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Compressed CPD-Based Channel Estimation and
Joint Beamforming for RIS-Assisted Millimeter
Wave Communications

Xi Zheng, Jun Fang
and Hongbin Li

Abstract—We consider the problem of channel estimation and
joint active and passive beamforming for reconfigurable intelligent
surface (RIS) assisted millimeter wave (mmWave) multiple-input
multiple-output (MIMO) orthogonal frequency division multiplex-
ing (OFDM) systems. We show that, with a well-designed frame-
based training protocol, the received pilot signal can be organized
into a low-rank third-order tensor that admits a canonical polyadic
decomposition (CPD). Based on this observation, we propose a
CPD-based method for estimating the cascade channels associ-
ated with different subcarriers. The proposed method exploits
the intrinsic low-rankness of the CPD formulation, which is a
result of the sparse scattering characteristics of mmWave channels,
and thus has the potential to achieve a significant training over-
head reduction. Specifically, our analysis shows that the proposed
method has a sample complexity that scales quadratically with
the sparsity of the cascade channel. Also, by utilizing the singular
value decomposition-like structure of the effective channel, this
paper develops a joint active and passive beamforming method
based on the estimated cascade channels. Simulation results show
that the proposed CPD-based channel estimation method attains
mean square errors that are close to the Cramér-Rao bound (CRB)
and present a clear advantage over the compressed sensing-based
methods. In addition, the proposed joint beamforming method
can effectively utilize the estimated channel parameters to achieve
superior beamforming performance.

Index Terms—Channel estimation, joint active and passive
beamforming, millimeter wave communications, reconfigurable
intelligent surface.
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1. INTRODUCTION

ILLIMETER wave (mmWave) and terahertz (THz) com-

munications are able to support extremely high data rate
transmissions [1], [2], [3], [4]. Nevertheless, due to the reduced
diffraction effect and high penetration loss, mmWave/THz sys-
tems require more antennas and active nodes such as access
points (APs) and relays to improve the signal coverage [5], [6].
Deploying active nodes incurs an additional energy consumption
and meanwhile presents a serious network interference issue.
It is thus of practical significance to develop innovative tech-
nologies to address the coverage issue of future mmWave/THz
wireless networks with a low cost and complexity.

Recently, reconfigurable intelligent surface (RIS) has
emerged as an energy-efficient and cost-effective solution to
tackle the above challenges. Generally speaking, RIS intelli-
gently adjusts the signal reflection through a large number of
low-cost passive reflection elements, which can dynamically
reshape the wireless propagation environment and thereby im-
prove the system performance [7], [8], [9]. An important advan-
tage of RIS is that it does not require any active circuits such as
ratio frequency (RF) chains for signal transmission/reception,
which reduces hardware complexity as well as energy con-
sumptions compared to traditional active transceivers/relays.
Furthermore, RIS can be easily attached to different objects
(such as walls and ceilings), thus showing great flexibility and
compatibility in practical deployment [10].

Channel state information (CSI) acquisition is a prerequisite
to realize the full potential of RIS-assisted mmWave systems.
Nevertheless, since RIS is usually composed of a large number of
passive elements, CSI acquisition for RIS-assisted mmWave sys-
tems faces the difficulty of requiring a large amount of training
overhead. In order to reduce the training overhead, the inherent
sparse structure of the mmWave channel is exploited and the
cascade channel estimation is cast into a compressed sensing
framework [11], [12], [13], [14]. Specifically, the work [11]
assumed that the base station (BS)-RIS and RIS-user channels
are LOS-dominated. The work [12] considered a more general
scenario where there are multiple paths between the BS (RIS)
and the RIS (user). Nevertheless, due to the multidimensional
structure of the cascade channel, the sensing matrix is ex-
cessively large even with low grid resolutions, especially in
MIMO-OFDM systems. To solve this problem, [13] proposed
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a two-stage RIS-aided channel estimation (TRICE) framework
to obtain the BS/RIS/user angle information separately in each
stage, thus decoupling the multidimensionality of the cascade
channel. The work [14] combined machine learning into com-
pressed sensing methods to improve the estimation accuracy in
wideband systems. Yet, it needs extra training during offline
training phases.

Meanwhile, most of these compressed sensing techniques
require to discretize the continuous parameter space into a finite
set of grid points, leading to grid discretization errors. Recently,
tensor decomposition-based methods have been developed by
exploiting the intrinsic multi-dimensional structure of the re-
ceived signal [15], [16], [17], [18]. The tensor-based approach
is gridless and therefore is free from grid discretization errors.
This helps achieve a performance improvement over compressed
sensing-based methods. However, most of the work [15], [16],
[17] did not utilize the sparse scattering characteristics of
mmWave channels and had a CP rank that is equal to the number
of reflecting elements. As a result, these methods required a
training overhead proportional to the number of reflecting ele-
ments, which is usually large in practice. In [18], a hybrid-RIS
with active sensors was employed to separately estimate the
BS-RIS and RIS-user channels. The received signals by these
active sensors were formulated into an incomplete fourth-order
tensor with missing entries, based on which the BS-RIS or
the RIS-user channel can be estimated via a tensor completion
approach.

