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Intelligent Reflecting Surface-Assisted NLOS

Sensing With OFDM Signals
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Abstract—This work addresses the problem of intelligent
reflecting surface (IRS) assisted target sensing in a non-line-of-
sight (NLOS) scenario, where an IRS is employed to facilitate
the radar/access point (AP) to sense the targets when the line-
of-sight (LOS) path between the AP and the target is blocked
by obstacles. To sense the targets, the AP transmits a train
of uniformly-spaced orthogonal frequency division multiplexing
(OFDM) pulses, and then perceives the targets based on the
echoes from the AP-IRS-targets-IRS-AP channel. To resolve an
inherent scaling ambiguity associated with IRS-assisted NLOS
sensing, we propose a two-phase sensing scheme by exploiting
the diversity in the illumination pattern of the IRS across two
different phases. Specifically, the received echo signals from the
two phases are formulated as third-order tensors. Then a canon-
ical polyadic (CP) decomposition-based method is developed to
estimate each target’s parameters including the direction of
arrival (DOA), Doppler shift and time delay. Our analysis reveals
that the proposed method achieves reliable NLOS sensing using a
modest quantity of pulse/subcarrier resources. Simulation results
are provided to show the effectiveness of the proposed method
under the challenging scenario where the degrees-of-freedom
provided by the AP-IRS channel are not enough for resolving
the scaling ambiguity.

Index Terms—Intelligent reflecting surface (IRS), NLOS wire-
less sensing, OFDM, canonical polyadic (CP) decomposition.
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I. INTRODUCTION

A. Background

I
NTELLIGENT reflecting surface (IRS) has received a great

amount of attention in wireless communications due to its

ability of reconfiguring wireless propagation channels [1], [2],

[3]. Specifically, IRS is made of a newly developed metamate-

rial comprising a large number of reconfigurable passive com-

ponents. Through a smart controller, the phase and amplitude of

each unit on the IRS can be flexibly adjusted. By properly de-

signing the reflection coefficients, the propagation environment

can be customized to enhance/diminish signals of interest. This

allows for coherent or destructive addition of reflected signals at

the receiver, enabling passive beamforming, increased spectral

efficiency, interference suppression, and other benefits [4], [5],

[6], [7]. In recent years, the integration of wireless sensing as

a new functionality into future sixth-generation (6G) wireless

networks has attracted increasing research attention [8], [9],

[10], [11]. Wireless sensing typically involves extracting target

information, such as the angle and distance, through the line-

of-sight (LOS) path between the target and the wireless node.

However, in some urban scenarios, the targets of interest may be

distributed in the non-line-of-sight (NLOS) region of the wire-

less node, rendering LOS path-based target sensing ineffective.

To address this challenge, IRS was introduced as an energy-

efficient and cost-effective anchor node with known locations,

creating a virtual LOS link between the sensing node and the

target to enhance performance [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21], [22], [23], [24], [25].

B. Related Works

There have been some prior works investigating IRS-enabled

wireless sensing (i.e., NLOS detection/estimation) [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [22] and IRS-

assisted integrated sensing and communication (ISAC) systems

[23], [24], [25]. For the IRS-aided NLOS detection problem, the

work [12] developed a radar equation for the IRS-aided NLOS

scenario, and evaluated the sensing performance in terms of

signal-to-noise ratio (SNR) and signal-to-clutter ratio (SCR). In

[13], [14], [15], an IRS-aided multi-input multi-output (MIMO)

radar detection problem was considered, in which the IRS is

placed in the vicinity of radar transmitter (or receiver) to help il-

luminate (observe) prospective targets. A generalized likelihood

ratio test (GLRT) detector was derived and the IRS phase shifts

1053-587X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:32:46 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: INTELLIGENT REFLECTING SURFACE-ASSISTED NLOS SENSING 5323

were optimized to maximize the probability of detection given

a fixed false alarm probability. An IRS-assisted radar system

for target surveillance in a cluttered environment was studied

in [16], where the active beamformer at the radar transmitter and

the passive phase-shift matrices at IRSs are jointly optimized

to maximize the minimum target illumination power at multi-

ple target locations. The moving target detection problem in a

multi-IRS-aided OFDM radar system was considered in [17],

where the authors derived a bi-quadratic program which jointly

designs the OFDM signal and IRS phase shifts to optimize the

target detection performance.

In addition to detection, the estimation problem was studied

for IRS-aided NLOS sensing systems. The work [18] consid-

ered an IRS-self-sensing architecture, where an IRS controller

is employed to transmit probing signals, and dedicated sensors

are installed at the IRS for location/angle estimation based on

the echo signals via the BS-IRS-target-IRS sensor link and the

BS-target-IRS sensor link. An IRS-enabled pulse-Doppler radar

system was considered in [19], where the minimum variance

for the best linear unbiased estimator (BLUE) of the target

back-scattering coefficient is derived, and then the IRS phase

shifts were optimized by minimizing the mean squared error

of estimated target parameter. In [20], a multi-IRS assisted

sensing system was introduced, where the IRS forms a passive

directional beam to scan the space to locate the potential target

that is beyond the sight of the AP. Following [20], the work [21]

explored semi-passive IRS-based sensing as a means to mitigate

the high signal attenuation issue inherent in passive IRS sensing

systems. Moreover, the work [22] examined the estimation of

the DOA in an IRS-enabled NLOS sensing system, where the

transmit beamformer at the AP and the passive beamformer

at the IRS were jointly optimized by minimizing the Cramér-

Rao bound (CRB). It is noted in [22] that an inherent scaling

ambiguity exists in IRS-assisted NLOS sensing when the rank

of the AP-IRS channel matrix is equal to one. This is because

at least two degrees-of-freedom (DoFs) are required to identify

both the complex path gain and the angular parameter of the

target, otherwise the scaling ambiguity arises [26]. To resolve

the inherent scaling ambiguity, the work [22] needs that the

AP-IRS channel matrix contains at least two prominent singu-

lar values. Such a requirement, however, may not be satisfied

in practice. Specifically, for IRS-assisted sensing, in order to

compensate for the path loss caused by multiple reflections, the

IRS is usually located within the sight of the AP and the AP-

IRS channel is dominated by the LOS path, in which case the

work [22] will experience a substantial amount of performance

degradation. For this reason, it holds practical significance to

study the scenario where the AP-IRS channel is dominated by

the LOS path.

C. Our Contributions

In this paper, we consider the problem of target parameter es-

timation via an IRS-assisted sensing system. The AP transmits

a train of uniformly-spaced OFDM pulses, and then perceives

the targets based on the echo signal from the AP-IRS-targets-

IRS-AP channel. To resolve the scaling ambiguity inherent in

IRS-assisted sensing, we, in this paper, propose a two-phase

sensing method, where the entire sensing cycle consists of two

phases, and each phase is assigned an individual IRS-phase-

shift profile. By utilizing the diversity of the IRS illumination

pattern across two phases, the received OFDM signals in two

phases are represented by two third-order tensors, and a CP

decomposition-based method is developed to uniquely identify

the DOAs, time delays, and Doppler shifts of the targets even

when there is only a single dominant path between the AP

and the IRS. Additionally, a theoretical analysis is presented

to provide a performance bound for the proposed sensing sys-

tem. Simulation results demonstrate that the proposed method

achieves an estimation accuracy that is close to the CRB,

thereby validating the effectiveness of the proposed method.

In addition to the ability of resolving the inherent scaling

ambiguity, our work presents some other advantages over [22].

First of all, the work [22] only studied the problem of DOA

estimation, whereas our proposed method can identify not only

the DOA, but also the distance and the Doppler shift parameters

of the targets. Secondly, the work [22] considered only a single

target scenario, and it is difficult to extend the proposed maxi-

mum likelihood estimator (MLE) to multi-target scenarios. As

a comparison, our proposed method can handle multiple targets

simultaneously.

