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Abstract—Reconfigurable intelligent surfaces (RIS) have
gained prominence in communications and are now extending
their applications to radar, offering innovative solutions for non-
line-of-sight (NLOS) target detection. This paper introduces a
new joint transmit and RIS beamforming approach for NLOS
target detection using RIS-assisted radar systems operating in
multipath environments. Leveraging manifold-based optimiza-
tion, the proposed method jointly optimizes the radar’s active
beamformer and the RIS phase shifts to enhance detection
robustness by managing the interference and signal degradation
caused by multipath propagation. We provide a detailed analysis
of detection performance, including the probability of detection
and probability of false alarm, to assess the effectiveness of
the approach. The proposed method is further compared with
a conventional approach that focuses solely on the line-of-
sight (LOS) component of the multipath signals. While the
conventional method performs comparably in scenarios with a
strong dominant LOS path, the proposed approach demonstrates
notably superior performance across more general multipath
environments. Simulation results underscore the applicability
of the proposed method, particularly in environments with
high angular spread, highlighting RIS’s potential for improved
detection in complex, multipath-dense settings where traditional
approaches may be limited.

Index Terms—Non-line-of-sight (NLOS) target detection, re-
configurable intelligent surface (RIS), joint beamforming, multi-
path

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) are gaining atten-
tion as a transformative technology in RF sensing and wireless
communication [1]–[5], offering flexible control over elec-
tromagnetic wave propagation to improve signal processing
and target detection. By dynamically adjusting properties such
as phase, amplitude, and polarization, RIS enhances radar
and network performance, especially in complex, multipath
environments [6]. This adaptability is essential in non-line-
of-sight (NLOS) scenarios, often found in urban settings,
where RIS can adjust signal paths to mitigate obstacles and
reduce degradation [7]. Studies highlight RIS’s potential to
improve detection and tracking for RF sensing applications
like autonomous driving and smart cities, where high accuracy
in detection and localization is critical [8]. The integration
of RIS with RF sensing also supports the demands of next-
generation wireless technologies [9].
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The application of RIS has expanded beyond communica-
tions into radar systems, where it plays a crucial role in line-
of-sight (LOS) and NLOS target detection [10]–[12]. In radar,
RIS can reflect signals around obstacles, enhancing target
detection in cluttered environments [13], [14]. To address tim-
ing mismatches, recent studies have examined asynchronous
propagation management in RIS-assisted RF sensing [15].
Additionally, RIS has been integrated into dual-function radar
and communication (DFRC) systems to improve interference
mitigation, detection sensitivity, and adaptive beamforming in
complex scenarios [16], [17].

Although RIS-assisted radar has been explored in various
studies, much of the existing work focuses on single-path
scenarios [14], [18], [19], limiting its applicability in real-
world, multipath-rich environments. Most approaches aim
solely to enhance direct LOS paths for detection accuracy
in simple LOS settings, without addressing the complexities
of multipath propagation. In urban and indoor environments,
signals frequently undergo multiple reflections, leading to
indirect NLOS paths that introduce interference and phase
misalignment [20]. Traditional methods fall short in these
settings, underscoring the need for approaches that address
both LOS and multipath effects to ensure robust detection in
cluttered, obstructed scenarios.

In this paper, we introduce a novel joint transmit and RIS
beamforming approach for RIS-assisted radar systems that is
tailored for multipath-rich environments. Our framework mod-
els both LOS and NLOS paths, addressing the complexities
of multipath propagation. This joint optimization is aimed at
maximizing received signal power and enhancing detection
robustness by mitigating the interference and degradation as-
sociated with NLOS paths. To evaluate the effectiveness of the
proposed method, we analyze key detection metrics, including
the probability of detection and probability of false alarm,
and compare the approach against a conventional method
that focuses solely on the LOS path. While the conventional
approach performs adequately in scenarios with a dominant
LOS path, our proposed method consistently outperforms it in
diverse multipath environments, especially under conditions of
high angular spread. These findings highlight the robustness
and adaptability of RIS in complex environments, offering
practical solutions for radar applications in multipath-rich
NLOS scenarios. Simulation results underscore the adaptabil-
ity of the proposed approach, demonstrating its potential to
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Figure 1. A mono-static radar with an RIS employed to assist NLOS target
illumination and observation.

significantly improve detection performance in settings where
traditional methods are often limited.