In addition to channel estimation, joint beamforming is an-
other important topic for RIS-assisted systems that has been
extensively studied. Joint beamforming refers to jointly de-
sign the reflection coefficients at the RIS and the active pre-
coding/combing matrix at the BS/user to optimize the sys-
tem spectral efficiency. In recent years, there have been many
works on joint beamforming [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29]. Among them, a lot of works fo-
cused on single-input-single-output (SISO) or multiple-input-
single-output (MISO) systems, e.g. [19], [20], [21], [22], [23],
which cannot be straightforwardly extended to MIMO sys-
tems. For RIS-assisted MIMO systems, [24], [25], [26], [27]
mainly utilised the idea of alternating optimization for the joint
beamforming design. The renowned alternating optimization
(AO) algorithm, originally introduced in [27], was designed to
enhance the capacity of IRS-enhanced point-to-point MIMO
systems. Despite its performance superiority, the AO method
which alternatively optimizes variables suffers a prohibitively
high computational complexity, rendering it less practical for
practical systems. The work [28] optimized the spectral effi-
ciency through maximizing the Frobenius-norm of the effective
channel. However, this typically yields a large condition number,
which limits its performance improvement. In [29], a joint beam-
forming method was proposed for RIS-assisted MIMO-OFDM
systems. Its idea is to align the passive beamforming vector with
the most prominent path of the reflected channel. Nevertheless,
as this method exclusively relies on the dominant path for data
transmission, it fails to exploit the spatial diversity inherent in
the cascade channel.
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In this paper, we study the problem of channel estimation and
joint beamforming for RIS-assisted mmWave MIMO-OFDM
systems. We show that by exploring the sparse scattering char-
acteristics and the intrinsic multi-dimensional structure of the
mmWave cascade channel, the received signal can be formu-
lated into a low-rank third-order tensor that admits a canonical
polyadic decomposition (CPD). Based on this formulation, an
alternating least squares (ALS) method is developed for channel
estimation. Theoretical analysis shows that the proposed meth-
ods have a sample complexity of O(U?). Here U denotes the
sparsity of the cascade channel. Since U is usually small relative
to the dimension of the cascade channel, the proposed method
can achieve a substantial training overhead reduction.

In addition to channel estimation, we also consider the prob-
lem of joint active and passive beamforming design. Our pro-
posed joint beamforming design method directly optimizes the
reflection coefficients by obtaining a relationship between the
reflection coefficients and the singular values of the effective
channel. In doing this way, a favorable propagation environ-
ment can be realized by directly manipulating the reflection
coefficients of the RIS, without resorting to the complex alter-
nating optimization procedure. Simulation results show that our
proposed method presents a clear performance advantage over
existing state-of-the-art joint beamforming methods.

The current work is an extension of our previous work [30]
which developed a CPD-based channel estimation method for
RIS-assisted mmWave MISO systems. The contribution of the
current work beyond [30] consists of the following two aspects.
First, we extend the CPD-based method to the MIMO scenarios.
Note that such an extension is nontrivial. In fact, for the MISO
case, as pointed out in [30], the Kruskals condition which is
essential to the uniqueness of the CPD does not hold and hence
the classical ALS method cannot be applied. We show that due
to the diversity brought by multi-antenna at the receiver, the
Kruskals condition can be satisfied for MIMO scenarios. Such
a fact enables us to develop an ALS-based channel estimation
method that performs better than [30], especially in the low SNR
regime. Second, besides channel estimation, the current work
also considers how to optimize the active and passive beamform-
ing coefficients based on the estimated cascade channel, which
is a challenging problem (particularly for MIMO systems) and
has not studied in [30].

The rest of the paper is organized as follows. In Section II,
the system model and the formulation of the channel estimation
problem are discussed. CPD-based channel estimation method
is developed in Section III. In Section IV, the problem of
joint active and passive beamforming design is studied. Finally,
simulation results are presented in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a point-to-point RIS-aided mmWave MIMO-OFDM
system, where an RIS is deployed to assist the downlink data
transmission of Ny data streams from the BS to the user (see
Fig. 1). For simplicity, we assume that the direct link between the
BS and the user is blocked due to poor propagation conditions.
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Fig. 1.

RIS-assisted mmWave MIMO-OFDM systems.

The BS is equipped with a uniform linear array (ULA) with
N; antennas and Ry radio frequency (RF) chains, and the user
is equipped with a ULA with N, antennas and R, RF chains,
where Ry < N; and R, < N;. The RIS is a uniform planar
array (UPA) with M = M, x M, passive reflecting elements.
Each element, say the mth element, can independently reflect
the incident signal with a reconfigurable phase shift e/, For
notational simplicity, let v = [e79 ... 7™ ]H denote the re-
flection coefficient vector, and ® £ diag(v'’) denote the reflec-
tion matrix.

A. Channel Model

In this paper, we adopt a geometric wideband mmWave chan-
nel model [31] to characterize the channel between the BS (RIS)
and the IRS (user). Specifically, the BS-RIS channel in the delay
domain can be expressed as

L
G(r) = cuars (0], x7) ags (0) 5 (r—7), (1)

1=1
where L is the total number of paths between the BS and the RIS,
oy is the complex gain associated with the [th path, ¢; represents
the spatial angle of departure (AoD), {¥], x] } denote the spatial
azimuth and elevation angles of arrival (AoAs), 7; denotes the
time delay, 6(7) denotes the Dirac-delta function, ars(¥, x)
and apg(¢) denote the normalized array response vectors as-
sociated with the IRS and the BS, respectively. Similarly, the

IRS-user channel in the delay domain is modeled as

L.
R(r) = ZﬁlaUE (01) afhs (V) x7) 6 (T — k1), (2)

=1

where L, is the number of paths between the RIS and the user,
B, denotes the associated complex path gain, 6; represents the
spatial AoA, {¥}, x}} denote the spatial azimuth and elevation
AoDs, k is the time delay, and ayg() denotes the normalized
array response vectors associated with the user. The normalized
array response vectors aps(®), aug(f) and ars(¥, x) are
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respectively defined as