The remainder of this paper is organized as follows. Sec-

tion II introduces the system model as well as the signal model

of the proposed IRS-assisted NLOS sensing system. Section III

develops a two-phase sensing scheme, based on which the CP

formulation, uniqueness conditions and CP decomposition are

discussed. Section IV discuss how to estimate the target param-

eters from the estimated factor matrices. Section V presents the

CRB analysis for the considered estimation problem. Simula-

tion results are presented in Section VI, followed by concluding

remarks in Section VII.

Notations: In this paper, scalars, column vectors, matrices

and tensors are denoted by italic, lowercase boldface, upper-

case boldface and calligraphic boldface letters, respectively.

The symbols (·)∗, (·)T , (·)H , (·)−1, (·)† denote the conjugate,

transpose, conjugate transpose, inverse and pseudo-inverse, re-

spectively. ‖ · ‖2 and ‖ · ‖F denote the 2-norm and Frobenius

norm, respectively. diag(a) denotes a diagonal matrix whose

main diagonal elements are the elements of a. IM denotes

the identity matrix of size M . [a]i, [A]i,l, [A]i,:, [A]:,l denote

the ith element of a, the (i, l)th element of A, the ith row

of A and the lth column of A, respectively. rank(A) and kA
denote the rank and Kruskal-rank of A, respectively. ⊗, �, �

and ◦ denote the Kronecker, Khatri-Rao, Hadamard and outer

products, respectively. j denotes the imaginary unit. �{·} and

�{·} denote the real and imaginary parts of a complex number,

respectively.

II. PROBLEM FORMULATION

A. System Model

Consider an IRS-assisted wireless sensing (i.e., radar) sys-

tem, where the LOS path between the radar/access point and the

target is blocked by obstacles (see Fig. 1). The access point (AP)
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Fig. 1. Illustration of the considered IRS-assisted wireless communication
system.

transmits a sensing signal and then perceives the targets based

on the echo signal propagating through the AP-IRS-targets-

IRS-AP channel. Suppose the AP is equipped with a uniform

linear array (ULA) of M antennas, and the IRS is equipped

with a ULA of N reflecting elements. Note that to facilitate

the exposition of our proposed method, we consider the ULA

configuration at the IRS. The proposed method can also be

extended to planar array scenarios.

We assume that there are K targets located in the area that are

illuminated by the IRS. Let x(t) ∈ C
M denote the transmitted

signal, and G ∈ C
N×M denote the channel matrix from the AP

to the IRS. Since the locations of the AP and the IRS are pre-

determined, we assume that the channel matrix G is known

a priori. Each reflecting element of the IRS can independently

reflect the incident signal with a reconfigurable phase shift.

Define ϑn ∈ [0, 2π] as the phase shift associated with the nth

reflecting element of the IRS. Also, define the phase shift matrix

of the IRS as

Φ= diag(ejϑ1 , . . . , ejϑn) ∈ C
N×N (1)

Let θ denote a target’s DOA with respect to the IRS. The

corresponding steering vector at the IRS can be written as

a(θ) =
1√
N

[

1 ej2π
dsin(θ)

λ · · · ej2π
(N−1)dsin(θ)

λ

]T

(2)

where d denotes the spacing between adjacent reflection el-

ements, and λ is the wavelength of the carrier signal. For

the kth target, the cascaded IRS-target-IRS channel can be

written as

Hk = α̃ka(θk)a
T (θk) (3)

where α̃k ∈ C is used to characterize the round-trip path loss

as well as the radar cross section (RCS) coefficient of the kth

target. Define H �
∑K

k=1 Hk. In this paper, we consider the

challenging scenario where the AP-IRS channel is rank-one

or approximately rank-one, i.e., rank(G) = 1. Nevertheless, as

discussed later in this paper, our proposed algorithm can be

readily adapted to the less challenging scenario where the rank

of the AP-IRS channel is greater than one.

B. Signal Model

1) Transmit Signal Model: In this paper, we employ OFDM

signals to probe potential targets. The advantage of using

Fig. 2. One complete OFDM block.

OFDM signals for sensing lies in its ability in mitigating pos-

sible fading and providing additional frequency diversity, as

different scattering centers of a target resonate at different fre-

quencies [27], [28], [29], [30], [31]. Moreover, since OFDM

is widely adopted in communication systems, using OFDM

signals for sensing can help realize sensing and communication

functionality on a same hardware platform [32], [33], [34], [35].

Specifically, in a coherent processing interval (CPI), the AP

transmits a train of P uniformly-spaced OFDM pulses. In each

pulse, the AP transmits one OFDM block and then receives the

echo form potential targets. Here we assume the AP operates in

a half-duplex mode, i.e., at any given time instant, it can only

either transmit signals or receive echo signals. Thus, the AP,

when receiving its echo signal, will not be interfered by its own

transmitted signals.

Suppose there are L orthogonal subcarriers in each block

and the subcarrier spacing is set as Δf = 1/Td. The duration

of one block is T = Tcp + Td, where Tcp is the length of the

cyclic prefix and Td is the duration of an OFDM symbol.

The cyclic prefix is a replica of the end part of the OFDM

symbol (see Fig. 2). Note in communications, the duration

of the cyclic prefix, Tcp, should be larger than the time dis-

persion in a radio channel with multipath propagation in or-

der to avoid the inter-symbol interference (ISI). While in this

paper, the length of cyclic prefix determines the maximum

sensing distance from the IRS to the target, which will be

elaborated later.

Define TPRI as the pulse repetition interval (PRI). The base-

band signal in the pth pulse can be expressed as

sp(t) =

L
∑

l=1

βle
j2πlΔftξ(t− pTPRI) (4)

where pTPRI ≤ t≤ pTPRI + T , ξ(t) is the rectangular function

that takes 1 for t ∈ [0, T ] and 0 otherwise [29], and βl is the

unit-energy modulated symbol which satisfies |βl|2 = 1, ∀l. For

such a signal, it can be readily verified that the cyclic prefix part

is a repetition of the end part of the OFDM block for any Tcp =
μT, 1> μ > 0. Also, for simplicity, we assume βl = β, ∀l in

this paper. Suppose we use an individual transmit beamforming

vector wp ∈ C
M to transmit the pth pulse. Then the transmitted

signal can be expressed as

xp(t) =
√

Ptwpsp(t)exp(j2πfct) (5)

where Pt denotes the transmit power and fc denotes the carrier

frequency.

2) Received Signal Model: Assume that the kth target is lo-

cated at a distance of Rk meters (m) from the IRS and the target
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Fig. 3. A schematic of signal transmission in one pulse repetition interval.

is moving towards the IRS with a radial velocity of vk (m/s).

In each PRI, the reception during the interval [0, T + 2rIA/c]
is inhibited to avoid the interference signal directly reflected

from the IRS (see Fig. 3), and the AP starts to listen to its

echo signal at time T + 2rIA/c. Here T is the duration of the

transmitted pulse, and 2rIA/c is the time for a radar signal to

travel to the IRS and back to the AP. This guard interval also

determines the minimum sensing distance from the target to the

IRS, which will be elaborated in the next section. Also, we make

the following assumption in order to acquire the complete echo

signal reflected from the targets.

Assumption 1: The echo signals from all potential targets

are assumed to lie within the interval of [2rIA/c+ T, 2rIA/c+
2T + Tcp].

