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Abstract

Let G be a linear real reductive Lie group. Orbital integrals define traces on the group algebra of G. We introduce a
construction of higher orbital integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz
algebra of G. We analyze these higher orbital integrals via Fourier transform by expressing them as integrals on
the tempered dual of G. We obtain explicit formulas for the pairing between the higher orbital integrals and the
K-theory of the reduced group C*-algebra, and we discuss their application to K-theory.
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1. Introduction

Let G be a linear real reductive group and let f be a compactly supported smooth function on G. For
x € G, let Zg (x) be the centralizer of G associated with x and dg,z; ()¢ be the left invariant measure
on G/Zg(x) determined by a Haar measure dg on G. The following integral

) ) .
AZo ::/ f(gxe™NVdG 7608
G/Zg(x)

is an important tool in representation theory with deep connections to number theory. Harish-Chandra
showed the above integrals extend to all f in the Harish-Chandra Schwartz algebra C(G), and obtained
his famous Plancherel formula [9, 10, 13].

In this paper, we aim to study the noncommutative geometry of the above integral and its gener-
alizations. Let H be a Cartan subgroup of G and K be a maximal compact subgroup of G. The Weyl
group W(H,G) = Nx (H)/Zk (H) is defined as the quotient of the normalizer N (H) by the central-
izer Zx (H). Let H™8 C H be the subset of regular elements. In particular, for any x € H™8, we have
that Zg (x) = H. Following Harish-Chandra, we define the orbital integral associated to H to be

F":C(G) - = (H™*) WO Fll (x) := € (x) A (x) / flgxg Ndgné, (1.1)
G/H

where C®(H™2)~W (H.0) 5 the space of anti-symmetric functions with respect to the Weyl group
W(H,G) action on H, €/ (h) is a sign function on H, and Ag is the Weyl denominator for H. Our
starting point is the property that for a given x € H™8, the linear functional on C(G),

FH(x) f e F;I(x),

is a trace on C(G); cf. [17].

In cyclic cohomology, traces are special examples of cyclic cocycles on an algebra. In noncommutative
geometry, there is a fundamental pairing between the periodic cyclic cohomology and the K-theory of
an algebra. We say that a linear real reductive Lie group G is of equal rank if and only if the dimension
of a Cartan subgroup of G equals the dimension of a Cartan subgroup of the maximal compact subgroup
K of G. In this case, G has discrete series representations [ 18, Theorem 12.20]. The pairing between the
orbital integrals F (x) and Ko(C(G)) behaves differently between the cases when G is of equal rank and
nonequal rank. More explicitly, we will show in this article that when G has equal rank, F¥ defines an
isomorphism as abelian groups from the K-theory of C(G) to the representation ring of K. Nevertheless,
when G has nonequal rank, F vanishes on K-theory of C(G) completely (cf. [17]). Furthermore,
many numerical invariants for G-equivariant Dirac operators in the literature [1, 8, 17, 21, 31] etc.,
vanish when G has nonequal rank. Our main goal in this article is to introduce generalizations of orbital
integrals in the sense of higher cyclic cocycles on C(G) which will treat equal and nonequal rank groups
in a uniform way and give new interesting numerical invariants for G-equivariant Dirac operators. We
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remark that orbital integrals and cyclic (co)homology of C(G) were well studied in the literature (e.g.,
[3, 23, 24, 25, 26, 34]). Our approach here differs from prior work in its emphasis on the construction
of explicit cocycles. To understand the nonequal rank case better, we start with the example of the
abelian group G=R, which turns out to be very instructive. Here, C(R) is the usual algebra of Schwartz
functions on R with the convolution product, and it carries a nontrivial degree one cyclic cohomology.
Indeed, we can define a cyclic cocycle ¢ on C(R) as follows (cf. [24, Prop. 1.4]:

o(fos f1) = /R s+ fo(=5)fi(s) ds. (12)

Under the Fourier transform, the convolution algebra C(R) is transformed into the Schwartz functions
with pointwise multiplication. Accordingly, ¢ can be rewritten as a cocycle ¢ on C(R):

A A 1 A A
5 i) = —— [ fdf.. 1.3
é(fo, f1) \/__1/@]"0 N (1.3)

where f; € C(R) are the Fourier transforms of f;. Equation (1.3) is more familiar. It follows from
the Connes-Hochschild-Kostant-Rosenberg theorem ([7, Theorem 46]) that ¢ generates the degree one
cyclic cohomology of C (R), and accordingly ¢ generates the degree one cyclic cohomology of C(R).

It is crucial to have the identity function s: R — R in Equation (1.2) to have the integral of fyd f; on
C(fl@). Our key discovery is a natural generalization of the function s on a general linear real reductive
group G. Let P = M AN be a cuspidal parabolic subgroup of G (sometimes we use P = MpApNp to
emphasize that the subgroups are associated to the parabolic subgroup P). By the Iwasawa decomposition
G = KMAN, we can write an element g € G as

g= K(g),u(g)eﬁ(g)n € KMAN =G.

Note that the above decomposition might not be unique, but the A-part is always unique. Let dim(A) = m.
By fixing a basis for the Lie algebra a, the map

H=(H,H,...,Hy)

provides us the right ingredient to generalize the cocycle ¢ in Equation (1.2). We introduce a gener-
alization ®p  for orbital integrals in Definition 3.3. For fj, ..., f,, € C(G) and semi-simple element
x € M, ®p , is defined by the following integral:

q)P,x(fO’fl""’fm)
- LS sen(o) Heat (@10t Hey (820-8mk) - He (8 )
heM |Zy (x) JKN JGxm

TESH

folkhxh™ nk™ (g1 ... gm) ™) fi(g1) - fu(gm)dg1 - - - dgmdkdndh,

where Z); (x) is the centralizer of x in M. Though the function H isnota group cocycle on G, we show
in Lemma 3.1 that it satisfies a kind of twisted group cocycle property, which leads us to the following
theorem in Section 3.1.

Theorem I (Theorem 3.5). Suppose that G is a linear real reductive Lie group. For any cuspidal
parabolic subgroup P = M AN and a semi-simple element x € M, the cochain ®p  is a continuous
cyclic cocycle of degree m on C(G).

Modeling on the above example of R (e.g., Equation (1.3)), we analyze the higher orbital integral ®p
by computing its Fourier transform. Using Harish-Chandra’s theory of orbital integrals and character
formulas for parabolically induced representations, we introduce in Definition 4.14 a cyclic cocycle
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) » defined as an integral on the tempered dual space étemp. In Theorem 4.15 and 4.18, we generalize
Equation (1.3) to linear connected real reductive Lie groups.

As an application of our study, we compute the pairing between the K-theory of C(G) and ®p .
Lafforgue showed in [19] that Harish-Chandra’s Schwartz algebra C(G) is a subalgebra of C;(G),
stable under holomorphic functional calculus. Therefore, the K-theory of C(G) is isomorphic to the
K-theory of the reduced group C*-algebra C;(G). The structure of C;(G) is studied by [4, 33]. Under
the assumption that G is connected, we have that [2, (4.11)],

K;(C(G)) =0, if i#dim(G/K) mod 2.

That is, the K-theory group K. (C(G)) is concentrated in one degree. Replacing G by G X R if necessary,
we can assume that K (C(G)) is trivial and all the information is contained in Ko (C(G)).

In [5, 6], we are able to explicitly identify a set of generators of the K-theory of C;; (G) as a free abelian
group; cf. Theorem C.3. With wave packets (Section 4.2), we construct generators [Q,] € K(C)(G))
in Theorem C.3, where 0, are matrices with entries taking values in C(G). Applying Harish-Chandra’s
theory of orbital integrals, we compute explicitly the index pairing (Section 2.3) between [Q,] and
®p ., where P, denotes the maximal cuspidal parabolic subgroup. This would be enough for us to
distinguish elements in K, (C(G)). In [16, Theorem 2.1], we show that the paring between [Q,] and
®p . vanishes for P # P, or x does not lie in a compact subgroup of M.

Theorem II (Theorem 5.4). Suppose that G is a linear connected real reductive Lie group and P, =
M,AoN, is the maximal cuspidal parabolic subgroup. The index pairing between periodic cyclic
cohomology and K-theory

HP®"(C(G)) ® Ko(C(G)) = C
is given by the following formulas:
o for the identity element e € G,

(@p e [01) = o > m(o M),

[War,nk | WS

where oMo (w- ) is the discrete series representation of M, with Harish-Chandra parameter w - A,
and m(oM>(w - 2)) is its Plancherel measure;
o foranyt € TS,

 Bwew (CD"e ()
(@p,. [04]) = Y r—

We refer the readers to Theorem 5.4 for the notations involved in the above formulas. For the case
of equal rank, the first formula was obtained in [8], in which Connes-Moscovici used the L?-index on
homogeneous spaces to detect the Plancherel measure of discrete series representations. It is interesting
to point out (cf. Remark 3.6) that the higher orbital integrals ®p, , actually extend to a family of Banach
subalgebras of C;(G) introduced by Lafforgue, [19, Definition 4.1.1]. However, we have chosen to
work with the Harish-Chandra Schwartz algebra C(G), as our proofs rely crucially on Harish-Chandra’s
theory of orbital integrals and character formulas.

Note that the higher orbital integrals ®p , reduce to the classical ones when G is equal rank.
Nevertheless, our main result, Theorem II for higher orbital integrals, is also new in the equal rank
case. For example, as a corollary to Theorem II, in Corollary 5.5, we are able to detect the character
information of limit of discrete series representations using the higher orbital integrals. This allows
us to identify the contribution of limit of discrete series representations in the K-theory of C)(G)
without using geometry of the homogeneous space G /K (e.g., the Connes-Kasparov index map). As an
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application, our computation of the index pairing in Theorem II suggests a natural isomorphism F7,
Definition 5.7 and Corollary 5.8,

FI'i K(C:(G)) — Rep(K).
In [5, 6], we will prove that F7 is the inverse of the Connes-Kasparov index map,
Ind: Rep(K) — K(C;(G)).

Given a Dirac operator D on G /K, the Connes-Kasparov index map gives an element Ind(D)
in K(C;(G)). In this article, Theorem II and its corollaries, we study the representation theoretic
information of the index pairing

([®p.x]. [Ind(D)]).

As an application of this paper, in [16], we proved a topological formula for the above pairing for a
G-invariant elliptic operator on a manifold X with proper cocompact G-action, generalizing the Connes-
Moscovici L2-index theorem [8]. In [27], we extended our study to G-proper manifolds with boundary
and established a generalized Atiyah-Patodi-Singer index theorem.

In this article, motivated by the applications in K-theory, we introduce ®p  as a cyclic cocycle on
C(G). Actually, the construction of ®p_, can be generalized to construct a larger class of Hochschild
cocycles for C(G). Our construction is also closely related to the work in [22]. In particular, the definition
of ®p  is compatible with the localization process introduced by Nistor [22, Section 4.2]. It is an
interesting question to extend the construction of ®p , to a cyclic cocycle on A < G considered in [22].
Our preliminary study on examples also suggests that the construction of @ p , in this paper generalizes
to groups beyond linear connected real reductive Lie groups (e.g., real algebraic groups with the Iwasawa
theory), covering of linear connected real reductive Lie groups and some p-adic groups like SL(2,Q,).
A careful study of the analog of the Harish-Chandra Schwartz algebra is needed to generalize Theorem
I and II to these groups. We plan to report our study in this direction in a separate publication soon.

The article is organized as follows. In Section 2, we review some basics about representation theory
of linear real reductive Lie groups, Harish-Chandra’s Schwartz algebra and cyclic theory. We introduce
the higher orbital integral ®p  in Section 3 and prove Theorem I. The Fourier transform of the higher
orbital integral is studied in Section 4 and provides a key tool in our proof of Theorem II. And in Section
5, we compute the pairing between the higher orbital integrals ®p  and K(C;(G)), proving Theorem
II and its corollaries. For the convenience of readers, we have included in Appendix B and C a review
of background material about related topics in representation theory and K (C}:(G)).