1 ; _
aps(¢) = m[l el .. eJ(N¢71)¢]T, 3)

1 , ,
aue(f) = \/ﬁ[l ei0 ... dNe=DOT @
ams(J, X) = ay(9) @ a,(x), 5)

1 , ,
= [1e? ... ed(My=1)T ©
v My

® [ e ... MmN -
where ® denotes the Kronecker product, ¢ £ 22% sin(n), 6 £

24 gin(y), ¥ £ cos(w) sin(1)), and y £ sin(cw). Here ¢ and
w denote the azimuth and elevation angles associated with the
IRS, v () represents the angle associated with the user (BS),
d and A denote the adjacent spacing and the signal wavelength,
respectively.

Accordingly, the frequency-domain BS-RIS and RIS-user
channels associated with the pth subcarrier can be respectively

expressed as

L
Gy = e T B ams (95, x) alls (1), (®)
=1

L, ’
R, = Zﬁze_ﬂﬁfsmpioaUE 0) afhs (95, x1), (9
=1

where fs is the sample frequency, and P, denotes the total
number of OFDM tones.

B. Downlink Training and Signal Model

To facilitate the algorithm development, we employ a frame-
based downlink training protocol (see Fig. 2). Specifically, the
training period is divided into 7" time frames, where the BS
(user) employs different beamforming (combining) vectors at
different time frames. Each time frame is further divided into
@ time slots. At the gth time slot, the RIS adopts an individual
phase-shift matrix @, to reflect the impinging signal. Suppose
the total number of OFDM tones is Fy, among which P, say
{1,2,..., P}, subcarriers are selected for training. The trans-
mitted signal associated with the pth subcarrier at the tth time
frame can be expressed as

fip=FretFpppse, € CN, (10)

where s, € CN= denotes the pth subcarrier’s pilot symbol
vector, F'gg¢,p € C RexNs ig the baseband precoding matrix
associated with the pth subcarrier, and Frp, € C NexRe g g
radio frequency (RF) precoder common to all subcarriers. The
transmitted signal arrives at the user via propagation through the
BS-RIS-user channel. The user employs the hybrid combiner
Wip=Wgrr, WaBu,)p € CN-*Ns to combine the received
signal, where Wgp ), € CT-Ns denotes the baseband com-
biner associated with the pth subcarrier and Wry; € CNex B
is a RF combiner common to all subcarriers. Hence, the received
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Fig. 2. Illustration of the proposed transmission protocol.

signaly,, , € C N: associated with the pth sub-carrier at the gth
time slot of the tth time frame can be written as

W}?B,t,pr:,tRp‘I’quFRF,tFBB,t,pSt,p + Ngtp-
(1)

Ygtp =

In the channel estimation stage, for simplicity, we assume
Fgpp = Fppt and 8¢, = s¢, in which case we have f, , =
I+ £ Fgg Fgp 5. Similarly, let Wgp 1, = Wgp,:. We have
Wip,=W, £ W rr,: W BB,:. The received signal can thus be
expressed as

yq,t,p = W{{R;D@quft + Ng,t,p,
= (ftT ® Wf)vec(Rpi’qu) + Ny tps

= XtT(GZQRp)UZ Tt Mg tps (12)
where we define X; = f, ® W; € CNeNexNs @ denotes the
Khatri-Rao product,and H,, GZ; © R, € CNeNexM denotes
the cascade channel associated with the pth subcarrier. Recalling
(8) and (9), the cascade channel H,, can be further expressed as

H,=G]OR,,
L
= [ 3" ame T B agg (1) adns (95,10
m=1
L,

i oy 2
Z ﬁne J2m fare P augE (on) a{—II{S (ﬁt ,Xn) )

r

i Z amBne*jZﬂ'fs(Tm-i-Nn)

m=1n=1

& aUE(en)) (a{RS (191" ’Xm) O] aIRS (ﬁt 7Xn)) )

P

" (aps (Om)

T

L
7S B P E 04 (6,,,0,)

m=1n=I
T by t T t
X QRS (ﬁm - Ilgerm - Xn) ;

e T ag( b, 0) alns (Gu &) s (13)

(@) LL,
=20
u=1

where as(¢m,0,) = ajs(dm) ® aur(f,), and the mapping
process (a) is defined as

(m—1DL,+n—uu=1,...,LL,
QmBn > Ousu=1,..., LL,,

Tm + kp = ty,u=1,...,LL,,

0L — 9 Cu,u=1,...,LL,,

X5, —xh = E,u=1,...,LL,,

b > Guym = [ﬂ u=1,... LL,,

O, = O, = u — ({Lﬂw - 1) Leu=1,...,LL, (14)

where [z] denotes the ceiling function which gives the least
integer greater than or equal to x.

Our objective of this paper is two-fold. First, we wish to
develop a method to estimate the cascade channel matrices
{H} from the received measurements {y, , ,}. In particular,
the proposed method is expected to provide a reliable channel
estimate by using as few pilot symbols as possible. After the cas-
cade channel matrices are obtained, another purpose of this work
is to develop a joint active and passive beamforming method
which aims to maximize the spectral efficiency by exploiting
the knowledge of the cascade channels.

