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The development of effective numerical methods for simulating the dendritic solidification 
process using the flow-coupled, melt-convective phase-field model has consistently encountered 
challenges due to the model’s complex nonlinear and coupled structures. The major concern of 
algorithm design is to ensure a numerical scheme that achieves second-order accuracy in time, 
maintains linearity and attains a fully decoupled structure. All these objectives are accomplished 
within the framework of guaranteed unconditional energy stability, which is addressed by the fully 
discrete finite element scheme proposed in this paper. The developed scheme uses the modified 
projection-type method to deal with the “weighted” Navier-Stokes equations, and the complete 
decoupling feature is achieved by using the explicit-SAV (Scalar Auxiliary Variable) method, 
which also helps to linearize the nonlinear potentials. The scheme simplifies its procedure by only 
requiring the solution of several completely decoupled and linear elliptic equations at every time 
step, which facilitates its easy implementation. The solvability and energy stability are further 
rigorously validated. Comprehensive details of the procedural steps for implementation are also 
provided, accompanied by plenty of numerical tests conducted in both 2D and 3D, serving to 
numerically ascertain the accuracy and robustness of the scheme.

1. Introduction

When materials crystallize or solidify, often due to changes in temperature or concentration, they usually form complex, branch-
like patterns known as dendritic structures, similar to those seen in snowflakes or frost on windows. The phase-field method excels 
in modeling complex interfaces in science and engineering due to its simplicity and flexibility, making it a preferred choice for 
modeling dendritic solidification processes. This approach’s usefulness in portraying the evolution of dendritic structures has been 
demonstrated in seminal works by Kobayashi [14] and further explored in numerous subsequent studies in [10–13,15,16,40]. Utilizing 
the phase-field approach for dendritic solidification modeling entails the introduction of a scalar phase-field variable, which serves 
to distinguish between solid and liquid states, forming the basis for a detailed free energy model of the system. The system’s total 
free energy is commonly postulated to comprise three fundamental components: configurational entropy, which dictates spatial 
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anisotropy; a double-well nonlinear potential, essential for delineating the distinct phases; and a thermal potential, indicative of 
temperature variations. The model’s governing dynamics are formulated by invoking gradient flow methodologies, similar to the 
Allen-Cahn and Cahn-Hilliard frameworks, applied to the system’s total free energy and enthalpy [12,14].

Typically, the most basic phase-field models for dendritic growth incorporate a duo of coupled equations: one addressing the 
evolution of the phase-field variable to chart dendritic interfaces’ growth, and the other managing the thermal field to monitor 
temperature evolution [12,14], with their interaction representing the transfer of latent heat. Such foundational models typically 
sideline the role of external fluid dynamics in the solidification process, focusing predominantly on latent heat’s impact. Nevertheless, 
in scenarios where external fluid flow velocities become significant, it’s imperative to enhance these models to account for the 
influence of ambient fluid dynamics on the liquid-solid phase transitions. Beckermann et al. pioneered this extension, integrating 
the impact of external fluid dynamics into the modeling of phase transitions between liquid and solid states [2,25], in which, a 
key innovation is the use of a specific “weight” function, that realizes the restriction of the effects of temperature convection, fluid 
momentum, and mass conservation strictly to the liquid phase, thus refining the model by eliminating the fluid dynamics within the 
solid phase and maintaining the Navier-Stokes equations’ validity in the liquid domain.

While Beckermann et al.’s flow-coupled phase-field dendritic model in [2,25] has received extensive attention, it’s imperative to 
acknowledge that the model, in its original form, does not comply with the energy law, a critical aspect for ensuring the physical 
validity of simulations. In response to this limitation, recent efforts have been undertaken to amend the model, aligning it with 
the energy dissipation principle, see the authors’ work in [4]. However, the development of numerical algorithms for both the 
original and amended versions of these flow-coupled dendritic models remains limited, and the bulk of existing numerical research 
[4,10,11,15,16,40] tends to concentrate more on exploring the outcomes achievable through fine-tuning the models’ parameters, 
rather than on the development of numerical techniques tailored to these models’ unique characteristics. This gap in developing 
numerical algorithms can be attributed to the models’ inherent complexity, which poses formidable challenges in meeting high 
standards like linearity, second-order temporal accuracy, decoupled structures, and unconditional energy stability. Fulfilling all these 
criteria gives rise to what we identify as “desired” schemes in this paper, highlighting the significant hurdles in crafting such algorithms 
for this particular flow-coupled phase-field dendrite solidification model.

So, what specifically makes it so challenging to develop a “desired” type scheme for this model? The difficulty primarily stems 
from a significant number of coupled nonlinear terms, including the latent heat transfer term that binds the phase-field variable 
with the temperature, the weight function combined with many complex coupling terms in the modified Navier-Stokes equations, 
as well as the advective term in the heat equation. To date, there are only two numerical schemes with energy stability for this 
model, both of which were developed in the authors’ prior work [4,39], one features a coupled framework, while the other employs a 
decoupled approach. Moreover, both schemes in [4,39] are only first-order accurate in time and require solving variable-coefficient 
systems, which poses a drawback on computational efficiency and accuracy. Hence, devising a scheme that encompasses all the 
desired features—second-order temporal accuracy, a linear and fully decoupled structure, along with unconditional energy stability 
during time marching—stands as a significant challenge that remains unresolved.

In this article, we aim to bridge the gap between a well-established model and its less-developed numerical methods by devising a 
novel scheme that encapsulates the “desired” characteristics for effectively solving the phase-field dendritic solidification model when 
it is coupled with the flow field. This scheme not only achieves second-order temporal accuracy and unconditional energy stability but 
also facilitates decoupled computations, which allows for the independent computation of every unknown variable at every time step, 
significantly boosting computational efficiency. The approach to constructing the numerical scheme integrates a variety of proven 
effective techniques. The finite element method is utilized for spatial discretization. The explicit-Scalar Auxiliary Variable (SAV) 
[5,17,18,34] method is developed for time discretization, which, when combined with the Zero-Energy-Contribution (ZEC) approach 
[29–32] alongside the projection-type method, enables us to achieve the complete decoupling. The core of our developed methodology 
involves introducing several nonlocal auxiliary variables and formulating their respective ordinary differential equations (ODEs) to 
transform the system into an equivalent but more “algorithm-friendly” version. By applying a specific linear splitting technique 
through the nonlocal variables, we can break down the discrete equations into several linear and independent elliptic sub-equations 
at each time step, leading to an effective and efficient computational strategy. According to the author’s awareness, no existing 
schemes have been able to encompass all these desired properties within a single scheme.

The structure of the remainder of this paper is as follows: in Section 2, we introduce the melt-convective, flow-coupled dendritic 
solidification phase-field model, including the derivation of its energy law. We develop the numerical scheme in its fully discrete 
version using the finite element method in Section 3. We also show in detail how to implement the scheme in a fully decoupled 
manner and rigorously establish its solvability and unconditional energy stability. In Section 4, we apply the proposed scheme to 
simulate the 2D and 3D flow-driven dendritic crystal growth. Some concluding remarks are provided in Section 5.

2. The governing system

The phase-field model for dendritic solidification, which integrates flow-coupled melt convection, was first introduced in [2,25] 
and subsequently modified in the authors’ previous studies [4,39] to ensure compliance with the law of energy dissipation. Given the 
close similarity between the two versions, we will primarily discuss the modified model, providing details of the original formulation 
in the Remark 2.1.

We consider a domain Ω∈ℝ
ý with ý = 2,3 characterized as smooth, open, bounded, and connected. The domain is composed of 

two distinct phases, solid and liquid, differentiated by the so-called phase-field function ÿ(ý, ý) ∈ℝ,ý ∈Ω, which is defined as:
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ÿ(ý, ý) =

{
1 solid,

−1 liquid,
(2.1)

which helps identify each phase. To address the discontinuity in ÿ, it is assumed that there is a thin, smooth transition region at the 
interface, characterized by a width on the order of ÿ(ÿ). Moreover, we define another scalar function ÿ (ý, ý),ý ∈ Ω to denote the 
temperature field across the domain, which is expressed in the dimensionless form.

Hence, the slightly-refined model for flow-coupled anisotropic phase-field dendritic solidification, which adheres to the modified 
energy law, as developed in [4,39] (with the original formulation presented in [2,25]), is described as follows.

1 − ÿ

2 

(
1 − ÿ

2 
ÿ

)

ý

+
1 − ÿ

2 
(ÿ ⋅∇)ÿ− ÿ∇ ⋅ (

1 − ÿ

2 
∇ÿ) +

1 − ÿ

2 
∇ÿ = −ÿÿÿ(ÿ)ÿ, (2.2)

∇ ⋅ (
1 −ÿ

2 
ÿ) = 0, (2.3)

ÿÿý =∇ ⋅ (ÿ2(∇ÿ)∇ÿ+ ÿ(∇ÿ)|∇ÿ|2ÿ(ÿ)) − 1 
ÿ2
ÿ (ÿ) −

ÿ

ÿ
ý(ÿ)ÿ , (2.4)

ÿý + (
1 −ÿ

2 
)ÿ ⋅∇ÿ =ÿΔÿ +ÿý(ÿ)ÿý. (2.5)

In the above context, ÿ represents the average fluid velocity field, ÿ denotes the pressure, ÿ indicates the kinematic viscosity, ÿ
defines the scaled characteristic interfacial width, ÿ(ÿ) = (1−ÿ2)(1 +ÿ), ÿ represents the diffusion rate of the temperature, ÿ and ÿ

are associated with the “latent heat” (cf. [14]), the function ÿ (ÿ) = ý ′(ÿ) with ý (ÿ) = (ÿ2−1)2

4 , describes a double-well type potential, 
ÿ(∇ÿ) is the anisotropic coefficient, ÿ represents a positive mobility parameter and is set to be a constant (cf. [13,26]), ý(ÿ) =
(1 − ÿ2)2 specifies that the transfer of latent heat is confined to the liquid-solid interface (cf. [12]), and the term ÿ(ÿ) corresponds 
to the variational derivative of ÿ(∇ÿ). The last term −ÿÿÿ(ÿ)ÿ, within the momentum equation (2.2) contributes additional viscous 
dissipative stress, acting as a dispersed momentum sink in the diffuse interface region (cf. [2,25]). Notably, this term is absent in the 
homogeneous solid and liquid regions, exclusively affecting the interface between these two phases.

Remark 2.1. In the original model developed by Beckermann et al. in [2], the momentum equation is given as
(
1 − ÿ

2 
ÿ

)

ý

+
1 − ÿ

2 
(ÿ ⋅∇)ÿ− ÿΔ(

1 − ÿ

2 
ÿ) +

1 − ÿ

2 
∇ÿ = −ÿÿÿ(ÿ)ÿ. (2.6)

However, the formulation (2.6) does not satisfy the energy dissipation law, a fact that becomes evident when performing an ÿ2-inner 
product of (2.6) with the velocity field ÿ. Thus, in our previous work in [4,39], we introduced a minor yet crucial modification to 
the momentum equation, see (2.2). This amendment ensures compliance with energy dissipation laws and remarkably replicates the 
dendritic morphologies observed in Beckermann’s original model, see the details in [4,39].

Generally, the definition of ÿ(∇ÿ) reads as

ÿ(∇ÿ) = 1 + ÿ4cos(ÿΘ), (2.7)

where ÿ represents the count of anisotropy folds, 0 f ÿ4 f 1 is a parameter indicating the magnitude of anisotropy, and Θ = arctan(
ÿÿ

ÿý
). 

