
rank (A(l)) =R
where A represents a sub-matrix of A that is obtained by
removing the bottom row of A, and ® denotes the Khatri-Rao
product.
From the above condition (30), we know that for each 7, if
rank (C @ B;) =K
rank (4;) = K

then the CP decomposition of Y; is essentially unique.

Note that different targets usually have different distances
from the IRS, C' is thus a Vandermonde matrix with distinct
generators {e72™2/7 1 According to [39], we can arrive at
rank(C © B;) = K even if matrix B; has redundant columns,
provided that (L — 1)M > K.

Recall b;(f) = GT ®;a(6) = ¢;(0)v. Therefore the column
of the factor matrix A; can be expressed as

zi(0,v) = (WIGT®;a(0)) ® (d(v))
= (W7b;(0)) ® (d(v))
= (c;(O)WTv) ® (d(v)) (32)

In practice, different targets are usually associated with different
Doppler shifts. From (32), we know that A; is obtained from a
Vandermonde matrix multiplied columnwisely by a same vector
with different scaling factors. Hence for a generic W' v, A, is
full rank and we have rank(A;) = min{P, K'},Vi.

In summary, we have the following proposition concerning
the uniqueness of the CP decomposition.

Proposition 1: Assume that the delay and Doppler shift
parameters associated with different targets are different. The
uniqueness condition of CP decomposition can be guaran-
teed almost surely when both (L — 1)M > K and P > K are
satisfied.

(30)

(€19}

D. CP Decomposition

We now discuss how to perform CP decomposition by uti-
lizing the Vandermonde structure of the factor matrix. Such a
method was originally proposed in [39]. To make the paper self-
contained, we provide a brief description of the CP decompo-
sition method.

To ease our presentation, we drop the subscript 7 in the tensor
and the associated factor matrices. The mode-1 unfolding of Y
can be written as

Yiy=(CoBA" + N, (33)
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Ignoring the noise, we can compute the truncated singular value
decomposition (SVD) of the noiseless y(Tl) € CLMXP 44

Yy =usv? (34)
where U € CEM*XK 5 c CEXK and V e CP*EK| If the

uniqueness condition (31) is satisfied, there exists a nonsingular
matrix R € CK*¥ guch that

UR=CoB (35)
Define  U; = [U]y.(p—1)m, € CEDMXEand U, =
[Uprs1.00r. € CETDMXEK We have

UR=COB (36)

U,R=CGOB (37

where C represents a submatrix of C by removing the top row
of C, and C represents a submatrix of C' by removing the
bottom row of C'. Utilizing the Vandermonde structure of C,

we have
(CoB)T=CoB (38)

in which T = diag(t1, . ..
ing (36)—(38), we obtain

U;R=URT

,tr) and tj, = e~J2™2/7  Combin-

(39)

According to (31) and (35), both U and U are full column
rank. Hence we can rewrite (39) as

UlU,=RTR™! (40)

Thus, we can perform the eigenvalue decomposition (EVD) of
U'U, to estimate T' and the associated generators {t; }5_ .
We can reconstruct the columns {é;} of C by

ép=1[x th - ] (41)

Based on (35) and the reconstructed C , the column of the factor
matrix B can be estimated as

~H
B C
b, = (,\Hk,\ ®IM> U[R}Jc
Ck Ck

Finally, given B and C, the factor matrix A can be

estimated as
+
A=y, <(C © B)T)

After we obtain the estimated factor matrices A, Band C , We,
in Section IV, discuss how to extract the sensing parameters
from the estimated factor matrices.

(42)

(43)

E. Generating IRS Coefficients ®, and P4

Note that our proposed method relies on leveraging the di-
versity in the illumination pattern of the IRS across different
phases. In fact, the IRS phase-shift profiles ®; and ®- can
be arbitrarily chosen as long as they are sufficiently distinct
from each other. Here we introduce a simple scheme to generate
@, and ®,. Specifically, we partition the IRS into a number
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of subarrays, say, 4 subarrays. For each subarray, its reflection
coefficients are set to form a directional beam pointing to a
certain direction. Particularly, if the target’s DOA is within
a range that is known a priori, i.e. 0, € [0'®,6"P], we can
let different subarrays create multiple directional beams that
collectively cover this wide range of directions [6'®, §UP]. Also,
each subarray, in two different phases, steers its beam towards
different directions. In doing this way, the illumination patterns
of the IRS in two phases are thus different.