III. PROPOSED CPD-BASED CHANNEL ESTIMATION METHOD

A. Low-Rank Tensor Representation

Substituting (13) into (12), we have

LL,
—q r
> oue T X T ag (6, 04)

u=1

Ygtp =

x a?RS (Cua gu) v; + Ng,t,p- (15)
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Define Y, 2 [y, - Youpl’ € CO Nl The received
signal at the ¢th time frame can be written as

LL,
Yt,p Z Ou€ it o VTaIRS (Cuv gu)
u=1
x af (¢u,0u) Xt + Ny, (16)
where
V £ [v] v € M@, 17)
Nip 2, - nguyl € COMNs, (18)

Collecting the received signals from all time frames and defining
Y,2[Y, - Yr,] € CPTNs wehave

LL,
—q P
Yp _ Z oue 7327 fstu iy VTG’IRS (Cuy&u)

u=1

><a‘S (¢u7 )F+NIJ7

LL,
= oue as (¢u,0u) + N,
u=1
(19)

where @rs(Cus &) = V3 amrs(Cu, &) € C9, as(du, 0,) =
FTaS(qSu,Gu) € CTNs and

Fé[Xl . XT]G

N, € COT

_ P _
J2mfatu o aiRrs (Cuv gu)

CNtNrXTNS’ (20)

N, 2 [Ny, - Q1)

Recall that Y, is the received signal associated with the pth
subcarrier. As we have multiple subcarriers, the entire received
signal {Y,}, can be expressed as a third-order tensor Y €
C@*TN-xP ‘Bach slice of the tensor Y is Y. It can be easily
verified that this third-order tensor Y can be expressed as a sum
of rank-one component tensors, a.k.a. the CPD, i.e.,

U
Y= ars (Cu &) © (ubs (¢u,0u)) 0 g (1u) + N, (22)

u=1

where U £ LL,, N € C@*XTN:xP ig the noise tensor, and

—j2mfaru s

g(u) 2 [e LT (23)

Define
A% [ars (¢1,&) -+ ams ((v,&v) € C9Y, (24
B = [pias (¢1,61) ouas (¢u,fu)] € CTH*V,(25)
C=lgu) - glw)ec™. (26)

Here {A, B, C} are the factor matrices of the tensor Y. We
see that the three factor matrices are characterized by different
channel parameters, and it is convenient to extract the respective
parameters from each factor matrix.

B. CP Decomposition

For generic CPD problems, an alternating least squares (ALS)
method is usually employed to search for the factor matrices.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 10, OCTOBER 2024

Specifically, assume that the CP rank, U, is known a priori. The
CP decomposition of Y can be accomplished by solving

min

2
min . 27
A,B,C F

U
‘y § duobuoéu
u=1

where we define A 2 [a; ... ay], B2[b, ... by] and
C 2l ¢y]. The above optimization can be solved by
an ALS procedure which alternatively solves the least squares
problems [32].

For the case where the CP rank U is unknown a priori, we
can either employ the minimum description length (MDL) cri-
terion [33] to estimate the CP rank or resort to some sophisticated
CPD techniques, e.g. [34], which jointly estimate the CP rank
and the factor matrices. Interested readers can refer [34] for more
details.

C. Channel Estimation

From CPD theories, we know that there exist a scaling ambi-
guity and a permutation ambiguity between the estimated factor
matrices and the true factor matrices. The permutation ambiguity
is common to all estimated factor matrices, and thus can be
ignored. We only need to consider the scaling ambiguity in the
channel estimation stage. Mathematically, the estimated factor
matrices can be expressed as

A=AV, +E, (28)

B = BV, + B, (29)

C = CU; + Es, (30)
where {¥,;}3_, denote the scaling ambiguity matrices, and we
have ¥ \112\113 I according to CPD theories.

We now discuss how to extract channel parameters from
each estimated factor matrix. Recall that each column of the
factor matrix A is characterized by a pair of angular parameters
{Cu, & }- Hence a correlation-based technique whose objective
is to maximize the correlation between the estimated vector
and the parametric vector can be used to search for this pair
of parameters:

arg max @l @rs (Cu, )|

{C’ua§U} Curbar ||au|| ||aIRS (Cu»fu)”z

(€29

where a,, represents the uth column of A. For the factor matrices
B and C, asimilar correlation-based technique can be employed
to respectively estimate { (;Su, 0 W} and Z,,.

Next, based on the estimated channel parameters
{Cu, &us Dus Bu, tu }, the composite path gains {p,} can be re-
covered. After obtaining {fu, fu}, the factor matrix A can be ac-
cordingly estimated as A = [airs(C1,&1) -+ ars(Cu, &v)l-
Recall that A and A are related as A = AW¥,. Hence
the nonsingular diagonal matrix ¥, can be estimated as
v, = A'A. Similarly, we have W3 = é"é’ in which
C =|g(iy) --- g(ip)]. Since ¥ ¥, ¥; =1, ¥, can be
obtained as ¥ = ¥ ' W 1.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on July 19,2025 at 20:34:39 UTC from IEEE Xplore. Restrictions apply.



ZHENG et al.: COMPRESSED CPD-BASED CHANNEL ESTIMATION AND JOINT BEAMFORMING

Notice that we have

B= [58(@’@) as(du.0u)| diag(or,- .., ov)¥s.
(32)
Thus, D = diag{oi,...,0u} can be estimated as D=

BTB@51,Where we have B = [as(¢1,0)) as(ou,0u)).

D. Uniqueness Condition and Sample Complexity

We now study the uniqueness condition of CPD for our
considered problem. This condition also sheds light on the
sample complexity of the proposed method, i.e. the amount of
training overhead required to reliably estimate the channel. A
well-known condition for the uniqueness of CPD is Kruskal’s
condition, which is summarized as follows.