Below we explain why we assume the echo signals lie within

the i nterval [2rIA/c+ T, 2rIA/c+ 2T + Tcp]. Note that our

proposed algorithm starts by taking a Fourier transform of the

received signal over a time window of length Td = T − Tcp

(cf. (8)). This time window cannot be arbitrarily placed. In-

stead, it has to be placed at an appropriate place to process

both the earliest possible echo signal and the latest possible

echo signal. Recall that, to avoid collision, the earliest possible

echo signal is assumed to arrive at the AP over the interval

[2rIA/c+ T, 2rIA/c+ 2T ]. To process this earliest echo signal

without any information lost, the latest time point from which

this time window starts is 2rIA/c+ T + Tcp. In other words,

this time window should be placed over the interval [2rIA/c+
T + Tcp, 2rIA/c+ 2T ]. Note that since the cyclic prefix part is

a replica of the end part of the OFDM block, the information

of the earliest echo signal remains complete over the interval

[2rIA/c+ T + Tcp, 2rIA/c+ 2T ]. From this time window, we

know that the latest possible echo signal that can be processed

by the AP starts at time 2rIA/c+ T + Tcp and ends at 2rIA/c+
2T + Tcp. If the echo signal arrives at the AP after this time

point 2rIA/c+ T + Tcp, the information of this echo signal will

be lost. From the above analysis, we know that the echo signals

have to lie within the interval [2rIA/c+ T, 2rIA/c+ 2T + Tcp].
Based on Assumption 1, the pulse repetition interval needs

to satisfy TPRI ≥ 2rIA/c+ 2T + Tcp. Since the AP operates

in a listening mode within the interval [2rIA/c+ T, TPRI], the

received echo signal only contains signals reflected by targets.

Thus, for the pth pulse, the received signal at the mth antenna

of the AP can be written as

ỹp,m(t) =
K
∑

k=1

gT
mΦ

THkΦGxp(t− τp,k) + ñp,m(t) (6)

where gm is the mth column of G, τp,k = 2(Rk+rIA−vkpTPRI)
c

is the round-trip time delay associated with the kth target, c is

the speed of light and ñp,m(t) is the additive Gaussian noise.

For notational simplicity, we define τk � 2Rk

c
, νk � 2vkfc

c
and

τ0 �
2rIA

c
. We have τp,k = τk + τ0 − νkpTPRI/fc.

After removing the carrier frequency, the baseband signal can

be written as (7) shown at the bottom of the page, where ᾱk �√
Ptα̃ke

−j2πfc(τk+τ0), bm(θk)� gT
mΦ

Ta(θk), zp(θk, νk)�
aT (θk)ΦGwpe

j2πpTPRIνk and n̄p,m(t) is the baseband noise.

Taking the Fourier transform of the received pth pulse base-

band signal over the interval [2rIA/c+ T + Tcp, 2rIA/c+ 2T ]
(note that τ0 = 2rIA/c), the signal associated with the lth sub-

carrier is given by

ỹp,m[l] =

∫ pTPRI+τ0+2T

pTPRI+τ0+T+Tcp

ȳp,m(t)e−j2πlΔft dt (8)

Plugging (4) and (7) into (8), we have (9) shown at the bottom

of the next page, where the approximation (a) follows from

the fact that the bandwidth of the baseband signal is far less

than the carrier frequency, i.e., LΔf 
 fc, and (b) is due to

the subcarrier orthogonality [32], i.e.

∫ pTPRI+τ0+2T

pTPRI+τ0+T+Tcp

ej2π(lΔf−qΔf)t dt= Tdδ(qΔf − lΔf) (10)

ȳp,m(t) =

K
∑

k=1

√

Ptα̃kg
T
mΦ

Ta(θk)a
T (θk)ΦGwpsp(t− τp,k)e

−j2πfcτp,k + n̄p,m(t)

=

K
∑

k=1

√

Ptα̃kg
T
mΦ

Ta(θk)a
T (θk)ΦGwpsp(t− τp,k)e

j2πpTPRIνke−j2πfc(τk+τ0) + n̄p,m(t)

=

K
∑

k=1

ᾱkg
T
mΦ

Ta(θk)a
T (θk)ΦGwpsp(t− τp,k)e

j2πpTPRIνk + n̄p,m(t)

=

K
∑

k=1

ᾱkbm(θk)zp(θk, νk)sp(t− τp,k) + n̄p,m(t) (7)
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Fig. 4. A schematic of signal transmission for the two-phase NLOS sensing scheme.

Define αk � ᾱkβTd, and ignore the common phase term τ0 in

(9) as this term is known a priori, we have

yp,m[l] =

K
∑

k=1

αkbm(θk)zp(θk, νk)e
−j2πlΔfτk + np,m[l]

(11)

where

np,m[l] =

∫ pTPRI+τ0+2T

pTPRI+τ0+T+Tcp

n̄p,m(t)e−j2πlΔft dt (12)

It is assumed that np,m[l] is a complex Gaussian variable with

zeros mean and variance σ2, i.e., np,m[l]∼ CN (0, σ2).

III. PROPOSED SENSING SCHEME AND CP DECOMPOSITION

A. Two-Phase Sensing Scheme

The proposed two-phase sensing scheme is illustrated in

Fig. 4, in which the entire sensing cycle is divided into two

phases, say, phase 1 and phase 2, and each of them is assigned

an individual IRS phase-shift profile. In each phase, the AP

transmits P pulses in total. The pulse repetition interval is TPRI,

and the interval between the P th pulse in phase 1 and the first

pulse in phase 2 is also set to TPRI.

In the following, we first analyze the minimum sensing dis-

tance Rmin, the maximum sensing distance Rmax and the max-

imum unambiguous velocity vmax with respect to the IRS.

1) Minimum Sensing Distance: To avoid the collision with

the self-interference and the signal reflected directly from the

IRS, the reception is inhibited for the AP during the interval

[pTPRI, pTPRI + 2rIA/c+ T ]. In other words, we assume that

the earliest possible echo signal arrives at the AP at time t0 �
T + 2rIA/c. This assumption implies that there is a requirement

on the minimum distance between the target and the IRS, which

is referred to as the minimum sensing distance in our paper and

can be easily calculated as

Rmin =
cT

2
(13)

2) Maximum Sensing Distance: According to Assump-

tion 1, we know that the latest possible echo signal reflected by

a potential target will be received within the interval [2rIA/c+
T + Tcp, 2rIA/c+ 2T + Tcp]. As a result, the maximum sens-

ing distance with respect to the IRS is given by

Rmax ≤
c(T + Tcp)

2
(14)

Notably, to cover the latest possible echo signal, the PRI has to

be greater than TPRI ≥ 2rIA/c+ 2T + Tcp. If we choose TPRI =

ỹp,m[l] =

∫ pTPRI+τ0+2T

pTPRI+τ0+T+Tcp

e−j2πlΔft

K
∑

k=1

ᾱkbm(θk)zp(θk, νk)

L
∑

q=1

βej2πqΔf(t−τp,k) dt+ np,m[l]

=

K
∑

k=1

ᾱkbm(θk)zp(θk, νk)

∫ pTPRI+τ0+2T

pTPRI+τ0+T+Tcp

e−j2πlΔft

L
∑

q=1

βej2πqΔf(t−τk−τ0)ej2π
qΔf
fc

pTPRIνk dt+ np,m[l]

(a)≈
K
∑

k=1

ᾱkbm(θk)zp(θk, νk)

∫ pTPRI+τ0+2T

pTPRI+τ0+T+T cp

e−j2πlΔft

L
∑

q=1

βej2πqΔf(t−τk−τ0) dt+ np,m[l]

(b)
= βTd

K
∑

k=1

ᾱkbm(θk)zp(θk, νk)e
−j2πlΔf(τk+τ0) + np,m[l] (9)
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2rIA/c+ 2T + Tcp, we see that the maximum sensing distance

is determined by TPRI − T .