IV. TARGET PARAMETER ESTIMATION

After CP decomposition, we now have access to the estimated
factor matrices {A;, B;,C;}, in which i € {1,2}. Note that
for both phases, the factor matrix C; remains the same, i.e.
C1=C3=_C. Due to the inherent permutation and scaling
ambiguities, the estimated factor matrices are related with the
true factor matrices as

A, =AML + Ey

5;1 =B 1Al + E, (44)
C,=CAsIl, + E;
and
‘4:12 = Ao I, + E:l
By = B-oI'sI0, +~E2 45)

Cy=CrIsII, + E;

where {A1,As,As,} and {T'1,T3,T'3,} are unknown
nonsingular diagonal matrices satisfying A;AsAs =1 and
I'\ToI's =1, {II;} are unknown permutation matrices,
{E\,E,, E3} and {E/, E5, E3} are estimation errors.

A. The Scaling Ambiguity Issue

First, we show that, when only a single phase is consid-
ered, why the DOA estimation is infeasible in the scenario of
rank(G) = 1. Recall that b;(f) = G* ®;a(6). Hence, we can
write B; = G ®, =, where £ 2 [a(0,) - - a(fx)] € CN*K,
If the rank of the channel matrix G is greater than one, then
we can employ a correlation-based method [41] to extract the
parameter 0, from each column of Bl, i.e.,

~H
b, — by b1 (0k)]
© = arg max

o [|b1ll2]bi(0k)]]2

where BLk is the kth column of Bl. In this case, only using
the received signals from a single phase suffices to recover
parameters of interest. Nevertheless, this method fails when
rank(G) = 1. The reason can be explained as follows. Specifi-
cally, when rank(G) = 1, G can be expressed as G = cuvT.In
this case, we have Bl = ovuT ®, 5 A,, where, for simplicity,
the unknown permutation matrix and the estimation error are
neglected. The kth column of B is thus given by

(46)

I;l,k :m;uT<I>1a(9k)[A2]k.,k (47)

where [Az]g ;. denotes the kth diagonal element of A. Here
u? ®1a(0))[As]k . is a complex scalar. Due to the coupling
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between the unknown scalar u” ®;a(f;) and the unknown
scalar [Az] ., the parameter 0, cannot be uniquely identified.

From the above discussion, we see that when rank(G) =
1, using the factor matrices {Al, B, C’l} obtained from the
first phase alone cannot uniquely identify the targets’ param-
eters. In the following, we will show how to utilize the esti-
mated factor matrices from two different phases to resolve this
ambiguity.

B. Column Alignment for Factor Matrices

To leverage the estimated factor matrices, we first remove the
permutation ambiguity between phase 1 and phase 2. Notice
that both é’l and C‘Q are associated with a common matrix
C'. This fact can be used to remove the relative permutation
between C’l and C’Q. Define

|(él7k1 )H627k2 |

T TRTI T (48)
€1k, [12]1€2,k, |2

Pk ko =

where &, ;,, and &3, are, respectively, the kith and kath col-
umn of C’l and C‘Q. Since C' has distinctive columns, with
each column characterized by a different time delay parameter,
Pki ko, achieves the largest value when ¢, j, and é j, corre-
spond to the same target. Define a permutation matrix I3 £
lerqa)y - exro)]’ €10, 1K where € is a standard
basis vector, and (k) = arg maxy, { p.k, } t,—1 - Ignoring esti-
mation errors, we should have

I, = 11,113 (49)
Then we can utilize II3 to remove the permutation between
{A,} and {Ag},~ {B,} and {Bg}, {C1} and {C5}. Specif-
ically, defining A; £ A5, B, 2 B1II3, C; 2 C 113, we
have