II. SIGNAL MODEL

In this paper, we explore a mono-static RIS-assisted radar
system for NLOS target detection, focusing on realistic scenar-
ios where multi-path signal propagation occurs, as illustrated
in Fig.,1. The RIS is strategically positioned to enhance both
target illumination and signal reflection back to the radar,
which is equipped with N transmit/receive antennas. The
RIS consists of M meta-atoms, each of which introduces an
independent phase shift ψm. The overall phase response of the
RIS can be expressed as:

Ψ = diag(ψ), (1)

where ψ = [ψ1, · · · , ψM ]T with |ψm| = 1.
In comparison to conventional single path models, we con-

sider a more realistic scenario involving multiple propagation
paths between the radar, RIS, and the target. These paths
include both LOS and NLOS paths due to reflections and
diffractions caused by obstacles in the environment. The re-
ceived signal at the radar, after matched filtering and sampling,
is given by:

z = α
√
Ptw

THT
r,sΨhs,ah

T
s,a,kΨH r,s,lw + ϵ, (2)

where α is the complex target reflection coefficient, w is the
unit-norm transmit beamforming vector, and ϵ represents the
Gaussian noise with variance σ2

n.
The radar-RIS and RIS-target channels are modeled as sums

over multiple paths. The radar-RIS channel for the l-th path
is defined as:

H r,s =

Lr,s−1∑
l=0

H r,s,l =

Lr,s−1∑
l=0

ρr,s,las(ϕr,s,l)a
H
t (θr,s,l), (3)

where l = 0 represents the LOS path, and l > 0 represents
the additional NLOS paths due to reflections. Similarly, the
RIS-target channel is given by:

hs,a =

Ls,a−1∑
k=0

hs,a,k =

Ls,a−1∑
k=0

ρs,a,ka
∗
s (θs,a,k), (4)

with k = 0 denoting the LOS path, and k > 0 accounting for
the multiple reflections between the RIS and the target.

In this model, the steering vectors ar(θ),as(θ), and as(ϕ)
represent the radar transmit steering vector, RIS steering vector
for the angle of departure (AoD) θ, and RIS steering vector
for the angle of arrival (AoA) ϕ, respectively. These vectors
capture the beamforming characteristics of both the radar and
RIS.

The path gains ρr,s,l and ρs,a,k reflect critical factors like
distance, antenna gain, and propagation losses across the radar-
RIS and RIS-target links, with total path loss accounting
for transmission losses, atmospheric effects, and other signal
degradation. Each path contributes unique phase and amplitude
shifts, which add complexity to beamforming design and
require collective optimization to enhance received signal
power.

This multi-path model significantly increases the complex-
ity of the beamforming design, as each path contributes a
phase and amplitude shift that must be taken into account
to maximize the received signal power. The contributions of
both LOS and NLOS paths necessitate a joint optimization of
the radar beamforming vector w and the RIS phase matrix
Ψ to improve detection performance in NLOS scenarios.
By incorporating multiple paths, this approach models real-
world challenges, such as reflections from buildings and other
structures, that affect the propagation of signals in urban and
cluttered environments. This stands in contrast to traditional
single-path models, which oversimplify the complexities in-
volved in NLOS target detection.

III. JOINT RADAR AND RIS BEAMFORMING DESIGN

This section discusses the joint optimization of the radar
beamformer w and the RIS phase matrix Ψ in multipath
scenarios, with the objective of maximizing received signal
power. Two methods are presented: a conventional approach
that optimizes based on the direct LOS path and a manifold-
based approach designed to mitigate the effects of multipath-
induced distortions.

The radar beamformer is optimized to maximize target
illumination power, which is proportional to ∥hT

s,aΨH r,sw∥2.
The optimization problem for w can be formulated as:

w̃ = arg max
w

∥∥∥hT
s,aΨH r,sw

∥∥∥2 (5)

s.t. ∥w∥2 = 1.



The optimal solution for the radar beamformer w is the
principal eigenvector of the matrix HH

r,sΨ
Hh∗

s,ah
T
s,aΨH r,s, and

is given by:

w̃ =
HH

r,sΨ
Hh∗

s,a

∥HH
r,sΨ

Hh∗
s,a∥

, (6)

which is a matched transmission filter that is matched to the
effective channel.

With w optimized, the next focus is on refining detection
performance through RIS phase shift optimization. The total
received signal power, incorporating both LOS and NLOS
paths, is represented as:

∥HH
r,sΨ

Hh∗
s,a∥4 =

∥∥∥∥∥ψT

Ls,a−1∑
l=0

Lr,s−1∑
k=0

ρs,a,lρr,s,k

× diag(as(θs,a,l))as(ϕr,s,k)a
H
t (θr,s,k)

∥∥∥∥∥
4

, (7)

where the 4th-order exponent is due to matched transmission
and the round-trip propagation of the signal.