2. Preliminaries

In this article, we shall not attempt to strive for the utmost generality in the class of groups we shall
consider. Instead, we shall aim for (relative) simplicity.

2.1. Linear real reductive Lie group and Cartan subgroups

Let G € GL(n,R) be a self-adjoint group which is also the group of real points of a connected algebraic
group defined over R (we will additionally assume that G is connected in Section 4 and 5.). For brevity,
we shall simply say that G is a linear real reductive Lie group. In this case, the Cartan involution on the
Lie algebra g is given by 6(X) = —X7, where X” denotes the transpose matrix of X.

Let K = G N O(n), which is a maximal compact subgroup of G. Let f be the Lie algebra of K. We
have a 6-stable Cartan decomposition g = f @ s. Let H be a Cartan subgroup of G. Then, H has a 6-
stable decomposition H =T x A, where T = H N K is the compactly embedded part and exp: a — A
is a bijection. Here, the Lie algebra a of A is an abelian subalgebra in s. Any choice of a positive a-root

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.115

6 Y. Song and X. Tang

system defines a parabolic subalgebra p = m +a +n in g and thus defines a cuspidal parabolic subgroup
P = MAN in G. We say that P is the cuspidal parabolic subgroup associated to the Cartan subgroup H
and vice versa.

Let b =t @ a be an arbitrary #-stable Cartan subalgebra of g, wheret = hNf,a =hns. Let R(D, g)
be the associated root system. If @ € R (b, g) is a real root (that is, a|; = 0), then we can apply the Cayley
transform to §) and obtain a new Cartan subalgebra )’ = t’ @ a’ such that dim(t’) > dim(t). Let P and
P’ be the two cuspidal parabolic subgroups associated to }) and §)’, respectively. We say that P’ is more
compact than P. In this way, we define a partial order on the set of all cuspidal parabolic subgroups of G.

Definition 2.1. We say that a Cartan subgroup H is maximally compact if dim T is maximal among all
0-stable Cartan subgroups. In other words, 7 is a Cartan subgroup of K. We denote by H, the maximally
compact Cartan subgroup and P, = M,A,N, its associated cuspidal parabolic subgroup. We call P, the
maximal cuspidal parabolic subgroup.

2.2. Harish-Chandra’s Schwartz function

Following Harish-Chandra [12, Lemma 2], we fix a real-valued nondegenerate bilinear symmetric form
B on g which is invariant under the adjoint action of G on g and also the Cartan involution . Moreover,
we can choose B such that (,) = —B(-, 8-) defines a K-invariant inner product on s. Thus, {, ) induces
a G-invariant Riemannian metric on G/K. For g € G, we use ||g|| to denote the Riemannian distance
from eK to gK in G/K.Foreveryn > 0,X,Y € U(g), and f € C*(G), set

vxra(f) = sup {(1+ g1 () [LAORM £ ()]},
geG

where L and R denote the left and right regular representations, respectively, and E is the Harish-
Chandra’s E-function [11].

Definition 2.2. The Harish-Chandra Schwartz space C(G) is the space of f € C*(G) such that for all
n>0and X,Y € U(g), vx y n(f) < 0.

The space C(G)is a Fréchet space in the semi- norms vx y . It is closed under convolution, which
is a continuous operation on this space. Moreover, if G has equal rank (thus has discrete series rep-
resentations), then all K-finite matrix coefficients of discrete series representations lie in C(G). It is
proved in [19] that C(G) is a =-subalgebra of the reduced group C*-algebra C;:(G) that is closed under
holomorphic functional calculus.

2.3. Cyclic cohomology
Definition 2.3. Let A be an algebra over C.Define the space of Hochschild cochains of degree k of A to be

C*(A): =Homc(A®*D ),

consisting of all bounded k +1-linear functionals on A. Define the Hochschild codifferential b: C¥(A) —
C**1(A) by the following formula:

b®P(ap ® - ® agy1)

k
=D (1) ®(ag @+ @ a1 @+ @ agsr) + (—1) (arag ®ar @ - ® ax).
i=0

The Hochschild cohomology of A is the cohomology of the complex (C*(A), b).
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Definition 2.4. We call a k-cochain @ € C¥(A) cyclic if for all ag, . . ., ax € A, it holds that
®(ak, ao, ..., ar-1) = (1) @(ag, a1,.. ., ax).

The subspace C ﬁ‘ of cyclic cochains is closed under the Hochschild codifferential. The cyclic cohomology
HC*(A) is defined by the cohomology of the subcomplex of cyclic cochains.

One can define a periodicity map S : HCK(A) — HC*2(A); cf. [20, Section 2.2.5]. And the periodic
cyclic cohomology HP*(A) (for #=even or odd) is defined to be the inductive limit of HC?*(A) (or
HC?1(A)). LetR = (R j),i,j =1,...,m be an idempotent in M,,(A). The following formula

1 m
<[(D]7 [R]> =7 Z q)(Ri()i]9Rili27'~'7Ri2ki())

0, ik =1
defines a natural pairing between [®] € HP®*"(A) and Ky(A); that is,

(-, -)y: HP®*"(A) ® Ko(A) — C.

3. Higher orbital integrals

In this section, we construct higher orbital integrals as cyclic cocycles on C(G).

3.1. Higher cyclic cocycles

Let P = M AN be a cuspidal parabolic subgroup and denote m = dim A. By the Iwasawa decomposition,
we have that

G = KMAN.
We define a map H:G—a by the decomposition
g= K(g),u(g)eﬁ(g)n € KMAN =G.

By fixing a basis for the Lie algebra a, we write H= (Hy,...,Hy).

Lemma 3.1. For any go,g1 € G, the function H;(g1x(go)) does not depend on the choice of k(go).
Moreover, the following identity holds:

H;(go) + Hi(g1k(g0)) = H;(g180)-
Proof. Using G = KM AN, we write
go = komoaong, g1 = kimian;.

Recall that the group M A normalizes N and M commutes with A. Thus, for any k € K N M, there exists
ni € N such that

H(g1k) = Hi(kymyainik) = Hi(kymikain}) = Hi(a1) = H;(g1).
It follows that H;(g1x(go)) is well defined. Next, by the definition of H;,

H;(g180) = Hi(ainikoao) = Hi(aniko) + H;(aop).

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.115

8 Y. Song and X. Tang

The lemma follows from the following identities:

Hi(g1x(go)) = Hi(a1mko), H;(go) = H;(ao).
O

Let S,, be the permutation group of m elements. For any 7 € §,,,, let sgn(7) = +1 depending on the
parity of 7.

Definition 3.2. We define a function
CeC®(KxG™)
by

Clk,giy---r8m): = Z sgn(7) - Hr(1y(g1k)Hr(2)(82k) . . . He(im) (gmk)

TESH

=det (H(g1k), ..., H(gmk)).

Definition 3.3. For any fj, ..., fi, € C(G) and semi-simple element x € M, we define a Hochschild
cochain on C(G) by the following formula:

Dp (S0, fio. s ) =/ / / C(k,8182-.-8ms-->8&m=-18m>&m)
heM |Zp (x) JKN J GXm 3.1
folkhxh™'nk™ (g1 ... gm) ") f1(81) - - fin(gm)dg1 - - - dgmdkdndh,

where Z,; (x) is the centralizer of x in M.

We prove in Theorem A.5 that the above integral (3.1) is convergent for all semi-simple elements
x € M. A similar estimate leads us to the following property.

Proposition 3.4. For every semi-simple element x € M, the integral ®p . defines a (continuous)
Hochschild cochain on the Schwartz algebra C(G).

For simplicity, we omit the respective measures dgi, - - - , dgm, dk, dn, dh, in the integral (3.1) for
Dp 4.

Theorem 3.5. Let P = M AN be a cuspidal parabolic subgroup of G and x € M be a semi-simple
element. The cochain @ p  is a cyclic cocycle and defines an element

[®p.x] € HC™(C(G)).

Remark 3.6. We notice that our proofs in Sections 3.2 and 3.3 also work for the algebra S;(G) (for
sufficiently large ¢) introduced in Definition A.3. And we can conclude from Theorem A.5 that ®p
defines a continuous cyclic cocycle on S;(G) > C(G) for a sufficiently large 7 for every x € M.

The proof of Theorem 3.5 occupies the rest of this section.

3.2. Cocycle condition

In this subsection, we prove that the cochain ®@p , introduced in Definition 3.3 is a Hochschild cocycle.
We have the following expression for the codifferential of ®p ,:

bq)P,x(fO’ f19 e ’fma fm+l)

Ul . 3.2
:Z(_l)lq)P,x(f07-~-’ﬁ*fi+l’-~-’fm+l)+(_1)m+lq)P,x(fm+l *fO’fl7-~-,fm)~ ( )

i=0
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Here, f; * f;+1 is the convolution product given by

fﬂﬁmm=Lﬁ®hﬂ{%@-

Lemma 3.7. For i = 0, the term on the right-hand side of (3.2) can be computed by the following
integral:

@u%*ﬂﬁwqmm=/ / / Clks 1283+ trsts -+ s Eoatrsts fonst)
M /Zp (x) /KN Gx(m+l)
So(khxh™ nk™ (11 . tys) ™) 1) fo(82) - - frnet (tms).

Proof. By definition,

®P,X(f0*f1’f2""’fm+l):[W/ZM(X) /[;N‘/G/(;Xm C(k,gng~-~gm,--~’gm—lgmsgm)
fo(@) filg™ khxh™ nk™ (g1 ... gm) ™) o(81) - - frnw1 (&m)-

By changing variables,
=g Vkhxh™'nk " (g1 ... gm)7", tj=gji-1, Jj=2,...m+1,
we get
g =khxh™'nk™ (1) .. tpe) 7
One can prove the lemma by replacing g; by ¢;. O

Lemma 3.8. For 1 <i < m, we have

@px (for v os fi * firts oy finr)

/ / / Clhky,tity .o bty ooy (tind oot s e oo birl) (3.3)
M| Zp (x) JKN J GXimD)
Solkhxh™ nk™ (21 . cte) ™) F1(01) - o et (fans)s

where (tis] ... tm+1)A means that the term is omitted in the expression.
Proof. The left-hand side of the above equation,

@p (for - fi % firls oo os finei)

/ /// C(k,g182---8ms---28m=-18m>8&m)
M Zy (x) JKN xm 34

folkhxh™'nk™ (g1 ... gm) ") filg1) - .- fiz1(giz1)
(fi(8) fis1 (87" 80)) fisa(gix1) - - - fins1 (8m)-

Lettj=g;forj=1,...,i—1,andfor j=i+2,...,m+1

-1
=g, tinn=8 & 1j=gj-1.
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Lemma 3.9. The last term in the right-hand side of (3.2) can be computed by the following integral:

Dpalfmt # o fire oo / / / C(k(tmur k), t112 . e tmettms tm)
M/ZM(x) KN JGx(m+1)
fO thh I’lk (tl tm+1) )fl(ll) fm+l (tm+l)

Proof. By definition,

®p (st * for Fisevrs fn) = Ck, 8182 -+ G~ -+ > G 1 Zms &
Pox (fme1 = fo, fi fm) /M/zM(x>/1<N/c/me (k,g182...8 8m—18m> 8m) 35)
For1(@) fog " khxh™ nk™" (g1 ... gm) ™) f1(81) - - frn(gm)-

As before, we write
ti=gj, j=1,...,m,

and t,,,+1 = g. We can rewrite Equation (3.5) as

®P,x(fm+1*f0’fl>---’fm) :/ / / C(k’tIIZ---tm»-owtm—ltm’tm)
M/Zp (x) JKN J Gx(m+D) 3.6)
folthikhxh™ nk™ (1 o t) ™) A1) - fonet (tms)-

For all ¢,,,41 € G and k € K, we decompose

k = kiuyainy € KMAN.

m+1

It follows that k = t,,41k1p1an; and k = k(t41k1). We see

(I)P,x(fm+1*f0af1’--«»fm) :/ / / C(k»t1t2--'tm,--wtm—ltm’tm)
M |Zp (x) JKN J GX(mt])
folkiprainihxh™ nny a7y kT L () T A - et (B

Since p1a; € M A normalizes the nilpotent group N, we can find /i, n] € N such that

fg(kl,ulalnlhxh_lnnl_lal_lul_lkl_lt,;il (t1. tm)™)
= fo(klulhx(ylh)_lﬁlnn']_lkl_l(ll A tm+1)_1).

