
MCCS: A Service-based Approach to Collective Communication
for Multi-Tenant Cloud

Yongji Wu1 Yechen Xu1 Jingrong Chen1

Zhaodong Wang2 Ying Zhang2 Matthew Lentz1 Danyang Zhuo1

1Duke University 2Meta

Abstract

Performance of collective communication is critical for distributed

systems. Using libraries to implement collective communication

algorithms is not a good �t for a multi-tenant cloud environment

because the tenant is not aware of the underlying physical net-

work con�guration or how other tenants use the shared cloud

network—this lack of information prevents the library from select-

ing an optimal algorithm. In this paper, we explore a new approach

for collective communication that more tightly integrates the im-

plementation with the cloud network instead of the applications.

We introduce MCCS, or Managed Collective Communication as a

Service, which exposes traditional collective communication ab-

stractions to applications while providing control and �exibility

to the cloud provider for their implementations. Realizing MCCS

involves overcoming several key challenges to integrate collective

communication as part of the cloud network, including memory

management of tenant GPU bu�ers, synchronizing changes to col-

lective communication strategies, and supporting policies that in-

volve cross-layer tra�c optimization. Our evaluations show that

MCCS improves tenant collective communication performance by

up to 2.4× compared to one of the state-of-the-art collective commu-

nication libraries (NCCL), while adding more management features

including dynamic algorithm adjustment, quality of service, and

network-aware tra�c engineering.

CCS Concepts

• Networks→ Data center networks; • Computing methodolo-

gies → Machine learning; • Computer systems organization →

Cloud computing.

Keywords

Collective communication, cloud computing, distributed training

ACM Reference Format:

Yongji Wu, Yechen, Xu, Jingrong Chen, Zhaodong Wang, Ying Zhang,

Matthew Lentz, Danyang Zhuo. 2024. MCCS: A Service-based Approach to

Collective Communication for Multi-Tenant Cloud. In ACM SIGCOMM 2024

Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3651890.3672252

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672252

Figure 1: Comparison between existing approaches and our

approach (MCCS) to collective communication.

1 Introduction

Collective communication is fundamental to supporting many dis-

tributed computing workloads. Many popular collective commu-

nication libraries exist today, including the NVIDIA Collective

Communication Library (NCCL) [24], Intel MPI library [15], Open-

MPI [12], and Gloo [11]. These libraries provide common collective

communication primitives such as AllReduce and AllGather, which

developers leverage by linking these libraries directly into their ap-

plications. Beneath their high-level APIs, these libraries implement

primitives through various algorithms (e.g., AllReduce via Rings

or Trees) along with heavily-optimized, and sometimes hardware-

speci�c implementations (e.g., NVIDIA SHARP [26]).

Today, distributed workloads have increasingly moved to the

cloud for the ease of infrastructure management and resource pool-

ing. In a public cloud environment, however, existing collective

communication libraries have shown several shortcomings. First,

choosing the most e�cient algorithm requires knowledge of the

physical network topology and link utilization, which are not avail-

able to cloud tenants. As a consequence, this may lead to sub-

optimal decisions between ring- and tree-based algorithms and

their con�gurations (e.g., participant ordering in a ring). Second,

current libraries (e.g., NCCL) decide the exact strategy at initial-

ization time and will not change the chosen strategy once the job



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

starts. While this is �ne for single-tenant settings (e.g., supercom-

puters), it is not ideal for multi-tenant settings because the best

choice of algorithm depends on the other tenants’ communica-

tion patterns. Finally, current libraries often make optimization

choices in a manner that is agnostic to the underlying physical net-

work con�guration; however, these optimizations frequently rely

on assumptions regarding the con�guration. For instance, NCCL

instantiates multiple TCP/RDMA connections between nodes to im-

prove throughput by exploiting multiple network paths in parallel

even though the connections may be routed via the same (shared)

physical path.

In this paper, we propose a new approach that more tightly inte-

grates collective communication with the cloud network instead of

the applications. We call our approach MCCS, which is short for

Managed Collective Communication as a Service. MCCS exposes

traditional collective communication abstractions to applications,

yet decouples the implementation from the applications themselves

to extend more control to the cloud infrastructure provider. With

MCCS, tenants are no longer responsible for implementing collec-

tives, which often relied on information unavailable to the tenants

themselves (e.g., physical con�guration, properties of other ten-

ants’ applications). Meanwhile, MCCS extends signi�cant �exibility

to the cloud provider to support a variety of bene�ts: First, the

provider can easily adopt custom, proprietary collective commu-

nication approaches without the need for changing existing user

applications. Second, the provider can enforce �ne-grained qual-

ity of service (QoS) policies at the level of collective operations.