Theorem 1: Let X € C*7*K be athird-order tensor decom-
posed of three factor matrices AV € CT*E, A?) € C7*R and
AB) ¢ CKXR If

kg +kao +hkae =>2R+2, (33)

then the CPD of X is unique up to scaling and permutation
ambiguities.

Here k4 denotes the k-rank of A, which is defined as the
largest value of k4 such that every subset of k4 columns of
A is linearly independent. To obtain the uniqueness condition
for our problem, we analyze the k-rank of each factor matrix.
Consider the factor matrix A. Recall that

A2 VT [ars (G.&) -+ ams (v, &v)]-

Assume that each entry of V' € CM*@ is randomly generated
from the unitcircle,i.e. vy, », = elom.n where Omn € [—7, ] is
drawn from a uniform distribution. Let a,, ; £ v! ars (¢, &)
denote the (m, i)th entry of A, where v, is the mth column of
V. It can be easily verified that E[a,, ;] = 0,Vm, i and

0, m #n,

H 1 =
E [am,ianﬁj] - {aﬁ%s (Cj?fj) aiRs (Cia fl)a m=mn.
(35)

(34)

Recall that arrs((;,&;) is a Kronecker product of two steer-
ing vectors. Hence we have afi<((j, &;)amrs (¢, &) ~ 0, when
Gi # ¢ or & # &; [35]. In reality, due to the random nature of
the channel parameters, the angles {(,, }7/_, are mutually distinct
with probability one, and so are the angles {&,}U_,. We thus
have Elall ;an ;] ~ 0 even for the case m = n. On the other
hand, accordlng to the central limit theorem, a,,, ; approximately
follows a Gaussian distribution. Therefore entries of A can be
considered as i.i.d. Gaussian variables with zero mean and unit
variance. As a result, we have

ka =min{Q,U}. (36)
By following a similar derivation, we have
kg = min {T'Ns,U}. (37)

Note that due to the mapping process, the set {¢,, } only contains
L distinctelements, and {6,, } only contains L,. distinct elements.
Nevertheless, for i # j, we still have ag(¢;,6;) # as(¢;,6;)
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since each pair of (¢, 0,,) is unique according to the mapping
rule defined in (14).

As for the factor matrix C, it is a Vandermonde matrix with
distinct generators, i.e. ¢; 7# ¢, Vi 7 j. Thus we have

ke =min{P,U}. (38)

Based on the above results, we know that Kruskal’s condition is
equivalent to

min {Q,U} + min {T'Ns, U} + min{P,U} >2U + 2.
(39)

Note that the total number of pilot signals for downlink training
is QT P. To meet condition (39), we can set ) > U, TNy > U
and P > 2, in which case the amount of training overhead is in
the order of O(2 U?/Ny). We see that the sample complexity of
the proposed method only depends on the sparsity of the cascade
channel U. As U is usually small relative to the dimension of
the cascade channel, a substantial training overhead reduction
can be achieved.

IV. JOINT ACTIVE AND PASSIVE BEAMFORMING DESIGN

In this section, we consider the problem of joint active and
passive beamforming design based on the estimated channel
parameters. Specifically, we aim to maximize the spectral ef-
ficiency by jointly optimizing the precoding matrices at the
transmitter, the combining matrices at the receiver, and the
reflection coefficients at the RIS. Such an optimization problem
can be formulated as

Zlogz det (IN + WTH
{{Fu}, ,,{Wp}p L@} P

prFfﬁpr),
s.t. ||Fp||iﬂ <p,Vp=1,..., P
H,=R,®G,,Yp=1,...,P,

P = diag(e’*, e’ ..., elM),

(40
where 1 represents the pseudo-inverse operation, | F,||% < p
denotes a transmit power constraint for each subcarrier, H p=
R,®G,, denotes the effective channel associated with the pth
subcarrier. Note that the definition of H ,, is different from that of
the cascade channel H . F,, € CNt*Ns and W, € CNe*Ne re-
spectively denote a fully digital precoder and a fully digital com-
biner associated with the pth subcarrier. Once an optimal fully
digital precoder/combiner is found, we can use the manifold op-
timization method [36] to search for a hybrid precoder/combiner
to approximate the optimal fully digital precoder/combiner.

Given a fixed ®, the optimal F', and W, can be obtained via
the singular value decomposition (SVD) of H,. Substituting the
optimal fully digital precoder and combiner into (40), we can
arrive at a problem which concerns only the optimization of the
passive beamforming matrix ®:

Zlogzdet (IN + = N > (2171,)2),

max
P
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st ® = diag(e’*, el ..., eIM), 41)

where 3, € CN=*"s is the submatrix of X, and X, is ob-
tained via the SVD of H :

Yip 0
ZJ21)} Vie Vo

3

[CG)
Here U, , € CN*Ne 'V e CNoNa |8 isanr, x r, diag-
onal matrix, and r, £ rank(H ).