Renaming 7i; nn’l_l by n, we conclude that

@p,x(fmﬂ*fo,fl,...,fm)=/ / / CCktmar kD)o 1182 s Eor s )
M| Zp (x) JKN J GX0m+D)
Solkvhxh™ k7 (812 ta) ™) - fi(01) - foned (B

This completes the proof. O

Combining Lemmas 3.7, 3.8 and 3.9, we have reached the following equation:

b®p (fo, f1s- s fins fins1)

=/ / / Clk,tr, .. tmer) - fokihxh™ nk7' (21 . te) ™) (3.7)
M| Zy (x) JKN J Gxm+D)
fi(t) - S (Eme)s
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where C € C*(K x G*™) is given by

é(k,ll, - ,tm+1) = Z(—l)iC(k,lllz [P S (ti+l - tm+1)A, e ,tm+1)
i=0
+ (_1)m+1C(K(tm+lk)’ tlt2 e tm’ MR IM*ltma tm)

Lemma 3.10. We have that

b(I)P,x(fO’ f17 .. ’fms fm+1) =0.

Proof. We will show that
C(k’t]7 e ,tm+]) = O'
To begin with, we notice the following expression:

C(k(tm1k)s 1112 -ty -+t Ens U

= Z sen(t) - He() (11 -+ -tk (1K) ) He ) (12 -+ -tk (i1 K)) .. Ho (o) (tmk (Ems1K)).

TESH

By Lemma 3.1, we have

He(iy(ti -tk (tmar k) = He iy (t7 - - - tmar k) = He () (tma1 k).
It follows that

C(k(tmark) 112 ..ty oy b b, I)

= Z Sgn(T) ’ (H‘r(l)(tl .- -tm+lk) _HT(I)(thk))

TESH

: (Hr(z)(fz e tmprk) = HT(z)(l‘m+1k)) e (HT(m)(tthHlk) - HT(m)(tm+1k))~

As the above sum is invariant with respect to the permutation group S,,, the terms containing more than
one factor Hy ;) (t,n4+1k) vanish. Thus,

C(k(tma1k)s 1112 s+t s U

m
= Z Z sgn(7) - He(y(t1 .. .t k) . ... (— HT(i)(tm+1k)) oo Hemy (tmtma1 k)

i=1 7€S,

+ Z sgn(7) - Heqry(t1 - tme1 k) < o He () (tmtimar k).

TESH

In the above expression, by changing the permutations
(t(D),....t(m)) - (v(1),....7( = 1),7(m), 7(i), ..., T(m - 1)),

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.115

12 Y. Song and X. Tang
we get

Z sgn(7) - Hriy(t1 ..t k) oo Heimy iz -+ - ta1 k)

TESH
( - HT([) (tm+1k))H‘r(i+l)(ti+l tm+1k) T(m)(tmtm+lk)

=(-)""* Z sgn(7) - Heqry(t1 - . o tierk) oo  Heioy (tizt - .t k)
TESH

He oy (Gt K) Hz iy (L1 -+ b1 K) -+ o He 1y (Bt a1 k).

Putting all the above together, we have

(=)™ C(k(tms1 k) 12 s < 1t )

m
= ZZ(—l)i+l CClkytity oo ctmets ooy (Gl v ta1) s e ey b)),
and

m
Cltr, ) = D (=DICU T sty (Bt ) s )

+ (=)™ C(k(tme1k)s 1112 - - oty - - s b1ty tm) = 0. o

We conclude from Lemmas 3.7-3.10 that ®p , is a Hochschild cocycle. We will prove that ®p , is
cyclic in the next subsection.

3.3. Cyclic condition

In this subsection, we prove that the cocycle @ p  is cyclic. Recall

Op (fise-s fons fo) = C(k, Qi Gme18ms 8m
p.x(fi Sms fo) /M/ZM(X) /KN /me (k,g182---8 &m-18m>8&m) 38
filkhxh™ nk™ (g1 ... gm) ™) o(g1) - -« fn(gm=1) fo(gm)-

By changing the variables,
=khxh™'nk™ (g1 ... gm)7",
andtj = g;_1 for j =2,...,m. We have
gm = (11 ... t) Ykhxh™'nk™",
and

Qi gm=(t1...t;) Vkhxh™nk™".
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It follows that

q)P,x(f17-~~sfm:f0):/ / /
M/Zn (x) JKN JG*m

Clk, 67 khxh™ k™ . (11 tyyy) k™ k™ (2 ) T kb kT nk )
fo((tr - tm)"khxh™ k™) fi(11) fo(82) - . frn(tm)

= Z sgn(‘r)-/ / Hoy (7 khxh™ n) o He oy (21 - )™ khxh™" n)
7e8,, M |Zpr(x) JKN J G*m

fo((tr - tw) " 'khxh™ 0k ™) fi(11) fo(2) - . . fon(tm).

We write
(t1...tw) 'k = kipiainy € KMAN.
Then,
k=(t...tmkiuiany, (3.9)
and

fo((tr - tm) khxh™ nk™) = fo(kyarnihxh™ nny ay w e (e ) 7Y
= folki W x0T (21 - 1) ™Y).

Thus, we rewrite the right-hand side of (3.8)

rlf et = Yo [ [ e (6

TESH

Solkihxh™ nk7" (11 . t;) ™) Ai(t) fo(12) - - - fn(tm).
(3.10)

By Lemma 3.1 and (3.9), we have, for 1 <i <m -1,

HT(,')((I] ... t[)_lk) =-H. (l‘] k(e t,')_lk))
=—H7(i)(t1 ...t,'K(lH.] ...l‘mkl)) 3.11)
=H;@ (li+1 - [mkl) - H_ (t1 . [mkl)),

and

Heimy ((t1 -+ 1) k) == Hegmy (11 - -tk (21 -+ 1) 7' K))

(3.12)
= _HT(m) (l‘l .. .tmkl).

Putting (3.10), (3.11) and (3.12) together, we see that

q)P,x(fl’ cee sfms fo)

m—1
= Z sgn(T) - / / / l_[ (H-r(i) (l‘i+1 ... tmkl) - H_ (l‘l ... tmkl)))
TESH M [Zp (m) JKN J G*¥™ i=1

(= Heomy(t1 - o tmk)) - folkthxh™ ' nk 7 (o ot) ™) i) fo(82) < fin(Em).
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By symmetry, one can check that

Z Sgn(T) 1_[ ( 7 (i) tt+1 tmkl) - H‘r(i) (tl .. -tmkl))) 'HT(m)(tl .. ~tmk1)
TESH

(3.13)
m—1
= Z sgn(T) . 1_[ Hr(i) (Ii+] . ..tmkl) . HT(m)(t] .. .l‘mk]).
i=1

TES,

In the above expression, by changing the permutation

(t(D),....,7(m)) = (7(2),...,7(m),7(1)),

we can simplify Equation (3.13) to the following one:

Z sgn(7) - 1_[ ( i) (w1 - - - tmk1) —Hr(i)(flmfmkl))) “Hegmy (21 .. tmk1)

TESH
m
=(-1)m!. Z sgn(7) - nHT(i) (ti .. tmk1).
T€SH i=1

Finally, we have obtained the following identity:

v )= (0" s [ [ f [ THew k)
= MZn () JKN Jrm G

Solkhxh™ nk™ (ty o ) ) ALE) H(82) - fin(tm)
= (_l)m . cDP,x(fO’ e ’fm)'

Hence, we conclude that @p , is a cyclic cocycle, and we have completed the proof of Theorem 3.5.

4. The Fourier transform of ®p_

In this section, we study the Fourier transform of the cyclic cocycle ®p , introduced in Section 3.
From now on, we additionally assume that G is connected following Knapp’s book [18]. For the reader’s
convenience, we start with recalling the basic material on parabolic induction and the Plancherel formula
in Section 4.1 and 4.2.

4.1. Parabolic induction

A brief introduction to discrete series representations can be found in Appendix B. In this section, we
review the construction of parabolic induction. Let H be a #-stable Cartan subgroup of G with Lie
algebra f). Let P = MpApNp be a cuspidal parabolic subgroup associated to H as in subsection 2.1.

Definition 4.1. Let 17 be a unitary representation of Mp and ¢ a unitary representation of Ap. The
product o ® ¢ defines a unitary representation of Lp = MpAp. A basic representation of G is a
representation by extending o ® ¢ to P trivially across Np then inducing to G:

Tye = Indg (n® ¢).
If n = o isadiscrete series representation, then Indg (o®¢) will be called a basic representation induced

from the discrete series representation of Mp and unitary representation of Ap. This construction is
known as parabolic induction.
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The character of 7, , is given in Theorem B.5, Equation (B.3) and Corollary B.6. Note that basic
representations might not be irreducible. Knapp and Zuckerman completed the classification of tempered
representations by showing which basic representations are irreducible and proved that every tempered
representation of G is basic and every basic representation is tempered.

Now consider a single cuspidal parabolic subgroup P C G with Lp = MpAp, and form the group

W(Ap,G) = Nk (ap)/Zk (ap),

where Nk (ap) and Zk (ap) are the normalizer and centralizer of ap in K, respectively. The group
W(Ap,G) acts as an outer automorphism of Mp, and hence on the set of equivalence classes of
representations of Mp. For any discrete series representation o~ of Mp, we define

Wo = {w € Nk (ap): Ad;, o = O'}/ZK((IP).
Then, the above Weyl group acts on the family of induced representations
G
{IndP (c® <p)}(pegl).

Definition 4.2. Let Py and P; be two cuspidal parabolic subgroups of G with Lp, = Mp,Ap,. Let o
and o be two discrete series representations of Mp,. We say that

(P1,01) ~ (P2,02) 4.1

if there exists an element w in G that conjugates Lp, of Pi to Lp, of P>, and conjugates o to a
representation unitarily equivalent to 0. In this case, there is a unitary G-equivariant isomorphism

Ind§ (01 ® ¢) = Ind§ (0 ® (Ad}, ¢))
as Hilbert Co(;f p;)-modules that covers the isomorphism
Ad},: Co(Ap,) — Co(Ap,).

We denote by [P, o] the equivalence class of (4.1), and P(G) the set of all equivalence classes.
Finally, we recall the functoriality of parabolic induction.

Lemma 4.3. If S = MsAgsNs is any cuspidal parabolic subgroup of L, then the unipotent radical of
SNp is NsNp, and the product

Q = MQAQNQ = MS(AS(J . P)(Nsz)

is a cuspidal parabolic subgroup of G.
Proof. See [29, Lemma 4.1.1]. m|

Theorem 4.4 (Induction in stages). Let i be a unitary representation (not necessarily a discrete series
representation) of Ms. We decompose

o= (¢1,92) € ZS X ZP~

There is a canonical equivalence

Indg (Indg"” (7 ® ¢1) ® ¢2) = Ind (n ® (¢1,¢2)).

Proof. See [18, p. 170]. o
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4.2. Wave packets

Let aemp be the set of equivalence classes of irreducible unitary tempered representations of G. For a
Schwartz function f on G, its Fourier transform f is defined by

Fom) = /G F(n(g)dg, 7€ Cremp-

Thus, the Fourier transform assigns to f a family of operators on different Hilbert spaces (tempered
representations of G) indexed by 7.

The group Ap, which consists entirely of positive definite matrices, is isomorphic to its Lie algebra
via the exponential map. So Ap carries the structure of a vector space, and we can speak of its space
of Schwartz functions in the ordinary sense of harmonic analysis. The same goes for the unitary
(Pontryagin) dual A p. By a tempered measure on A p, we mean a smooth measure for which integration
extends to a continuous linear functional on the Schwartz space. Recall Harish-Chandra’s Plancherel
formula for G [13].