We also have ÿ(∇ÿ) g 1 − ÿ4.
When ÿ = 4 (four-fold anisotropy), the following format of ÿ(∇ÿ) is also frequently adopted:

⎧⎪⎪«⎪⎪¬

ÿ(∇ÿ) = (1 − 3ÿ4)
(
1 +

4ÿ4
1 − 3ÿ4

ÿ4ý + ÿ
4
ÿ

|∇ÿ|4
)
for 2D case;

ÿ(∇ÿ) = (1 − 3ÿ4)
(
1 +

4ÿ4
1 − 3ÿ4

ÿ4ý + ÿ
4
ÿ +ÿ

4
ÿ

|∇ÿ|4
)
for 3D case.

(2.8)

For ÿ = 4, by taking the variational derivative of ÿ(∇ÿ), we derive ÿ(ÿ) as

⎧⎪⎪«⎪⎪¬

ÿ(ÿ) =
ÿÿ(∇ÿ)

ÿÿ 
= 4ÿ4
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|∇ÿ|6
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4
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2
ýÿ

2
ÿ − ÿ

4
ý)
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ÿ(ÿ) =
ÿÿ(∇ÿ)

ÿÿ 
= 4ÿ4
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|∇ÿ|6
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2
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2
ÿ + ÿ

2
ýÿ

2
ÿ − ÿ

4
ÿ − ÿ

4
ÿ),

ÿÿ(ÿ
2
ÿÿ

2
ÿ + ÿ

2
ýÿ

2
ÿ − ÿ

4
ý − ÿ

4
ÿ), ÿÿ(ÿ

2
ýÿ

2
ÿ +ÿ

2
ÿÿ

2
ÿ −ÿ

4
ý −ÿ

4
ÿ)
)
for 3D case.

(2.9)

Without losing generality, the Dirichlet-type boundary conditions are used for ÿ, and no-flux boundary conditions are used for ÿ
and ÿ , specified as follows:

ÿ|ÿΩ = ÿ, ÿÿÿ|ÿΩ = ÿÿÿ |ÿΩ = 0, (2.10)
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where ÿ is the normal vector pointing outward from the domain boundary. Periodic-type boundary conditions are commonly applied 
to all variables when simulating the model without incorporating the flow field, see [4,10,11,15,16,40]. Additionally, the initial 
conditions for the system (2.2)-(2.5) are specified as follows:

ÿ|(ý=0) = ÿ0, ÿ |(ý=0) = ÿ0, ÿ|(ý=0) = ÿ0, ÿ |(ý=0) = ÿ0. (2.11)

The system (2.2)-(2.5) represents a binary mixture where phase transitions occur between the liquid and solid phases. For the 
no-flow case (by setting ÿ = 0), the derivation of the PDE system (2.4)-(2.5) utilizes the variational formulation (VF) method, as ex-
tensively described in [12]. This VF method can be viewed as a hybrid variational approach. It incorporates Allen-Cahn dynamics—an 
ÿ2-gradient flow mechanism—to formulate the ÿ-equation from the system’s total free energy ý(ÿ, ÿ, ÿ ). Meanwhile, the tempera-
ture equation for ÿ employs the ÿ−1-gradient flow, often referred to as Cahn-Hilliard dynamics, which is applied to the enthalpy in 
the dimensionless form, denoted as ÿ −

ÿ̃ (ÿ)

2 , where ÿ̃
′(ÿ) = ý(ÿ). These derivations are extensively detailed in [12]. Meanwhile, the 

parameters used in (2.4)-(2.5) are essentially a re-scaling of those used in [12].
When incorporating the flow field ÿ, it becomes essential to restrict the fluid momentum equation to the liquid phase exclusively. 

The model (2.2)-(2.5) adopts a straightforward approach, a weight factor 1−ÿ
2 , which is used to enforce a limitation, ensuring that 

the momentum of the fluid is considered only in the liquid phase. Specifically, inside the solid phase with ÿ equal to 1, both the 
momentum equation (2.2) and the incompressibility condition (2.3) become nullified. Within the liquid phase with ÿ equal to −1, 
(2.2)-(2.3) reduce to the classical Navier-Stokes equations. This methodology was initially introduced in [2] and has since been widely 
adopted in phase-field modeling of complex systems, such as the binary mixture of liquid crystal and viscous fluid, see [22,36,37].

We now show that the model for dendritic growth, (2.2)-(2.5), admits the energy dissipative law, which is achieved by conducting 
a standard energy estimate process, described as follows. Before presenting the proof, we introduce several notations that will be 
consistently used in this article. The ÿ2-inner product of any two functions ÿ(ý) and ÿ(ý) over Ω is defined as (ÿ,ÿ) = ∫

Ω
ÿ(ý)ÿ(ý)ýý. 

Additionally, the ÿ2-norm of ÿ(ý) is given by ‖ÿ‖ = (ÿ,ÿ)
1
2 .

Lemma 2.1. The system (2.2)-(2.5) satisfies the following energy law:

ý

ýý
ý(ÿ, ÿ, ÿ ) = −ÿ‖ÿý‖2 − ÿÿÿÿ ‖∇ÿ ‖2 − ÿ( 1 − ÿ

2 
∇ÿ,∇ÿ) − ÿÿ(ÿ(ÿ)ÿ,ÿ), (2.12)

where

ý(ÿ, ÿ, ÿ ) = ∫
Ω 

(
1

2

||||
1 − ÿ

2 
ÿ
||||
2

+
1

2
|ÿ(∇ÿ)∇ÿ|2 + 1 

4ÿ2
ý (ÿ) +

ÿ 
2ÿÿ

|ÿ |2
)
ýý. (2.13)

Proof. First, by taking the ÿ2-inner product of (2.2) with ÿ, and using the divergence-free condition given in (2.3) and integration 
by parts, we get

ý

ýý ∫
Ω 

(
1

2

||||
1 − ÿ

2 
ÿ
||||
2)
ýý = −(

1 − ÿ

2 
(ÿ ⋅∇)ÿ,ÿ)

⏟ ÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿ⏟
I 

−ÿ(
1 − ÿ

2 
∇ÿ,∇ÿ) − ÿÿ(ÿ(ÿ)ÿ,ÿ).

(2.14)

Second, by performing the ÿ2-inner product on (2.4) with ÿý, and applying integration by parts, we derive

ÿ‖ÿý‖2 + ýýý ∫
Ω 

(
1

2
|ÿ(∇ÿ)∇ÿ|2 + 1 

4ÿ2
ý (ÿ)

)
ýý = −

ÿ

ÿ
(ý(ÿ)ÿ ,ÿý)

⏟ ÿÿÿÿÿÿĀ ÿÿÿÿÿÿ⏟
II 

. (2.15)

Third, by computing the ÿ2-inner product of (2.5) with ÿ 
ÿÿ
ÿ and using integration by parts, we derive

ý

ýý ∫
Ω 

ÿ 
2ÿÿ

|ÿ |2ýý+
ÿÿ

ÿÿ
‖∇ÿ ‖2 = ÿ

ÿ
(ý(ÿ)ÿý, ÿ )

⏟ ÿÿÿÿÿĀ ÿÿÿÿÿ⏟
III 

−
ÿ 
ÿÿ

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
IV 

. (2.16)

Combining the three obtained equalities (2.14)-(2.16), and noting that the term I vanishes due to the divergence-free condition 
(2.3) and the boundary condition 1−ÿ

2 ÿ ⋅ ÿ|ÿΩ = 0, terms II and III cancel each other out, and the term IV also vanishes by the same 
reasoning as term I, we arrive at (2.12). □

A few remarks are given as follows to clarify the details related to the energy law (2.12) within the model (2.2)-(2.5).

Remark 2.2. For a closed thermodynamical system, it’s established that energy dissipation must occur. However, the final two terms 
on the right side of (2.12) may be non-negative, which casts doubt on the certainty of energy dissipation. Thus, the energy law as 
presented in (2.12) holds “physical” merit primarily under ideal conditions where the variable ÿ consistently stays within the [−1,1]
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range, facilitating the diminution of total free energy. Yet, from a mathematical perspective, proving that the solution to this PDE 
system adheres to the maximum principle poses a significant challenge.

Similarly, designing a numerical scheme that guarantees the numerical solution for ÿ remains bounded within [−1,1], thereby 
adhering to the discrete maximum principle, presents an equally daunting challenge. Therefore, rather than employing advanced 
techniques to strictly control the range of ÿ in the numerical solution, the “clamping” method is utilized in the design of the discrete 
numerical scheme to address the issue of potential non-dissipative energy. This approach involves constraining ÿ within a slightly 
narrower range of [−1 + ÿ,1 − ÿ], with a small positive control parameter ÿ ≪ 1, as detailed in (3.35), effectively sidestepping the 
complexities associated with ensuring maximum bounds.

Remark 2.3. The system exhibits a notable characteristic termed the “zero-energy-contribution” property, as demonstrated in 
Lemma 2.1. It is found that the application of both the divergence-free condition and boundary condition results in the elimina-
tion of terms I and IV, while terms II and III are observed to counteract each other. This leads to the insight that, upon the execution 
of specific inner products, these terms do not affect the energy law, making it fitting to categorize them under the “zero-energy-
contribution” label.

The implementation of this characteristic in the design of algorithms for other coupled models is explored in the authors’ previous 
studies, cf. [31,33,35]. However, adapting this strategy to the dendritic model discussed in this paper encounters significant obstacles, 
particularly due to the unique nonlinear terms and their coupling mechanisms between variables. Therefore, despite the established 
methodology, the distinct complexities inherent to this specific model complicate the direct application of this approach.

3. Numerical scheme

Now, we are ready to design an efficient fully discrete scheme using the finite element method for solving the model of flow-
coupled, melt-convective dendritic solidification. We expect that the scheme can possess several “desired” attributes: unconditional 
energy stability, linearity, second-order temporal accuracy, and fully decoupled structure. Achieving all these favorable characteristics 
within a single algorithm is far from trivial, given the inherent complexities of the model. These complexities include various elements 
such as the nonlinear and/or coupled terms related to ÿ (ÿ), ÿ(∇ÿ), ý(ÿ), and 1−ÿ

2 , among others. Each of these factors contributes 
to the model’s overall complexity and represents significant challenges in the development of robust and effective computational 
methodologies.

To develop the “desired” scheme, we start by recasting the PDE system into a version that is more amenable to algorithmic 
implementation, yet remains equivalent to the original formulation.

3.1. Reformulated system

We reconfigure the PDE system (2.2)-(2.5) by integrating several nonlocal type auxiliary variables into the framework. It’s imper-
ative to emphasize that this adjusted PDE system maintains its equivalence to the original equations, serving as the cornerstone of 
our methodology.

To begin, we introduce a new auxiliary variable of the nonlocal type, denoted by ý (ý), aimed at converting the nonlinear portion 
of the energy potential into a quadratic form. The variable ý (ý) is defined in the following manner:

ý (ý) =

√√√√∫
Ω 

(
1

2
(ÿ2(∇ÿ) −ÿ1)|∇ÿ|2 + 1 

4ÿ2
(ý (ÿ) − 2ÿ2ÿ

2))ýý+ý, (3.1)

where ÿ1 and ÿ2 are two predetermined positive constants with 0 < ÿ1 < (1− ÿ4)
2. Since ý (ÿ) is a quartic polynomial with a leading 

term that is positive, it ensures that, upon the extraction of a quadratic component related to ÿ2 , this potential can consistently 
provide a lower bound. Furthermore, considering that ÿ2(∇ÿ) g (1 − ÿ4)

2, the radicand in (3.1) is guaranteed to be bounded from 
below. To enhance positivity further, we incorporate the constant ý into the radicand. Utilizing the auxiliary nonlocal variable ý (ý), 
and transforming the nonlinear segment of the energy potential to be ý2 , is known as the SAV method (cf. [20,24,28,38,39]).