Third, the provider is no longer forced to choose between provid-

ing strong performance or the con�dentiality of their proprietary

infrastructure.

Achieving our goals for MCCS requires us to address several key

challenges. First, we need to resolve the tension between decoupling

collectives from the application while maintaining the existing

interface. Second, collective communication is a group operation

that requires synchronization among a number of components

(e.g., application, service, hardware). Third, we need to support

policies driven by the changing status of the cluster which can

improve performance at both the logical-level (e.g., ring strategy)

and physical-level (e.g., �ow scheduling).

We implement a prototype for MCCS that targets applications us-

ing GPU-based computation and provide a lightweight shim library

that connects applications with our system service. Our system

can easily integrate existing collective algorithms implemented

in NCCL through their CUDA kernels, as well as support more-

customized algorithms. We evaluate the performance of MCCS

using a small scale testbed and large scale simulations. Our testbed

results have shown that MCCS consistently outperforms NCCL by

up to 2.4x in terms of algorithm bandwidth, and improves training

workloads in a multi-tenant improves by up to 34%. Our simulation

results have demonstrated that MCCS enables an overall speed-

up of 3.4x on a large-scale cluster. Our source code is available at

https://github.com/phoenix-dataplane/MCCS/.

In this paper, we make the following contributions:

• A new architecture for supporting collective communication

in multi-tenant scenarios, shifting control from applications

to the cloud network to improve performance.

0% 25% 50% 75% 100%
A
B
C
D

G
ro
up

Idle Memcpy Compute Comm

Figure 2: Training time breakdown of models from various

product groups at a large social network company.

• An approach to enable dynamic recon�guration of collective

implementations at runtime, which we leverage to demon-

strate strong policies such as collaborative transfer schedul-

ing across applications.

• A prototype implementation of MCCS targeting distributed

machine learning workloads that is conceptually a drop-

in replacement for NCCL, along with an evaluation that

demonstrates the bene�ts via real-world traces on a testbed

deployment and simulator.

2 Background

We �rst describe how existing collective communication libraries

work and their importance in deep learning. We then discuss why

they are an ill �t for a multi-tenant network.

2.1 Collective Communication Libraries

Collective communication is a fundamental building block for par-

allel computing. Common collective operators include broadcast,

reduce, allgather, reducescatter, and allreduce. To complete a col-

lective operation, multiple participants perform a sequence of send

and receive actions. The e�ciency of these operations largely relies

on algorithms that reduce network transmission. Typical collective

communication libraries include NCCL [24], OpenMPI [12], and

Gloo [11].

How does a collective communication library picks a strategy for

a distributed job? A collective communication library has several

built-in algorithms, and the library contains logic to select one of

them based on a set of static factors like data length and the number

of participants. Taking AllReduce as an example, OpenMPI uses

several criteria to choose the most suitable collective algorithm,

including a combination of factors such as the size of the data, the

number of processes involved, the network architecture, and the

bandwidth and latency requirement of the algorithm [14, 32].

The performance of collective communication has recently re-

ceived signi�cant attention in the research community and industry,

due to the rise of distributed deep learning. Much e�orts have been

place in designing algorithms to improve the performance of col-

lective operations such as AllReduce and AllGather [7, 29, 36, 40,

41, 44], as they play critical role in deciding the end-to-end deep

learning performance.

Figure 2 shows a statistics of contributions of to the overall train-

ing time of models across four major product groups at one of

the largest social network company in the world. Exposed (non-

overlapping) computation, CPU↔GPU memory copy, communi-

cation time, and GPU idle time are measured. This breakdown

con�rms that data communication constitutes a signi�cant portion

of the training time.



MCCS: A Service-based Approach to Collective Communication for Multi-Tenant Cloud ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

2.2 Using Collective Communication Libraries
in a Multi-Tenant Network?

In a multi-tenant datacenter network, traditional collective commu-

nication libraries face several challenges. Firstly, cloud networks

often provide a simpli�ed, black-box abstraction, where all tenant

instances are connected through a big, virtual switch. However,

these instances may actually be distributed across multiple physical

racks, which are interconnected to upper-layer switches through

multiple links, sometimes with oversubscription.