Theorem 4.5. There is a unique smooth, tempered, W -invariant function mp o on the spaces Ap such

that
o= Y, [

—~ 2
Fra)||, me.o(@)de
[P0 ]eP(G) Y AP s

for every Schwartz function f € C(G). We call mp (@) the Plancherel density of the representation
Indg (o ® ).

Asgp € Ap varies, the induced G-representations
— TndG
To,e =Indg (0 ® @)

can be identified with one another as representations of K. Denote by Indg(a') this common Hilbert
space, and ﬁ(Indg (o)) the space of K-finite Hilbert-Schmidt operators on Indg (o). We shall discuss
the adjoint to the Fourier transform.

Definition 4.6. Let / be a Schwartz-class function from A p into operators on Indg (o) that is invariant
under the W --action. That is,

he [C(Ap) ® £2(IndS (o)™

The wave packet associated to h is the scalar function defined by the following formula:

h(g) = /A Trace(Toy (7)) - h(9)) - mp.or (¢)dep.

A fundamental theorem of Harish-Chandra asserts that wave packets are Schwartz functions on G.

Theorem 4.7. The wave packets associated to the Schwartz-class functions from Ap into L’(Indg (o))
all belong to the Harish-Chandra Schwartz space C(G). Moreover, the wave packet operator h — h is
adjoint to the Fourier transform.

Proof. See [30, Theorems 12.7.1 and 13.4.1] and [4, Corollary 9.8]. m]

4.3. Derivatives of Fourier transform

Let P = MAN be a cuspidal parabolic subgroup. Here, P does not have to be maximal. Thus, we
can decompose Ap = A, X As (see Lemma 4.3). Suppose that 7 = Indg (M ® ¢), where n™ is an
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irreducible tempered representation (does not have to be a discrete series representation) of M with
character denoted by @™ (™) and

¢€XPZAOXA5.

We denote r = dim(Zs) and m = dim(go). As a vector space, let

-xl, o e 9xdion’-xdion+1’ <. 9xdimAP
be the coordinates for Zp. Fori =0,...,m,let h; € C(Zp), and v;, w; be unit K-finite vectors in
Indg (n™). We denote by %—’;f the partial derivative of h; with respecttox;, j =1,...,m.

Definition 4.8. Suppose that f; € C(G) are wave packets associated to
hi-vi ® wi € C(Ap, L(IndG (n™)).

We define an (m + 1)-linear map T, with an image in C(Xp) by

Ta(for - fon)
| Zres,, sgn(7) - ho(e) - TT7L, agif;f) if vi=wi,i=0,...,m—1, and v, = wo; 4.2)
0 otherwise.

Next we want to generalize the above definition to the Fourier transforms of all f € C(G). The
induced space m = Indg (n™ ® ¢) has a dense subspace:

{s: K > v continuous|s(km) = n™ (m)~'s(k) fork € K,m € K n M}, 4.3)
where V7" is the Hilbert space of M-representation 7 . The group G action on 7 is given by the formula
(r(g)s) (k) = ™02 e M EN M (g™ k)™ - s(k(g k), 44
where p denotes the half sum of positive roots. By Equation (4.4), the Fourier transform
(x(£)9) () = (Fms) (o)

_ -1 _ _ -
= /G(e Gog g0 H & kD) pM (u(g™' k)" £ (g) - s(k(g™" k) dg.
Suppose now that fy, ..., f;; are arbitrary Schwartz functions on G and ﬁ), cees fm are their Fourier
transforms.

Definition 4.9. For any 1 < i < n, we define a bounded operator %—f from 7 = Indg (MM ® o) to itself
by the following formula:

((afa(ﬂ))s)(k) ::/Hi(g"k)-(e’“"g“’*p""(g*l"”'nM(u(g"k))’1 - f(8) - s(k(g7 k). (4.5)
i G

We define an (m + 1)-linear map

Te: C(G)x -+ xC(G) — C

m+1
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by

o~
—~ —~ - afi(m
Te(fore oo fo = Y sen() - Trace(fo(m) - | | 21422),
. (97(,-)
TES, i=1
The above definition generalizes (4.2).
Proposition 4.10. For any n = Indg (MM ® @), we have the following identity:

Ta(fos- s ) = (=)™ > sgn(7) / He (81 8mk) - He(m) (gmk)
7e8m KMAN JG»m (4.6)

ellogwtplocar . @M (pMy (1) - fo(kmank™ (8182 - .. gm) ™) f1(g1) -+ fin(gm)-

Proof. By definition, for any 7 € S,,,,

(A [ 122 s
i=1 (i

:'/Gx(kﬂ) Hr(l)(gl_lK(galk))HT(z)(g;lk((gogl)‘lk))

He(m) (8 (2081 - gm-1) ™' k)) - @708 930 H (g081--0) 7))
™ (u((gog1 ---gm) K" fo(80) f1(81) - - - fin(gm)s(x((g0g1 - - - gm) " K)).

By setting g = (g0g1 - .. gm) 'k, we have
go=kg ' (g182-..8m) ",
and
(g081---8)) 7'k = gjs18js2 - - Em&-
Recall that recall M A normalizes N and M centralizes A. We denote
¢ ' = pank’™' € MANK =G.

Thus,

(fo(m 11 ‘Zf"—f"j))sw
i=1 (i

:/KMAN /ka HT(1>(8I]K(g1...gmk))...HT(m)(g;nlk(gmk))

ellogwplogar My . fo(kﬂank'fl(glgz . -gm)_l)fl (&1) .- fn(gm)s(k).

4.7

By Lemma 3.1,
Heiy (87 k(g1 - . gmk)) = He(i) (i1 - - - 8mk) = He(i) (81 - - - 8mk)-
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Thus,

D sen(mHey (27" k(21 - 8mk)) He2) (85 k(2285 - gmk)) - - Hoe oy (€3 1(8K))

TESH

= Z sgn(7) (Hr(1y(82 - - - &mk) — Hr(1)(8182 - - - &mk)) (Hr(2) (83 - . . &mk) — Hz(2)(82 - . . gmk))

TESH

.. (HT(m—l)(gmk) - HT(mfl)(gm—lgmk))( - HT(m) (gmk))-

4.8)
By induction on m, we can prove that the right-hand side of Equation (4.8) equals
(=H™ Z sgn(7)Hr(1) (81 - - - 8mk)Hr(2) (8283 - - - 8mk) - He(m) (8mk)-
TESH
By (4.7) and (4.8), we conclude that
f( )
> sen(o)(folm) - 1_[ )
TES
=(-D" Sgn(T)/ / Heay(g1 .- gmk)He2) (283 - - - @mk) - He(m) (gmk)
e KMAN JG*k
elogwsploza) yM 1)y . f (kpank'™" (g1g2 ... gm) ") f1(81) - - fn(gm)s(K').
Expressing it as a kernel operator, we have
a L T ’ ’ ’
> sen(r) - (o) ﬂ i Dot = [ Lekk)swyar
TESH K
where
L(k, k") = (=)™ SgH(T)/ / Hey (81 gmk)He(2) (8283 - - - 8mk) - He(m) (gmk)
T€Sm MAN JG*¢
elogwrelosal . yM () - foy(kpank’™ (8182 - gm) ™) f1(81) - fn(gm)-

The proposition follows from the fact that 7, = fK L(k, k)dk. O

Suppose that Py = M| AN and P, = M,A,N, are two cuspidal parabolic subgroups such that P,
is more noncompact than P,. Moreover, we assume that the induced representation Indgl (o1 ® ¢1) is
reducible and decomposes into

Indgl (0’1 ® 1,01) = @Indgz (5k ® tpz),
k

where o is a discrete series representation of M and ¢ are different limit of discrete series represen-
tations of M. We decompose

AQIZOXZS, le&xglzz&xfﬁ\gx;\\lz.
Let h; € C(Zl), and v;, w; be unit K-finite vectors in Indg] (o) fori =0,...,m. We put

fi=hi-v;® w; € C(gl, E(Indg1 (o1)).
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The following lemma follows from Definition 4.9.

Lemma 4.11. Suppose that n = Indg2 (6k ® @2). If
Vi = Wi, i=0,...,m—1,

and v, = wy, then

Ohi((¢2.0))
Bz (i)

Ta(fose s J) = D, sen(@) - ho((¢2,0) - | |

TESH i=1

Otherwise, Tn(ﬁ), cees ﬁn) =0.

4.4. Cocycles on Gtemp

Let P, = M,A.N, be a maximal cuspidal parabolic subgroup (cf. Definition 2.1) and 7 be the maximal
torus of K. In particular, the Lie algebra t of T gives a Cartan subalgebra of m, and 7 € M,.

Definition 4.12. For an irreducible tempered representation & of G, we define
A(m) = {UMO ®pE (Mvo)temp’ Indgo(T]M" ® ) = ”}'

Definition 4.13. Let m(n™°) be the Plancherel density for the irreducible tempered representations 7
of M,. We put

pir) = >, m@™).

nMe®peA(n)

Recall the Plancherel formula
f(e) :/ ~ Trace(f(ﬂ)) ~m(m)dn, 4.9)
”GGLemp

where m () is the Plancherel density for the G-representation 7.

Definition 4.14. We define @, by the following formula:
Do (fos -+ s fm) =/  Ta(fore oy fn) - u(n0) - dn.
ﬂEGlcmp

Theorem 4.15. For any fy, ..., fin € C(G),

®p o (for s fin) = (1)@ (for - - fin)-

The proof of Theorem 4.15 is presented in Section 4.5.

Example 4.16. Suppose that G = R™. Let
X = (x’i, .. .xfn) e R™
be the coordinates of R™. On C(R™), the cocycle ®p, . is given as follows:
@p, e (fo, s fim)
= Z sgn(7) /xld&m- > /mRm Xity X fo( = Gl ™) A (™).

TESH
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However, the cocycle @, on C(I@m) is given as follows:

Be(Foveve s o) = (—V—_l)’”/

fodfi...dfm.
Rm

To see they are equal, we can compute

Dp,o(for s f) = D sen(r) - (fo* ez f1) # - (xr<m>fm))(0).

TESH

= Z sgn(T) - /Rm (fo s (X fi) #ee (xT<m)fm))
TESH

= ZS: sgn(T)~/Rm (%mm)

- 3w [ i )

V=0" [ fodfi...dfm.
Rm
To introduce the cocycle @, for any ¢t € T2, we first recall the formula (C.7) for orbital integrals
splits into three parts:
regular part + singular part + higher part.

Accordingly, for any t € T™¢, we define

o regular part: for regular 2 € Ay + p. (see Definition B.1), we define
(Dt(fo""’fm):l/l: ( Z (_1)W 'ew‘/l(t)) / —~ TIndgo(u'MO(/l)ngj)(wa--7fm)'d()p’
weWgk pEeA,

where oM- (1) is the discrete series representation of M, with Harish-Chandra parameter A.
o singular part: for any singular A € A% + p., we define

. Swewe (=Y e () "W . -~ -
D (fos- - fm) | ) : ; /peﬁc e(i) 'nndgo(zfi"’"’(/l)@w)(fo"'"fm) ~dep,

where a-l.M" are limit of discrete series representations of M, with Harish-Chandra parameter A and
n(A4) is the number of different limit of discrete series representations with Harish-Chandra parameter
Ad,ande(i)=1fori=1,... @ and €(i) = —1fori = @ +1,...n(1) (compare with the notations
in Theorem C.7).

o higher part:

&’f(ﬁ""’ﬁ")]mgh:/@igh Te(foron )| DL kM (™, 0) |- de,

temp nMe®pe A(n)

where the functions k™= (nM™-, t) are defined in Subsection C.3, and

~high

high
Gtemp

temp J

= {77 € 6temp|7[ = Indgo (77MO ® @), 77MO € (Mo)
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where (A’io)t};il; is the set of irreducible tempered representations of M, which are not (limit of)
discrete series representations.