Using the new variable ý , we reformulate (2.4) into an equivalent form:

⎧⎪⎪«⎪⎪¬

ÿÿý −ÿ1Δÿ+
ÿ2

ÿ2
ÿ = −ÿý −

ÿ

ÿ
ý(ÿ)ÿ ,

ýý =
1

2 ∫
Ω 

ÿÿýýý,

ý |(ý=0) =ý (ÿ0),

(3.2)

where

ÿ(ÿ) =
−∇ ⋅ ((ÿ2(∇ÿ) −ÿ1)∇ÿ+ ÿ(∇ÿ)|∇ÿ|2ÿ(ÿ)) + 1 

ÿ2
ÿ (ÿ) −

ÿ2
ÿ2
ÿ

√
∫
Ω
(
1

2
(ÿ2(∇ÿ) −ÿ1)|∇ÿ|2 + 1 

4ÿ2
(ý (ÿ) − 2ÿ2ÿ

2))ýý+ý

. (3.3)
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It is immediately apparent that there is an equivalence between (3.2) and (2.4). It is because integrating the second equation from 
(3.2) and considering the initial condition of ý |(ý=0) allows the complete restoration of the formulation in (2.4). This step highlights 
the inherent equivalence of the two expressions.

Next, we define another nonlocal auxiliary variable, ý(ý), and construct a particular ODE for its temporal evolution, which is 
expressed as follows:

⎧⎪«⎪¬

ýý =
ÿ

ÿ
(ý(ÿ)ÿ ,ÿý) −

ÿ

ÿ
(ý(ÿ)ÿý, ÿ ) + (ÿý,ÿý) − (ÿÿý,ý ) +

ÿ 
ÿÿ

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)
,

ý|(ý=0) = 1.

(3.4)

The distinct feature of the above ODE lies in the fact that every term on the right-hand side of (3.4) is composed of ÿ2-inner product 
terms, and their sum is exactly zero, which is confirmed by the proof in Lemma 2.1, namely, ýý = 0. Therefore, since ý|(ý=0) = 1, 
(3.4) directly leads to the solution ý(ý) = 1.

Third, we introduce the third auxiliary variable, ý(ý), also of the nonlocal type, and design a specific ODE for its time evolution, 
that is formulated as

⎧⎪«⎪¬

ýý =

(
1 − ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)
,

ý|(ý=0) = 1.

(3.5)

From the proof of Lemma 2.1, we can see that ýý = 0. Thus, using ý|(ý=0) = 1, the solution of the ODE system (3.5) is also trivial, 
namely, ý(ý) = 1.

For the model described by equations (2.4)-(2.5), we utilize (3.2) to replace (2.4). Furthermore, the nonlocal variables ý and ý, 
along with their respective ODEs, (3.4) and (3.5), are used to alter particular terms in the system. This comprehensive combination 
culminates in a revised system, detailed as follows:

1 − ÿ

2 

(
1 − ÿ

2 
ÿ

)

ý

+ý
1 − ÿ

2 
(ÿ ⋅∇)ÿ

⏟ ÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿ⏟
R−reform 

−ÿ∇ ⋅ (
1 − ÿ

2 
∇ÿ) +

1 − ÿ

2 
∇ÿ = −ÿÿÿ(ÿ)ÿ, (3.6)

∇ ⋅ (
1 −ÿ

2 
ÿ) = 0, (3.7)

ÿÿý −ÿ1Δÿ+
ÿ2

ÿ2
ÿ = −ýÿý

⏟ Ā ⏟
Q−reform

−
ÿ

ÿ
ýý(ÿ)ÿ

⏟ ÿÿĀ ÿÿ⏟
Q−reform

, (3.8)

ÿý +ý(
1 − ÿ

2 
)ÿ ⋅∇ÿ

⏟ ÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿ⏟
Q−reform

=ÿΔÿ +ÿýý(ÿ)ÿý
⏟ ÿÿÿĀ ÿÿÿ⏟
Q−reform

, (3.9)

ýý =
1

2
ý∫

Ω 

ÿÿý

⏟ ÿÿĀ ÿÿ⏟
Q−reform

ýý, (3.10)

ýý =
ÿ

ÿ
(ý(ÿ)ÿ ,ÿý) −

ÿ

ÿ
(ý(ÿ)ÿý, ÿ ) + (ÿý,ÿý) − (ÿÿý,ý ) +

ÿ 
ÿÿ

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)
, (3.11)

ýý =

(
1 −ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)
, (3.12)

with the boundary conditions specified in (2.10) and the following initial conditions:

ÿ|(ý=0) = ÿ0, ÿ |(ý=0) = ÿ0, ÿ|(ý=0) = ÿ0, ÿ |(ý=0) = ÿ0,
ý |(ý=0) =ý (ÿ0),ý|(ý=0) = 1,ý|(ý=0) = 1.

(3.13)

The modified system (3.6)-(3.12), incorporating three auxiliary nonlocal variables ý,ý,ý, retains its equivalence to the original 
model (2.2)-(2.5). The terms labeled “Q-reform” and “R-reform” essentially remain unchanged since ý = 1 and ý = 1. Consequently, 
these specific modifications involving ý,ý,ý to formulate an equivalent system serve as the foundational “algorithm-friendly” ver-
sion, crucial for the development of the desired scheme aimed in this study.

Indeed, it is also worth noting that reformulation is a strategy frequently utilized in the design of numerical algorithms, providing 
effective solutions to a variety of complex challenges. Examples include the modification of advective terms to enhance stability (cf. 
[1,8]), altering the divergence-free condition to circumvent solving the pressure Poisson equation (cf. [9,23]), and redefining energy 
potentials as a quadratic form in the context of IEQ/SAV methods (cf. [21,27,28]). The flexibility provided by the “reformulation” 

Journal of Computational Physics 524 (2025) 113737 

6 



J. Zhang, K. Pan and X. Yang 

approach is critical in developing the “desired” scheme to solve the highly coupled and nonlinear dendritic phase-field model in this 
article.

Given that the system (3.6)-(3.12) is equivalent to the original system, it is expected to adhere to the same energy law in Lemma 2.1. 
However, establishing the energy law for this “algorithm-friendly” version is primarily aimed at guiding the discrete scheme; thus, it 
remains essential to explicitly demonstrate how the energy law is preserved within the restructured system (3.6)-(3.12). This process 
is detailed as follows.

Lemma 3.1. The system, (3.6)-(3.12), upholds the following energy law:

ý

ýý
ý̂ýýý(ÿ, ÿ, ÿ ,ý,ý,ý) = − ÿ‖ÿý‖2 − ÿÿÿÿ ‖∇ÿ ‖2

− ÿ(
1 − ÿ

2 
∇ÿ,∇ÿ) − ÿÿ(ÿ(ÿ)ÿ,ÿ),

(3.14)

where

ý̂ýýý(ÿ, ÿ, ÿ ,ý,ý,ý) =
1

2

‖‖‖‖
1 − ÿ

2 
ÿ
‖‖‖‖
2

+
ÿ1
2 
‖∇ÿ‖2 + ÿ2

2ÿ2
‖ÿ‖2

+
ÿ 

2ÿÿ
‖ÿ ‖2 + |ý |2 + |ý|2

2 
+

|ý|2
2 

−ý − 1.

(3.15)

Proof. By taking the ÿ2-inner product of (3.6) with ÿ, and using integration by parts and (3.7), we derive

1

2

ý

ýý

‖‖‖‖
1 −ÿ

2 
ÿ
‖‖‖‖
2

+ý

(
1 − ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
I1

+ÿ(
1 − ÿ

2 
∇ÿ,∇ÿ) = −ÿÿ(ÿ(ÿ)ÿ,ÿ).

(3.16)

By taking the ÿ2-inner product of (3.8) with ÿý and using integration by parts, we get

ÿ‖ÿý‖2 + ýýý
(
ÿ1

2 
‖∇ÿ‖2 + ÿ2

2ÿ2
‖ÿ‖2

)
= −ýý (ÿ,ÿý)
⏟ ÿÿÿÿÿĀ ÿÿÿÿÿ⏟

II1

−
ÿ

ÿ
ý(ý(ÿ)ÿ ,ÿý)

⏟ ÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿ⏟
III1

. (3.17)

By taking the ÿ2-inner product of (3.9) with ÿ 
ÿÿ
ÿ and using integration by parts, we obtain

ÿ 
2ÿÿ

ý

ýý
‖ÿ ‖2 + ÿ 

ÿÿ
ý

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿ⏟
IV1

= −
ÿÿ

ÿÿ
‖∇ÿ ‖2 + ÿ

ÿ
ý(ý(ÿ)ÿý, ÿ )

⏟ ÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿ⏟
V1

. (3.18)

By multiplying (3.10) with 2ý , we get

ý

ýý
|ý |2 =ýý (ÿ,ÿý)

⏟ ÿÿÿĀ ÿÿÿ⏟
VI1

. (3.19)

By multiplying (3.11) with ý, we get

ý

ýý
(
|ý|2
2 

) =
ÿ

ÿ
ý(ý(ÿ)ÿ ,ÿý)

⏟ ÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿ⏟
III2

−
ÿ

ÿ
ý(ý(ÿ)ÿý, ÿ )

⏟ ÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿ⏟
V2

+ýý (ÿ,ÿý)
⏟ ÿÿÿĀ ÿÿÿ⏟

II2

−ýý (ÿ,ÿý)
⏟ ÿÿÿÿÿĀ ÿÿÿÿÿ⏟

VI2

+
ÿ 
ÿÿ
ý

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
IV2

.

(3.20)

By multiplying (3.12) with ý, we get

ý

ýý
(
|ý|2
2 

) =ý

(
1 − ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
I2

.
(3.21)

By combining (3.16)-(3.21) and recognizing that terms grouped under the same Roman numeral labels, such as I1 and I2, cancel 
each other, we derive the energy dissipation law (3.14). □
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Remark 3.1. The difference between Lemma 2.1 and Lemma 3.1 in deriving the energy law emphasizes the rationale for the specific 
modification from the original system, (2.2)-(2.5), to its new equivalent version, (3.6)-(3.12). This modification is primarily centered 
around the different methods of cancelling the nonlinear terms. Using the latent heat coupling term ý(ÿ)ÿ from the original equation 
(2.4) as an illustrative example, it is significant to note that during the derivation of Lemma 2.1, term ýý from (2.15) is counteracted 
by term ýýý from (2.16). This relationship necessitates the careful discretization of ý(ÿ)ÿ and ý(ÿ)ÿý to ensure that these terms 
effectively negate each other, often resulting in the development of coupled-type numerical algorithms.

However, shown in Lemma 3.1, the process of deriving the energy law for the modified system (3.6)-(3.12) employs a distinctly 
different approach to cancellation. The terms III1 in (3.17) and V1 in (3.18) are not required to nullify each other. Instead, term III2
in (3.20) effectively cancels out III1, and similarly, term V2 in (3.20) negates V1. This variation allows for different discretization 
methods to be applied to ýý(ÿ)ÿ and ýý(ÿ)ÿý when developing numerical schemes, facilitating the creation of a fully decoupled 
type scheme.

3.2. Numerical scheme

In this subsection, we design a fully discrete finite element scheme for solving the modified model (3.6)-(3.12), which is the 
equivalent system of the original model (2.2)-(2.5). The scheme is expected to be the “desired” type, that is, linear, fully decoupled, 
unconditionally energy stable, and second-order accurate in time. We denote ÿý > 0 as a time step size and ýÿ = ÿÿý for 0 f ÿ fý
with ÿ =ýÿý. Let ÿÿ be the numerical approximation to the function ÿ(⋅, ý)|ý=ýÿ .