3) Unambiguous Velocity: The maximum unambiguous ve-

locity characterizes the maximum detectable radial velocity of

a target with respect to the IRS. The radial velocity can be

uniquely determined if there is no phase ambiguity in ej2πTPRIνk ,

i.e., TPRIνk ≤ 1. Recalling νk � 2vkfc
c

, the maximum unam-

biguous velocity can be given as

vmax ≤
c

2fcTPRI

(15)

B. Tensor Representation

Based on the above two-phase sensing scheme, we now show

how to formulate the received signals into tensors. Specifically,

let Φ1 and Φ2, respectively, denote the IRS phase shift matrices

employed in phase 1 and phase 2. Define

bi,m(θk)� gT
mΦ

T
i a(θk) (16)

zi,p(θk, νk)� aT (θk)ΦiGwpe
j2πpTPRIνk (17)

where i ∈ {1, 2}. We first consider the signals received in phase

1. For each subcarrier l, stacking the received echo signal

from all P pulses and all M antennas, we can construct a

matrix Y 1(l) ∈ C
P×M , with its (p,m)th entry denoted by

[Y 1(l)]p,m = y1p,m[l] and given as (11)

y1p,m[l] =

K
∑

k=1

αkb1,m(θk)

× z1,p(θk, νk)e
−j2πlΔfτk + n1,p,m[l] (18)

Consequently, we have

Y 1(l) =

K
∑

k=1

αkfl(τk)z1(θk, νk)b
H
1 (θk) +N1,l (19)

where z1(θk, νk)� [z1,1(θk, νk) · · · z1,P (θk, νk)]
T ∈ C

P ,

b1(θk)� [b1,1(θk) · · · b1,M (θk)] ∈ C
M , and fl(τk)�

e−j2πlΔfτk .

Now consider the signals received in phase 2. In phase 1,

the distance between the kth target and the IRS is denoted

as Rk. When it comes to phase 2, the distance between the

target and the IRS has changed to R̃k =Rk +Δrk, where

Δrk = vkPTPRI is the shift of distance during the time interval

between two phases. For a typical sensing scenario, suppose

the velocity of the target is v = 120 km/h, the number of pulses

is set to P = 100 and the PRI is set to TPRI = 10μs. We have

Δrk = vPTPRI ≈ 0.03m. This distance shift generally has a

very slight influence on the distance-dependent path loss and

the target’s DOA with respect to IRS. Therefore, in phase 2, it

is reasonable to assume that the path loss α, the target’s DOA

θ, as well as the time delay τ remain the same as in phase 1.

The received signals in phase 2 can be written as

y2p,m[l] =

K
∑

k=1

αkb2,m(θk)

× z2,p(θk, νk)e
−j2πlΔfτk + n2,p,m[l] (20)

During phase 2, let Y 2(l) ∈ C
P×M denote the matrix con-

structed by stacking the received echo signal from all P pulses

and all M antennas for each subcarrier l. We have

Y 2(l) =
K
∑

k=1

αkfl(τk)z2(θk, νk)b
H
2 (θk) +N2,l (21)

where z2(θk, νk)� [z2,1(θk, νk) · · · z2,P (θk, νk)]
T ∈ C

P ,

b2(θk)� [b2,1(θk) · · · b2,M (θk)] ∈ C
M , fl(τk) = e−j2πlΔfτk

and N2,l is the additive Gaussian noise.

For phase i, by concatenating the received signals across

L subcarriers, we can naturally obtain a third-order tensor

Yi ∈ C
P×M×L, with its (p,m, l)th entry given by [Y i(l)]p,m,

whose three modes respectively stand for the pulses, the AP’s

antennas and the subcarriers. Note that each slice of the tensor

Yi is Y i(l), which is a weighted sum of a common set of

rank-one outer products. Therefore the tensor Yi admits a CP

decomposition as

Y i =

K
∑

k=1

zi(θk, νk) ◦ bi(θk) ◦ αkf(τk) +N i (22)

where ◦ denotes the outer product, and we have

f(τk)� [e−j2πΔfτk · · · e−j2πLΔfτk ]T (23)

bi(θ) =GT
Φia(θ) (24)

zi(θ, ν) = (W TGT
Φia(θ))� (d(ν)) (25)

in which W � [w1 · · · wP ] ∈ C
M×P , d(ν)�

[ej2πTPRIν · · · ej2πPTPRIν ]T ∈ C
P and � denotes the

Hadamard product.

Define

Ai � [zi(θ1, ν1) · · · zi(θK , νK)] ∈ C
P×K (26)

Bi � [bi(θ1) · · · bi(θK)] ∈ C
M×K (27)

C � [α1f(τ1) · · · αKf(τK)] ∈ C
L×K (28)

Here {Ai,Bi,C} are the factor matrices of the tensor Yi,

where i ∈ {1, 2}. We see that the factor matrices contain in-

formation about the DOAs, Doppler shifts and time delays of

the targets. Leveraging the two phases’ observations, we, in the

following, develop a two-stage method which first estimates

the factor matrices of the tensor Y i and then jointly recovers

the target’s DOAs, time delays and Doppler shifts based on the

estimated factor matrices. Before proceeding, we first discuss

the uniqueness of CP decomposition as it plays a crucial role

in the identifiability of the proposed method.

C. Identifiability Condition

A well-known condition to ensure the uniqueness of CP

decomposition is Kruskal’s condition [36], [37], [38], i.e.

k
A(1) + k

A(2) + k
A(3) ≥ 2R+ 2 (29)

where A(1) ∈ C
I×R, A(2) ∈ C

J×R and A(3) ∈ C
K×R are

factor matrices associated with the third-order tensor X ∈
C

I×J×K . kA denotes the k-rank of a matrix A, which is defined

as the largest value of kA such that every subset of kA columns

of the matrix A is linearly independent.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:32:46 UTC from IEEE Xplore.  Restrictions apply. 



5328 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

For our problem, recall that bi(θ) =GT
Φia(θ), and G is a

rank-one matrix. Writing G= σuvT , we have bi(θ) = ci(θ)v,

where ci(θ) = σuT
Φia(θ) is a scalar. Therefore, we can see

that columns of the factor matrix Bi are linearly dependent.

Thus, we have kBi
= 1. In this case, even Ai and C are full

k-rank, the Kruskal’s condition cannot be satisfied.

Meanwhile, we notice that the factor matrix C has a Van-

dermonde structure. Previous studies found that, when one of

the factor matrices, say A(3) has a Vandermonde structure, the

uniqueness of the CP decomposition can be guaranteed if the

following conditions are satisfied [39], [40]:
{

rank
(

A(3) �A(2)
)

=R

rank
(

A(1)
)

=R
(30)

where A represents a sub-matrix of A that is obtained by

removing the bottom row of A, and � denotes the Khatri-Rao

product.

From the above condition (30), we know that for each i, if
{

rank (C �Bi) =K
rank (Ai) =K

(31)

then the CP decomposition of Yi is essentially unique.

Note that different targets usually have different distances

from the IRS, C is thus a Vandermonde matrix with distinct

generators {e−j2πΔfτk}. According to [39], we can arrive at

rank(C �Bi) =K even if matrix Bi has redundant columns,

provided that (L− 1)M ≥K.

Recall bi(θ) =GT
Φia(θ) = ci(θ)v. Therefore the column

of the factor matrix Ai can be expressed as

zi(θ, ν) = (W TGT
Φia(θ))� (d(ν))

= (W T bi(θ))� (d(ν))

= (ci(θ)W
Tv)� (d(ν)) (32)

In practice, different targets are usually associated with different

Doppler shifts. From (32), we know that Ai is obtained from a

Vandermonde matrix multiplied columnwisely by a same vector

with different scaling factors. Hence for a generic W Tv, Ai is

full rank and we have rank(Ai) = min{P,K}, ∀i.
In summary, we have the following proposition concerning

the uniqueness of the CP decomposition.

Proposition 1: Assume that the delay and Doppler shift

parameters associated with different targets are different. The

uniqueness condition of CP decomposition can be guaran-

teed almost surely when both (L− 1)M ≥K and P ≥K are

satisfied.

D. CP Decomposition

We now discuss how to perform CP decomposition by uti-

lizing the Vandermonde structure of the factor matrix. Such a

method was originally proposed in [39]. To make the paper self-

contained, we provide a brief description of the CP decompo-

sition method.