Ay = A\MILIL; + B DL = A A DL + E(ID; (50)
By = B1ASILII; + EoIls = B1ASIL, + ESII;  (51)
C1 = CASILII; + E5IL; = CASIIL, + E5II;, (52)
Ignoring the permutation matrix II5, we obtain
{41 = AlAl + -?1]-_-[3 (53)
Ay = AT + E,
B§1:31A2+?2H3 (54)
By = BoI's + Eo
and
C:'1 =CAs3 + Esllg (55)
Cy,=CT3+ Ej3

Now we have column-aligned Al and A, B 1 and B, c 1 and
C’g, i.e., the same columns of each pair of two factor matrices
are associated with the same target. Note that both C 1 and C 2
are estimated as a Vandermonde matrix based on the estimated
generators. Hence theoretically we should have I's A5 =T
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C. Joint DOA, Time Delay and Doppler Estimation

Based on the column-aligned factor matrices from two
phases, we discuss how to jointly estimate DOA, time delay
and Doppler shift. Since B; = G'®,=, and G = cuvT, (54)
can be rewritten as

Blfm)u <I)1._/AQ+E2H3 (56)
B2 avu (I)Q._/I‘Q-FEQ
Also, (53) can be rewritten as
A =oWTou"®, EA, ® D + E\Il; 57)
Ay =oWTou"®,ET, ® D + E,

where D £ [d(v1) --- d(vi)] € CP*K Note both {A;} and
{B;} contain the DOA information. To harness the IRS illu-
mination diversity across two phases, we define a new vector
7P € CM, in which the mth entry is calculated by the element-
wise division of [31]7,L7k and [Bg]m7k, ie.,

sl 1]m,k
[Ba]m,

_ofo o106 Al
olvlmu’ ®2a(0r) [T,k
uT®1a(0;)[As)pk

B
B

+€mk

= - +€m, (58)

ul ®sa(01)[Tak i g
Similarly, define 7#; € CF, we have
A
) & e

[AQ p,k
UwgvuT'iI>1a(9k)[A1 k.k .

- 5
cwlvu? ®ya(01) [Tk k Pk
ul' ®1a(0;)[A

_ 1 ( k)[ l]k,k + Epk (59)

uT®5a(0k) L1k k

where w,, denotes the pth column of W, both ¢,,, ;, and €, , are
noise terms. We now discuss how to recover the DOA parameter
from (58) and (59). Define

L M L F
YOk) & 12 D[ 5 D [ (60)
m=1 p=1
Ignoring the noise term, ¥(6y) is equivalent to
F(0r) = u" ®ia(0)[Ao]k e u" Pra(0k) Ak
ul ®3a(0;) Lol ul ®2a(0k)[T1]k,k
u’ ®a(by)
= (uT%a(gk)> [A]k kT2l g [A1]rk[T1]
uT'Ina(Gk) 2
@ u” ®,a(fy) 6D
uT ®ya(by)
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where (a) comes from the fact that AjAsAg =1, T'1T'oT'5 =
I, and [T'3]; 1[As]}; r.k = L. As for now, we see that the scaling
ambiguities in (58) and (59) are effectively removed and an
unambiguous estimate of 6 can be obtained.

Based on the above relationship (61), we can estimate the
target’s DOA via the following criterion

Oy = arggnin 14(6) — ()3
ul®a() ?
st. () = <uT‘I>;a(9)>
0e Dy (62)

where Dy is the feasible region of # and the above problem can
be easily solved by a one-dimensional search.

Note that the kth column of A; is characterized by both 6y,
and vy. Specifically, the k£th column of A; and the kth column
of B; are related as

zi(O, k) = (d(vk))

After the DOA is estimated, define B; = G'®
with Z£[a (0y) - (éK)] and define_ A; € CP*E with
[A1]pr=[A ]p,k/[W Bl]}z,k’[Aﬂp,k = [A2}p,k/[WTB2}p,k-
Note that each column of A; is characterized by the associated
Doppler shift v,. Hence, the Doppler shift 1, can be estimated
via a correlation-based scheme [41] as

|ad(vy)]
1@, kll2]ld () 2

where @; ;. denotes the kth column of Ai. We then compute the
average of the two estimates as the final estimate of the Doppler
shift, i.e., 7, = (1,1 + 2,1) /2. The velocity estimate of the kth
target can be calculated as o, = ¥c/2f.. The round-trip time
delay {7; 1} can be calculated from the estimated generators
{t; x} in (41) as

(Wb, (60,)) ® (63)

—'E(CMXK

Ui = arg max (64)

. arg(t; 1)

fik= o (65)

where arg(t; ;) denotes the argument of the complex number
i k- Similarly, we obtain 75, = (71 + 72.1)/2.