This lack of visibility into the physical topology can lead to

suboptimal collective algorithm selection or con�guration. For in-

stance, in a ring-based collective algorithms where data transfer

follows worker ranks (which are assigned by users), Without topol-

ogy information, randomly assign ranks to workers in di�erent

racks could lead to the ring to cross racks back and forth multiple

times, causing substantially more inter-rack tra�c than necessary.

Figure 3 illustrates the network overhead introduced by non-

optimal ring con�guration with respect to job sizes. We have a

production trace collected at one of the largest social network

company, whose production cluster uses a spine-leaf architecture.

Each rack connects two hosts, each with 8 GPUs and 8 NICs. We

measure a job’s network overhead using cross-rack ratio, where

is the number of cross-rack �ows of the collective ring used by

the job, normalized to that of an optimal ring con�guration. A

ring con�guration in the worst case introduces 2x cross-rack �ows

compared to the optimal one. The performance degradation would

only grow as more hosts are placed under a rack. We simulate a

cluster with the same scale as the company’s and computes the

expected cross-rack ratios with di�erent job sizes, if ring ordering

is randomly chosen and we assume jobs are perfectly packed to

hosts. The worst case overhead becomes 4x in this scenario. We

also �nd that the overhead grows with respect to the job size.

Further, in today’s multi-path datacenters, the most commonly

used network load balancing strategy is Equal-Cost Multi-Path

(ECMP). However, ECMP may not e�ciently handle multiple �ows

from a ring-based collective operation, potentially leading to con-

gestion on a single physical path and reduced throughput.

NetHint [8] suggests letting a cloud provider expose its network

topology and link utilization. This transparency will potentially

enable a collective communication library adjust its choices of col-

lective communication at runtime. However, this approach raises

security and privacy concerns, because a cloud provider has incen-

tive to maintain the con�dentiality of its network topology and link

utilization.

In summary, cloud tenants face a signi�cant challenge in select-

ing an optimal collective communication algorithm due to the lack

of visibility into the physical network’s structure. Providing tenants

with access to this information could introduce security risks for

cloud providers, as it exposes sensitive details of their infrastruc-

ture. A viable approach appears to be for the cloud provider to assume

responsibility for choosing the collective communication strategy on

behalf of the tenant. Our system, MCCS, explores this approach.

3 Overview

MCCS is a new design of collective communication for the multi-

tenant cloud setting.We have following goals. First, a cloud provider

10
1

10
2

10
3

Job Size (GPUs)

1.0

1.5

2.0

C
ro

ss
-r

ac
k 

ra
tio

(a) [Empirical] 2 hosts/rack

10
1

10
2

10
3

Job Size (GPUs)

1

2

3

4

C
ro

ss
-r

ac
k 

ra
tio

(b) [Simulated] 4 hosts/rack

Figure 3: Number of cross rack �ows normalized to optimal

ring from both production trace and simulation.

can decide the collective communication strategy for a cloud ten-

ants. The cloud tenant calls a higher-level collective communica-

tion interface like AllReduce, instead of instantiating point-to-point

data transfer by a collective communication library. Second, the

tenant has no knowledge of what algorithm is chosen and does not

know the cloud’s network topology, link utilization, etc. The cloud

provider hides all these sensitive information inside a cloud service.

Third, the cloud provider can change the collective communication

strategy without interrupting the running tenant to accommodate

changes in the multi-tenant network (e.g., to accommodate a new

tenant’s workload, to leverage more available bandwidth as other

tenants leave the network). Finally, our new design will enable the

cloud provider to do other optimizations (e.g., joint optimization

of collective communication and �ow scheduling, having multiple

tenants’ workloads use the bandwidth in an interleaved fashion).

MCCS, realizes collective communication as a cloud service in-

stead of an application library. At the same time, MCCS maintains

a similar interface as traditional collective communication libraries

such as NCCL. Figure 1 presents an overview of the various compo-

nents of MCCS and its architecture di�erent compared to traditional

collective communication libraries. MCCS service runs as a trusted,

user-space process with access to all GPUs and NICs on the host.

User applications on the host only have access to one or more GPUs

allocated to the application. Applications are compiled with MCCS

shim library, which communicates with MCCS service using shared

host and GPU memory. MCCS service is controlled by the cloud

provider, and applications can only access it through its collective

communication APIs.

MCCS service issues collective communication operations for

GPU bu�ers on behalf of the cloud tenant. MCCS service decides

the collective communication strategy and can change the strategy

at runtime. Because MCCS service is controlled by a cloud provider,

for every �ow in the collective communication, MCCS service can

also decide its network path in the cloud network using source

routing or other path control schemes. Further, MCCS service can

enforce QoS policies by controlling �ow paths and the timing of

collective communication operation execution.