To ease our presentation, we drop the subscript i in the tensor

and the associated factor matrices. The mode-1 unfolding of Y
can be written as

YT
(1) = (C �B)AT +N T

(1) (33)

Ignoring the noise, we can compute the truncated singular value

decomposition (SVD) of the noiseless YT
(1) ∈ C

LM×P as

YT
(1) =UΣV H (34)

where U ∈ C
LM×K , Σ ∈ C

K×K and V ∈ C
P×K . If the

uniqueness condition (31) is satisfied, there exists a nonsingular

matrix R ∈ C
K×K such that

UR=C �B (35)

Define U1 = [U ]1:(L−1)M,: ∈ C
(L−1)M×K and U2 =

[U ]M+1:LM,: ∈ C
(L−1)M×K . We have

U1R=C �B (36)

U2R=C �B (37)

where C represents a submatrix of C by removing the top row

of C, and C represents a submatrix of C by removing the

bottom row of C. Utilizing the Vandermonde structure of C,

we have

(C �B)T =C �B (38)

in which T = diag(t1, . . . , tK) and tk � e−j2π�fτk . Combin-

ing (36)–(38), we obtain

U2R=U1RT (39)

According to (31) and (35), both U1 and U2 are full column

rank. Hence we can rewrite (39) as

U
†
1U2 =RTR−1 (40)

Thus, we can perform the eigenvalue decomposition (EVD) of

U
†
1U2 to estimate T and the associated generators {tk}Kk=1.

We can reconstruct the columns {ĉk} of Ĉ by

ĉk = [t̂k t̂2k · · · t̂Lk ] (41)

Based on (35) and the reconstructed Ĉ, the column of the factor

matrix B̂ can be estimated as

b̂k =

(

ĉHk

ĉHk ĉk
⊗ IM

)

U [R]:,k (42)

Finally, given B̂ and Ĉ, the factor matrix A can be

estimated as

Â=Y(1)

(

(

Ĉ � B̂
)T

)†

(43)

After we obtain the estimated factor matrices Â, B̂ and Ĉ, we,

in Section IV, discuss how to extract the sensing parameters

from the estimated factor matrices.

E. Generating IRS Coefficients Φ1 and Φ2

Note that our proposed method relies on leveraging the di-

versity in the illumination pattern of the IRS across different

phases. In fact, the IRS phase-shift profiles Φ1 and Φ2 can

be arbitrarily chosen as long as they are sufficiently distinct

from each other. Here we introduce a simple scheme to generate

Φ1 and Φ2. Specifically, we partition the IRS into a number
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of subarrays, say, 4 subarrays. For each subarray, its reflection

coefficients are set to form a directional beam pointing to a

certain direction. Particularly, if the target’s DOA is within

a range that is known a priori, i.e. θk ∈ [θlb, θub], we can

let different subarrays create multiple directional beams that

collectively cover this wide range of directions [θlb, θub]. Also,

each subarray, in two different phases, steers its beam towards

different directions. In doing this way, the illumination patterns

of the IRS in two phases are thus different.

IV. TARGET PARAMETER ESTIMATION

After CP decomposition, we now have access to the estimated

factor matrices {Âi, B̂i, Ĉi}, in which i ∈ {1, 2}. Note that

for both phases, the factor matrix Ci remains the same, i.e.

C1 =C2 =C. Due to the inherent permutation and scaling

ambiguities, the estimated factor matrices are related with the

true factor matrices as
⎧

⎨

⎩

Â1 =A1Λ1Π1 +E1

B̂1 =B1Λ2Π1 +E2

Ĉ1 =CΛ3Π1 +E3

(44)

and
⎧

⎨

⎩

Â2 =A2Γ1Π2 + Ẽ1

B̂2 =B2Γ2Π2 + Ẽ2

Ĉ2 =CΓ3Π2 + Ẽ3

(45)

where {Λ1,Λ2,Λ3, } and {Γ1,Γ2,Γ3, } are unknown

nonsingular diagonal matrices satisfying Λ1Λ2Λ3 = I and

Γ1Γ2Γ3 = I , {Πi} are unknown permutation matrices,

{E1,E2,E3} and {Ẽ1, Ẽ2, Ẽ3} are estimation errors.

A. The Scaling Ambiguity Issue

First, we show that, when only a single phase is consid-

ered, why the DOA estimation is infeasible in the scenario of

rank(G) = 1. Recall that bi(θ) =GT
Φia(θ). Hence, we can

write Bi =GT
ΦiΞ , where Ξ � [a(θ1) · · ·a(θK)] ∈ C

N×K .

If the rank of the channel matrix G is greater than one, then

we can employ a correlation-based method [41] to extract the

parameter θk from each column of B̂1, i.e.,

θ̂k = argmax
θk

|b̂H1,kb1(θk)|
‖b̂1,k‖2‖b1(θk)‖2

(46)

where b̂1,k is the kth column of B̂1. In this case, only using

the received signals from a single phase suffices to recover

parameters of interest. Nevertheless, this method fails when

rank(G) = 1. The reason can be explained as follows. Specifi-

cally, when rank(G) = 1, G can be expressed as G= σuvT . In

this case, we have B̂1 = σvuT
Φ1ΞΛ2, where, for simplicity,

the unknown permutation matrix and the estimation error are

neglected. The kth column of B̂1 is thus given by

b̂1,k = σvuT
Φ1a(θk)[Λ2]k,k (47)

where [Λ2]k,k denotes the kth diagonal element of Λ2. Here

uT
Φ1a(θk)[Λ2]k,k is a complex scalar. Due to the coupling

between the unknown scalar uT
Φ1a(θk) and the unknown

scalar [Λ2]k,k, the parameter θk cannot be uniquely identified.

From the above discussion, we see that when rank(G) =
1, using the factor matrices {Â1, B̂1, Ĉ1} obtained from the

first phase alone cannot uniquely identify the targets’ param-

eters. In the following, we will show how to utilize the esti-

mated factor matrices from two different phases to resolve this

ambiguity.

B. Column Alignment for Factor Matrices

To leverage the estimated factor matrices, we first remove the

permutation ambiguity between phase 1 and phase 2. Notice

that both Ĉ1 and Ĉ2 are associated with a common matrix

C. This fact can be used to remove the relative permutation

between Ĉ1 and Ĉ2. Define

ρk1,k2
=

|(ĉ1,k1
)H ĉ2,k2

|
‖ĉ1,k1

‖2‖ĉ2,k2
‖2

(48)

where ĉ1,k1
and ĉ2,k2

are, respectively, the k1th and k2th col-

umn of Ĉ1 and Ĉ2. Since C has distinctive columns, with

each column characterized by a different time delay parameter,

ρk1,k2
achieves the largest value when ĉ1,k1

and ĉ2,k2
corre-

spond to the same target. Define a permutation matrix Π3 �

[eπ(1) · · · eπ(K)]
T ∈ {0, 1}K×K

, where eπ(k) is a standard

basis vector, and π(k) = argmaxk2
{ρk,k2

}Kk2=1. Ignoring esti-

mation errors, we should have

Π2 =Π1Π3 (49)

Then we can utilize Π3 to remove the permutation between

{Â1} and {Â2}, {B̂1} and {B̂2}, {Ĉ1} and {Ĉ2}. Specif-

ically, defining Ã1 � Â1Π3, B̃1 � B̂1Π3, C̃1 � Ĉ1Π3, we

have

Ã1 =A1Λ1Π1Π3 +E1Π3 =A1Λ1Π2 +E1Π3 (50)

B̃1 =B1Λ2Π1Π3 +E2Π3 =B1Λ2Π2 +E2Π3 (51)

C̃1 =CΛ3Π1Π3 +E3Π3 =CΛ3Π2 +E3Π3 (52)

Ignoring the permutation matrix Π2, we obtain

{

Ã1 =A1Λ1 +E1Π3

Â2 =A2Γ1 + Ẽ1
(53)

{

B̃1 =B1Λ2 +E2Π3

B̂2 =B2Γ2 + Ẽ2
(54)

and

{

C̃1 =CΛ3 +E3Π3

Ĉ2 =CΓ3 + Ẽ3
(55)

Now we have column-aligned Ã1 and Â2, B̃1 and B̂2, C̃1 and

Ĉ2, i.e., the same columns of each pair of two factor matrices

are associated with the same target. Note that both C̃1 and Ĉ2

are estimated as a Vandermonde matrix based on the estimated

generators. Hence theoretically we should have Γ3Λ
−1
3 = I .