The main difficulty of solving (41) is that the singular values
of the effective channel H,, cannot be explicitly expressed in
terms of the passive reflecting coefficient matrix ®. To address
this difficulty, [37] proposes to exploit the inherent structure of
the effective channel H »- Specifically, substituting (8)—(9) into
the definition of H p» the effective channel can be written as

H, = AueD, AL, (43)
where Aug = [ave(0)) --- aus(0r,)], Aps 2
[ags(¢1) --- aps(¢r)], and the (m,n)th entry of D, is
given by
D,(m,n) £ amﬂnefﬂﬂfs(ﬂ”+”")’%dmn, (44)
in which
dmn £ afgs (05, X5) Pairs (9, Xo),
=v" (aigs (9}, x},) © ars (05,.X3)) -
= vl aRs (ﬁfn — ﬁ;,xfn — X:l) . 45)

Based on the above expression, we propose to use H p =
AUED,,A]?S to approximate a truncated SVD of H,,. Based
on this approximation, the optimization problem (41) can be
rewritten as

P Ng
1 - P 2 H
mg,x P;;logz (1+J\fso_zlaiﬁi| v P“"U 5

st v= [ eie ... o] (46)

where Py £ ars(V; — 9, X} — x})airs (9 — 95 xF — x})-
Such an optimization can be efficiently solved via the manifold
optimization technique.

From (46), we see that to optimize the reflection coefficients,
we only need the knowledge of the composite gains {a; 3},
and the composite RIS angles {9} — 0%, x! — x'} 2. Recall
that, in the channel estimation stage, the following channel
parameters {éu,éu,éu,éu, iu, 0u}U_, are obtained, in which
we have

Oém/BnHQuy u:l,...,LLr,
9 =08 = Gy, u=1,...,LL,,
X — X5 &y, u=1,...,LL,. (47)

We see that our proposed channel estimator can provide an
estimate of the composite gains as well as the composite RIS
angles associated with all U composite paths. The problem now

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 10, OCTOBER 2024

is how to appropriately choose Ny composite paths from these
U composite paths. Randomly choosing Ny composite paths
certainly does not work. In fact, it is easy to know that the
composite paths corresponding to the diagonal entries of D,
must have mutually distinct AoDs at the BS and mutually distinct
AoAs at the user. Also, to improve the spectral efficiency, clearly
we should choose those composite paths whose composite gains
are as large as possible. Based on the above considerations,
the Ny composite paths can be selected based on the following
criterion:

mIaX Z|@2|27

i€l
st. IC{l,...,U}, |I|=N.,
‘aé{s(éi)aBs((ﬁj) <6B5ai7éj7V7:aj EI,

‘a{fE(@i)aUE(Gj)‘ < 5UEai 75 j,VZ,j e, (48)
where the last two constraints are imposed to ensure that the
selected composite paths have mutually distinct AoDs at the
BS and mutually distinct AoAs at the user, in which dgg and
oug are small positive parameters of user’s choice. Based on the
selected N4 composite paths, the optimization problem (46) can
be further written as

52
max Zlogz <1 + ]\F;Q;ZvHPiiv) ,

ieT
st. Py =amrs(G,&)atis (G, &), Vi € T,
v = [e-jg‘,ejgz,...,ejw]H. (49)

The above optimization problem can be efficiently solved via
the manifold optimization method.

After the passive beamforming vector v is determined, the
pth subcarrier’s equivalent channel H, can be estimated as

U
2 R P A ~ ~
Hp = ZQue 72 fel o /UHalRS(Cuagu)
u=1

X aUE(éu)agIS (¢u)a

, 0

. . . . H
= [Ulm U27p] [ 0 EZ’J [Vhp V27p]

, (50)

where the second equality is a truncated SVD of aH p- According
to [37], the optimal fully digital precoder/combiner can be
obtained as

F:;pt,p =V p/NSVI,pa

After the optimal fully digital precoder/combiner is obtained,
we search for a common analog precoding (combining) matrix
Frr (Wgp) and a set of baseband precoding (combining) ma-
trices { F'zg , } ({Wgg p }) to approximate the optimal precoder
(combiner) { Fop p } ({ W opt,p })- The problem can be solved via
the manifold optimization technique.

Wiy =Ulp. (51)
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Fig. 3.

V. SIMULATION RESULTS

We present simulation results to evaluate the performance of
the proposed ALS-based CPD channel estimation method and
the proposed joint beamforming scheme.

In our simulations, we assume that the BS employs a ULA
with N; = 32 antennas and R; = 3 RF chains, the IRS is
equipped with M = 16 x 16 passive reflecting elements, and
the user employs a ULA with N,, = 32 antennas and R, = 3 RF
chains. The angular parameters {9}, x}, &1}, {9%, x4, 01},
are randomly generated from [0, 27|, where we set L = 3 and
L, = 3. The delay spreads {7, }}~_,, {#;};, are drawn from a
uniform distribution 2/(0, 100 ns). The complex gains {o;}X2,
and {3}/, follow a circularly symmetric Gaussian distribu-
tion CA(0,1). The number of data streams is set to N, = 2.
The total number of subcarriers is set to Py = 128, among
which P subcarriers are used for training. The sampling rate
is set to fs = 0.32 GHz. The signal-to-noise ratio (SNR) is
defined as

o Y- NG
VT

We first examine the estimation accuracy of the channel
parameters {Cu, &y, Gus Ou, Lu, 0w}, and the overall channel
estimation performance. Note that the channel estimation prob-
lem being considered in this work can be cast as a multi-
measurement vector (MMV) compressed sensing problem, and
the simultaneous-OMP method (SOMP) [38] can be used to es-
timate the cascade channel. The TRICE [13] and the Structured-
CPD (SCPD) [30] methods are also included for comparison. For
the SOMP method, two different grids are employed to discretize
the continuous parameter space: the first grid discretizes the

SNR (52)
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MSE:s of respective methods vs. SNR, where Q@ = 32, T = 16, and P = 16.

multi-dimensional parameter space into 128 x (128 x 128) x
128 x 128 points, and the second grid discretizes the continuous
parameter space into 256 x (256 x 256) x 256 x 256 points.
For the TRICE method, the 4D angular space is discretized
into 256 x 256 x 256 x 256 points. The CRB results are also
included to provide a benchmark for evaluating the performance
of our proposed method. The calculation of CRB can be found
in Appendix VIIL.