V. CRB ANALYSIS

In this section, we provide a CRB analysis of the estimation
problem considered in this paper. For the P x M x L tensor
observation Y; considered in (22), we have

K
= 20k, i) 0 bi(0r) 0 e f (i) + N

(66)
k=1
We write the unknown target parameters as
C _ [0T VT ’TT] c ]RIXSK (67)
where 02607 -+ 0|7, vE[ - vl and T2

[r1 - TK]T. The log-likelihood function of the parameter
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vector ¢ can be expressed as

~Ai(CoB)"|E

@
vl
—

51 Yi2) — Bi(C© A7

~ 1
= D=
—Z Dz_ 2||y1

where D; 2 PML1In(ro?), and Vi) denotes the mode-j un-
folding of Y;. Then the fisher information matrix (FIM) for ¢

is given by
wa-o{(150)"(50)

To calculate ©(¢), we first compute the partial derivative of
L(¢) with respect to ¢ and then calculate its expectation.

l\D”

C(B;oA)" | (68)

(69)

A. Partial Derivative of L({)

Following a similar procedure as in [41], [42], the partial
derivative of £({) w.r.t. 6 can be calculated as

0LQ) N~ 2l 1 o
0, _;;22% el (CoBy)

X (yi,(l) —-A;(Co Bi)T)H A;ﬂek}
+Z {ek (Co AT

H
x (m) ~Bi(CoA)) Ble) @

. . YN PxK /
in which A;,=[a;, ai, 1€C a[i?(]i B, =
/ ! MxK / A k
[b; 6, iox] €C . with aj, = =5 and
aBil. . . .
b;ﬁk = [891"’“. e, is a standard basis vector with £k as

the index of its nonzero element. Similarly, the partial
derivatives w.r.t. other parameters can be calculated. The
details are omitted here for brevity.

B. Calculation of FIM Q(¢)

To calculate the FIM Q(¢), we first calculate the entries
in the diagonal blocks. Define uw= K(k; — 1) + ky and v =
K (ko — 1) + ko. The (k1, k2)th element in the block related
to 0, can be calculated as

() ()

= 2%{[C7LA,Q]U7U} + 2%{[CnA9‘B]U,U}

+ 2R{[Crp a,lupt +2R{[Cnpolunt (7D
where
)
C'nAQZZ?< 9®(C®B))
i=1 i
x (A}, ® (C© By)) (72)
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2
1 .
Chna, 2—4 @ (CoBy)) C,

(B; p®(C oA (73)
Crvs =Y. e (Bly5 (€0 A) €,
ZZI(A’ 0 ®(C OB, (74)
Crnpo= 21012 B, (CoA))"
x (Biy®(CoA) (75)
and
Ci, 4, 2 E{vec(N;, ) )vee(N T ;) 7 (76)

in which ¢ is phase index and the details will be discussed later.
Similarly, the entries in other blocks can be derived The details
are omitted due to space limit.
Now we compute C*, J1.j» defined in (76). Note the entries in
N; are all i.i.d Gaussian random variables, we have
o? =po,my =ma,l; =1
]E{ni,,pl,mhll n;pz,m«z,lg} = {Oj ’ ](jtlher\;z?;e ! 2 ?