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:32:46 UTC from IEEE Xplore.  Restrictions apply. 



5330 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

C. Joint DOA, Time Delay and Doppler Estimation

Based on the column-aligned factor matrices from two

phases, we discuss how to jointly estimate DOA, time delay

and Doppler shift. Since Bi =GT
ΦiΞ , and G= σuvT , (54)

can be rewritten as
{

B̃1 = σvuT
Φ1ΞΛ2 +E2Π3

B̂2 = σvuT
Φ2ΞΓ2 + Ẽ2

(56)

Also, (53) can be rewritten as

{

Ã1 = σW TvuT
Φ1ΞΛ1 �D +E1Π3

Â2 = σW TvuT
Φ2ΞΓ1 �D + Ẽ1

(57)

where D � [d(ν1) · · · d(νK)] ∈ C
P×K . Note both {Ai} and

{Bi} contain the DOA information. To harness the IRS illu-

mination diversity across two phases, we define a new vector

r̂Bk ∈ C
M , in which the mth entry is calculated by the element-

wise division of [B̃1]m,k and [B̂2]m,k, i.e.,

[r̂Bk ]m �
[B̃1]m,k

[B̂2]m,k

=
σ[v]muT

Φ1a(θk)[Λ2]k,k
σ[v]muTΦ2a(θk)[Γ2]k,k

+ εm,k

=
uT

Φ1a(θk)[Λ2]k,k
uTΦ2a(θk)[Γ2]k,k

+ εm,k (58)

Similarly, define r̂Ak ∈ C
P , we have

[r̂Ak ]p �
[Ã1]p,k

[Â2]p,k

=
σwT

p vu
T
Φ1a(θk)[Λ1]k,k

σwT
p vu

TΦ2a(θk)[Γ1]k,k
+ εp,k

=
uT

Φ1a(θk)[Λ1]k,k
uTΦ2a(θk)[Γ1]k,k

+ εp,k (59)

where wp denotes the pth column of W , both εm,k and εp,k are

noise terms. We now discuss how to recover the DOA parameter

from (58) and (59). Define

γ̂(θk)�
1

M

M
∑

m=1

[r̂Bk ]m · 1

P

P
∑

p=1

[r̂Ak ]p (60)

Ignoring the noise term, γ̂(θk) is equivalent to

γ̂(θk) =
uT

Φ1a(θk)[Λ2]k,k
uTΦ2a(θk)[Γ2]k,k

· u
T
Φ1a(θk)[Λ1]k,k

uTΦ2a(θk)[Γ1]k,k

=

(

uT
Φ1a(θk)

uTΦ2a(θk)

)2

[Λ2]k,k[Γ2]
−1
k,k[Λ1]k,k[Γ1]

−1
k,k

=

(

uT
Φ1a(θk)

uTΦ2a(θk)

)2

[Γ3]k,k[Λ3]
−1
k,k

(a)
=

(

uT
Φ1a(θk)

uTΦ2a(θk)

)2

(61)

where (a) comes from the fact that Λ1Λ2Λ3 = I , Γ1Γ2Γ3 =
I , and [Γ3]k,k[Λ3]

−1
k,k = 1. As for now, we see that the scaling

ambiguities in (58) and (59) are effectively removed and an

unambiguous estimate of θ can be obtained.

Based on the above relationship (61), we can estimate the

target’s DOA via the following criterion

θ̂k = argmin
θ

‖γ̂(θk)− γ(θ)‖22

s.t. γ(θ) =

(

uT
Φ1a(θ)

uTΦ2a(θ)

)2

θ ∈ Dθ (62)

where Dθ is the feasible region of θ and the above problem can

be easily solved by a one-dimensional search.

Note that the kth column of Ai is characterized by both θk
and νk. Specifically, the kth column of Ai and the kth column

of Bi are related as

zi(θk, νk) = (W T bi(θk))� (d(νk)) (63)

After the DOA is estimated, define B̌i =GT
ΦiΞ̂ ∈ C

M×K

with Ξ̂ � [a(θ̂1) · · ·a(θ̂K)], and define Ǎi ∈C
P×K with

[Ǎ1]p,k=[Ã1]p,k/[W
T B̌1]p,k,[Ǎ2]p,k = [Â2]p,k/[W

T B̌2]p,k.

Note that each column of Ǎi is characterized by the associated

Doppler shift νk. Hence, the Doppler shift νk can be estimated

via a correlation-based scheme [41] as

ν̂i,k = argmax
νk

|ǎH
i,kd(νk)|

‖ǎi,k‖2‖d(νk)‖2
(64)

where ǎi,k denotes the kth column of Ǎi. We then compute the

average of the two estimates as the final estimate of the Doppler

shift, i.e., ν̂k = (ν̂1,k + ν̂2,k)/2. The velocity estimate of the kth

target can be calculated as v̂k = ν̂kc/2fc. The round-trip time

delay {τ̂i,k} can be calculated from the estimated generators

{t̂i,k} in (41) as

τ̂i,k =
arg(t̂i,k)

−2πΔf
(65)

where arg(t̂i,k) denotes the argument of the complex number

t̂i,k. Similarly, we obtain τ̂k = (τ̂1,k + τ̂2,k)/2.

V. CRB ANALYSIS

In this section, we provide a CRB analysis of the estimation

problem considered in this paper. For the P ×M × L tensor

observation Y i considered in (22), we have

Y i =

K
∑

k=1

zi(θk, νk) ◦ bi(θk) ◦ αkf(τk) +N i (66)

We write the unknown target parameters as

ζ = [θT νT τT ] ∈ R
1×3K (67)

where θ � [θ1 · · · θK ]T , ν � [ν1 · · · νK ]T and τ �

[τ1 · · · τK ]T . The log-likelihood function of the parameter
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vector ζ can be expressed as

L(ζ) =
2

∑

i=1

−D̃i −
1

σ2
i

‖Y i,(1) −Ai(C �Bi)
T ‖2F

=
2

∑

i=1

−D̃i −
1

σ2
i

‖Y i,(2) −Bi(C �Ai)
T ‖2F

=

2
∑

i=1

−D̃i −
1

σ2
i

‖Y i,(3) −C(Bi �Ai)
T ‖2F (68)

where D̃i � PML ln(πσ2
i ), and Yi,(j) denotes the mode-j un-

folding of Y i. Then the fisher information matrix (FIM) for ζ

is given by

Ω(ζ) = E

{

(

∂L(ζ)
∂ζ

)H (

∂L(ζ)
∂ζ

)

}

(69)

To calculate Ω(ζ), we first compute the partial derivative of

L(ζ) with respect to ζ and then calculate its expectation.

A. Partial Derivative of L(ζ)
Following a similar procedure as in [41], [42], the partial

derivative of L(ζ) w.r.t. θk can be calculated as

∂L(ζ)
∂θk

=

2
∑

i=1

2

σ2
i

�
{

eTk (C �Bi)
T

×
(

Y i,(1) −Ai (C �Bi)
T
)H

A′
i,θek

}

+

2
∑

i=1

2

σ2
i

�
{

eTk (C �Ai)
T

×
(

Y i,(2) −Bi (C �Ai)
T
)H

B′
i,θek

}

(70)

in which A′
i,θ � [a′

i,θ1
· · · a′

i,θK
] ∈ C

P×K and B′
i,θ �

[b′i,θ1 · · · b′i,θK ] ∈ C
M×K , with a′

i,θk
�

∂[Ai]:,k
∂θk

and

b′i,θk �
∂[Bi]:,k

∂θk
. ek is a standard basis vector with k as

the index of its nonzero element. Similarly, the partial

derivatives w.r.t. other parameters can be calculated. The

details are omitted here for brevity.