In Fig. 3, we plot the mean square errors (MSEs) of the
estimated channel parameters as a function of the SNR, where
we set P =16, T = 16, and () = 32. Note that the parameters
{tu, 04 }U_, of the cascaded channel cannot be separated by
TRICE, thus TRICE is not included in this figure. From Fig. 3,
we see that both of the tensor-based approach ALS and SCPD
can achieve an estimation accuracy close to the theoretical lower
bound, and present a substantial advantage over the SOMP
method. Meanwhile, the proposed ALS method is superior to the
SCPD method in the low SNR regime. This is probably because
the SCPD method which depends critically on the structure of
the factor matrix is more sensitive to noise.

In Fig. 4(a), we plot the estimation performance of re-
spective methods as a function of the SNR. The perfor-
mance is evaluated via the normalized mean squared er-
ror (NMSE) of the cascaded channel, which is defined as
25:1 |H, — H,,H%/Z:;l | H,||%. Again, we see that our
proposed method ALS present a significant performance im-
provement over other methods. In particular, the ALS method
achieves a decent estimation performance even in a low SNR
regime, say SNR = 0dB. Note that in mmWave communica-
tions, due to the severe path loss, the SNR for channel estimation
is usually low, with the range of interest from 0 dB to 10 dB at
most. Thus the ability of delivering an accurate channel estimate

oaded on July 19,2025 at 20:34:39 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5.
SNR =20dB.

in the low SNR regime is highly desirable and has important
practical implications.

In Fig. 4(b),we plot the estimation performance of respective
methods as a function of the number of subcarriers P, where
we set () =10 and 7" = 5. It can be seen that the proposed
method provides a reliable channel estimate when P > 10,
which corresponds to a total number of 500 measurements for
training. As a comparison, note that the cascade channel H,
to be estimated has a size of N; IV, x M = 1024 x 256, which
has more than 2.6 x 10° parameters. This result indicates that
the proposed method can achieve a substantial training overhead
reduction. Fig. 4(c) plots the estimation performance versus the
number of time slots 7', where we set () = 10 and P = 10.
This result, again, demonstrates the superiority of the proposed
method over the compressed sensing-based method SOMP and
TRICE.

Next, we examine the performance of joint beamforming
scheme proposed in Section IV. we compare our proposed
method (named MO) with state-of-the-art methods SPGM [28]
and SJD [29]. Fig. 5(a) depicts the spectral efficiency achieved

(b) ©

(a) NMSE:s of respective methods vs. SNR, where (Q = 32, T = 16, and P = 16; (b) NMSE:s of respective methods vs. P, where Q = 10, 7" = 5, and
SNR = 20dB; and (c) NMSE:s of respective methods vs. 7", where QQ = 10, P =

10, and SNR = 20dB.

Spectral Efficiency (bps/Hz)
B (42 (o2} ~
o o o o

w
»

o

3
ol
ol
ol
o

(b)

(a) Spectral efficiency of respective methods (full CSI) vs. SNR, where Ns = 2; (b) Spectral efficiency of respective methods (full CSI) vs. N, where

by respective methods assuming perfect knowledge of the cas-
cade channel, where we set the number of data stream N, = 2.
It can be observed that three algorithms show a linear increase
in spectral efficiency as SNR increases. Our method MO has
an obvious advantage over the other methods SPGM and SJD.
This is due to the fact that the designed method MO has the
ability of fully exploiting the spatial diversity inherent in the
cascade channel. In Fig. 5(b), we plot the spectral efficiency of
respective methods as a function of the number of data stream
Ny, where we set SNR = 20dB. It can be observed that our
proposed method presents a clear performance advantage over
the other two methods.

Finally, we examine the beamforming performance attained
by our proposed joint beamforming method based on the es-
timated cascade channel. To illustrate the effectiveness of the
proposed channel estimator, we include the beamforming per-
formance attained by assuming the perfect knowledge of the
CSI, which serves as an upper bound on the beamforming
performance attained by using the estimated CSI. Fig. 6 plots the
spectral efficiency of the proposed joint beamforming scheme
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Fig. 6.
(estimated CSI) vs. T', where Q = 16, P = 16, and SNR = 20dB.

as a function of SNR and the number of time frames 7, re-
spectively. We see that our proposed CPD-based estimator ALS
achieves performance close to that attained by assuming perfect
CSI knowledge even in the low SNR regime, which verifies
the effectiveness of the proposed estimation method. Also, our
proposed method presents a clear performance improvement
over the compressed sensing-based methods. Particularly, when
the training overhead is low, say, P = Q = 16 and T = 6, the
proposed CPD-based method can still achieve decent beam-
forming performance, whereas the compressed sensing-based
methods incurs a significant performance loss.

VI. CONCLUSION

In this paper, by exploiting the intrinsic multi-dimensional
structure as well as the sparse scattering characteristics of
the mmWave channels, we developed a CPD-aided channel
estimation method, namely, an ALS-based CPD method, for
RIS-assisted mmWave MIMO-OFDM systems. The proposed
method effectively utilizes the low-rankness of the CPD formu-
lation and can achieve a substantial training overhead reduction.
We also developed a joint beamforming scheme that utilizes
the estimated cascade channel parameters for optimizing the
system’s active and passive variables. Simulation results show
that our proposed method presents a significant performance ad-
vantage over the compressed sensing methods, and can achieves
superior channel estimation and beamforming performance with
a low training overhead.