The following subsections present the two optimization
strategies for ψ : a conventional approach that aligns RIS
phase shifts primarily with the direct LOS path, and a
manifold-based approach that aims to counteract the distor-
tions introduced by multipath propagation.

A. Conventional Approach

In the conventional approach, the RIS phase vector ψ
is optimized specifically for the dominant LOS path, disre-
garding NLOS path contributions. This approach simplifies
the optimization by focusing solely on LOS-path alignment,
which is computationally efficient but suboptimal in multipath-
dominant environments.

The RIS phase vector can thus be expressed as:

ψ̃ =
[
e−j arg(s1), · · · , e−j arg(sM )

]T
, (8)

where s = a∗
s (θs,a) ⊙ as(ϕr,s) and sm represents the m-th

entry of the steering vector s for the LOS path. This approach
provides acceptable detection performance in scenarios where
the LOS path is the primary contributor to the received
signal power but may underperform in complex multipath
environments.

B. Proposed Approach

The proposed approach leverages a manifold gradient de-
scent method to optimize the RIS phase vector ψ, considering
both LOS and NLOS path contributions in multipath-rich
environments. The objective is to maximize the received signal
power by adjusting ψ on the complex circle manifold, where
each element satisfies the unit-modulus constraint |ψm| = 1.
The objective function can be expressed as:

f(ψ) =

∥∥∥∥∥ψT

Ls,a−1∑
l=0

Lr,s−1∑
k=0

ρs,a,lρr,s,kdiag(as(θs,a,l))

× as(ϕr,s,k)a
H
t (θr,s,k)

∥∥∥∥∥
2

=
∥∥∥ψTA

∥∥∥2, (9)

where

A =

Ls,a−1∑
l=0

Lr,s−1∑
k=0

ρs,a,lρr,s,kdiag(as(θs,a,l))as(ϕr,s,k)a
H
t (θr,s,k).

(10)

The design problem can thus be formulated as

max
ψ

f(ψ) (11)

s.t. |ψm| = 1, ∀m = 1, . . . ,M.

To address this optimization problem, we apply a manifold
optimization technique tailored to handle the non-convex unit
modulus constraint. In this approach, the search space can be
regarded as the product of M complex circles SM , where
S = {u ∈ C : uHu = 1} represents a unit circle in the
complex plane [21]. The complex circle manifold, denoted as
M, is defined as

M = SM ≜ {ψ ∈ CM : |ψm| = 1, m = 1, . . . ,M}.

A manifold gradient descent approach is then employed to en-
sure that the optimization respects the unit-modulus constraint,
following three main steps [22], [23]: gradient projection,
descent, and retraction.

The optimization process begins by calculating the gradient
of the objective function f(ψ) with respect to ψ. To obtain
a feasible search direction, this gradient is projected onto the
tangent space Tψ(i)

M of the complex circle manifold [21],
where

Tψ(i)
M = {z ∈ CM : Re{z ⊙ψ(i)} = 0}, (12)

and Re(·) extracts the real part. The i-th iteration of the
optimization process ensures adherence to the manifold’s
constraints. Specifically, the search direction is calculated as:

η(i) = −∇ψ(i)
f(ψ) = −2AHAψ(i), (13)

where ∇ψf(ψ) denotes the gradient of f with respect to ψ,
and the projection operator ProjTψ(i)

M(·) of η(i) is defined
as:

ProjTψ(i)
M(η(i)) = η(i) − Re{η∗

(i) ⊙ψ(i)} ⊙ψ(i), (14)

This projection operation ensures that η(i) lies within the
tangent space of the manifold, preserving the unit-modulus
constraint for each element.

Following the projection step, the phase vector ψ(i) is
updated by moving along the projected gradient direction
PTψ(i)

M(η(i)) with a step size β, resulting in a temporary
update:

ψ̃(i) = ψ(i) + βProjTψ(i)
M(η(i)). (15)



To ensure the updated vector satisfies the unit-modulus
constraint, a retraction operation maps ψ̃(i) back onto the
complex circle manifold by normalizing each element:

ψ(i+1) = Ret(ψ̃(i)) = ψ̃(i) ⊙
1∣∣∣ψ̃(i)

∣∣∣ , (16)

where 1

|ψ̃(i)| ≜
[
|ψ̃1,(i)|−1, · · · , |ψ̃M,(i)|−1

]T
. This retraction

guarantees that each component of ψ(i+1) remains on the
complex unit circle, maintaining the feasibility of the solution
within the manifold constraints.