(77

Based on the arrangements of elements of A/; under differ—
ent unfolding modes, the PM L nonzero entries in C'

Ji Jz
CPMLXPML can be given as

o?, wu=h; (p,m,l),v="h,,(p,m,l
(G :{ Z (o D0 = 1D g
0, otherwise
where Vj1 # j2, 1 < j1 <3,1<j> <3, and
hp,m,)=m+({1—-1)M+ (p—1)ML (79)
ha(p,m,l)=p+ (1 —1)P+ (m —1)PL (80)
hs(p,m,)=p+ (m—-1)P+ (l—-1)PM (81)

After obtaining the FIM €2, the CRB can be calculated as

CRB(¢) =27'(¢) (82)

From our CRB analysis, we can see that the sensing per-
formance is dependent on a number of factors, including the
number of pulses P, the number of subcarriers L, the num-
ber of AP’s antennas M, as well as the signal-to-noise ratio
(SNR). From the numerical calculation of the CRB results,
we know that increasing these parameters leads to a better
sensing performance, which is expected and can be intuitively
explained. Specifically, increasing the number of pulses P pro-
vides a larger observation window for the Doppler shift, which
in turn helps enhance the Doppler shift estimation accuracy.
Similarly, increasing the number of subcarriers L renders more
observations about the time delay and can thus improve the time
delay estimation performance.
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v Target2
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O Target 1

Fig. 5. Simulation setup (top view).

VI. SIMULATION RESULTS

We now present numerical results to evaluate the estimation
performance of the proposed method for NLOS target sensing.
We examine a two-dimensional scenario, as illustrated in Fig. 5,
where the AP and the IRS are located at coordinates p,p =
[0,0]7 and pyrg = [100, 100]7m, respectively. In our simula-
tions, the system carrier frequency is set to f. = 60 GHz, and
the distance between two adjacent antenna elements d is set to
half of the signal wavelength. The number of antennas at the
AP and the number of reflecting elements at the IRS are set to
M =16 and N = 32, respectively. For OFDM signals, the sub-
carrier spacing is set to A f = 500kHz. As a result, the length
of an effective OFDM symbol is equal to Ty = Aif =2 us, and
the length of the CP is set to T, = 1 us [32]. The bandwidth of
the OFDM signal can be calculated as LA f, where L denotes
the number of subcarriers and its choice will be specified later.
The pulse repetition interval is set to Tpr; = 8 us. The channel
of the AP-IRS link is generated based on the geometric channel
model and includes only a LOS path, i.e.

G = oars(¢)axp(y) (83)
where ¢ denotes the path loss between the AP and the IRS, ¢
and ¢ denote the angle of arrival (AOA) and angle of departure
(AOD), respectively. The distance-dependent path loss ~ fol-
lows a complex normal distribution CA/(0, 107%1%), where r =
a+ 10blogyo(D) + €. Here, £ ~ N(0,02), and D represents
the distance between the the AP and the IRS. The parameters
a, b, and o¢ are set to a =068, b=2, and o¢ =5.8 dB, as
suggested in [43], [44]. In our experiments, we consider K = 2
targets, both located within the angular range of [30°,45°]
with respect to the IRS. The coordinates of the targets are set
as p; = [533, —170]"m and p, = [541, —245]"m. The targets’
radial velocities with respect to the IRS are set to v; = 16.66
m/s and vy = —22 m/s, respectively. The direct link between the
AP and the targets are blocked by obstacles. So the AP has to
detect these two targets via the IRS-assisted reflected path. The
radar cross-section (RCS) of each target is set to 1 for simplicity,
as suggested by [22].

In our experiments, the beamforming vector w,, is designed
to align its beam direction towards the IRS to maximize the re-
ceived signal power at the IRS. The IRS phase shift profiles are
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generated according to the method discussed in Section. Specif-
ically, we partition the IRS into 4 subarrays, and the pointing
directions of these 4 subarrays are set to {30°,35°,40°,45°}
for phase 1 and {48°,42°,36°,30°} for phase 2. This scheme
allows the IRS to generating directional beams to effectively il-
luminate the potential target area, meanwhile exhibiting diverse
illumination patterns across different phases.

Unless otherwise stated, the numbers of subcarriers and
pulses, as well as the transmit power, are set to L = 10, P = 10,
and P, = 30 dBm, respectively. The received signal-to-noise
ratio (SNR) is defined as

o 1Y - N2
IMI%
where I and N represent the received signal and the additive

noise in (22), respectively. All results are averaged over 103
Monte Carlo runs.