Some finite dimensional discrete subspaces are introduced as follows. Assuming that the polygonal/polyhedral domain Ω is dis-
cretized by a conforming and shape regular triangulation/tetrahedron mesh ℎ that is composed by open disjoint elements ÿ such 
that Ω̄ =

⋃
ÿ∈ℎ ÿ̄ . We use ý to denote the space of polynomials of total degree at most ý and define the following finite element 

spaces:

ýℎ =
{
ÿ ∈ ÿ0(Ω) ∶ÿ|ÿ ∈ ý1 (ÿ),∀ÿ ∈ ℎ

}
,

ý ℎ =
{
ÿ ∈ ÿ0(Ω)ý ∶ ÿ|ÿ ∈ ý2 (ÿ)ý ,∀ÿ ∈ ℎ

}
∩ÿ1

0
(Ω)ý ,

ÿℎ =
{
ÿ ∈ ÿ0(Ω) ∶ ÿ|ÿ ∈ ý2−1(ÿ),∀ÿ ∈ ℎ

}
∩ÿ2

0
(Ω),

(3.22)

where ÿ1
0
(Ω) = {ÿ ∈ÿ1(Ω) ∶ ÿ|ÿΩ = 0} and ÿ2

0
(Ω) = {ÿ ∈ÿ2(Ω) ∶ ∫

Ω
ÿýý = 0}. Hence,

ýℎ ⊂ÿ
1(Ω),ý ℎ ⊂ÿ

1
0
(Ω)ý ,ÿℎ ⊂ ÿ

2
0
(Ω). (3.23)

Besides, we assume the pair of spaces (ý ℎ,ÿℎ) satisfy the inf-sup condition [7]:

ÿ‖ÿ‖ f sup 
ÿ∈ý ℎ

(∇ ⋅ ÿ, ÿ)

‖∇ÿ‖ , ∀ÿ ∈ÿℎ,

where the constant ÿ only depends on Ω. A well known inf-sup stable pair (ý ℎ,ÿℎ) is the Taylor-Hood element [7].
The semi-discrete formulations of the system (3.6)-(3.12) in the weak form read as: find (ÿ,ÿ ,ÿ, ÿ ) ∈ ýℎ × ýℎ × ý ℎ × ÿℎ,ý ∈

ℝ,ý ∈ℝ,ý ∈ℝ, such that((
1 − ÿ

2 
ÿ

)

ý

,
1 − ÿ

2 
ÿ

)
+ý

(
1 −ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)
+ ÿ(

1 − ÿ

2 
∇ÿ,∇ÿ) (3.24)

+(
1 −ÿ

2 
∇ÿ ,ÿ) = −ÿÿ(ÿ(ÿ)ÿ,ÿ),

(
∇ ⋅ (

1 −ÿ

2 
ÿ), ÿ

)
= 0, (3.25)

ÿ(ÿý,Φ) +ÿ1(∇ÿ,∇Φ) +
ÿ2

ÿ2
(ÿ,Φ) = −ýý (ÿ,Φ) −

ÿ

ÿ
ý(ý(ÿ)ÿ ,Φ), (3.26)

(ÿý,Θ) +ý

(
(
1 − ÿ

2 
)ÿ ⋅∇ÿ ,Θ

)
= −ÿ(∇ÿ ,∇Θ) +ÿý(ý(ÿ)ÿý,Θ), (3.27)

ýý =
1

2
ý(ÿ,ÿý), (3.28)

ýý =
ÿ

ÿ
(ý(ÿ)ÿ ,ÿý) −

ÿ

ÿ
(ý(ÿ)ÿý, ÿ ) + (ÿý,ÿý) − (ÿÿý,ý ) +

ÿ 
ÿÿ

(
1 − ÿ

2 
ÿ ⋅∇ÿ ,ÿ

)
, (3.29)

ýý =

(
1 −ÿ

2 
(ÿ ⋅∇)ÿ,ÿ

)
, (3.30)

for (Φ,Θ,ÿ, ÿ) ∈ ýℎ × ýℎ × ý ℎ ×ÿℎ.
We now construct the fully discrete scheme as follows. Given that the values of ÿÿ

ℎ
, ÿ ÿ
ℎ
, (ÿℎÿℎ)

ÿ, ÿ ÿ
ℎ
, ýÿ, ýÿ, ýÿ and 

ÿÿ−1
ℎ
, ÿ ÿ−1
ℎ
, (ÿℎÿℎ)

ÿ−1, ÿ ÿ−1
ℎ

, ýÿ−1, ýÿ−1, ýÿ−1 are known, we update ÿÿ+1
ℎ

, ÿ ÿ+1
ℎ

, ÿ̃ÿ+1
ℎ

, (ÿℎÿℎ)
ÿ+1, ÿ ÿ+1

ℎ
, ýÿ+1, ýÿ+1, ýÿ+1, through 

the following three-step process: 
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step 1: find ÿÿ+1
ℎ

∈ ýℎ, ÿ
ÿ+1
ℎ

∈ ýℎ, ý
ÿ+1 ∈ℝ, ýÿ+1 ∈ℝ, such that

ÿ

(
ÿÿÿ+1
ℎ

− ÿÿÿ
ℎ
+ ýÿÿ−1

ℎ

2ÿý 
,Φℎ

)
+ÿ1(∇ÿ

ÿ+1
ℎ
,∇Φℎ) +

ÿ2

ÿ2
(ÿÿ+1
ℎ
,Φℎ) (3.31)

= −ýÿ+1ý∗(ÿ∗,Φℎ) −
ÿ

ÿ
ýÿ+1(ý∗ÿ ∗

ℎ
,Φℎ),

(
ÿÿ ÿ+1
ℎ

− ÿÿ ÿ
ℎ
+ ýÿ ÿ−1

ℎ

2ÿý 
,Θℎ

)
+ýÿ+1(ÿ∗

ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
,Θℎ) (3.32)

= −ÿ(∇ÿ ÿ+1
ℎ
,∇Θℎ) +ÿý

ÿ+1(ý∗ÿ∗ý ,Θℎ),

ÿýÿ+1 − ÿýÿ + ýýÿ−1

2ÿý 
=

1

2
ýÿ+1(ÿ∗, ÿ∗ý ), (3.33)

ÿýÿ+1 − ÿýÿ + ýýÿ−1

2ÿý 
=
ÿ

ÿ
(ý∗ÿ ∗,

ÿÿÿ+1
ℎ

− ÿÿÿ
ℎ
+ ýÿÿ−1

ℎ

2ÿý 
) −
ÿ

ÿ
(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ

) (3.34)

+ý∗(ÿ∗,
ÿÿÿ+1
ℎ

− ÿÿÿ
ℎ
+ ýÿÿ−1

ℎ

2ÿý 
) −ýÿ+1(ÿ∗, ÿ∗ý )

+
ÿ 
ÿÿ

(
ÿ∗
ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ

)
;

step 2: find ÿ̃ÿ+1
ℎ

∈ ý ℎ, ý
ÿ+1 ∈ℝ, such that

(
ÿÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

− ÿÿÿ
ℎ
ÿ
ÿ
ℎ
+ ýÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

2ÿý 
, ÿÿ+1
ℎ

ÿℎ

)
+ýÿ+1(ÿ∗

ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
,ÿℎ) (3.35)

+ÿ(ÿÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ
,∇ÿℎ) + (ÿÿ+1

ℎ
∇ÿ ÿ

ℎ
,ÿℎ) = −ÿÿ(ÿ(ÿ̂ÿ+1

ℎ
)ÿ̃ÿ+1,ÿℎ),

ÿýÿ+1 − ÿýÿ + ýýÿ−1

2ÿý 
=
(
ÿ∗
ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ

)
; (3.36)

step 3: find ÿ ÿ+1
ℎ

∈ÿℎ, such that

(∇(ÿ ÿ+1
ℎ

− ÿ ÿ
ℎ
),∇ÿℎ) = −

ÿ 
2ÿý

(∇ ⋅ (ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

), ÿℎ), (3.37)

ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

= ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−
2ÿý

ÿ 
(∇ÿ ÿ+1

ℎ
−∇ÿ ÿ

ℎ
), (3.38)

where

⎧⎪⎪⎪⎪⎪«⎪⎪⎪⎪⎪¬

ÿ = 3, ÿ = 4, ý = 1, ÿ̃ = 5, ÿ̃ = 8, ý̃ = 3,

ÿ∗
ℎ
= 2ÿÿ

ℎ
− ÿÿ−1

ℎ
, ÿ ∗
ℎ
= 2ÿ ÿ

ℎ
− ÿ ÿ−1

ℎ
,ÿ∗
ℎ
= 2ÿÿ

ℎ
− ÿ

ÿ−1
ℎ
,ý∗ = 2ýÿ −ýÿ−1,

ÿ∗ =ÿ(ÿ∗
ℎ
), ý∗ = ý(ÿ∗

ℎ
),

ÿ̂ℎ =

⎧⎪«⎪¬

1 − ÿ, ÿℎ ∈ (1 − ÿ,∞),

ÿℎ, ÿℎ ∈ [−1 + ÿ,1 − ÿ],

− 1 + ÿ, ÿℎ ∈ (−∞,−1 + ÿ), 0 < ÿ≪ 1,

ÿÿ
ℎ
=

1 − ÿ̂ÿ
ℎ

2 
, ÿ∗
ℎ
= 2ÿÿ

ℎ
−ÿÿ−1

ℎ
, ÿ∗ý =

ÿ̃ÿÿ
ℎ
− ÿ̃ÿÿ−1

ℎ
+ ý̃ÿÿ−2

ℎ

2ÿý 
.

(3.39)

Several remarks are given to explain the scheme (3.31)-(3.38).

Remark 3.2. In the design of the above discretization approach, we skillfully combine explicit and implicit treatments to deal with 
nonlinear terms. For those terms involving nonlocal variables ý and ý, the implicit treatment is used to discretize ý and ý, while 
explicit treatment is used to discretize others (such as ýÿ+1ý∗ÿ ∗

ℎ
in (3.31)). This hybrid discretization approach is instrumental in 

achieving a fully decoupled scheme.
Moreover, we employ the SAV method to convert the nonlinear portion of the free energy into a quadratic form (i.e., ý2), 

introducing a novel nonlocal variable ý to facilitate the linearization of nonlinear terms. But our approach diverges from the SAV 
approach by applying a purely explicit treatment to the resultant nonlinear term ÿý (see ÿ∗ý∗ in (3.31)), whereas the SAV method 
usually discretizes it as ÿ∗ýÿ+1. To underscore this distinction, we refer to our methodology as the explicit-SAV method.

Remark 3.3. We develop a projection-type approach to facilitate the decoupling of velocity field and pressure computations. The 
projection method has undergone extensive analysis for traditional Navier-Stokes equations that do not include a weight factor, see 
the detailed analysis in [3,19]. Following a comparable way, when solving the fluid momentum equation with the weight factor, the 
intermediate velocity ÿ̃ÿ+1

ℎ
is first obtained in step 2, and then it is projected onto the divergence-free space. It’s important to highlight 
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that the velocity form resulting from the projection step consistently encompasses this weight factor due to the specific form of the 
divergence-free condition.

Additionally, in the context of traditional Navier-Stokes equations, it has been established that the projection-type approach can 
achieve second-order temporal accuracy for the velocity field while being limited to first-order accuracy for the pressure. The dimin-
ished precision in pressure is associated with the imposition of homogeneous Neumann-type boundary conditions to the pressure, 
thoroughly discussed in [6]. The proposed scheme numerically exhibits the same behavior, as detailed by numerical tests in Section 4.

Remark 3.4. The final velocity field with the weight factor, ÿÿ+1ÿÿ+1
ℎ

, can be demonstrated to satisfy the divergence-free condition 
in a discrete manner. Namely, by taking the ÿ2-inner product of (3.37) with ∇ÿℎ, ÿℎ ∈ÿℎ, we get

(ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ
,∇ÿℎ) = (ÿÿ+1

ℎ
ÿ̃
ÿ+1
ℎ
,∇ÿℎ) −

2ÿý

ÿ 
(∇(ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
),∇ÿℎ). (3.40)

Hence, from (3.37), we derive

(ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ
,∇ÿℎ) = 0. (3.41)

Remark 3.5. In implementation, the initial values required for startup are typically derived using first-order schemes, such as the 
one developed in [4]. Alternatively, one can simply set ÿ = ÿ̃ = 2, ÿ = ÿ̃ = 2, ý = ý̃ = 0 in the developed scheme (3.31)-(3.38). A small 
constant ÿ is introduced to restrict the value of ÿ to the interval [−1 + ÿ,1 − ÿ], where 0 < ÿ≪ 1. Consequently, this ensures that the 
range of ÿý consistently falls within [ ÿ

2
,1 −

ÿ

2
], which in turn guarantees the solvability of (3.35), see the implementation of step 2 

in Section 3.4.