The manifold gradient descent algorithm iterates through
these steps until a convergence criterion is met, typically
defined by a small tolerance κ on the change in f(ψ):∣∣∣f(ψ(i+1))− f(ψ(i))

∣∣∣ ≤ κ. (17)

By iteratively refining ψ, the proposed method adapts to
multipath conditions, demonstrating robustness and improved
detection performance in complex, multipath-dense scenarios.

In summary, this manifold optimization of ψ effectively ad-
dresses the limitations of conventional LOS-focused methods,
offering substantial performance improvements in multipath-
rich NLOS environments.

IV. TARGET DETECTION

We now turn to the problem of NLOS target detection in the
RIS-assisted radar system. The received signal, after applying
the optimal radar beamformer w̃ and the optimized RIS phase
vector ψ̃, simplifies to:

z = α
√
Pt∥HH

r,sΨ̃
H
h∗

s,a∥2 + ϵ, (18)

where ϵ is the noise term. The task of target detection is then
formulated as a binary hypothesis testing problem with two
hypotheses:

H0 : z = ϵ,

H1 : z = α
√
Pt∥HH

r,sΨ̃
H
h∗

s,a∥2 + ϵ, (19)

where H0 corresponds to the absence of the target, and H1

corresponds to the presence of the target.
To solve this hypothesis testing problem, we employ a

simple detection scheme where the test statistic is defined as:

T = |z|
H1

≷
H0

γ. (20)

with γ as the decision threshold.
Under H0, the received signal z is modeled as a complex

Gaussian random variable with zero mean and variance σ2
n,

i.e., z ∼ CN (0, σ2
n). Consequently, the test statistic T follows

a Rayleigh distribution, and its probability density function
(PDF) is given by:

pT (t|H0) =
2t

σ2
n

e
− t2

σ2
n , t ≥ 0. (21)

Under H1, z is a complex Gaussian random variable with a
non-zero mean α

√
P t∥HH

r,sΨ̃
H
h∗

s,a∥2 and the same variance

σ2
n. In this case, the real and imaginary parts of z are normally

distributed as:

R{z} ∼ N (R{α
√
Pt∥HH

r,sΨ̃
H
h∗

s,a∥2, σ2
n/2) (22)

and similarly for the imaginary part. Therefore, the test statistic
T follows a Rician distribution, and its PDF under H1 is given
by:

pT (t|H1) =
2t

σ2
n

e
− 1

σ2
n
(t2+β2)

I0

(2βt
σ2
n

)
, t ≥ 0, (23)

where β2 = |α|2Pt∥HH
r,sΨ̃

H
h∗

s,a∥4 and I0(·) is the modified
Bessel function of the first kind.

To evaluate the detection performance, the false alarm
probability (Pf ) is calculated as:

Pf =

∫ ∞

γ

pT (t|H0)dt = e
−γ2

σ2
n . (24)

The detection threshold γ can thus be expressed in terms of
the desired false alarm probability:

γ =
√
−σ2

n lnPf . (25)

Similarly, the probability of detection (Pd) is obtained as:

Pd =

∫ ∞

γ

pT (t|H1)dt

=

∫ ∞

γ

2t

σ2
n

e
− 1

σ2
n
(t2+β2)

I0

(2βt
σ2
n

)

= Q


√√√√2|α|2Pt∥HH

r,sΨ̃
H
h∗

s,a∥4

σ2
n

,

√
2γ2

σ2
n

 . (26)

where Q(·, ·) is the generalized Marcum Q-function.

V. NUMERICAL RESULTS

In this section, we present simulation results to evaluate the
impact of RIS on detection performance in multipath envi-
ronments. The simulation models a mono-static RIS-assisted
radar setup with both LOS and NLOS paths, illustrating the
effect of multipath contributions on detection. The radar is
configured as a ULA with 64 antennas (N = 64), while the
RIS is a UPA with M = Nx×Ny meta-atoms. Key parameters
include a target RCS of 0.02 m2, carrier frequency of 10 GHz,
noise variance σ2

n = −90 dBm, and a false alarm probability
Pf = 10−2. The SNR is defined as

SNR =
|α|2Pt∥HH

r,sh
∗
s,a∥4

σ2
n

. (27)

where ρr,s,0 and ρs,a,0 represent the LOS path gains for radar-
RIS and RIS-target links.