Definition 4.17. For any element r € 7™¢, we define

©; (for-- -+ fon)
= Y Bl Y BB (B )]

regular A€AY +pc singular A€AY +pc
Theorem 4.18. For any t € T™3, and fy, . .., fm € C(G),

A @p, (for--os fn) = (1) (for -+ fon)-

The proof of Theorem 4.18 is presented in Section 4.6.

4.5. Proof of Theorem 4.15

We split the proof into several steps:
Step 1: Change the integral from Giemp to (MoAo Jemp:

6e<ﬁ,...,ﬁ)=/ TG o) ) - d

T E(;temp

= T, G Mo (ﬁ),,f)m(T]M")
‘/7;M°®¢E(M0A0)temp I“dPO(U ®¢p) m

Step 2: Replace dego (Mo g ) 1N the above expression of D, by Equation (4.6):

D (for- > fm)
= (=)™ > sgn(r)

TES,

ellogwplogar. @Me ;)Mo () 'fo(kmankfl(glgz . ~gm)7])f1 (81) - fn(gm) - m(™e).

- / HT(I)(g1 ...gmk)...HT(m)(gmk)
nMe@pe(MoAo)emp Y KMoAo N, J GX

Step 3: Simplify o, by Harish-Chandra’s Plancherel formula. We write

e (for- - Jm)
=" 3 sentr) oo o e 1) e k) - - A1) ),

where the function f’ is defined by the following formula:

fkongr.....gm) = / elloegrplosd)
UMO ®¢€(MDAO)lcmp Mvo
QMo (™) (m) - fo(kmank™ (g182...gm)™") - m(m™>).

If we put

clk,m,a,n,g1,...,8m) = elprloga), fo (kmank_l(glgz .. .gm)_l),
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then

Fkngrgm = [ (0" (1) @ ) () - mlr™).

7]M° ®¢E(M0Ao)temp

By (4.9),
fl=clk,e,e,n,g1,...,8m) = fo(knk_l(glgz .. .gm)_l).
This completes the proof.

4.6. Proof of Theorem 4.18

Our proof strategy for Theorem 4.18 is similar to the one used to prove Theorem 4.15. We split its proof
into 3 steps as before.
Step 1: Let A} be the weight lattice for 7 and A be the intersection of AJ. and the positive

KNM,
Weyl chamber for the group M, N K. We denote by pM0K the half sum of positive roots for M, N K.
Forany 4 € Ay, M.» We can find an element w € Wx /Wknpy, such thatw - A € A% . Moreover, for any
w € Wk [Wknm,»
Indgo(O'M"(/l) ®p) = Ind,c_fo(O'M"(w -A) ® ). (4.10)
For the regular part,
Z [&)t(.fb’sﬁn):l/l
regular A€AY +pc
_ w w-a z n
= ( Z (_1) e (t)) /EX Y}ndgo(aMO(A)®¢)(f0""’fm) 'd(p 4.11)
regular 1A€A} +pc \w €Wk pEeo

S Y B 2Lt N S IO S A

regular A€AY \p, +pc \W EWKnM, ped

Here, the last equation follows from (4.10). Remembering that the above is anti-invariant under the
Wk -action, we can replace p. by p?”f’”K. That is, (4.11) equals

3 > el T oo oo o) - o

regular/lEA’;mMoﬂ)ymK weWKknM, #elo

Similarly, for the singular part,

@ (f f - _1\wv . v
| [CDt(fO,m,fm) - 2 D DY)
singular 1A% +pc singular A€A% - +pMeOK \weWron,
n(d .
() o
x ) T o |
(i:l n(d) weA, Indg, (o (/1)®</>)(f0 fm))
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Finally, for the higher part,

O (for s )| = Ta(for )| D, €M™, 0)|-de
[ ]h]gh /

~high
7€Giemp nMogpeA(n)

= e . fore ooy fm) - kMo (™o 1),
'/77M°®<p61/\’1\12§2><20 Indp, (™ o) (Jo -+ fm) (™.

Step 2: We apply Proposition 4.10 and obtain the following.

o regular part:

(@0 (oo )|

regular €AY +pc

= (=)™ ) sen(r) > D =D er )

TES, * MoK \ weW,
m regular A€AL (10 +pc° KNnMo

/A/ He1y(81---8mk) - .. He(m) (8mk)
oA, JKM. AN, JGxm

ellogerprloga) . @Me(2) (m) - fo(kmank™ (g1g2 ... &m) ") f1(g1) -+ fn(gm).

o singular part:

|®: (o )]

singular 1A€A} +pc

n(a)

= (=" 3 sen(r) 3 YlEE Y et
TESH singular A€A} .y, +p'oM* 1=1 " weWknm,

/ R / HT(1)(g1-..gmk)--.Hr(m)(gmk)
@€A, JKM.A,N, J G*™

elozorooza) . @M: (1) (m) - fokmank™ (2182 - gm) ™) fi(g1) - fngm).

o higher part:

(@0 (o )|

high

:(_])m Y HT(l)(gl---gmk)n~HT(m)(gmk)
nMegpeMpusixA, JK M, AN, JG*m

elogwrplogar. @Me (pMo) () . fy (kmank™ (g182 - .. gm)™")
fi(g1) - fnlgm) - &M (™o ,1).
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Step 3: All the above computations imply that

(o, f)
= Y @G i e Y [B)] +[EGe )]

N . high
regular A€AY +pc singular 1A€A} +pc

(—l)m /[;NO ‘/me f’ . ( Z Sgn(T) : H‘r(l)(gl -~-gmk) . --HT(m) (gmk) 'fl(gl) .. -fm(gm)),

TESH
4.12)
where
it k,n,gr,....8m)
- > et ) [ (e we)e
regular /leA;(mMo+pé"I°“K weWknm, QEA,
Lwe KM (=nv- ew./l(t) n(d)
i 2 . QK( - ) )Z: (i) - /spego((aﬁm(ﬁ) ®¢)(©)

singular A €Nk nn, TPC

o R L O [E R i)
nMe@peM, &

where

c(kym,a,n,gi,...,gm) =P8 . fo(kmank™ (g182...gm)™").

Because T is a compact Cartan subgroup of M., the sign function in the definition of Harish-Chandra’s
orbital integral (1.1) is trivial [32, Section 8.1.1]. Hence, we apply Theorem C.7 to the function ¢ and
obtain

£ =F (@) =AM (1) o fo(khth_lnk_l(glgz...gm)_l). (4.13)

By (4.12) and (4.13), we conclude that

&)t(f’{)’ L] f’;’l)
=AY (1) - (=D ) sen(r)

TESH

folkhth ' nk™ (g182 ... gm) ") fi(g1) - - fin(gm)
= (=D)"AY(0) - @p, i (for s fon)-

/ HT(I)(gl '”gmk)u'HT(m)(gmk)
heM,/T, JKN, JGxm

This completes the proof of Theorem 4.18.

5. Higher Index Pairing

In this section, we study the K-theory of the reduced group C*-algebra of G by computing its pairing
with @p,_ ; fort € 7™ N M, and ®p, .. Moreover, we construct a group isomorphism

F: K.(C:(G)) — Rep(K),
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where Rep(K) is the character ring of the compact Lie group K. By replacing G with G X R if necessary,
we may assume that dim(A,) is even.

5.1. Generators of Ko(C):(G))

In Theorem C.4, we explain that the K-theory group of C;:(G) is a free abelian group generated by the
following components:

Ko(CH(G) = P Ko(K(C(G)ip,o))

[P

P z

A EA;< +0¢

6D

Let [P, o] € P(G) be anessential class correspondingtod € A% K tPe: In this subsection, we construct
a generator of Ko(C;(G)) associated to 1. We decompose Ap = AS X A, and denote 7 = dim AS and

m = dim A,. Let V be an r-dimensional complex vector space and W an m-dimensional Euclidean
space. Take

Zz(xl,""xr,yl»u-,Ym)’ szC,)’JGR

to be coordinates on V @ W. Assume that the finite group (Z;)" acts on V by simple reflections. In terms
of coordinates,

(x]"” ’xr’}’lw-‘,))m) = (ix]7“' ’ixr’y]7" '7ym)‘
Let us consider the Clifford algebra
Clifford(V) @ Clifford(W)
together with the spinor module S = Sy ® Sw . Here, the spinor modules are equipped with a Z,-grading:
ST=8, 88, &S, ®Sy, S =S,0S5, S, 8.

Let C(V),C(W) and C(V & W) be the algebra of Schwartz functions on V, W and V & W. For any
z € V @& W, the Clifford action ¢(z): S* — S7 is defined as follows.

Letey,...ep-1 be a basis for S{',, let epr-1,1, ... €2 be a basis for Sy and let fi,... fz% be a basis
for Sy . We write

cijui(z) =(c(2)ei® fioe; ® fr), 1<i,j<2",1<kl<2%

and define

Zz -
T = e idge e (1 - e L|§|Zz) - (0 0 )
’%c(z) (1-e712P) - idg- 0 ids-

. . m m .
which is a 22 x 2"*72 matrix:

with tij .k, € C(VoWw).
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Definition 5.1. On the m-dimensional Euclidean space W, we can define

V2 -
o _ e‘|Y|2-ids‘+V e—%(l_e—lylz),c(y) _(0 0 )

Iy[?
2 A
e_%c(y) (1- e_lylz) - idg- 0 idsg,

whichisa?22 X 22 matrix:

S

(bry), 1<k,1<27,

with by ; € C(W). By straightforward computation, one can check that both the two matrices

P L idge e (1= Py . <L)

‘ ym2 idsy, em 7 (1=e) Iyl |, (8'(10 )
e‘ch(y) (1- e"y‘z) -ids;, sy
are idempotents. In fact, B™ is the Bott generator in Ko(Cy(W)) = Z.

Lemma 5.2. If we restrictto W Cc V @ W (that is, x = 0), then

Tl _, = sy 0 ) g pm
x=0 " 0 —lds‘*/ ’

Proof. By definition, we have that

)

o k1 =€ < whenej e, fi, fi € 5%
_2 -

© tijk1==e " whenej e, fi, fi €57

Ci jk,1(2)
lz|?

—17]? _
o) ti,j,k,l =e 21 Ci,j,k,l(Z) when ei,fk, € S” and e]-,fl, e St.

22 2
o tijri=e 2 (1-e 2. when e;, fi,€ St and e}, fi, € S7;

Moreover, the Clifford action c(z) equals
c(x)®1+1®c(y) € End(Sy) @ End(Sw)

for z = (x,y) € Ve W. Thus, Ci,j,k,l(Z)|x:0 = ¢k,1(y). This completes the proof. O

Let o be a discrete series representation of Mp and ¢ € Zo. Then,
¢®IGXOXXS=ZP.
Because [P, o] is essential, the induced representation decomposes as
o
ndg (@ ¢ ® 1) = (P Indg (5; @ ¢),
i=1

where ¢; are limit of discrete series representations of M,. By Equation (B.1), the characters of the limit
of discrete series representations of ¢; are all the same up to a sign after restricting to a compact Cartan
subgroup of Mp. We can organize the numbering so that

6;, i=1,...2""1
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have the same character after restriction and
6 =214 1,2
have the same character. In particular, §; with 1 <i < 2" ! and ¢ j with 27-1 41 < j < 2" have the
opposite characters after restriction.
We fix 2" unit K-finite vectors v; € Ind$ (6;) and define
Sy = (ti,j,k,l Vi ® V;) 5.2)
The matrix
—~ G W
Sae [e(Ap, cndf o))| ™,
and it is an idempotent. By the Morita equivalence (C.3),
K(Ind§ o) ~ (Co(R) % Z2)" ® Co(R™).
Definition 5.3. We define
Q.1 € Marem(C(G))

to be the wave packet associated to S,. Then, [Q,] is the generator in Ko(C;:(G)[p,]) for essential
class [P,o] € P(G).