B. Calculation of FIM Ω(ζ)

To calculate the FIM Ω(ζ), we first calculate the entries

in the diagonal blocks. Define u=K(k1 − 1) + k1 and v =
K(k2 − 1) + k2. The (k1, k2)th element in the block related

to θ, can be calculated as

E

{(

∂L(ζ)
∂θk1

)∗ (
∂L(ζ)
∂θk2

)}

= 2�{[CnA,θ
]u,v}+ 2�{[CnAθ,B

]u,v}
+ 2�{[CnB,Aθ

]u,v}+ 2�{[CnB,θ
]u,v} (71)

where

CnA,θ
=

2
∑

i=1

2

σ2
i

(

A′
i,θ ⊗ (C �Bi)

)T

×
(

A′
i,θ ⊗ (C �Bi)

)∗
(72)

CnAθ,B
=

2
∑

i=1

1

σ4
i

(

A′
i,θ ⊗ (C �Bi)

)T
Ci

1,2

×
(

B′
i,θ ⊗ (C �Ai)

)∗
(73)

CnB,Aθ
=

2
∑

i=1

1

σ4
i

(

B′
i,θ ⊗ (C �Ai)

)T
Ci

2,1

×
(

A′
i,θ ⊗ (C �Bi)

)∗
(74)

CnB,θ
=

2
∑

i=1

1

σ2
i

(

B′
i,θ ⊗ (C �Ai)

)T

×
(

B′
i,θ ⊗ (C �Ai)

)∗
(75)

and

Ci
j1,j2

� E{vec(NH
i,(j1))vec(N

H
i,(j2))

H} (76)

in which i is phase index and the details will be discussed later.

Similarly, the entries in other blocks can be derived The details

are omitted due to space limit.

Now we compute Ci
j1,j2

defined in (76). Note the entries in

N i are all i.i.d Gaussian random variables, we have

E{ni,p1,m1,l1n
∗
i,p2,m2,l2

}=
{

σ2
i , p1 = p2,m1 =m2, l1 = l2

0, otherwise

(77)

Based on the arrangements of elements of N i under differ-

ent unfolding modes, the PML nonzero entries in Ci
j1,j2

∈
C

PML×PML can be given as

[Ci
j1,j2

]u,v =

{

σ2
i , u= �j1(p,m, l), v = �j2(p,m, l)

0, otherwise
(78)

where ∀j1 �= j2, 1≤ j1 ≤ 3, 1≤ j2 ≤ 3, and

�1(p,m, l) =m+ (l − 1)M + (p− 1)ML (79)

�2(p,m, l) = p+ (l − 1)P + (m− 1)PL (80)

�3(p,m, l) = p+ (m− 1)P + (l − 1)PM (81)

After obtaining the FIM Ω, the CRB can be calculated as

CRB(ζ) =Ω
−1(ζ) (82)

From our CRB analysis, we can see that the sensing per-

formance is dependent on a number of factors, including the

number of pulses P , the number of subcarriers L, the num-

ber of AP’s antennas M , as well as the signal-to-noise ratio

(SNR). From the numerical calculation of the CRB results,

we know that increasing these parameters leads to a better

sensing performance, which is expected and can be intuitively

explained. Specifically, increasing the number of pulses P pro-

vides a larger observation window for the Doppler shift, which

in turn helps enhance the Doppler shift estimation accuracy.

Similarly, increasing the number of subcarriers L renders more

observations about the time delay and can thus improve the time

delay estimation performance.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:32:46 UTC from IEEE Xplore.  Restrictions apply. 



5332 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 5. Simulation setup (top view).

VI. SIMULATION RESULTS

We now present numerical results to evaluate the estimation

performance of the proposed method for NLOS target sensing.

We examine a two-dimensional scenario, as illustrated in Fig. 5,

where the AP and the IRS are located at coordinates pAP =
[0, 0]T and pIRS = [100, 100]T m, respectively. In our simula-

tions, the system carrier frequency is set to fc = 60 GHz, and

the distance between two adjacent antenna elements d is set to

half of the signal wavelength. The number of antennas at the

AP and the number of reflecting elements at the IRS are set to

M = 16 and N = 32, respectively. For OFDM signals, the sub-

carrier spacing is set to Δf = 500kHz. As a result, the length

of an effective OFDM symbol is equal to Td =
1

Δf
= 2μs, and

the length of the CP is set to Tcp = 1μs [32]. The bandwidth of

the OFDM signal can be calculated as LΔf , where L denotes

the number of subcarriers and its choice will be specified later.

The pulse repetition interval is set to TPRI = 8μs. The channel

of the AP-IRS link is generated based on the geometric channel

model and includes only a LOS path, i.e.

G= �aIRS(φ)a
H
AP(ϕ) (83)

where � denotes the path loss between the AP and the IRS, φ
and ϕ denote the angle of arrival (AOA) and angle of departure

(AOD), respectively. The distance-dependent path loss γ fol-

lows a complex normal distribution CN (0, 10−0.1κ), where κ=
a+ 10b log10(D) + ξ. Here, ξ ∼N (0, σ2

ξ ), and D represents

the distance between the the AP and the IRS. The parameters

a, b, and σξ are set to a= 68, b= 2, and σξ = 5.8 dB, as

suggested in [43], [44]. In our experiments, we consider K = 2
targets, both located within the angular range of [30◦, 45◦]
with respect to the IRS. The coordinates of the targets are set

as p1 = [533,−170]T m and p2 = [541,−245]T m. The targets’

radial velocities with respect to the IRS are set to v1 = 16.66
m/s and v2 =−22 m/s, respectively. The direct link between the

AP and the targets are blocked by obstacles. So the AP has to

detect these two targets via the IRS-assisted reflected path. The

radar cross-section (RCS) of each target is set to 1 for simplicity,

as suggested by [22].

In our experiments, the beamforming vector wp is designed

to align its beam direction towards the IRS to maximize the re-

ceived signal power at the IRS. The IRS phase shift profiles are

generated according to the method discussed in Section. Specif-

ically, we partition the IRS into 4 subarrays, and the pointing

directions of these 4 subarrays are set to {30◦, 35◦, 40◦, 45◦}
for phase 1 and {48◦, 42◦, 36◦, 30◦} for phase 2. This scheme

allows the IRS to generating directional beams to effectively il-

luminate the potential target area, meanwhile exhibiting diverse

illumination patterns across different phases.

Unless otherwise stated, the numbers of subcarriers and

pulses, as well as the transmit power, are set to L= 10, P = 10,

and Pt = 30 dBm, respectively. The received signal-to-noise

ratio (SNR) is defined as

SNR �
‖Y −N ‖2F

‖N ‖2F
(84)

where Y and N represent the received signal and the additive

noise in (22), respectively. All results are averaged over 103

Monte Carlo runs.

A. Performance Evaluation of the Proposed Method

We first examine the performance of our proposed method

in estimating the target’s parameters {θk, τk, νk}. The perfor-

mance is evaluated by the mean square error (MSE), which is

defined as

MSE(ζ) =
1

K

K
∑

k=1

E

(

‖ζk − ζ̂k‖22
)

(85)

where ζ̂ denotes an estimate of the parameter ζ, which corre-

sponds to one of the parameters {θ, τ, ν}. The MSE of our pro-

posed method as a function of the SNR is plotted in Fig. 6(a)–

6(c). The CRB results for different sets of parameters are also

included for comparison. From Fig. 6, we see that as the SNR

increases, our proposed method achieves an estimation accu-

racy that is close to the theoretical lower bound. This result

validates the efficiency of the proposed method for NLOS target

sensing. Specifically, the MSE of the DOA is able to approach

its CRB. The estimate of the other two parameters (Doppler

shift and delay) cannot exactly attain their respective CRBs,

which is probably because the observation time/signal band-

width is not long/large enough to estimate these two parameters.