4 Design

In this section, we break down and discuss the design of MCCS in

three parts. First, we look at how MCCS meets the existing collec-

tive API while decoupling collectives from the application. Next,



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

we discuss how MCCS supports the data path for collective com-

munication with support for runtime recon�gurability. Finally, we

present our solution to decouple policy frommechanism and enable

�exible management of collectives. While our design is agnostic

to any particular collective communication implementation, we

focus on the NCCL throughout this section; other GPU-based collec-

tive communication libraries such as RCCL [38] and oneCCL [28]

maintain similar semantics and terminologies as NCCL.

4.1 Collective Interface

To support collective communication as a service, MCCS needs to:

1) provide an interface to applications for invoking collectives, and

2) enable synchronization between application computation and

collective operations. One goal that constrains our design is a desire

to maintain as close to the same interface as existing libraries, like

NCCL, so that MCCS could act as a drop-in replacement.

NCCL provides APIs that build on core CUDA primitives for

applications to issue collectives. A CUDA stream is similar to the

notion of a thread, allowing applications to enqueue a sequence

of operations (e.g., kernels) to be executed in-order by the GPU.

An application can use multiple threads to express concurrency

between operations by enqueuing them on di�erent streams. When

invoking a NCCL collective API, developers specify the stream that

the collective will be enqueued on; this is used to capture the data

dependency between a collective and the (prior) computations that

generate the data for the collective to operate over.

To realize our design for MCCS, we need to address two chal-

lenges that relate to the inherent isolation between applications

that leverage CUDA. First, similar to host memory, GPU memory

between di�erent processes is isolated by default. How can MCCS

service GPU bu�ers of applications and implement collectives on

them? Second, due to the fact that CUDA streams are limited within

a single process, how can MCCS service’s APIs maintain the same

thread semantics for the application’s CUDA calls, as respected by

NCCL? We will discuss each of these in turn.

Memory Management. We address the memory management

challenge by choosing to redirect control over GPU memory allo-

cations and deallocations to the MCCS service. Our shim library

provides APIs that applications can invoke directly to allocate mem-

ory that will be accessible to both the application and the MCCS

service; the application can use the existing CUDA APIs to man-

age private bu�ers that are not directly used as part of collective

operations. Alternatively, to minimize the changes to existing ap-

plications, we also support the redirection of all allocations to the

MCCS service.

The MCCS shim issues an allocation request to the MCCS service

over the shared memory command queue between the application

and the service. A dedicated front-end engine for the given applica-

tion will handle the request by internally allocating memory on the

speci�ed GPU device and obtain an inter-process memory handle

to share with the application. The MCCS shim receives and opens

this handle to obtain the underlying device pointer to the allocated

memory, which it returns to the application. The application can

then use these pointers freely for invoking compute operations,

while for collective operations, MCCS shim passes an identi�er for

the memory allocation and an o�set to MCCS service. The service

will check whether the data bu�er user passes is within a valid

allocation before performing the operation. This process follows

similarly for deallocation requests – the shim is responsible for

closing the inter-process memory handle before forwarding the

request to the MCCS service.

Synchronization.We address the synchronization challenge by

designing an event-based mechanism that maintains the traditional

semantics of CUDA streams, which enables the sequential order-

ing of dependent compute and collective operations. Since CUDA

streams belong to a single application and cannot be shared (unlike

GPU memory via inter-process handles), we need an alternative

approach for MCCS. We leverage the CUDA event primitive, which

provides the ability to enqueue a stream operation that blocks wait-

ing on the noti�cation of a event that was enqueued on a (di�erent)

stream. Unlike streams, events can be shared via inter-process han-

dles.

MCCS addresses synchronization at the level of communicators,

a standard abstraction used in collective communication libraries

(e.g., NCCL) to specify a subset of Ĥ nodes, each assigned a unique

rank in [0, Ĥ), to take part in collective operations. While an ap-

plication may use an arbitrary set of streams for managing its

computation and collective operations, the MCCS service main-

tains one stream per communicator. When an application issues a

collective operation for a given communicator, the MCCS service

enqueues the communication kernels that implement the collective

request on the associated stream.