5.2. The main results

Let G be a linear connected real reductive Lie group with maximal compact subgroup K. We choose a
maximal torus 7 of K, and P, a maximal cuspidal parabolic subgroup of G. It follows from Appendix
C that for any 4 € Ay + p., there is a generator

[0.] € K(C}(G)).
In Section 3, we defined a family of cyclic cocycles
(Dpo,e, CDPO,, (S HC(C(G))

for all # € T™¢ and the maximal compact cuspidal parabolic subgroup P..

Theorem 5.4. The index pairing between periodic cyclic cohomology and K-theory
HP""(C(G)) ® Ko(C(G)) = C
is given by

o we have

@pe [0]) = o > m(c M),

[War,nk | W

where oMo (w- Q) is the discrete series representation with Harish-Chandra parameter w - A, and
m(0'M° (w - A)) is its Plancherel measure;
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o foranyt € T,

Twewy (=D"e” (1)
1> = . 5.3
(@1, [04]) vamn 5.3)

The proof of Theorem 5.4 is presented in Sections 5.3 and 5.4.

Corollary 5.5. The index paring of [Q,] and normalized higher orbital integral equals the character
of the representation Indgo (cM-(Q) ® @) at ¢ = 1. That is,

AMQ
< L. op,, [Ql]>=®(Po,aM°(ﬂ>, 1)(1).

G
AT

Proof. 1t follows from applying the character formula, Corollary B.6, to the right side of Equation
(5.3). O

Remark 5.6. If the group G is of equal rank, then the normalization factor is trivial. And the above
corollary says that the orbital integral equals the character of a (limit of) discrete series representations.
This result in the equal rank case is also obtained by Hochs-Wang in [17] using a fixed point theorem
and the Connes-Kasparov isomorphism. In contrast to the Hochs-Wang approach, our proof is based
on representation theory and does not use any geometry of the homogenous space G/K or the Connes-
Kasparov theory.

We notice that though the cocycles ®@p, ; introduced in Definition 3.3 are only defined for regular
elements in 7, Theorem 5.4 suggests that the pairing A;”f’(t)(d)po,,, [0.]) is a well-defined smooth
function on 7. This inspires us to introduce the following map.

Definition 5.7. Define a map F7 : Ko(C:(G)) — C*(T) by
FIAQaD@): = A" - (@p 1, [Qa]), A€ Ak +pe.

The map F7 is first defined on the regular part 7€ but can be extended smoothly to all elements in
T as the right-hand side of the above equation extends to a smooth function on 7.

By the Weyl character formula, for any irreducible K-representation V,; with highest weight 1 € A%,
its character is given by

Sewg (Z1)" e () (1)

O(1) = AK(0)

Multiplying by AKX, we can identify Rep(K) with the following subset of C*(T):

fecmlfy = ). m-(2<—1>WeW“><r>), n€zy.

ﬂeA;( +0¢ weWg
Under the above identification, we have the following corollary.

Corollary 5.8. The map F! : Ko(C:(G)) — Rep(K) is an isomorphism of abelian groups.

In [5, 6], we use the above property of F! to show that F7 is actually the inverse of the Connes-
Kasparov Dirac index map, index : Rep(K) — K(C(G)).
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Remark 5.9. The cyclic homology of the algebra C(G) was studied by Wassermann [34]. Wassermann’s
result and the unpublished description of the decomposition of C(G) analogous to Equation (C.2) implies
that the Connes-Chern character

ch : Ko(C(G)) = HPeyen(C(G))
induces an isomorphism
Ko(C(G)) ®z C = HPeyen (C(G)).

Corollary 5.8 shows that higher orbital integrals ®p,_ ;, ¢ € 7€ distinguish Ko(C(G)). We can conclude
from this fact that ®p,_,, 1 € T™¢ actually spans HP**"(C(G)). As this outline of arguments involve
some nontrivial unpublished works, we will not state this result as a ‘theorem’.

5.3. Regular case

Suppose that A € A} + p. is regular and oMo (1) is the discrete series representation of M, with Harish-
Chandra parameter 1. We consider the generator [Q,], the wave packet associated to the matrix S,
introduced in (5.2), corresponding to

Inng(O'M" Wep), ¢ec As.

According to Theorem 4.15,

(=D)"™(®@p, e, Q1) = | _  Tx|Trace|Sa® - @Sy || u(n)
ﬂEGem S————
o m+l1

:./,Z dego(aMou)w)‘ Trace| S)® - ® S -u(Indg(O'M"(/l)@go)).
o %/_/
m+1

By Definition 4.13,

y(Indgo(o'M" ) ® ¢)) - ,u(Indgo(O'M" ) ® 1)
= Z m(0'M°(w . /l))

weWk [Wknm,

! Z m(o-M°(w -/1)).

Wk, W

Moreover, in the case of regular A, S, = [B™ - (v ® v*)], where B™ is the Bott generator for Ko (C (ZO))
and v is a unit K-finite vector in Ind§ (o™ (1)). By (4.2),

/&, Tinag (o (og)| Trace(S1® -~ ® Sa) | = (B™. bm) = 1,
m+l1
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where [b,,] € HC™(C(R™)) is the cyclic cocycle on C(R™) of degree m; cf. Example 4.16. We conclude
that

@poer[0aD) = T S (o).

|WKOM° | weWg

For the orbital integral ®p_ ,, only the regular part will contribute. The computation is similar as
above, and we conclude that

(®p,:,02) = (=)™ Z (—l)wew'”(t%//z TindG (oMo () ey)| TrACE| Sa @ -+ ® S
o _"\/—"'"""-’
weWK m+1

= (=™ DT (=DM ).

weWgk

5.4. Singular case

Suppose now that 4 € A} + p is singular. We decompose

Ap=A.xAs,  ¢= (o1, ).
We denote r = dim(Ag) and m = dim(A,) as before. In this case, we have that

27'
Il‘ldg(O'M Qpi®l)= @Indgo (a'[.M" ® ¢1),

i=1
where o™ is a discrete series representation of M and o-lM i =1,...,2", are limit of discrete series
representations of M, with Harish-Chandra parameter A.

Recall that the generator Q, is the wave packet associated to S,. The index paring equals

(-1)"™(®p, ., 02) :/A; TInd‘,f(a“@ga) Trace| S; ® ---® S, -,u(lndg(o-M ®¢p)).
P ————
m+1

By the definition of g,

u(mdG (e @) = > mGr™).
nMe @, EA((Indg (oM ®<p))

Thus, the function y( Indg (M ®¢ ® 1)) is constant with respect to ¢; € As. It follows from (4.2) that

(=)"(®@p,.e, Q1)

/Ks u(Indg(O'M@Jcp))-/g TindG (oM, ) Trace(S;® - ® Sa)

| ——
m+1
TESm Jo=i15---Jm—-1=Im>Jm=l0
9siy,; () Osi,,, 5, ()
/ (:u(lndlg;(O-M ® 90) ‘/,: (_I)T : sl'(),jo(‘/’) 311 cee la : ,
As A, 7(1) 7(m)
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where s; ; € C(Ko X ZS) with 1 < i,j < 2"*7 is the coefficient of the (i, j)-th entry in the matrix S .
We notice that the dimension of A p is m +r. It follows from the Connes-Hochschild-Kostant-Rosenberg
theorem ([7, Theorem 46]) that the periodic cyclic cohomology of the algebra C(Ap) is spanned by a
cyclic cocycle of degree m + r. Accordingly, we conclude that

([®p,.e]. Q1) =0

because it equals the pairing of the Bott element B € K (Z p) and a cyclic cocycle in HC (2 p) with
degree only m < m +r.

Next, we turn to the index pairing of orbital integrals ®p, , for t € T™&. In this singular case, it is
clear that the regular part of higher orbital integrals will not contribute. For the higher part,

(=D)"™([®p,.¢ Inigh- Q1)

:/ ~ Tlndg(er@p) Trace| S)®--- @S, |- Z kMo (pMe 1) |.
17

eAp N’ G
el nMe @ e A(Indg (oM ®¢))

Note that the function

>, Mo (e, 1)

Mo @@ e A(Ind§ (oM ®¢))

is constant in ¢ € Zo. By (4.2), we see that

'/A Mo @ eA(Ind§ (oM ®¢))

= ), 2 2

TGSm ,]Mc ®¢| EA(Indg(O'M ®(P)) j():il,...jm_lil'm,jm:i()

Bsiv.; 053
[ [ ot s o2 S
As J A, 67‘(1) a‘1'(m)

N——— ———
m+1

KMo(UMo,t) './K Tlndg(gM@,‘p)Trace S1®---®8S,

‘We conclude that
([®@p,,¢]Inigh» Qa) =0

because it equals the paring of the Bott element B™*" € K (Z p) and a cyclic cocycle on C (Z p) of
degree m, which is trivial in HP®*"(C(Ap)).

For the singular part, by the Schur’s orthogonality, we have ([®p, ], Q1) = O unless A’ = 1. When
A’ = A, Theorem 4.18 gives us the following computation:

(=D"™([®@p,i ]2, Q)

2V
1 w w-A
= 2_r Z (_1) e (t)) . ;LEKP f(k) . Y}Hdgo(o'ly(]@(/?l) Trace S/l R ® S/!

N’
weWg
m+1
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For each fixed k%, it follows from Lemma 5.2 and Lemma 4.11 that

————
m+1

T, . T
[peXP S (oM o) race| S, ®---® S,

/ R nndgo(ffﬁ“@w) Trace| S)®---® S

@peAp —_— |lg=0
m+1
Bsiyji (1) 0Siy. 5 (@1)
— Z Z / R (_I)T'sio,jo(‘Pl) i1, j1 insJ
1€, 9 (1) O (m)

Jo=i15- - jm—1=im, jm=io=k TES;,

(B by)=1 ifk=1,...2""!
—(B". by =1 ifk=2""1+1,...2".

Combining all the above together and the fact that e(k) = 1 for k = 1,...2""! and (k) = —1 for
k=2""14+1,...2", we conclude that

([®p..i]. Q0) =[PP, ]2, 02) = (=D Z (=D)"e” ().

weWg

Appendix
A. Integration of Schwartz functions

Let a C s be the maximal abelian subalgebra of s and h = t & a be the most noncompact Cartan
subalgebra of g. Let u = £ ® is and U be the compact Lie group with Lie algebra u. Take v € a* an
integral weight. Let ¥ € t* @ ia” be an integral weight so that its restriction ¥|, , =i - v. Let G© be the
complexification of G. Suppose that V is a finite-dimensional irreducible holomorphic representation
of G with highest weight 7. Introduce a Hermitian inner product V so that U acts on V unitarily.

We take u,, to be a unit vector in the sum of the weight spaces for weights that restrict to v on a.

Lemma A.1. For any g € G, we have that

e < g - uy .
Proof. The proof is borrowed from [18, Proposition 7.17]. By the Iwasawa decomposition, we write
g = kan with a = exp(X) and X € a. Since u, is the highest vector for the action of a, n annihilates
u, . Thus,

”guv” = ||kauv|| = g<V’X>||kMV|| — e<V»X>_

The last equation follows from the fact that K C U acts on V in a unitary way. However, we have that
H(g) = X. This completes the proof. O

Proposition A.2. There exists a constant C,, > 0 such that

(v,H(g)) < C, - ligll;

where ||g|| is the distance from g - K to e - K on G /K.
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Proof. Since G = K exp(a™)K, we write g = k’ exp(X)k with X € a*. By definition,
lgll = lIXIl, and H(g) = H(ak).
By the above lemma, we have that
e A@R) = gk - u, ||,

We decompose k - u, into the weight spaces of a-action. That is,

n

k-u, = § Ci - Ui,

i=1

where ¢; € C, ||c;|| < 1 and u; is a unit vector in the weight spaces for weights that restricts to 4; € a*.