SNR (84)

A. Performance Evaluation of the Proposed Method

We first examine the performance of our proposed method
in estimating the target’s parameters {6y, 7, vk }. The perfor-
mance is evaluated by the mean square error (MSE), which is
defined as

K
MSE(Q) = = S B (g — &) (85)
k=1

where é denotes an estimate of the parameter ¢, which corre-
sponds to one of the parameters {6, 7, v}. The MSE of our pro-
posed method as a function of the SNR is plotted in Fig. 6(a)-
6(c). The CRB results for different sets of parameters are also
included for comparison. From Fig. 6, we see that as the SNR
increases, our proposed method achieves an estimation accu-
racy that is close to the theoretical lower bound. This result
validates the efficiency of the proposed method for NLOS target
sensing. Specifically, the MSE of the DOA is able to approach
its CRB. The estimate of the other two parameters (Doppler
shift and delay) cannot exactly attain their respective CRBs,
which is probably because the observation time/signal band-
width is not long/large enough to estimate these two parameters.
Additionally, from Fig. 6, it is seen that the proposed method
provides accurate estimates of the target’s parameters even in
a relatively low SNR regime, say SNR = —5 dB. Notably, for
NLOS sensing tasks, the SNR is usually low due to the round-
trip path loss and reflection loss. Hence the ability of extracting
parameters reliably under a low SNR environment has a signif-
icant implication in practice.

Next, we plot the MSEs of the proposed method as a function
of the number of pulses P in Fig. 7(a)-7(c), where the number
of subcarriers is set to L = 10, and the SNR is set to 5 dB. We
see that the proposed method can achieve reliable sensing even
with a small number of pulses, for example, P = 5, which cor-
responds to a total sensing duration of (2P + 1)Tpr; = 88 us.
This result corroborates the efficiency of the proposed method
for NLOS sensing tasks.

In Fig. 8(a)-8(c), we depict the estimation performance of the
proposed method as a function of the number of subcarriers,
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where the number of pulses is set to P = 10 and the SNR is
set to 5 dB. The results show that our proposed method can
deliver accurate estimates of the target’s parameters even with a
small number of subcarriers. We also observe that our proposed
method fails when the number of subcarriers L < 2. This is
because, when P =10 > K and M = 16 > K, the uniqueness
condition (31) is satisfied only when (L — 1) > 1, implying that
L > 2. Hence, the results roughly coincide with our analysis
concerning the uniqueness of the CP decomposition.

In Fig. 9(a)-9(c), we plot the estimation performance of the
proposed method versus the number of AP’s antennas. In this
experiment, the number of subcarriers and the number of pulses
are set to L =38 and P =38, respectively. The SNR is fixed
at 5dB. As expected, the estimation performance improves
with an increasing number of antennas M. Furthermore, it is
observed that the proposed method can deliver decent perfor-
mance even with a few number of antennas employed at the AP.
This result also corroborates well with our analysis concerning
the uniqueness condition of the CP decomposition.

B. Imperfect AP-IRS Channel Knowledge

Next, we examine the performance of our proposed method
when we only have an imperfect knowledge of the AP-IRS
channel G. Specifically, we use the statistical CSI error model
[45], [46] to characterize the channel inaccuracies:

G=G+AG (86)
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where G denotes the estimated AP-IRS channel, and AG de-
notes the estimation error whose entries follow a circularly
symmetric complex Gaussian (CSCG) distribution, i.e.,

vec(AG) ~CN(0,%,), X,~0 (87)
where X, = 531 mn € CMNXMN “Tn our experiments, the
variance of vec(AG) is defined as ¢} = 5§||Vec(é)\\§, where
dg €[0,1) measures the CSI uncertainty [45]. Fig. 10 shows
the estimation performance of the proposed method versus SNR
under different levels of channel uncertainty. It can be observed
that our proposed algorithm exhibits robust performance even
when the CSI of the AP-IRS channel is imperfect. Addition-
ally, from the results we see that the DOA estimation perfor-
mance degrades as the channel uncertainty increases, whereas
the channel uncertainty has little effect on the Doppler shift
and time delay estimation performance. The reason can be
explained as follows. First, the time delay is calculated from the
estimated generators based on equations (41) and (65), which
are independent of the AP-IRS channel. Moreover, the Doppler
shift estimation benefits from the Hadamard product structure in
(25), which preserves the steering vector structure of v, making
the Doppler shift estimation robust to variations in G.