To enable communication kernels on MCCS-managed streams

to wait for compute kernels on application-managed streams to

�nish (and vice-versa), we need to introduce event management

operations into the MCCS shim. When a communicator is created,

the MCCS service also creates a corresponding event object and

obtains an inter-process event handle that it returns to the MCCS

shim (along with the communicator handle). The MCCS shim will

use this event to enqueue an operation on the application’s stream

to block waiting for the collective to �nish prior to executing any

subsequent operations. Likewise, the MCCS shim also creates an

event object for each application stream to share with the MCCS

service. Instead of hooking directly into CUDA’s stream manage-

ment API, the MCCS shim creates events in an on-demand fashion

whenever a new application stream is used for invoking a collective

operation. The MCCS shim shares an inter-process event handle

along with a stream identi�er with the MCCS service, which it

uses to enqueue an operation on the internal stream for the com-

municator to block waiting for any computation to �nish prior to

executing the subsequent communication kernel.

Now, we have developed an approach for decoupling the collec-

tive communication from the application while still providing the

same interface from our MCCS service. Next, we will explore how

MCCS actually implements the communication that underlies col-

lective operations while enabling more manageability as compared

to existing approaches.

4.2 Collective Communication

To support dynamic recon�guration of the data path subject to

policies, we need to decouple the data path setup from the commu-

nicator’s initialization. In NCCL, most of the work that con�gures



MCCS: A Service-based Approach to Collective Communication for Multi-Tenant Cloud ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

the data path takes place when a communicator is created by an

application, where NCCL �rst attempts to detect the intra-host

topology (e.g., NVLink between GPUs) to �gure out how to connect

all of the intra-host GPUs, while also identifying the best NIC to use.

After the intra-host topology is decided, each rank communicates

with the root (i.e., rank 0) to form an AllGather TCP/IP-based ring

for exchanging control information. At this point, NCCL can set up

the underlying algorithm for implementing collective operations by

constructing rings and trees, which it uses to establish peer-to-peer

connections between nodes (e.g., consecutive ranks in the ring).

NCCL is mainly designed to run on infrastructure that is tightly

controlled by the user (i.e., application developer), focusing only

on optimizing the intra-host strategy while leaving the optimiza-

tion of inter-host strategy to users. In particular, NCCL simply

connects inter-host rings and trees according to the ordering of

user-speci�ed ranks when establishing the communicator; there-

fore, users must carefully design the GPU-to-rank mapping, which

requires expert knowledge of the cluster topology (and is often

error prone). In multi-tenant settings for public cloud, where the

users and infrastructure provider are not the same principal, this be-

comes problematic. However, even intra-host optimization presents

issues in public cloud settings as well due to virtualization. NCCL

can potentially fail to optimize intra-host strategy because it re-

lies on sysfs information to discover the PCIe topology of GPUs

and NICs. Typically, modern virtualization approaches may hide

such information from tenants (and thus from tenant-controlled

collective libraries like NCCL). This challenge has been noted in

other recent work on collective communication algorithms such as

TACCL [41].

By decoupling the implementation of collectives from the ap-

plications, we are uniquely positioned to transform these prior

challenges into opportunities for MCCS. First, we can leverage pro-

prietary (and thus often con�dential) topology information within

the context of the MCCS service without revealing such informa-

tion to the applications. This involves architectural challenges in

terms of running collective communication strategies outside the

tenant application’s control and observability. Second, we can en-

able dynamic recon�guration of collective strategies in response

to changes in the cloud network (or the set of multi-tenant ap-

plications). This involves addressing a key challenge for enabling

recon�guration (e.g., at the level of ring orderings) that simulta-

neously achieves high-performance and ensures synchronization

across the participating nodes within a communicator. We will

discuss each of these in turn.

Multi-Tenant and Topology-Aware Architecture. For MCCS,

we need to develop a new architecture to simultaneously support

multiple applications sharing cluster, or even individual host, re-

sources while also being able to exploit low-level network infor-

mation (e.g., physical topology). Given that NCCL is focused on a

single application, the implementation of collective communication

for communicators consists of a “transport agent”, which is respon-

sible for managing the sending/receiving of inter-host collective

communication tra�c via available NICs based on GPU data bu�ers.

We choose to decompose the role of the MCCS service into two

main engines 1: 1) a proxy engine, and 2) a transport engine.

The proxy engine is responsible for bridging the gap between

high-level communicators and low-level resources. For each GPU

on a given host, MCCS initializes a single proxy engine that han-

dles all communicators which include that GPU in their ranks.