It follows that
lak -uy | =11 Y i -a-u]
i=1
N . (A.1)
< D llauill= ) X ]| < € X,
i=1 i=1
where
C,=n- sup {(a. |1 <i <n}.
Y €a,with [|Y [|=1
This completes the proof. O

Now let us fix a cuspidal parabolic subgroup P = M AN. To prove the integral in the definition
of ®p , defines a continuous cochain on C(G), we consider a family of Banach subalgebras S;(G),
t € [0, 0], of C;(G), which was introduced and studied by Lafforgue, [19, Definition 4.1.1].

Definition A.3. For r € [0, o], let S;(G) be the completion of C.(G) with respect to the norm v,
defined as follows:

vi(f) = sup {(1+ gl E@) | (2]}
geG

Proposition A.4. The family of Banach spaces {S;(G)};>¢ satisfies the following properties.

1. For everyt € [0,00), §;(G) is a dense subalgebra of C:(G) stable under holomorphic functional
calculus.

2 For0<t <ty <o, [flly < I flly, for f € Sy (G). Therefore, C(G) © S,(G) € Sy (G).

3. There exists a number dy > 0 such that the integral

f fP(xa) :=/ f(kxank™), xeM,ac A
KN

is a continuous linear map from S;.4,(G) to S;(MA) fort € [0, o).
4. There exists Ty > 0 such that the orbital integral

f flgxg™)

G/Zg (x)

is a continuous linear functional on S;(G) fort > Ty, Vx € G.
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Proof. Property 1 is from [19, Proposition 4.1.2]; Property 2 follows from the definition of the norm
v;; Property 3 follows from [10, Lemma 21]; Property 4 follows from [10, Theorem 6]. m]

Theorem A.S. For any fo,. .. fm € Sty+dy+1(G) fort > T, and x € M, the following integral

/ / H (1K) ... Hyn(gmk)
heM Zy (x) JKN J Gxm

fo(thh_lnk_l(gl . ~gm)_1) f1(81) - - fin(gm)
is finite and defines a continuous n-linear functional on Sgy+1,+1(G).
Proof. We put
fi(gi) = sup {|H:(gik) fi(g0)|}-
keK
By Proposition A.2, we find constants C; > 0 so that
|Hi(g:k)| < Cillgik|l = Cillg:ll-

It shows from Definition A.3 that f; belongs to Suy+7 (G), i = 1, ...n. Thus, the integration in (A.1) is
bounded by the following:

TR -

=/ / F(khxh™'nk™"),
heM/Zy (x) JKN

folkheh™nk (g1 - gm) ) - Fig0) - )|
(A.2)

where by Proposition A.4.2,

F=|fox fi*- = fin| € Sapury (G).

For any x € M,a € A, we introduce
FP) (xa) = / F(kxank™").
KN

By Proposition A.4.3, we have that F(¥) belongs to St, (M A). Applying Proposition A.4.4 to the group
M A, we conclude the orbital integral

/ FP) (hxh™") < +o0,
M | Zp (x)

from which we obtain the desired finiteness of the integral (A.2). Furthermore, with the continuity of
the above maps,

fi— fi, f0®fi®..® fon > F, F s FP), FP) FP) (hxh™),
M | Zp (x)

and we conclude that the integral (A.2) is a continuous n-linear functional on Sy +7y+1(G). m]
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B. Characters of representations of G
B.1. Discrete series representation of G

Suppose that rank G = rank K. Then, G has a compact Cartan subgroup T with Lie algebra denoted by
t. Moreover, dim(G/K) and dim(A,) are automatically even. We can decompose the roots into compact
roots and noncompact roots; that is,

R(t,9) = Re(t,9) URL(L, g).

We choose a set of positive roots R* (1, g) and define
1 1
Pc=§ Z a, Pn =7 Z a, P =PctPn.
aeRE(1,9) a€R;, (t.9)

The choice of R (t,f) determines a positive Weyl chamber t}. Let A} be the weight lattice in t*. Then,
the set

ANy =Ap Nt}

parametrizes the set of irreducible K-representations. In addition, we denote by Wk the Weyl group of the
compact subgroup K. For any w € W, let [(w) be the length of w, and we denote by (—1)" = (=1)!").

Definition B.1. Let 1 € Ay + p.. We say that A is regular if
(A, a) #0

for all @ € R, (1, g). Otherwise, we say A is singular.

dimG/K
2

Assume that g = and 7™ c T the set of regular elements in 7.

Theorem B.2 (Harish-Chandra). For any regular A € Ay + p., there is a discrete series representation
o (A) of G with Harish-Chandra parameter A. Its character is given by the following formula:

Twewy (=1)"e!

®(ﬂ) Treg — (_1)q : AYG., s
where
A? = (e 2 —e 2 )

aeR*(1,9)

Next, we consider the case when A € A}} +p. is singular. That is, there exists at least one noncompact
root a so that (1, @) = 0. Choose a positive root system R*(t,g) that makes A dominant; the choices
of R*(t, g) are not unique when A is singular. For every choice of R*(t, g), we can associate it with a
representation, denoted by o (4, R*). We call o(1, R*) a limit of discrete series representation of G.
Distinct choices of R*(t, g) lead to infinitesimally equivalent versions of (4, R*). Let ©(4, R*) be
the character of o-(4, R*). Then,

+ZweW (_l)we‘W/1
Treg = (_1)7 “

G
AT

0(1LR*)
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Moreover, for any w € Wi which fixes 4, we have that

O(1,w-R")

e = (D" -0, w - RY)

e (B.1)

See [18, P. 460] for more detailed discussion.

B.2. Discrete series representations of M

Let P = MAN be a cuspidal parabolic subgroup. The subgroup M might not be connected in general.
We denote by M the connected component of M and set

M = MoZy,

where Zj, is the center for M.

Let oy be a discrete series representation (or limit of discrete series representation) of the connected
group M and y be a unitary character of Zj,. If oy has a Harish-Chandra parameter A, then we assume
that

A=-pm

=e TrviNZpg®

X |TM NZt
We have the well-defined representation oy ® y of M¥, given by

oo x(gz) = o(g)x(2),

forg e Myand z € Zy,.

Definition B.3. The discrete series representation or limit of discrete series representation o~ for the
possibly disconnected group M induced from oy ® y is defined as

o= Ind%n (o0 B x).

Discrete series representations of M are parametrized by a pair of Harish-Chandra parameter A and
unitary character y. Next, we show that y is redundant for the case of M,. Denote

o a = the Lie algebra of A;
o tps = the Lie algebra of the compact Cartan subgroup of M;
o aps = the maximal abelian subalgebra of s " m, whereg =t ® s;

Then, tp; @ a is a Cartan subalgebra of g, and as = ap; @ a is a maximal abelian subalgebra in s.
Let @ be a real root in R(g, tys @ a). Restrict @ to a and extend it by O on a,, to obtain a restricted
root in R(g, as). Form an element H, € a5 by the following:

a(H)=(H,H,), H €as.

It is direct to check that

27riHa)

Ya = eXp( e

is a member of the center of M. Denote by Fj, the finite group generated by all y,, induced from real
roots of A(g, tys @ a). It follows from Lemma 12.30 in [18] that

M = MoFyy. (B.2)
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Lemma B.4. For the maximal cuspidal parabolic subgroup P, = MsA.N,, we have that
Zym, S (Mo)o.

Proof. There is no real root in R(bo,g) since the Cartan subgroup H, is maximally compact. The
lemma follows from (B.2). |

It follows that discrete series or limit of discrete series representations of M, are para-metrized by
Harish-Chandra parameter 1. We denote them by o-(1) or o (4, R*).

B.3. Induced representations of G

Let P = M AN be a cuspidal parabolic subgroup of G and L = M A as before. For any Cartan subgroup
Jof L, let {J,J2,...,Ji} be a complete set of representatives for distinct conjugacy classes of Cartan
subgroups of L for which J; is conjugate to J in G. Suppose that x; € G satisfy J; = x,-in", and for
j €J, write j; =x;jx; .

Theorem B.5. Let O(P, o, ) be the character of the basic representation Indg (o ® ¢). Then,

o O(P, 0, ) is a locally integrable function.

o O(P, o, ) is nonvanishing only on Cartan subgroups of G that are G-conjugate to Cartan subgroups

of L.
o Forany j € J, we have

k
OP.a. @) ()= Y IWUL DI IAGGI (D) 1A% 00il- O (wiily, ) e(wiiln,)).
i=1 weW (J;,G)
(B.3)

where @M is the character for the Mp representation o, and the definition of A?,- (and Ai ) is
explained in Theorem B.2.

Proof. The first two properties of ®(P, o, ¢) can be found in [18, Proposition 10.19], and the last
formula has been given in [15, Equation (2.9)]. m]

Corollary B.6. Suppose that P, is the maximal cuspidal parabolic subgroup of G and o™°(Q) is a
(limit of) discrete series representation with Harish-Chandra parameter A. We have that

Swek (=1)" e (hy) - ¢(hyp)
Agc(h)

)

@(PO,UMO (/l),«p)(h) -

forany h € H.®.

Proof. The corollary follows from (B.3) and Theorem B.2. O

C. Description of K(C)(G))

Without loss of generality, we assume that dim A, = m is even. Otherwise, we can replace G by G x R.

C.1. Generalized Schmid identity

Suppose that P = M AN is a cuspidal parabolic subgroup of G and H = TA is its associated Cartan
subgroup. We assume that P is not maximal, and thus, H is not the most compact. By Cayley transform, we
can obtain a more compact Cartan subgroup H' = T’ A’. We denote by P’ = M’A’N’ the corresponding
cuspidal parabolic subgroup. Here, A = A’ X R.
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Let o be a (limit of) discrete series representation of M, and
veleA=A xR.
Suppose that
7=Ind§ (c® (v®1))
is a basic representation. Then, 7 is either irreducible or decomposes as follows:
Ind§ (o ® (v® 1)) = Ind$, (6; ® v) ® Ind$, (6, ® v).

Here, 6, and 6, are limit of discrete series representations of M’. Moreover, they share the same Harish-
Chandra parameter but correspond to different choices of positive roots. On the right-hand side of the

above equation, if P’ is not maximal, then one can continue the decomposition for Indg, (o/®v),i=1,2.
Eventually, we get

Ind§ (o ® (¢ © 1)) = ) Ind§ (5; @ ¢), (C.1)

where

e®1€eAp=A,xAs.

The number of components in the above decomposition is closely related to the R-group which we will
discuss below. We refer to [18, Corollary 14.72] for detailed discussion.
As a consequence, we obtain the following lemma immediately.

Lemma C.1. Let P, = M, AN, be the maximal cuspidal parabolic subgroup. If o ® ¢ is an irreducible
representation of M, A., then the induced representation

Ind§ (o ®¢)
is also irreducible.

C.2. Essential representations

Clare-Crisp-Higson proved in [4, Section 6] that the group C*-algebra C;(G) has the following decom-
position:

GG =z P GO, (C2)

[P,0]€P(G)

where
s G Wo
Cr(G)[P,O'] = /C(IndP(O')) .

For principal series representations Indg (00 ® ), Knapp and Stein [18, Chapter 9] showed that the
stabilizer W, admits a semidirect product decomposition

Wo = W;_ =R,
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where the R-group R, consists of those elements that actually contribute nontrivially to the intertwining
algebra of Indg (0 ® ). Wassermann notes the following Morita equivalence:

K(ndS ()" ~ Co(Ap/W) = Ry (C.3)

Definition C.2. We say that an equivalence class [P, o] is essential if W, = R,. We denote it by
[P, 0 ]ess. In this case,

R

Wo =Ro (ZZ)r

is obtained by application of all combinations of r = dim(Ap) — dim(A,) commuting reflections in
simple noncompact roots.

As before, let T be the maximal torus of K. We denote by A% and A} the weight lattice and its
intersection with the positive Weyl chamber of K. The following results can be found in [5, 6].