C. Performance Comparison With The Existing Method [22]

To illustrate the superiority of the proposed method, we com-
pare it with the MLE-based method [22]. For a fair comparison,
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the AP-IRS channel is assumed to be Rician fading in our
simulations, i.e.

[ 1
G- v G-OS ¢ GNLOS (88)
14+~ 1+~
where ~ is the Rician factor in dB while G*©5 and GNVOS

are the LOS and NLOS components, respectively. A typical
value of the Rician factor over the millimeter-wave (mmWave)
band is 13dB [47], [48], [49], indicating that G is an approx-
imately rank-one matrix. In our experiments, we also consider
the cases where the Rician factor is set to 0dB and 5dB, in
order to more comprehensively examine the performance of
our proposed method under different channel conditions. Note
that [22] employs a single-carrier signal to sense a single static
target. In contrast, this paper aims to sense multiple moving
targets based on the OFDM signal. To make a fair comparison,
we focus our simulations on a single static target. The Doppler
shift is set to ¥ =0 in (11). It is crucial to emphasize that
our proposed method estimates not only the DOA but also the
Doppler shift and the time delay, whereas [22] can only estimate
the DOA. In our experiments, we assume there is one LOS path
and four NLOS paths between the AP and the IRS, resulting
in rank(G) = 5. Also, for a fair comparison, the number of
measurements used for parameter estimation is set the same for
both methods.
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Fig. 11 depicts the MSE of the estimated DOA parameter
as a function of the SNR under different Rician factor values.
From Fig. 11(b) and Fig. 11(c), we observe that our proposed
algorithm presents a clear performance advantage over the MLE
method [22]. This performance improvement becomes more
significant as the Rician factor increases. The reason for this
observation can be explained as follows. The work [22] requires
additional degrees-of-freedom provided by the AP-IRS channel
in order to resolve the scaling ambiguity in the DOA estimation.
However, as the Rician factor increases, the AP-IRS channel
becomes an approximately rank-one matrix, yielding an insuf-
ficient degrees-of-freedom for DOA estimation. As a result,
the method [22] incurs a significant amount of performance
degradation as the Rician factor increases. In contrast to [22],
our proposed method removes the scaling ambiguity of DOA
estimation by leveraging the IRS illumination diversity across
two phases. Therefore, it works well even for rank-one AP-IRS
channel scenarios.

Note that our proposed algorithm can be readily adapted to
the scenario where the BS-IRS channel has a rank greater than
one. In fact, in such a case, a single tensor alone can identify the
DOA parameter. Specifically, we can resort to (46) to estimate
the DOA parameter when v = 0 dB. From Fig. 11, we see that
our proposed method not only presents a significant perfor-
mance improvement over the work [22] for approximately rank-
one scenarios (corresponding to v = 5dB and v = 13dB), but
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also achieves a performance close to the work [22] when the
AP-IRS channel consists of multiple strong paths (correspond-
ing to v = 0dB).

VII. CONCLUSION

In this paper, we explored an IRS-assisted NLOS sensing
system. We introduced a radar operation mode for the AP,
which senses the NLOS environment by transmitting OFDM
pulses and processing echoes relayed by the IRS. A two-phase
sensing scheme was proposed by exploiting the diversity in
the illumination pattern of the IRS across two different phases.
Using this two-phase sensing approach, we developed a CP
decomposition-based method for estimating the DOA, Doppler
shifts, and time delays of the targets. Uniqueness conditions for
the proposed method are analyzed and provided. We also con-
ducted a CRB analysis for the considered estimation problem.
Simulation results demonstrated the effectiveness of the pro-
posed method in performing NLOS sensing, even in scenarios
where there was only a single dominant path between the AP
and the IRS.
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