VII. DERIVATION OF CRAMER-RAO LOWER BOUND
Consider the Q x T'Ng x P observation tensor Y in (22)

U
y= Z&IRS (Cu;fu) © (Quﬁs (¢1L79u,)) °g (Lu) +N7 (53)
u=1

where N(q,t,p) ~ CN(0,02), {Cu, s Puy Ous Ous Lo} are the
unknown channel parameters to be estimated. Let p £
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[CTv €T7 ¢T7 0T7 QT, LT], where

¢E[G CU]T, E£ 1[G fU}T,
o2 o - ou], 02100 - Oy],
Qé[Ql QU]T,Lé[Ll LU]

Thus the log-likelihood function of p can be expressed as

L(p)=f(Q;A,B,C),

1 2
= —QTN,PIn(r0*) - — |Y{) - (CoB)AT| .
1 2
= —QTN,Pln (ro?) — ) Y%;) - (CoA)B” o
1 2
= —QTN,Pln(r0%) — — |Y {5 = (BO A)CT| .
54

The complex Fisher information matrix (FIM) for p is given by

on-{(52) ()

To calculate (p), we first compute the partial derivative of L(p)
with respect to p and then calculate the expectation with respect

to p(Y; p).

(55)

A. Partial Derivative of L(p) W.rt p

For simplicity, we consider the partial derivative of L(p) with
respect to (. Partial derivations of L(p) with respect to other
parameters can be deduced in a similar way and thus omitted.

We have
dL(p) OL(p)\"0A [0L(p)\" 0A*
. _“{< 9A ) a<u+<aA*> agu}’ (0
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where
8L(P) - 1 \H
an;( ’,-(CoB)A ) (CoB), (57
BL(p) 1 T T
e :;(Y(l) (CoB)A ) (C®B), (59
dA _
aié-u - [0 ) Qg . 0]7 (59)
in which @, £ jV? Djars(Cu, &) and
D, £ diag(0,...,0,1,...,1,..., My —1,..., My — 1).
N—_——
M, M, M,
(60)

Thus we have

OL(p 1 *_
agu) el Licon! (vl - (CoB)AT) 4,
vl ScoB) (vl - (CoB)AT)a,,

=2Re {efglz(c oB)" (Y(l) (C® B) AT)*Aaeu} :
(61)

where Re{-} represents the real part of a complex number, e,, is
a unit vector whose uth entry equals to one and all other entries

equal to zeros, and A, £ [@41 -+ @qu)- Similarly, we have
9L(p)
&y,
1 T \* 5
=2Reje; —(CoB) (Y(l) —(CoB)A ) Ace, b,
(62)
where Ae = [ae,l : ae,U]’ ae,u = jVTDZGIRS(Clufu)a
and
D, 4
diag(0, ..., M, —1,0,..., M, —1,...,0,..., M, — 1).
My My M}'
(63)
The calculations of (/E ), agg(p)’ BOL( P) and aL(p ) are similar,
Qu 0Ly,

which is omitted here.

B. Calculation of Fisher Information Matrix Q(p)

We first calculate the entries in the principal minors of (p).
aL(p)\H (oL .
) (P5E) s

For instance, the (up,u;)th entry of E{(
given by

H{(52) (52)
= 4E {Re {eIWe,} Re {elW e, }},

=K {(W[ (1L],U1) + W, (u1,u1)*)
(W (w2, u2) + Wi(uz,u2)")},

(64)
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(T —-(CoB)ATY'A, 4
vec(W). We have

1

wi = — (AGT ®(Co B)T) vec (Ng)) . (65

where N () is the mode-1 unfolding of A/, vec(IV g)) ~

CN(0,02T). Since w; is a linear transformation of Vec(Ng)),
it also follows a circularly symmetric complex Gaussian distri-
bution. Its covariance matrix Cy,, € CU"*U” and second-order
moments M, € CU"*U” are respectively given by

Cuw, =E {wlw{I} ,
— <012)2 (jif ®(Co B)T)
x E {Vec(Ng)) Vec(Ng)>H}(fi: ®(Co B)T)H7
-1 (AZAZ) ® ((C oB)(Co B)*) : (66)
and
M, =E{ww!} =0. (67)

Thus we have

() ()} .

where m £ U(u; — 1) +uy,n 2 U(uy — 1) + up. Similarly,
we have
oL(p)\" (0L(p)\) _
E{( DE., > 96, )|~ 2Re{Cu,(m,n)}, (69)

where  Cl, = (A, A))® ((C® B)'(C®B)"). The
derivations of other entries in the principal minors of {2(p) are
similar and thus omitted here.

For elements in the off- principal minors of (p), such as the

(11,1, )th entry ofIE{(aL(p)) (aL(p) )}, we have

{(52) (32)) - 2metcmmtmn. o

where

Cuww, = E {wiwy'},
- <O_12>2 (4 @ (€0 B)")E{vec (N{l))
xvec(Ng))H} (4 e conT)".
-1 (4;4;) e (coB(CoB)y). @y

Other entries in the off-principal minors of Q(p) can be similarly
calculated.
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C. Cramér-Rao Bound

After obtaining the FIM, the CRB for the parameters p can
be calculated as

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

CRB(p)=Q"' (p). (72)
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