Remark 3.6. Due to the term ÿ∗, which comprises a significant number of explicitly treated nonlinear and second-order spatial 
terms, the stabilization terms associated with ÿ1 and ÿ2 in (3.31) are crucial in ensuring the ÿ

1-stability of ÿ. Explicit treatment of 
nonlinear terms is well-known for potentially causing instability. To counter this, using linear terms as stabilizers, which match the 
spatial order of the nonlinear terms, is a widely recognized approach, underlying the incorporation of the ÿ1 term. Similarly, the ÿ2
term is used to offset the explicitly handled term ÿ (ÿ) within ÿ∗. For an extensive review of linear stabilization techniques in the 
context of gradient flow models, especially those characterized by considerable stiffness, we refer to [24].

3.3. Energy stability

We now proceed to demonstrate that the scheme (3.31)-(3.38) possesses unconditional energy stability and adheres to the energy 
dissipative structure at the discrete level.

Theorem 3.1. The scheme (3.31)-(3.38) complies the discrete energy law, which reads as:

1 
ÿý
(ýÿ+1 −ýÿ) f −

ÿÿ

ÿÿ
‖∇ÿ ÿ+1

ℎ
‖2 − ÿ

‖‖‖‖‖‖
3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ

2ÿý 

‖‖‖‖‖‖

2

− ÿ‖
√
ÿÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ

‖2 − ÿÿ‖
√
ÿ(ÿ̂ÿ+1

ℎ
)ÿ̃ÿ+1
ℎ

‖2 f 0,

(3.42)

where

ýÿ+1 =
1

2
(
1

2
‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

‖2 + 1

2
‖2ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

−ÿÿ
ℎ
ÿ
ÿ
ℎ
‖2) + ÿý

3 
‖∇ÿ ÿ+1

ℎ
‖2

+
ÿ1
2 
(
1

2
‖∇ÿÿ+1

ℎ
‖2 + 1

2
‖2∇ÿÿ+1

ℎ
−∇ÿÿ

ℎ
‖2) + ÿ2

2ÿ2
(
1

2
‖ÿÿ+1
ℎ

‖2 + 1

2
‖2ÿÿ+1

ℎ
−ÿÿ

ℎ
‖2)

+
ÿ 

2ÿÿ
(
1

2
‖ÿ ÿ+1
ℎ

‖2 + 1

2
‖2ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
‖2) + (

1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2)

+
1

2
(
1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) + 1

2
(
1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) −ý − 1.

(3.43)

Proof. By setting ÿℎ = 2ÿýÿ̃ÿ+1
ℎ

in (3.35), we obtain

(3ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

) + 2ÿÿý(ÿÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ
,∇ÿ̃ÿ+1

ℎ
)

+ 2ÿý(ÿÿ+1
ℎ

∇ÿ ÿ
ℎ
, ÿ̃ÿ+1
ℎ

) = −2ÿýýÿ+1(ÿ∗(ÿ∗ ⋅∇)ÿ∗, ÿ̃ÿ+1
ℎ

)

− 2ÿýÿÿ(ÿ(ÿ̂ÿ+1
ℎ

)ÿ̃ÿ+1
ℎ
, ÿ̃ÿ+1
ℎ

).

(3.44)

We rewrite (3.38) as

ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

=
2ÿý

3 
∇(ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
). (3.45)

Taking the ÿ2-inner product of the above equality with ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

and using (3.41), we derive
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(ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ
, ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

) =
2ÿý

3 
(∇(ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
), ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

) = 0. (3.46)

Using (3.46), we derive

(3ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

)

= (3ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

+ (3ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

= (3ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

+ (3ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ
, ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

= (3ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

− 4ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ
, ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

+ 3(ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ
, ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

+ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

)

=
1

2

(
‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

‖2 − ‖ÿÿ
ℎ
ÿ
ÿ
ℎ
‖2 + ‖2ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

−ÿÿ
ℎ
ÿ
ÿ‖2 − ‖2ÿÿ

ℎ
ÿ
ÿ
ℎ
−ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2

+ ‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

− 2ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2
)
+ 3(‖ÿÿ+1

ℎ
ÿ̃
ÿ+1
ℎ

‖2 − ‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

‖2),

(3.47)

where the last equality is derived using the following identity

2ÿ(3ÿ− 4ÿ+ ý) = ÿ2 − ÿ2 + (2ÿ− ÿ)2 − (2ÿ− ý)2 + (ÿ− 2ÿ+ ý)2. (3.48)

We reformulate the projection step (3.38) as

3 
2ÿý
ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

+∇ÿ ÿ+1
ℎ

=
3 
2ÿý
ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

+∇ÿ ÿ
ℎ
. (3.49)

Taking the ÿ2-inner product of the above equation with itself, we derive

9 
4ÿý2

‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

‖2 + ‖∇ÿ ÿ+1
ℎ

‖2 = 9 
4ÿý2

‖ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2 + ‖∇ÿ ÿ
ℎ
‖2 + 3 

ÿý
(ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ
,∇ÿ ÿ

ℎ
). (3.50)

Hence, by multiplying 2ÿý2∕3 to the above equation, we derive

3

2
(‖ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

‖2 − ‖ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2) + 2ÿý2

3 
(‖∇ÿ ÿ+1

ℎ
‖2 − ‖∇ÿ ÿ

ℎ
‖2) = 2ÿý(ÿÿ+1

ℎ
ÿ̃
ÿ+1
ℎ
,∇ÿ ÿ

ℎ
). (3.51)

We rewrite (3.38) again as

ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

= −
2

3
ÿý∇ÿ ÿ+1

ℎ
+

2

3
ÿý∇ÿ ÿ

ℎ
. (3.52)

By taking the ÿ2-inner product of (3.52) with 3
2
ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

and using (3.41), we derive

3

2
(‖ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

‖2 − ‖ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2 + ‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2) = 0. (3.53)

We combine (3.44), (3.47), (3.51), and (3.53) to obtain

1

2
(‖ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

‖2 + ‖2ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ
ℎ
ÿ
ÿ
ℎ
‖2) − 1

2
(‖ÿÿ

ℎ
ÿ
ÿ
ℎ
‖2 − ‖2ÿÿ

ℎ
ÿ
ÿ
ℎ
−ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2)

+
1

2
‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

− 2ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2 + 3

2
‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2

+
2ÿý2

3 
(‖∇ÿ ÿ+1

ℎ
‖2 − ‖∇ÿ ÿ

ℎ
‖2)

= −2ÿýÿ‖
√
ÿÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ

‖2 − 2ÿýÿÿ‖
√
ÿ(ÿ̂ÿ+1

ℎ
)ÿ̃ÿ+1
ℎ

‖2
−2ÿýýÿ+1(ÿ∗

ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ

)
⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟

I1

.

(3.54)

By taking Φℎ = 3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ
in (3.31), we obtain

2ÿýÿ

‖‖‖‖‖‖
3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ÿÿ−1

ℎ

2ÿý 

‖‖‖‖‖‖

2

+ÿ1(
1

2
‖∇ÿÿ+1

ℎ
‖2 + 1

2
‖2∇ÿÿ+1

ℎ
−∇ÿÿ

ℎ
‖2) −ÿ1( 12‖∇ÿ

ÿ
ℎ
‖2 + 1

2
‖2∇ÿÿ

ℎ
−∇ÿÿ−1

ℎ
‖2)

+
ÿ2

ÿ2
(
1

2
‖ÿÿ+1
ℎ

‖2 + 1

2
‖2ÿÿ+1

ℎ
− ÿÿ

ℎ
‖2) − ÿ2

ÿ2
(
1

2
‖ÿÿ
ℎ
‖2 + 1

2
‖2ÿÿ

ℎ
− ÿÿ−1

ℎ
‖2) (3.55)
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+ÿ1
1

2
‖∇ÿÿ+1

ℎ
− 2∇ÿÿ

ℎ
+∇ÿÿ−1

ℎ
‖2 + ÿ2

ÿ2
1

2
‖ÿÿ+1
ℎ

− 2ÿÿ
ℎ
+ ÿÿ−1

ℎ
‖2

= −ýÿ+1ý∗(ÿ∗,3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ÿÿ−1

ℎ
)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
II1

−
ÿ

ÿ
ýÿ+1(ý∗ÿ ∗

ℎ
,3ÿÿ+1

ℎ
− 4ÿÿ

ℎ
+ÿÿ−1

ℎ
)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
III1

.

By setting Θℎ = 2ÿý
ÿ 
ÿÿ
ÿ ÿ+1
ℎ

in (3.32), and using (3.48), we obtain

ÿ 
ÿÿ

(
1

2
‖ÿ ÿ+1
ℎ

‖2+1

2
‖2ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
‖2
)
−
ÿ 
ÿÿ

(
1

2
‖ÿ ÿ
ℎ
‖2 + 1

2
‖2ÿ ÿ

ℎ
− ÿ ÿ−1

ℎ
‖2
)

+
ÿ 

2ÿÿ
‖ÿ ÿ+1
ℎ

− 2ÿ ÿ
ℎ
+ ÿ ÿ−1

ℎ
‖2 + 2ÿý

ÿ 
ÿÿ
ýÿ+1(ÿ∗

ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
IV1

=− 2
ÿÿ

ÿÿ
ÿý‖∇ÿ ÿ+1

ℎ
‖2 + 2ÿý

ÿ

ÿ
ýÿ+1(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
V1

.

(3.56)

By multiplying (3.33) with 4ÿýýÿ+1 and using (3.48), we obtain

(|ýÿ+1|2 + |2ýÿ+1 −ýÿ|2) − (|ýÿ|2 + |2ýÿ −ýÿ−1|2) + |ýÿ+1 − 2ýÿ +ýÿ−1|2
= 2ÿýýÿ+1ýÿ+1(ÿ∗, ÿ∗ý )
⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟

VI1

. (3.57)

By multiplying (3.34) with 2ÿýýÿ+1 and using (3.48), we get

(
1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) − (

1

2
|ýÿ|2 + 1

2
|2ýÿ −ýÿ−1|2) + 1

2
|ýÿ+1 − 2ýÿ +ýÿ−1|2

=
ÿ

ÿ
ýÿ+1(ý∗ÿ ∗

ℎ
,3ÿÿ+1

ℎ
− 4ÿÿ

ℎ
+ ÿÿ−1

ℎ
)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
III2

−2ÿý
ÿ

ÿ
ýÿ+1(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ

)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
V2

+ýÿ+1ý∗(ÿ∗,3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ
)

⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
II2

−2ÿýýÿ+1ýÿ+1(ÿ∗, ÿ∗ý )
⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟

VI2

+ 2ÿý
ÿ 
ÿÿ
ýÿ+1

(
ÿ∗
ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ

)
⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟

IV2

.