To characterize the multipath environment, we use the
Rician factor K ≜ |ρ0|2∑L−1

l=1 |ρl|2
, which quantifies the energy

ratio between the LOS and NLOS paths. In this mono-static
NLOS radar system, the direct path represents the primary
LOS component, with signals traveling from the radar to the
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Figure 2. Detection performance in multipath scenarios (a) Strong multipath
environment (b) LOS-dominant environment.

RIS and subsequently from the RIS to the target. In contrast,
the indirect paths represent NLOS contributions, where signals
experience multiple reflections or diffractions before reaching
either the RIS or the target. In this paper, we set K = 13.2
dB to represent an LOS-dominant environment and K = 0 dB
to represent a strong multipath environment. In the following
results, we generally consider the number of paths L = 3 as
the typical multipath scenario.

Figs. 2(a) and 2(b) present the detection performance in
two distinct multipath conditions: strong multipath (NLOS-
dominant) and LOS-dominant environments, respectively. In
the strong multipath environment shown in Fig. 2(a), the pro-
posed method significantly outperforms the conventional ap-
proach across various SNR levels, demonstrating robustness in
complex NLOS conditions where NLOS paths introduce sub-
stantial interference and phase misalignment. This improved
performance is attributed to the proposed method’s ability
to jointly optimize both LOS and NLOS path contributions,
thereby effectively mitigating multipath-induced degradation.
Conversely, in the LOS-dominant environment (Fig. 2(b)), the
detection performance of both methods is nearly identical,
indicating that when the LOS path is dominant and multipath
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Figure 3. Detection performance under varying angle deviations (a) Strong
multipath environment (b) LOS-dominant environment.
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Figure 4. ROC Curves of the proposed method at different SNR levels in a
strong multipath environment.

effects are minimal, the conventional method, which focuses
primarily on the direct path, is sufficient for high detection
accuracy. These findings align with the theoretical analysis
in Section IV, validating the proposed method’s advantage
in complex multipath-dense settings and highlighting its ap-



plicability for challenging NLOS scenarios where traditional
approaches may be limited.

Figs. 3(a) and 3(b) illustrate the impact of angle deviation
(∆θ) of NLOS paths relative to the LOS path on detection
performance in different multipath scenarios. In the strong
multipath environment shown in Fig. 3(a), the proposed
approach consistently outperforms the conventional method,
particularly when the NLOS paths deviate significantly from
the LOS direction (e.g., ∆θ = 60◦ ). This result demonstrates
the robustness of the proposed method in scenarios with high
angular diversity, as it effectively mitigates the performance
degradation caused by interference from widely spread NLOS
paths. In contrast, Fig. 3(b), which depicts the LOS-dominant
environment, shows that both the proposed and conventional
methods achieve similar detection performance across different
angle deviations. This outcome suggests that when the LOS
path dominates, the influence of angular spread is minimal,
making the conventional approach sufficient. These findings
underscore the proposed method’s advantage in complex
multipath-dense environments, particularly those with signif-
icant angular spread among NLOS paths, where traditional
methods may fall short.

Figure 4 illustrates the ROC curves of the proposed method
under different SNR levels (0 dB, 5 dB, and 10 dB) in a
strong multipath environment. As SNR increases, the detection
probability Pd improves across all false alarm probabilities Pf .
At 0 dB SNR, detection performance is limited, particularly at
low Pf , due to noise dominance. At 5 dB SNR, Pd increases
significantly, showing improved target signal extraction. At
10 dB SNR, the method achieves high Pd, even for low Pf ,
indicating enhanced signal quality in reduced noise conditions.

VI. CONCLUSION

This paper investigates the role of RIS in enhancing detec-
tion performance within a mono-static NLOS radar system,
specifically targeting multipath environments. Employing a
manifold gradient descent approach, we show that the pro-
posed method mitigates the degradation caused by multipath
propagation, achieving a more robust detection performance
than conventional methods, especially under strong multi-
path conditions. Simulation results validate the theoretical
analysis, demonstrating the method’s resilience to varying
angular spread. The applicability of the proposed approach to
complex signal environments underscores its practical poten-
tial in multipath-rich scenarios, where traditional techniques
may be inadequate. Future work will focus on adaptive RIS
configurations for dynamic environments to further optimize
detection and energy efficiency.
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