Additionally, from Fig. 6, it is seen that the proposed method

provides accurate estimates of the target’s parameters even in

a relatively low SNR regime, say SNR =−5 dB. Notably, for

NLOS sensing tasks, the SNR is usually low due to the round-

trip path loss and reflection loss. Hence the ability of extracting

parameters reliably under a low SNR environment has a signif-

icant implication in practice.

Next, we plot the MSEs of the proposed method as a function

of the number of pulses P in Fig. 7(a)–7(c), where the number

of subcarriers is set to L= 10, and the SNR is set to 5 dB. We

see that the proposed method can achieve reliable sensing even

with a small number of pulses, for example, P = 5, which cor-

responds to a total sensing duration of (2P + 1)TPRI = 88μs.

This result corroborates the efficiency of the proposed method

for NLOS sensing tasks.

In Fig. 8(a)–8(c), we depict the estimation performance of the

proposed method as a function of the number of subcarriers,
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Fig. 6. MSEs and CRBs versus SNR.

Fig. 7. MSEs and CRBs versus the number of pulses.

Fig. 8. MSEs and CRBs versus the number of subcarriers.

where the number of pulses is set to P = 10 and the SNR is

set to 5 dB. The results show that our proposed method can

deliver accurate estimates of the target’s parameters even with a

small number of subcarriers. We also observe that our proposed

method fails when the number of subcarriers L≤ 2. This is

because, when P = 10>K and M = 16>K, the uniqueness

condition (31) is satisfied only when (L− 1)≥ 1, implying that

L≥ 2. Hence, the results roughly coincide with our analysis

concerning the uniqueness of the CP decomposition.

In Fig. 9(a)–9(c), we plot the estimation performance of the

proposed method versus the number of AP’s antennas. In this

experiment, the number of subcarriers and the number of pulses

are set to L= 8 and P = 8, respectively. The SNR is fixed

at 5 dB. As expected, the estimation performance improves

with an increasing number of antennas M . Furthermore, it is

observed that the proposed method can deliver decent perfor-

mance even with a few number of antennas employed at the AP.

This result also corroborates well with our analysis concerning

the uniqueness condition of the CP decomposition.

B. Imperfect AP-IRS Channel Knowledge

Next, we examine the performance of our proposed method

when we only have an imperfect knowledge of the AP-IRS

channel G. Specifically, we use the statistical CSI error model

[45], [46] to characterize the channel inaccuracies:

G= Ĝ+ΔG (86)
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Fig. 9. MSEs and CRBs versus the number of AP’s antennas.

where Ĝ denotes the estimated AP-IRS channel, and ΔG de-

notes the estimation error whose entries follow a circularly

symmetric complex Gaussian (CSCG) distribution, i.e.,

vec(ΔG)∼ CN (0,Σg), Σg � 0 (87)

where Σg = ε2gIMN ∈ C
MN×MN . In our experiments, the

variance of vec(ΔG) is defined as ε2g = δ2g‖vec(Ĝ)‖22, where

δg ∈ [0, 1) measures the CSI uncertainty [45]. Fig. 10 shows

the estimation performance of the proposed method versus SNR

under different levels of channel uncertainty. It can be observed

that our proposed algorithm exhibits robust performance even

when the CSI of the AP-IRS channel is imperfect. Addition-

ally, from the results we see that the DOA estimation perfor-

mance degrades as the channel uncertainty increases, whereas

the channel uncertainty has little effect on the Doppler shift

and time delay estimation performance. The reason can be

explained as follows. First, the time delay is calculated from the

estimated generators based on equations (41) and (65), which

are independent of the AP-IRS channel. Moreover, the Doppler

shift estimation benefits from the Hadamard product structure in

(25), which preserves the steering vector structure of ν, making

the Doppler shift estimation robust to variations in G.

C. Performance Comparison With The Existing Method [22]

To illustrate the superiority of the proposed method, we com-

pare it with the MLE-based method [22]. For a fair comparison,

Fig. 10. MSEs and CRBs versus SNR under different levels of channel
uncertainty.

the AP-IRS channel is assumed to be Rician fading in our

simulations, i.e.

G=

√

γ

1 + γ
GLOS +

√

1

1 + γ
GNLOS (88)

where γ is the Rician factor in dB while GLOS and GNLOS

are the LOS and NLOS components, respectively. A typical

value of the Rician factor over the millimeter-wave (mmWave)

band is 13 dB [47], [48], [49], indicating that G is an approx-

imately rank-one matrix. In our experiments, we also consider

the cases where the Rician factor is set to 0 dB and 5 dB, in

order to more comprehensively examine the performance of

our proposed method under different channel conditions. Note

that [22] employs a single-carrier signal to sense a single static

target. In contrast, this paper aims to sense multiple moving

targets based on the OFDM signal. To make a fair comparison,

we focus our simulations on a single static target. The Doppler

shift is set to ν = 0 in (11). It is crucial to emphasize that

our proposed method estimates not only the DOA but also the

Doppler shift and the time delay, whereas [22] can only estimate

the DOA. In our experiments, we assume there is one LOS path

and four NLOS paths between the AP and the IRS, resulting

in rank(G) = 5. Also, for a fair comparison, the number of

measurements used for parameter estimation is set the same for

both methods.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:32:46 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: INTELLIGENT REFLECTING SURFACE-ASSISTED NLOS SENSING 5335

Fig. 11. MSEs achieved by respective algorithms versus SNR, where K = 1
and rank(G) = 5.

Fig. 11 depicts the MSE of the estimated DOA parameter

as a function of the SNR under different Rician factor values.

From Fig. 11(b) and Fig. 11(c), we observe that our proposed

algorithm presents a clear performance advantage over the MLE

method [22]. This performance improvement becomes more

significant as the Rician factor increases. The reason for this

observation can be explained as follows. The work [22] requires

additional degrees-of-freedom provided by the AP-IRS channel

in order to resolve the scaling ambiguity in the DOA estimation.

However, as the Rician factor increases, the AP-IRS channel

becomes an approximately rank-one matrix, yielding an insuf-

ficient degrees-of-freedom for DOA estimation. As a result,

the method [22] incurs a significant amount of performance

degradation as the Rician factor increases. In contrast to [22],

our proposed method removes the scaling ambiguity of DOA

estimation by leveraging the IRS illumination diversity across

two phases. Therefore, it works well even for rank-one AP-IRS

channel scenarios.

Note that our proposed algorithm can be readily adapted to

the scenario where the BS-IRS channel has a rank greater than

one. In fact, in such a case, a single tensor alone can identify the

DOA parameter. Specifically, we can resort to (46) to estimate

the DOA parameter when γ = 0 dB. From Fig. 11, we see that

our proposed method not only presents a significant perfor-

mance improvement over the work [22] for approximately rank-

one scenarios (corresponding to γ = 5 dB and γ = 13 dB), but

also achieves a performance close to the work [22] when the

AP-IRS channel consists of multiple strong paths (correspond-

ing to γ = 0 dB).

VII. CONCLUSION

In this paper, we explored an IRS-assisted NLOS sensing

system. We introduced a radar operation mode for the AP,

which senses the NLOS environment by transmitting OFDM

pulses and processing echoes relayed by the IRS. A two-phase

sensing scheme was proposed by exploiting the diversity in

the illumination pattern of the IRS across two different phases.

Using this two-phase sensing approach, we developed a CP

decomposition-based method for estimating the DOA, Doppler

shifts, and time delays of the targets. Uniqueness conditions for

the proposed method are analyzed and provided. We also con-

ducted a CRB analysis for the considered estimation problem.

Simulation results demonstrated the effectiveness of the pro-

posed method in performing NLOS sensing, even in scenarios

where there was only a single dominant path between the AP

and the IRS.
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