(3.58)

By multiplying (3.36) with 2ÿýýÿ+1, we get

(
1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) − (

1

2
|ýÿ|2 + 1

2
|2ýÿ −ýÿ−1|2) + 1

2
|ýÿ+1 − 2ýÿ +ýÿ−1|2

= 2ÿýýÿ+1
(
ÿ∗
ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ

)
⏟ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟

I2

. (3.59)

Finally, by combining (3.54), (3.55), (3.56), (3.57), (3.58) and (3.59), we obtain

1

2
(‖ÿÿ+1

ℎ
ÿ
ÿ+1
ℎ

‖2 + ‖2ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ
ℎ
ÿ
ÿ
ℎ
‖2) − 1

2
(‖ÿÿ

ℎ
ÿ
ÿ
ℎ
‖2 − ‖2ÿÿ

ℎ
ÿ
ÿ
ℎ
−ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2)

+
2ÿý2

3 
(‖∇ÿ ÿ+1

ℎ
‖2 − ‖∇ÿ ÿ

ℎ
‖2)

+ÿ1(
1

2
‖∇ÿÿ+1

ℎ
‖2 + 1

2
‖2∇ÿÿ+1

ℎ
−∇ÿÿ

ℎ
‖2) −ÿ1( 12‖∇ÿ

ÿ
ℎ
‖2 + 1

2
‖2∇ÿÿ

ℎ
−∇ÿÿ−1

ℎ
‖2)

+
ÿ2

ÿ2
(
1

2
‖ÿÿ+1
ℎ

‖2 + 1

2
‖2ÿÿ+1

ℎ
−ÿÿ

ℎ
‖2) − ÿ2

ÿ2
(
1

2
‖ÿÿ
ℎ
‖2 + 1

2
‖2ÿÿ

ℎ
− ÿÿ−1

ℎ
‖2)

+
ÿ 
ÿÿ

(
1

2
‖ÿ ÿ+1
ℎ

‖2 + 1

2
‖2ÿ ÿ+1

ℎ
− ÿ ÿ

ℎ
‖2
)
−
ÿ 
ÿÿ

(
1

2
‖ÿ ÿ
ℎ
‖2 + 1

2
‖2ÿ ÿ

ℎ
− ÿ ÿ−1

ℎ
‖2
)

(3.60)

+(|ýÿ+1|2 + |2ýÿ+1 −ýÿ|2) − (|ýÿ|2 + |2ýÿ −ýÿ−1|2)
+(

1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) − (

1

2
|ýÿ|2 + 1

2
|2ýÿ −ýÿ−1|2)

+(
1

2
|ýÿ+1|2 + 1

2
|2ýÿ+1 −ýÿ|2) − (

1

2
|ýÿ|2 + 1

2
|2ýÿ −ýÿ−1|2) +ÿ

Journal of Computational Physics 524 (2025) 113737 

12 



J. Zhang, K. Pan and X. Yang 

= −2ÿý
ÿÿ

ÿÿ
‖∇ÿ ÿ+1

ℎ
‖2 − 2ÿýÿ

‖‖‖‖‖‖
3ÿÿ+1
ℎ

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ

2ÿý 

‖‖‖‖‖‖

2

−2ÿýÿ‖
√
ÿÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ

‖2 − 2ÿýÿÿ‖
√
ÿ(ÿ̂ÿ+1

ℎ
)ÿ̃ÿ+1
ℎ

‖2,
where

ÿ =‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

− 2ÿÿ
ℎ
ÿ
ÿ
ℎ
+ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

‖2 + 3

2
‖ÿÿ+1
ℎ

ÿ
ÿ+1
ℎ

−ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ

‖2

+ ÿ1
1

2
‖∇ÿÿ+1

ℎ
− 2∇ÿÿ

ℎ
+∇ÿÿ−1

ℎ
‖2 + ÿ2

ÿ2
1

2
‖ÿÿ+1
ℎ

− 2ÿÿ
ℎ
+ÿÿ−1

ℎ
‖2

+
ÿ 

4ÿÿ
‖ÿ ÿ+1
ℎ

− 2ÿ ÿ
ℎ
+ ÿ ÿ−1

ℎ
‖2 + 1

2
|ýÿ+1 − 2ýÿ +ýÿ−1|2

+
1

2
|ýÿ+1 − 2ýÿ +ýÿ−1|2 + 1

2
|ýÿ+1 − 2ýÿ +ýÿ−1|2.

(3.61)

The desired result (3.42) is obtained after we divide (3.60) with 2ÿý and drop the term ÿ (since it is positive). □

Remark 3.7. It should be noted that 1 
ÿý
(ýÿ+1−ýÿ) serves as a second-order temporal approximation of the term ý

ýý
ý̂ýýý(ÿ, ÿ, ÿ ,ý,ý,ý), 

specifically at the discrete time ý = ýÿ+1. Since for any smooth variable ÿ with time, we always have the following heuristic approxi-
mations as

‖ÿÿ+1‖2 + ‖2ÿÿ+1 −ÿÿ‖2
2ÿý 

−
‖ÿÿ‖2 + ‖2ÿÿ −ÿÿ−1‖2

2ÿý 

≅
‖ÿÿ+2‖2 − ‖ÿÿ‖2

2ÿý 
+ÿ(ÿý2) ≅

ý

ýý
‖ÿ(ýÿ+1)‖2 +ÿ(ÿý2). (3.62)

3.4. Decoupled-type implementation

This subsection introduces a nonlocal splitting method, which simplifies the process of implementing the decoupling in the scheme 
(3.31)-(3.38).

Implementation of Step 1: we decompose ÿÿ+1
ℎ

, ÿ ÿ+1
ℎ

, and ýÿ+1 into a form consisting of linear combinations, utilizing the 
nonlocal variable ýÿ+1, namely,

⎧⎪«⎪¬

ÿÿ+1
ℎ

= ÿÿ+1
ℎ1

+ýÿ+1ÿÿ+1
ℎ2
,

ÿ ÿ+1
ℎ

= ÿ ÿ+1
ℎ1

+ýÿ+1ÿ ÿ+1
ℎ2
,

ýÿ+1 =ýÿ+1
1

+ýÿ+1ýÿ+1
2
.

(3.63)

We solve ÿÿ+1
ℎ1
, ÿÿ+1
ℎ2
, ÿ ÿ+1
ℎ1
, ÿ ÿ+1
ℎ2
,ýÿ+1

1
,ýÿ+1

2
as follows. After replacing ÿÿ+1

ℎ
, ÿ ÿ+1
ℎ

in (3.31)-(3.32) with (3.63), we decompose the 
obtained equations into the following four sub-equations according to the nonlocal variable ýÿ+1 :

⎧⎪⎪⎪⎪«⎪⎪⎪⎪¬

3ÿ

2ÿý
(ÿÿ+1
ℎ1
,Φℎ) +ÿ1(∇ÿ

ÿ+1
ℎ1
,∇Φℎ) +

ÿ2

ÿ2
(ÿÿ+1
ℎ1
,Φℎ) =

ÿ

2ÿý
((4ÿÿ

ℎ
− ÿÿ−1

ℎ
),Φℎ),

3ÿ

2ÿý
(ÿÿ+1
ℎ2
,Φℎ) +ÿ1(∇ÿ

ÿ+1
ℎ2
,Φℎ) +

ÿ2

ÿ2
(ÿÿ+1
ℎ2
,Φℎ) = (−ÿ∗ý∗ −

ÿ

ÿ
ý∗ÿ ∗,Φℎ),

3 
2ÿý

(ÿ ÿ+1
ℎ1
,Θℎ) +ÿ(∇ÿ

ÿ+1
ℎ1
,∇Θℎ) = (

1 
2ÿý

(4ÿ ÿ
ℎ
− ÿ ÿ−1

ℎ
),Θℎ),

3 
2ÿý

(ÿ ÿ+1
ℎ2
,Θℎ) +ÿ(∇ÿ

ÿ+1
ℎ2
,∇Θℎ) = (−ÿ∗

ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
+ÿý∗ÿ∗ý ,Θℎ).

(3.64)

Solving for ÿÿ+1
ℎ1
, ÿÿ+1
ℎ2
, ÿ ÿ+1
ℎ1
, ÿ ÿ+1
ℎ2

from (3.64) is straightforward, as these are merely second-order elliptic equations characterized 
by constant coefficients.

Similarly, using (3.63), we decompose the equation (3.33) according to ýÿ+1 to obtain the direct solution of ýÿ+1
1
,ýÿ+1

2
, which 

read as

ýÿ+1
1

=
1

3
(4ýÿ −ýÿ−1), ýÿ+1

2
=
ÿý

3 
(ÿ∗, ÿ∗ý ). (3.65)

We continue to solve ýÿ+1 from (3.34). Utilizing the linear combination forms for the variables ÿÿ+1
ℎ

, ÿ ÿ+1
ℎ

, ýÿ+1 in (3.63), we 
reformulate (3.34) into the subsequent form:

(
3 
2ÿý

− ÿ2)ý
ÿ+1 =

1 
2ÿý

(4ýÿ −ýÿ−1) + ÿ1, (3.66)
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where ÿÿ, ÿ = 1,2 are given as

⎧
⎪⎪⎪⎪⎪«⎪⎪⎪⎪⎪¬

ÿ1 =
ÿ

ÿ
(ý∗ÿ ∗

ℎ
,
3ÿÿ+1
ℎ1

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ

2ÿý 
) −
ÿ

ÿ
(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ1

),

+ý∗(ÿ∗,
3ÿÿ+1
ℎ1

− 4ÿÿ
ℎ
+ ÿÿ−1

ℎ

2ÿý 
) −ýÿ+1

1
(ÿ∗, ÿ∗ý ) +

ÿ 
ÿÿ

(ÿ∗
ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ1

),

ÿ2 =
ÿ

ÿ
(ý∗ÿ ∗

ℎ
,
3ÿÿ+1
ℎ2

2ÿý 
) −
ÿ

ÿ
(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ2

)

+ý∗(ÿ∗,
3ÿÿ+1
ℎ2

2ÿý 
) −ýÿ+1

2
(ÿ∗, ÿ∗ý ) +

ÿ 
ÿÿ

(ÿ∗
ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ2

).

(3.67)

It is very easy to solve (3.66) since all terms contained in ÿ1 and ÿ2 are already obtained previously.
One important issue is the solvability of (3.66), which can be illustrated by showing 3 

2ÿý
− ÿ2 ≠ 0 as follows.

We set Φℎ =
3 
2ÿý
ÿÿ+1
ℎ2

in the second equation of (3.64) to deduce

−(ÿ∗ý∗,
3ÿÿ+1
ℎ2

2ÿý 
) −
ÿ

ÿ
(ý∗ÿ ∗

ℎ
,
3ÿÿ+1
ℎ2

2ÿý 
) =

9ÿ

4ÿý2
‖ÿÿ+1
ℎ2

‖2 + 3ÿ1
2ÿý 

‖∇ÿÿ+1
ℎ2

‖2

+
3ÿ2

ÿ22ÿý
‖ÿÿ+1
ℎ2

‖2 g 0.

(3.68)

By multiplying the second equation in (3.65) with 3 
ÿý
ýÿ+1
2

, we get

ýÿ+1
2

(ÿ∗, ÿ∗ý ) =
3 
ÿý
|ýÿ+1

2
|2 g 0. (3.69)

By setting Φℎ =
ÿ 
ÿÿ
ÿ ÿ+1
ℎ2

in the fourth equation of (3.64), we get

ÿ

ÿ
(ý∗ÿ∗ý , ÿ

ÿ+1
ℎ2

) −
ÿ 
ÿÿ

(ÿ∗
ℎ
ÿ
∗
ℎ
⋅∇ÿ ∗

ℎ
, ÿ ÿ+1
ℎ2

) =
3ÿ 

2ÿÿÿý
‖ÿ ÿ+1
ℎ2

‖2 + ÿÿ
ÿÿ

‖∇ÿ ÿ+1
ℎ2

‖2 g 0. (3.70)

The combination of (3.68), (3.69) and (3.70) gives the fact of −ÿ2 g 0. Thus (3.66) is always solvable. After ýÿ+1 is obtained, we 
proceed to update ÿÿ+1

ℎ
, ÿ ÿ+1
ℎ
,ýÿ+1 according to (3.63).