Theorem C.3 [6]. There is a bijection between the set of [P, 0 less and the set Ay, + p. such that

o for regular A € Ay + p — that is,
A,a)y#0

for all noncompact roots a € R,, — then the correspondent essential class | P, o] satisfies that W is
trivial, P = P,, and o is the discrete series representation of M, with Harish-Chandra parameter A.
In addition,

Indgo (c®p)

are irreducible for all ¢ € A,
o Otherwise, if (4, @) =0 for some a € R, then

2r
ndg (s @ ¢ ® 1) = (P ndg (5 @ ¢), (C.4)

i=1

where 6; is a limit of discrete series representation of Mo with Harish-Chandra parameter A, ¢ € A,
and p® 1 € Ap.

The computation of K-theory group of C;(G) can be summarized as follows.

Theorem C.4 [6]. The K-theory group of C;(G) is a free abelian group generated by the following
components; that is,

Ko(CH(G) = @D Ko(K(CH(G)ip,o))

(Poo]es
= @ KO(IC(Inng')W")

[P

P KcErme P Ko((CO(R)xZZ)rQbCO(R’”))

regular part singular part

P z

AEN| 4P

(C.5)

IR

I3
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Example C.5. Let G = SL(2,R). The principal series representations of SL(2,R) are para-metrized
by characters

(0,) € MA = {1} xR

modulo the action of the Weyl group Z,. One family of principal series representations is irreducible at
0, while the other decomposes as a sum of two limit of discrete series representations. At the level of
C;(G), this can be explained as

MAJZy = {+1} x [0, 00) U {~1} X [0, 00)
= {+1} xR/Zy U{-1} xR/Z,,

and the principal series representations contribute summands to C:(SL(2,R)) of the form
Co(R/Zy) and Co(R)=Z,

up to Morita equivalence. In addition, SL(2,R) has discrete series representations each of which
contributes a summand of C to C(SL(2,R)), up to Morita equivalence. We obtain

CH(SL(2,R)) ~ Co(R/Za) ® Co(R) xZr & (] C.
nez\ {0}

Here, the part Co(R/Z;) corresponds to the family of spherical principal series representations, which
are not essential. Then, (C.5) can be read as follows:

Ko(C; (SL(2.R))) = Ko((Co(R) = Z2) ) & €] Ko (O).
n#0

C.3. The formula for orbital integrals

In this subsection, we summarize the formulas and results in [14, 15]. If P is the minimal parabolic
subgroup with the most noncompact Cartan subgroup H, then the Fourier transform of orbital integral
equals the character of representation. That is, for any 7 € H™®,

FH = .FH . =
Fi0 = [ Yl -dh = (0 ()

or equivalently,
Fa = [ e X -dy.
xX€H

For any arbitrary cuspidal parabolic subgroup P, the formula for orbital integral is much more compli-
cated, given as follows:

Fly = Y /X _0(0.0)(f) - (0. x. h)dy. 6)

QePar(G,P) VX &/
Remark C.6. In the above formula,

o the sum ranges over the set

Par(G, P) = {cuspidal parabolic subgroup Q of G|Q is no more compact than P}.
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o J is the Cartan subgroup associated to the cuspidal parabolic subgroup Q.

o y is a unitary character of J, and ®(Q, y) is a tempered invariant eigen-distribution defined in [14].
In particular, ®(Q, y) is the character of parabolic induced representation or an alternating sum of
characters which can be embedded in a reducible unitary principal series representation associated
to a different parabolic subgroup.

o The function «© is rather complicated to compute. Nevertheless, for the purpose of this paper, we
only need to know the existence of functions k9, which has been verified in [28].

In a special case when P = G and H =T, the formula (C.6) has the following more explicit form.
Theorem C.7. For any t € T"8, the orbital integral

Fiin=" >, ), D" 00)f)

regular A€A} +pe w €WK

D DL EDT e e () .

singular 1A€Ay +p. weWK

.G
+[r€6high O(m)(f) - k% (m,t)dy.

temp
In the above formula, there are three parts:

o regular part: ©(Q) is the character of the discrete series representation with Harish-Chandra param-
eter A;

o singular part: for singular 1 € A} + pc, we denote by n(2) the number of different limit of discrete
series representations with Harish-Chandra parameter A. By (B.1), we can organize them so that

®1 (/l) Treg == 6% (/l) T reg = _6%4_1 (/l) Treg == _@)n(/l) (/l) Treg*
We put
== n()
OW: = —- (D &~ Y @),
n 5 = 4
-2
high

o higher part: Giemp I8 @ subset of Giemp consisting of irreducible tempered representations which are
not (limit of) discrete series representations.

Acknowledgements. We would like to thank Nigel Higson, Peter Hochs, Markus Pflaum, Hessel Posthuma and Hang Wang
for inspiring discussions. Our research is partially supported by the National Science Foundation. We would like to thank the
Shanghai Center of Mathematical Sciences for hosting our visits, where parts of this work were completed.

Competing interest. The authors have no competing interest to declare.

References

[1] D. Barbasch and H. Moscovici, ‘L2-index and the Selberg trace formula’, J. Funct. Anal. 53(2) (1983), 151-201.

[2] P. Baum, A. Connes and N. Higson, ‘Classifying space for proper actions and K -theory of group C*-algebras’, in C*-
algebras: 1943—1993 (San Antonio, TX, 1993) (Contemp. Math.) vol. 167 (American Mathematical Society, Providence,
RI, 1994), 240-291.

[3] P. Blanc and J.-L. Brylinski, ‘Cyclic homology and the Selberg principle’, J. Funct. Anal. 109(2) (1992), 289-330.

[4] P. Clare, T. Crisp and N. Higson, ‘Parabolic induction and restriction via C*-algebras and Hilbert C*-modules’, Compos.
Math. 152(6) (2016), 1286-1318.

[5] P.Clare, N. Higson and Y. Song, ‘On the Connes-Kasparov isomorphism II. The Vogan classification of essential components
in the tempered dual’, Preprint, 2022, arXiv:2202.02857.

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press


https://arxiv.org/abs/2202.02857
https://doi.org/10.1017/fms.2024.115

Forum of Mathematics, Sigma 43

[6] P. Clare, N. Higson, Y. Song and X. Tang, ‘On the Connes-Kasparov isomorphism I. The reduced C*-algebra of a real
reductive group and the K-theory of the tempered dual’, Preprint, 2022, arXiv:2202.02855.

[7]1 A. Connes, ‘Noncommutative differential geometry’, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985), 257-360.

[8] A. Connes and H. Moscovici, ‘The L2-index theorem for homogeneous spaces of Lie groups’, Ann. of Math. (2) 115(2)
(1982), 291-330.

[9] Harish-Chandra, ‘Some results on an invariant integral on a semisimple Lie algebra’, Ann. of Math. (2) 80 (1964), 551-593.

[10] Harish-Chandra, ‘Discrete series for semisimple Lie groups. II. Explicit determination of the characters’, Acta Math. 116
(1966), 1-111.

[11] Harish-Chandra, ‘“Two theorems on semi-simple Lie groups’, Ann. of Math. (2) 83 (1966), 74—128.

[12] Harish-Chandra, ‘Harmonic analysis on real reductive groups. I. The theory of the constant term’, J. Functional Analysis 19
(1975), 104-204.

[13] Harish-Chandra, ‘Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula’,
Ann. of Math. (2) 104(1) (1976), 117-201.

[14] R. A. Herb, ‘Fourier inversion of invariant integrals on semisimple real Lie groups’, Trans. Amer. Math. Soc. 249(2) (1979),
281-302.

[15] R. A. Herb, ‘Fourier inversion and the Plancherel theorem for semisimple real Lie groups’, Amer. J. Math. 104(1) (1982),
9-58.

[16] P. Hochs, Y. Song and X. Tang, ‘An index theorem for higher orbital integrals’, Math. Ann. 382(1-2) (2022), 169-202.

[17] P. Hochs and H. Wang, ‘Orbital integrals and K-theory classes’, Ann. K-Theory 4(2) (2019), 185-209.

[18] A. W. Knapp, Representation Theory of Semisimple Groups (Princeton Landmarks in Mathematics) (Princeton University
Press, Princeton, NJ, 2001). An overview based on examples. Reprint of the 1986 original.

[19] V. Lafforgue, ‘K -théorie bivariante pour les algebres de Banach et conjecture de Baum-Connes’, Invent. Math. 149(1)
(2002), 1-95.

[20] J.-L. Loday, Cyclic Homology (Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]) vol. 301, second edn. (Springer-Verlag, Berlin, 1998). Appendix E by Maria O. Ronco, chapter 13 by the author
in collaboration with Teimuraz Pirashvili.

[21] V. Mathai and W. Zhang, ‘Geometric quantization for proper actions’, Adv. Math. 225(3) (2010), 1224-1247. With an
appendix by Ulrich Bunke.

[22] V. Nistor, ‘Cyclic cohomology of crossed products by algebraic groups’, Invent. Math. 112(3) (1993), 615-638.

[23] V. Nistor, ‘Higher orbital integrals, Shalika germs, and the Hochschild homology of Hecke algebras’, Int. J. Math. Math.
Sci. 26(3) (2001), 129-160.

[24] M. Pflaum, H. Posthuma and X. Tang, ‘The localized longitudinal index theorem for Lie groupoids and the van Est map’,
Adv. Math. 270 (2015), 223-262.

[25] M. Pflaum, H. Posthuma and X. Tang, ‘The transverse index theorem for proper cocompact actions of Lie groupoids’,
J. Differential Geom. 99(3) (2015), 443-472.

[26] P. Piazza and H. Posthuma, ‘Higher genera for proper actions of lie groups’, Ann. K-Theory, to appear.

[27] P. Piazza, H. Posthuma, Y. Song and X. Tang, ‘Higher orbital integrals, rho numbers and index theory’, Preprint, 2021,
arXiv: 2108.0982.

[28] P.J. Sally, Jr. and G. Warner, ‘The Fourier transform on semisimple Lie groups of real rank one’, Acta Math. 131 (1973),

1-26.

[29] D. A. Vogan, Jr., Representations of Real Reductive Lie Groups (Progress in Mathematics) vol. 15 (Birkhduser, Boston,
1981).

[30] N. R. Wallach, Real Reductive Groups. Il (Pure and Applied Mathematics) vol. 132 (Academic Press, Inc., Boston, MA,
1992).

[31] H. Wang, ‘L>?-index formula for proper cocompact group actions’, J. Noncommut. Geom. 8(2) (2014), 393-432.

[32] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups. I1I (Die Grundlehren der mathematischen Wissenschaften) Band
189 (Springer-Verlag, New York-Heidelberg, 1972).

[33] A. Wassermann, ‘Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes
réductifs’, C. R. Acad. Sci. Paris Sér. I Math. 304(18) (1987), 559-562.

[34] A. Wassermann, ‘Cyclic cohomology of algebras of smooth functions on orbifolds’, in Operator Algebras and Applications,
Vol. 1 (London Math. Soc. Lecture Note Ser.) vol. 135 (Cambridge Univ. Press, Cambridge, 1988), 229-244.

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press


https://arxiv.org/abs/2202.02855
https://doi.org/10.1017/fms.2024.115

	1 Introduction
	2 Preliminaries
	2.1 Linear real reductive Lie group and Cartan subgroups
	2.2 Harish-Chandra's Schwartz function
	2.3 Cyclic cohomology

	3 Higher orbital integrals
	3.1 Higher cyclic cocycles
	3.2 Cocycle condition
	3.3 Cyclic condition

	4 The Fourier transform of ΦP,x
	4.1 Parabolic induction
	4.2 Wave packets
	4.3 Derivatives of Fourier transform
	4.4 Cocycles on "0362Gtemp
	4.5 Proof of Theorem 4.15
	4.6 Proof of Theorem 4.18

	5 Higher Index Pairing
	5.1 Generators of K0(C*r(G))
	5.2 The main results
	5.3 Regular case
	5.4 Singular case

	A Integration of Schwartz functions
	B Characters of representations of G
	B.1 Discrete series representation of G
	B.2 Discrete series representations of M
	B.3 Induced representations of G

	C Description of K(C*r(G))
	C.1 Generalized Schmid identity
	C.2 Essential representations
	C.3 The formula for orbital integrals

	References