When a collective is issued, the proxy engine manages the higher-

level collective strategies and network con�gurations for how the

collective communication will be implemented. For instance, this

enables MCCS to optimize how inter- and intra-host rings are con-

nected and ordered for improve resource utilization. Additionally,

MCCS enables the incorporation of various collective strategies

optimized for speci�c topologies, such as those proposed in re-

cent research [7, 29, 41] or even proprietary strategies developed

in-house by the provider. In all cases where communication takes

place over intra-host communication channels (e.g., NVLink, host

shared memory bu�er), the proxy engine manages the setup and

use of those channels directly.

For all inter-host communication, the proxy engine o�oads the

management to the transport engine. While conceptually similar

to the transport agent in NCCL, the transport engine in the MCCS

service is responsible for multiple applications simultaneously. Ad-

ditionally, the transport engine is responsible for providing the un-

derlying mechanisms for scheduling �ows on network paths using

existing path control techniques (e.g., source routing, policy-based

routing). There may be one or more transport engines associated

with each GPU to support more communication parallelism.

Dynamic Recon�guration. The MCCS service exposes support

for dynamic recon�guration via a command that is made available

to the provider (not the applications). A key goal of our design

is to ensure that the performance overhead for performing a re-

con�guration is low (since this otherwise reduces the bene�t from

implementing smart policies) and that there is zero (or negligible)

performance overhead for collective operations when no recon-

�guration is issued. At a high-level, this motivates our choice to

support recon�guration at the granularity of collective operations.

Recon�guration should be a coarse-grained scheduling decision in

practice, reacting to events such as link utilization increasing due

to tra�c that is outside the scope of collectives managed by MCCS

(e.g., fetching training data, background �ows).

While it is straightforward for all nodes to agree on a con�gu-

ration at initialization time, which necessarily takes place before

collectives, this is much more challenging when implementing re-

con�gurations between collective operations. For an illustration

of this, consider the example shown in Figure 4. Here we assume

an application created a communicator consisting of three GPUs

and that it issues a series of AllReduce (AR) collectives for that

communicator. We di�erentiate between the launch of a collective,

which shows the ring con�guration, and the subsequent completion

of a collective. At some point, a recon�guration request (Req) is

sent to each of the MCCS service instances running on di�erent

nodes; however, due to arbitrary network and processing delays, it

is possible for the command to be received and processed at di�er-

ent times. Without appropriate synchronization, this could lead to

1We use the term “engine” to refer to a general wrapper around functions that can
asynchronously operate over inputs to generate some outputs.



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

³

Figure 4: Example showcasing a potential synchronization

issue in handling dynamic recon�gurations (left) and the

MCCS protocol to address this (right).

correctness issues (shown on the left) in which rank 0 executes AR1
from the perspective of the previous ring ordering, while ranks 1

and 2 perform updates (Updt) to handle the recon�guration request

prior to AR1. We need to address this problem without requiring

expensive synchronization operations on the fast path (i.e., between

collectives when no recon�guration takes place).

Our solution is to leverage the per-communicator control ring

as the basis to construct an e�cient barrier synchronization mech-

anism. Each proxy maintains a sequence number for the collectives

over time, which inherently matches across all nodes in a communi-

cator because each collective involves every node. After receiving

a recon�guration request, each proxy enqueues all subsequent col-

lectives prior to issuing an AllGather (AG) collective on the control

ring to exchange the sequence number corresponding to the last

collective launched. Local updates will not be completed until the

AllGather completes, whichwill provide all nodeswith the sequence

numbers for every other node; computing the maximum sequence

number enables nodes to identify which collectives should precede

any recon�guration update (i.e., collective sequence number is less

than or equal to the maximum).

Looking back at Figure 4, we see on the right how this synchro-

nization prevents this correctness issue in this example. When the

proxies for ranks 1 and 2 receive the recon�guration request (Req),

they issue the AllGather operation with their data containing 0 for

the latest collective (AR0) that was launched. Later, when the proxy

for rank 0 receives the recon�guration request, it also issues the

AllGather operation; however, since it already launched AR1, its

data contains 1 for the latest collective. At this point, the AllGather

operation completes, which allows the proxies for all ranks to de-

termine that the maximum sequence number is 1; for ranks 2 and 3,

this means that they should issue the queued AR1 collective prior

to updating the con�guration. The updated ring ordering will be

used in all future collectives until a another future recon�guration

request is issued. To update a con�guration, the proxy engines will

interact with the transport engines to close all existing peer-to-peer

connections for the communicator and clean up corresponding

resources. Afterwards, the new connections are instantiated based

on the chosen strategy (e.g., rank ordering within a ring), similar

to what is performed at the time of initialization.