Implementation of Step 2: we split ÿ̃ÿ+1 into a linear combination form, using the nonlocal variable ýÿ+1 , which is expressed 
as follows:

ÿ̃
ÿ+1
ℎ

= ÿ̃
ÿ+1
ℎ1

+ýÿ+1ÿ̃ÿ+1
ℎ2
. (3.71)

We solve ÿ̃ÿ+1
ℎ1

and ÿ̃ÿ+1
ℎ2

as follows. By substituting ÿ̃ÿ+1
ℎ

with (3.71) in (3.35), and subsequently dividing the resulting equation 
based on the nonlocal variable ýÿ+1, we derive the following two sub-equations:

⎧⎪⎪⎪«⎪⎪⎪¬

3 
2ÿý

(ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ1
, ÿÿ+1
ℎ

ÿℎ) + ÿ(ÿ
ÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ1
,∇ÿℎ) + ÿÿ(ÿ(ÿ̂

ÿ+1
ℎ

)ÿ̃ÿ+1
ℎ1
,ÿℎ)

= (ÿÿ+1
ℎ

4ÿÿ
ℎ
ÿ
ÿ
ℎ
−ÿÿ−1

ℎ
ÿ
ÿ−1
ℎ

2ÿý 
−ÿÿ+1

ℎ
∇ÿ ÿ

ℎ
,ÿℎ),

3 
2ÿý

(ÿÿ+1
ℎ

ÿ̃
ÿ+1
ℎ2
, ÿÿ+1
ℎ

ÿℎ) + ÿ(ÿ
ÿ+1
ℎ

∇ÿ̃ÿ+1
ℎ2
,∇ÿℎ) + ÿÿ(ÿ(ÿ̂

ÿ+1
ℎ

)ÿ̃ÿ+1
ℎ2
,ÿℎ)

= (−ÿ∗
ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
,ÿℎ).

(3.72)

Note that all terms, such as ÿÿ+1
ℎ

, ÿ̂ÿ+1
ℎ

, and those on the right side of (3.72), are already obtained from step 1. Therefore, solving 
ÿ̃
ÿ+1
ℎ1

and ÿ̃ÿ+1
ℎ2

becomes straightforward, as it involves solving elliptic equations with variable coefficients. Meanwhile, the variable 
coefficients within the two equations of (3.72) are positive, a condition ensured by the clamped value ÿ̂ÿ+1

ℎ
being within [−1+ÿ,1−ÿ]

and ÿÿ+1
ℎ

falling within [ ÿ 
2
,1 −

ÿ 
2
]. This positivity implies that the solvability of these equations is quite straightforward, facilitated 

by the application of the Lax-Milgram Theorem.
We continue to solve the nonlocal variable ýÿ+1 . By using the splitting form given in (3.71), we formulate (3.36) into the following 

form:

(
3 
2ÿý

− ÿ2)ý
ÿ+1 =

4ýÿ −ýÿ−1

2ÿý 
+ ÿ1, (3.73)

where

ÿ1 =
(
ÿ∗(ÿ∗

ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ1

)
, ÿ2 =

(
ÿ∗(ÿ∗

ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ2

)
. (3.74)
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We prove the solvability of (3.73) by showing 3 
2ÿý

− ÿ2 ≠ 0. By taking the ÿ2 inner product of ÿ̃ÿ+1
2

with the second equation of (3.72), 
we deduce

−(ÿ∗
ℎ
(ÿ∗
ℎ
⋅∇)ÿ∗

ℎ
, ÿ̃ÿ+1
ℎ2

) =
3 
2ÿý

‖ÿÿ+1
ℎ

ÿ̃
ÿ+1
2ℎ

‖2 + ÿ‖
√
ÿÿ+1
ℎ

∇ÿ̃ÿ+1
2ℎ

‖2

+ ÿÿ‖
√
ÿ(ÿ̂ÿ+1

ℎ
)ÿ̃ÿ+1
ℎ2

‖2 g 0,

(3.75)

which implies 3 
2ÿý

− ÿ2 > 0. Thus (3.73) is always solvable. Once ýÿ+1 is solved, we update ÿ̃ÿ+1
ℎ

from (3.71).
The implementation of step 3 is straightforward, as it involves solving a pressure Poisson equation with constant coefficients, 

which can be addressed directly.
In summary, the three steps of the developed algorithm include: the first step, which involves solving four distinct elliptic equa-

tions with constant coefficients; the second step, which involves two additional independent elliptic equations; and the third step, 
which involves a further Poisson equation, also with constant coefficients. The entire implementation process demonstrates that the 
computation of the developed scheme is linear and fully decoupled.

Remark 3.8. To the best of the authors’ knowledge, the only available numerical scheme with decoupling characteristics is the first-
order (in time) scheme presented in [39]. The decoupling technique used in [39] is based on the first-order linear stabilizer. To make 
the scheme clearer, we focus exclusively on the decoupling technique used to separate the computations of ÿ and ÿ , omitting other 
terms deemed irrelevant to ensure the decoupling approach remains straightforward. The semi-discrete scheme described in [39] is 
as follows:

⎧⎪⎪⎪«⎪⎪⎪¬

ÿÿ+1 − ÿÿ

ÿý 
+⋯⋯ = −

ÿ

ÿ
ýÿ(ÿ ÿ + ÿÿýýÿ

ÿÿ+1 − ÿÿ

ÿý 
⏟ ÿÿÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿÿÿ⏟

f irst−order stabilization term

),

ÿ ÿ+1 − ÿ ÿ

ÿý 
+⋯⋯ = ÿýÿ

ÿÿ+1 − ÿÿ

ÿý 
,

⏟ ÿÿÿÿÿÿÿĀ ÿÿÿÿÿÿÿ⏟
explicit since ÿn+1 is obtained above

(3.76)

In the scheme described, a stabilization term of first-order is incorporated into the equation for ÿÿ+1 , which serves to improve 
numerical stability and support decoupling. It is shown in [39], that the scheme (3.76) achieves unconditional energy stability. 
However, the stabilization term introduces variable coefficients of ÿÿ+1 at each time step, raising the computational complexity and 
cost. Furthermore, given the particular nature of the stabilization term, the scheme (3.76) is currently limited to a first-order version, 
and currently, no similar second-order versions exist, presenting considerable difficulties in algorithm development.

In contrast to the above scheme, our developed scheme (3.31)-(3.38) achieves a distinct configuration with second-order temporal 
accuracy and a completely decoupling structure. These advantages significantly elevate its practical performance, delivering enhanced 
efficiency and accuracy in computational applications.

4. Numerical simulations

In this section, we conduct numerical tests to verify the convergence rates of the proposed explicit-SAV scheme (3.31)-(3.38)
(denoted by ESAV for short). Examples of four-fold and six-fold dendritic growth are performed through extensive 2D and 3D numer-
ical simulations. We employ the Taylor-Hood element [7] for the pair of (ýℎ,ÿℎ), which meets the inf-sup condition. This approach 
utilizes the spaces specified in (3.22), where ý1 = 1 and ý2 = 2.

4.1. Accuracy test

We perform accuracy tests in 2D to verify the accuracy of the scheme ESAV. The computational domain is set as Ω = [0,2ÿ]2 with 
the boundary conditions specified in (2.10). We assume that initial solutions of ÿ,ÿ ,ÿ, ÿ read as follows:

ÿ0(ý, ÿ) = tanh(
1.5 −

√
(ý− ÿ)2 + (ÿ− ÿ)2

ÿ
),

ÿ0(ý, ÿ) = −0.55ÿ0(ý, ÿ),ÿ0(ý, ÿ) = ÿ, ÿ0(ý, ÿ) = 0.

(4.1)

The model parameters are set as
{
ÿ = 1, ÿ = 1, ÿ = 1, ÿ = 0.01,ÿ = 0.25, ÿ = 1e−6,

ÿ = 0.08,ÿ = 1,ý = 10, ÿ1 = 0.5, ÿ2 = 4.
(4.2)

We start by verifying the convergence order regarding temporal discretizations. To isolate the impact of temporal discretization 
on the error, we need to make the error introduced by spatial discretization small enough. Due to the absence of exact solutions, we 
employ the method of time step refinement to assess errors stemming from temporal discretization. In Fig. 4.1, with the fixed grid 
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Fig. 4.1. Accuracy tests for temporal discretization. The ÿ2-numerical errors of all variables at ý = 1 for (a) the isotropic case with ÿ4 = 0, and (b) the anisotropic case 
with ÿ4 = 0.25, computed using various ÿý. The initial conditions are specified in (4.1), and other model parameters are detailed in (4.2).

Fig. 4.2. (a) Accuracy tests for spatial discretization, where the numerical errors at ý = 1 in various norms for all variables for the anisotropic case ÿ4 = 0.25; and (b) 
accuracy comparison between the developed second-order ESAV scheme and the first-order decoupled scheme developed in [39] for the anisotropic case ÿ4 = 0.25. 
The initial conditions are specified in (4.1), and other model parameters are detailed in (4.2).

size of ℎ = 2ÿ

512
, we show the ÿ2-numerical errors for all variables at ý = 1 both for the isotropic case (ÿ4 = 0) and the anisotropic case 

(ÿ4 = 0.25). The convergence plots reveal that our ESAV scheme achieves a second-order convergence rate for the variables ÿ, ÿ , and 
ÿ, and a first-order convergence rate for the pressure ÿ .

We continue to assess the convergence order regarding spatial discretizations. Similar to the tests of temporal error, to isolate 
the impact of spatial discretization on the error, we need to adopt a sufficiently small time step, ÿý = 1e−5, to ensure the temporal 
discretization error remains negligible. Fig. 4.2 depicts the computed numerical errors for different mesh sizes ℎ, specifically in the 
anisotropic case with ÿ4 = 0.25. The results indicate that the velocity in the ÿ1 norm, along with the pressure, phase-field variable, 
and temperature in the ÿ2 norm, exhibit a second-order convergence rate for ℎ. The velocity in the ÿ2 norm shows a third-order 
convergence rate for ℎ. These obtained convergence rates align with the anticipated theoretical accuracy for (ÿ, ÿ ) using the ÿ2∕ÿ1
elements, and for ÿ,ÿ using the ÿ1 elements.

Using the same example, we illustrate the advantage of the second-order ESAV scheme developed in this article in terms of accuracy 
by comparing it with the first-order decoupled scheme developed in [39]. It can be observed that when the adopted time step size 
is relatively large, such as ÿý = 0.01, the accuracy difference between the first-order and second-order schemes is not significant, 
with the error generated by the second-order scheme being slightly smaller than that of the first-order scheme. As the time step size 
decreases, the error curve of the scheme in [39] follows a first-order convergence rate, whereas the proposed ESAV scheme achieves 
a second-order convergence rate. For instance, when the time step size is 1.25e−3, the error obtained using the scheme in [39] is 
9.6e−5, while the error achieved by the second-order ESAV scheme is only 3.9e−6, which is approximately only 4% of the former. 
This demonstrates the significant accuracy advantage of the second-order scheme over the first-order scheme in [39]. In addition 
to accuracy, computational efficiency is a key advantage of the proposed second-order ESAV scheme. While the scheme in [39] is 
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Fig. 4.3. (a) Energy evolution curves computed using various time step ÿý (snapshots of the profile ÿ at the initial moment and steady state are attached); (b) the 
original energy (2.13) and the modified energy (3.43) computed with ÿý = 0.01. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

decoupled, it requires solving a variable-coefficient equation for ÿ, which incurs a higher computational cost. In contrast, the current 
ESAV scheme only requires solving a constant-coefficient elliptic equation for ÿ, resulting in considerable computational savings. For 
this particular test, with ÿý = 0.005, our numerical test indicates that solving the equation for ÿ using the first-order scheme in [39] 
requires approximately five times more computational time compared to the current ESAV scheme for each time step.

Concerning the stability, we illustrate the temporal evolution of the total free energy, computed by adjusting the time step size, 
ÿý. The grid size is set as ℎ = 2ÿ

512
. The initial conditions and model parameters used are still specified in (4.1) and (4.2), respectively. 