In analyzing the performance implications of this design, we

can make two observations. First, issuing a recon�guration request

can introduce some performance overhead, since collectives will be

stalled until the AllGather for the recon�guration is complete (i.e.,

until the last proxy receives and handles the request). Additionally,

there is some overhead in tearing down and establishing new peer-

to-peer connections. As we will demonstrate in the evaluation, the

performance overhead for handling recon�gurations is rather small,

and enables signi�cant performance bene�ts from smart policies.

Second, in the absence of a recon�guration request, there is no

performance overhead. Note that the proxy for rank 0 is able to

launch the AR1 collective before even being aware that the other

ranks received a recon�guration request – any synchronization

via the control channel (or blocking) only occurs after a request is

received.

At this point, we have the ability for applications to issue collec-

tives and for theMCCS service to implement themwhile supporting

recon�gurations at runtime while taking into account low-level

topology information. Next, we will explore how MCCS enables

�exible and expressive management according to provider-de�ned

policies that build on top of the recon�guration mechanisms that

we just discussed.

4.3 Enabling Manageability

One of our key goals in MCCS is to cleanly decouple policy from

mechanism. The design of our proxy and transport engines within

the MCCS service enables management of both the control and

data paths for collective communication. On the control path, the

MCCS service can support di�erent collective strategies for various

applications as well as control network resource allocation (e.g.,

NICs per application, network routing). On the data path, the MCCS

service can support �ne-grained control of communication through

augmentation of the transport engine to control the conditions

for sending network tra�c. Our architecture enables this through

dynamic loading of provider-supplied logic that can handle policy

decisions determined by an external controller.

To enable an external controller (e.g., centralized manager) to

schedule the collective communication across all applications on

the cluster, the MCCS service needs to provide an interface for

exposing necessary information. For each application, this informa-

tion is based on the set of active communicators, including the set of

GPUs (and hosts) that make up the ranks within the communicator,

and the current con�guration of collective strategy (e.g., ring con�g-

uration) and network resources (e.g., �ow mapping). Additionally,

the MCCS service can perform �ne-grained tracing of collectives

issued by applications to determine properties of their computation

and communication patterns. The controller consumes this data to

make a policy decision.



MCCS: A Service-based Approach to Collective Communication for Multi-Tenant Cloud ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Next, we look at several concrete examples of scheduling and

quality-of-service (QoS) policies, which will also be used in our eval-

uation of MCCS. While these examples are admittedly straightfor-

ward, they e�ectively illustrate MCCS’s system capabilities beyond

what today’s collective communication library can o�er. MCCS

can also incorporate topology-optimized collective algorithms from

MSCCL [7, 41], while they only apply to a single-tenant environ-

ment.

Topology-aware collaborative scheduling.We explore the fol-

lowing two heuristics to enable the joint optimization of the algo-

rithmic strategy at the collective level and �ow assignment at the

network layer.

Example #1: Locality-aware ring con�guration. The order-

ing of how the hosts are chained in the ring collective algorithm

directly dictates the overall communication pattern. If many �ows

have to go through links above the leaf level (assuming a Clos

network topology), severe congestion could occur due to over-

subscription. Hence, our goal is to minimize the number of cross-

rack / cross-pod �ows. We apply a greedy algorithm to con�gure

the ring ordering for each communicator (application). We group

the participant hosts by their locality (e.g., under the same rack,

under the same pod) and then connect them in a sequential order.

The algorithm takes the set of participant GPUs for each communi-

cator obtained by MCCS service management APIs, and sends an

optimized ring ordering back to MCCS service.

Example #2: Best-�t fair �ow assignment (FFA). Once the

ring con�guration for all applications are optimized, the commu-

nication patterns between hosts and hence the set of �ows can

be determined. Still, using the standard ECMP approach to map

�ows into network routes could lead to signi�cant overall collective

performance degradation and inconsistency due to �ow collision.

Our goal is to maximize the aggregated collective performance of

all applications, and ensure fairness between di�erent applications.

We use a slightly modi�ed version of the greedy heuristics proposed

in Hedera [1], where for each �ow we assign it the path that has

minimal excess bandwidth demand. We round-robin between �ows

from di�erent jobs for fairness. For example, if two applications are

both performing collectives using hosts on rack A and B. There are

2 routes between A and B and each application have 2 �ows from A

to B. FFA would assign each route a �ow from both application. FFA

takes the collective strategy con�guration of all communicators as

input. As communication patterns solely depend on the collective

strategy, FFA knows all �ows (RDMA connections) in the network.