We only focus on the anisotropic scenario characterized by ÿ4 = 0.25. Fig. 4.3(a) presents energy evolution curves obtained using the 
ESAV scheme, where different time step sizes are employed. The results clearly show that all energy curves demonstrate a consistent 
downward trend, verifying the scheme’s unconditional stability. We also attach the initial and steady-state profiles of ÿ; the final 
contour forms a rhombus. Fig. 4.3(b) demonstrates the evolution of the total free energy in both its original and modified discrete 
forms (given in (2.13) and (3.43)) computed with the time step ÿý = 0.01, respectively. The observed differences between the energy 
forms are small, underscoring the negligible discrepancies.

4.2. Anisotropic crystal growth under the flow field

This subsection focuses on simulating the impact of fluid flow on crystal growth. Inspired by Kobayashi’s influential study [14], 
which highlighted the significant effect of the latent heat parameter ÿ on dendrite morphology, we adopt a similar approach by 
adjusting the parameter ÿ . By introducing a flow field that moves from the top to the bottom boundary, we aim to investigate 
how fluid dynamics influence the final shape of the dendrites. We will compare the resulting dendrite shapes with those formed in 
scenarios without a flow field, to clearly illustrate the impact of fluid flow on crystal morphology.

4.2.1. 2D dendritic growth
We begin by implementing 2D simulations. The initial setup positions a tiny circular crystal at the domain’s center, with the flow 

direction established from the top to the bottom boundary. This configuration is specifically designed to systematically investigate 
the impact of flow field on the growth patterns of the crystal.

The domain is set as ý = (ý, ÿ) ∈ Ω = [0,ÿ]2, with the initial condition, ÿ0, consisting of a small circular region centered within 
the domain, that reads as

ÿ0(ý) = ÿ, ý0(ý) = 0,

ÿ0(ý) = tanh(
0.05 − |ý− ý0|

0.01 
), ÿ0(ý) =

{
0, ÿ0(ý) > 0;

− 0.55, otherwise,

(4.3)

with ý0 = (1,1). We set the model parameters as
{
ÿ = 2, ÿ = 355,ÿ = 2.25e−4, ÿ =ÿ−1, ÿ = 1.12e−2, ÿ = 1, ÿ = 1e−6,

ÿ = 0.01,ý = 5 × 104, ÿ4 = 0.05, ÿ1 = 0.9, ÿ2 = 4, ÿý = 0.01.
(4.4)

The boundary conditions of ÿ, ÿ , and ÿ= (ÿ, ÿ) are set as follows,

ÿÿÿ|ÿΩ = 0, ÿÿÿ |ÿΩ = 0, ÿ|ÿΩ = 0, ÿ|ý=0,ÿ = 0, ÿ|ÿ=0,ÿ = ÿ0. (4.5)
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Fig. 4.4. The small 2D crystal nucleus at the initial moment is positioned at the center of the computational domain. In-flow and out-flow conditions are shown at the 
boundary, with the direction of the flow field indicated by arrows for a better understanding.

We start with the four-fold heterogeneous growth, as specified in (2.8), using a spatial grid size of ℎ = 2 
512
. The initial profile of 

ÿ0 is depicted in Fig. 4.4, where arrows on the boundary illustrate the flow field direction for a better understanding.
In Fig. 4.5(a), we conduct the no-flow simulations by setting ÿ(ý, ý) = ÿ and varying the latent heat parameter ÿ . The dendritic 

patterns formed before the long branches reach the domain boundaries are shown, utilizing five different values of ÿ = 0.55, 0.6, 
0.65, 0.7, 0.8, arranged from left to right. With smaller ÿ values, the branches tend to be thicker. For instance, at ÿ = 0.5, the crystal’s 
final shape closely resembles a rhombus. As ÿ increases, the branches gradually become narrower and the tips sharper. Notably, at 
ÿ = 0.8, the crystal develops four very sharp and thin tips.

We further apply a flow field at the domain boundary, setting ÿ0 = −0.01 in (4.5). All other model parameters remain consistent 
with the no-flow simulations. The effects of the flow on crystal growth are depicted in Fig. 4.5(b), showcasing five different crystal 
patterns with varying latent heat parameters ÿ . This demonstrates that the crystal growth dynamics under flow conditions diverge 
markedly from the no-flow scenario. The rate of growth at the upstream tip significantly exceeds that observed at the downstream 
and horizontal tips. This increased growth rate can be attributed to the upstream tip’s direct exposure to the flow field, which reduces 
the thickness of the thermal boundary layer on this side due to enhanced convective heat transfer. Conversely, the growth rate of the 
downstream tip is the slowest among the tips due to the expansion of the thermal boundary layer caused by the shielding effect of 
the crystal itself. The two horizontal tips grow at a rate between that of the upper and lower tips and display a distinctive “tilting” 
shape, slightly upward. This is a direct consequence of the asymmetrical distribution of heat flux on the upper and lower sides of the 
horizontal arms, driven by the directional flow field. This phenomenon highlights the complex interplay of heat and mass transfer 
under the influence of an external flow, leading to anisotropic growth patterns in the crystal structure. It is worth noting that all these 
numerical results are consistent with findings from studies given in [2,25], highlighting their reliability.

In Fig. 4.5(c), for the case of ÿ = 0.8, we plot the velocity profiles ÿ and ý = 80. To enhance visibility, the flow field has been 
mapped onto a grid that is roughly ten times less dense than the computational grid. A small region framed in the first subfigure 
is enlarged in the second subfigure for a detailed view. Notably, the flow field is confined entirely to the liquid phase outside the 
dendrite, confirming that there is no flow within the dendrite itself. In Fig. 4.5(d), the profiles for temperature ÿ and pressure ÿ
are displayed, and it is evident that the contour of the temperature ÿ aligns cohesively with the dendrite interface depicted by the 
phase-field variable ÿ.

Next, we investigate the six-fold heterogeneous growth, i.e., ÿ = 6 in (2.7), and compare the no-flow and flow-coupled scenarios 
too. The computation region is defined as (ý, ÿ) ∈ Ω = [0,ÿ]2 with ÿ = 2ÿ. Initial conditions for ÿ0, ÿ0,ÿ0, ý0 and boundary conditions 
are consistent with the four-fold simulations, i.e., (4.3) with ý0 = (ÿ,ÿ) and (4.5). The parameters are the same as (4.4) except that 
ÿ is adjusted to ÿ = 380 and the spatial grid size ℎ is set as ℎ = 2ÿ

1024
. The dendritic patterns in the no-flow scenario are shown in 

Fig. 4.6(a) using five latent heat parameters: ÿ = 0.65,0.7,0.75,0.8,0.85. When ÿ is small, such as ÿ = 0.65, the resulting pattern 
closely resembles a standard hexagon. As ÿ increases (e.g., ÿ = 0.7 and ÿ = 0.75), the dendrites evolve into snowflake-like shapes 
with many fractal-shaped twigs. As ÿ further increases, there is a noticeable decrease in the formation of these small branches (e.g., 
ÿ = 0.8 and ÿ = 0.85).

We continue our simulations by applying a flow field (i.e., ÿ0 = −0.01 in (4.5)). Snapshots of the phase-field variable ÿ are 
presented in Fig. 4.6(b), demonstrating the significant impact of the flow field on the crystal’s morphology. This influence mirrors 
the effects observed in four-fold crystal growth under similar conditions, where the upstream tip exhibits the highest growth rate, 
while the lower tip grows the slowest. The middle four tips, exhibiting intermediate growth rates, also display a characteristic upward 
“tilting” shape. In Fig. 4.6 (c) and (d), we show the velocity field, the temperature ÿ , and pressure ÿ for the case of ÿ = 0.75 at 
ý = 195.

4.2.2. 3D six-fold dendritic growth
We explore the 3D crystallization of dendrites featuring six-fold anisotropy and examine how their structures are influenced by an 

external flow field. We also provide a comparison between scenarios with no-flow and flow-coupled cases. The computation region 
is ý = (ý, ÿ, ÿ) ∈ Ω = [0,ÿ]3 with ÿ = 2ÿ, and the initial conditions are set as
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Fig. 4.5. 2D four-fold dendritic crystal pattern formed using five distinct latent heat parameters (ÿ = 0.55,0.6,0.65,0.7,0.8 from left to right), where (a) no-flow 
scenario, (b) flow-coupled scenario, (c) the velocity field superimposed on the profile of ÿ for ÿ = 0.8 at ý = 80 with an enlarged view of the local domain, and (d) 
temperature and pressure profiles for the same case.

ÿ0(ý) = tanh(
0.1 − |ý− ý0|

0.02 
), ÿ0(ý) =

{
0, ÿ0(ý) > 0;

− 0.55, otherwise,

ÿ0(ý) = ÿ, ÿ0(ý) = 0,

(4.6)

with ý0 = (ÿ,ÿ,ÿ). The model parameters are set as

{
ÿ = 380,ÿ = 6.5e−3, ÿ = 500, ÿ = 2e−2, ÿ = 1, ℎ =

2ÿ

256
, ÿ = 1e−6,

ÿ = 0.01,ý = 5 × 104, ÿ4 = 0.05, ÿ1 = 0.9, ÿ2 = 4, ÿý = 0.01.
(4.7)
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Fig. 4.6. 2D six-fold dendritic crystal pattern formed using five distinct latent heat parameters (ÿ = 0.65,0.7,0.75,0.8,0.85 from left to right), where (a) no-flow 
scenario, (b) flow-coupled scenario, (c) the velocity field superimposed on the profile of ÿ for ÿ = 0.75 at ý = 195 with an enlarged view of the local domain, and (d) 
temperature and pressure profiles for the same case.

In the ÿ-direction, the boundary conditions for the variables ÿ, ÿ , and ÿ = (ÿ, ÿ,ý) are set as follows,

ÿÿÿ|ÿ=0,ÿ = 0, ÿÿÿ |ÿ=0,ÿ = 0, ÿ|ÿ=0,ÿ = 0, ÿ|ÿ=0,ÿ = 0,ý|ÿ=0,ÿ =ý0. (4.8)

We first perform simulations for the no-flow case, varying the latent heat parameters to ÿ = 1, 1.25, 1.5. Snapshots of the isosurface 
{ÿ = 0} before the dendritic branches touch the boundary are shown in Fig. 4.7(a), where the dendrites exhibit a maple-like shape. 
As ÿ increases, the branches become noticeably thinner. We then couple a flow field by setting ý0 = −0.01 in (4.8) and re-conduct 
simulations. Snapshots of the isosurface {ÿ = 0} before the fastest-growing tip touches the boundary are shown in Fig. 4.7(b). The 
flow field significantly alters the crystal structure; similar to the 2D simulation, the branch oriented towards the flow field grows the 
fastest.
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Fig. 4.7. 3D six-fold dendritic crystal using three different latent heat parameters (ÿ = 1,1.25,1.5 from left to right), where (a) is no-flow case, and (b) is the flow-
coupled case. In each subfigure, the isosurface {ÿ= 0} is plotted.

5. Concluding remarks

This article designs the first, efficient fully discrete numerical scheme for solving the hydrodynamically coupled phase-field den-
dritic solidification model. The scheme is anchored on the innovative explicit-SAV method, which is instrumental in the linearization 
of nonlinear potentials and the establishment of a decoupled structure. This method capitalizes on a distinctive property—“zero-energy 
contribution”—exhibited by the coupled nonlinear terms. In addition, the approach involves the definition of multiple auxiliary vari-
ables, a strategic move that aids in the reformulation of the governing system. This systematic restructuring is pivotal in achieving 
the desired computational efficiency and accuracy. The scheme’s decoupled architecture permits the independent calculation of all 
variables at every time step, ensuring an operationally efficient framework. The robustness of the approach is also reinforced by its 
unconditional energy stability and the effectiveness has been demonstrably proven through a series of comprehensive numerical tests 
conducted in both 2D and 3D, underscoring its applicability and reliability in practical scenarios. To the authors’ knowledge, this 
article’s numerical algorithm represents a pioneering achievement—it is the first of the “desired” type fully discrete algorithm for 
solving this highly nonlinear and coupled phase-field dendritic model.
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