It then assigns each �ow a route ID, where the mapping is issued

to MCCS service.

QoS features.MCCS enables priority control at both coarse-grained

resource allocation and �ne-grained communication.

Example #3: Priority �ow assignment (PFA). We modify

FFA to allow some routes to be reserved for high priority appli-

cations. We �rst �t �ows of low priority applications using only

non-reserved routes, and �ows of high priority applications are

assigned best routes from all available ones. In our example, PFA

can dedicate one of the two routes between rack A and B to the

prioritized application.

Example #4: Tra�c scheduling (TS).With priority �ow as-

signment, we can dedicate networks links to some of the highest

priority applications. However, we may still have some applications

sharing links. MCCS could enforce a tra�c schedule to control

when each application can send out tra�c. In our implementa-

tion, we apply a simple time window based approach inspired by

CASSINI [35] to interleave tra�c. TS invokes MCCS tracing API

and requests a trace of a prioritized application. TS then analyzes

the idle cycles of the application when it is not issuing collectives.

TS sends a time interval schedule to MCCS service. Transport en-

gines in MCCS service then allow other applications to send tra�c

only when the prioritized application is idle.

5 Implementation

MCCS is implemented in 13.5K lines of Rust: 1.5K for the shim

library and IPC implementation, 6K for control and management

planes, and 6K for transport engine and transport protocols.

Collective CUDA kernels and transports.We adapt CUDA

kernels from NCCL v2.17.1 for computation and intra-host commu-

nication.Wemodify the kernels so that the communicator resources

on the kernel side (e.g., ring bu�ers) can be set up by proxy engines

in the MCCS service. We focus on ports of NCCL’s ring AllReduce

and AllGather kernels; however, it is straightforward to implement

other collective operations, P2P communication, and other algo-

rithms (e.g., tree algorithms). For transport protocols, we implement

support for channels using host shared memory and RDMA; other

channels, such as NVLink, can also be integrated.

Internal engine scheduling. Our engines are designed similar

to asynchronous futures in Rust. A pool of runtimes is used to

execute the engines, where each runtime corresponds to a kernel

thread. Engines can be scheduled on either a dedicated runtime

or a shared one. Runtimes without active engines can sleep to

release the CPU. Currently, we dedicate a runtime to each engine.

Compared with NCCL, which only uses an additional thread per

GPU for the transport agent, our prototype would use 2 more

threads for the frontend and proxy engines. However, we note that

if multiple applications use the same GPU, they will share a proxy

engine. We do not focus on CPU usage optimization as a core goal

in our prototype, and we could implement better engine scheduling

strategies to lower CPU utilization (e.g., frontend and proxy sharing

a runtime if only one application uses the GPU).

Management.We leverage policy-based routing at the switch to

achieve explicit route control for implementing FFA and PFA. Based

on the assigned route ID for each RDMA connection, MCCS service

modi�es the UDP source port of ROCEv2 packets. The source port

is not used by ROCEv2 protocol, hence we install a routing policy

on switch that maps �ows to routes based on the UDP source port

speci�ed by MCCS service. To implement TS, we currently use

a hard-coded logic directly embedded in the transport engines,

and we manually pro�le applications o�ine. We note that such TS

scheduling logic could be easily integrated into a dynamic library

function loaded by the transport engine, while the communication

trace of applications can be retrieved from the MCCS management

API.



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

(a) Testbed topology (b) Multi apps setups

Figure 5: Testbed topology and multiple applications evalua-

tion setups.

For our evaluation, we consider the case in which all tenants

utilize MCCS for collective communication. However, this is not

strictly required. Even if only a subset of tenants use MCCS, MCCS

can still collaboratively schedule the collectives of that subset, while

treating other �ows as background �ows (and adapt to them).

6 Evaluation

We evaluate the capabilities of MCCS using a small-scale testbed.

We also conduct large-scale simulations to quantify the perfor-

mance bene�ts of collaborative scheduling enabled by MCCS for

large compute clusters.

6.1 Testbed Setup and Workloads

Figure 5a presents the setup of our testbed. We have four nodes in

our testbed, each equipped with 2 NVIDIA RTX 3090 GPUs and

a 100 Gbps Mellanox ConnectX-5 NIC. Using a single 100Gbps

Mellanox SN2100 switch, we emulate a spine-leaf topology with 2

leaf switches and 2 spine switches through self-wiring. Four nodes

are placed under two racks, where each rack corresponds to a leaf

switch. The links between the switches are limited to 50Gbps, while

the links between each host and the leaf switches are limited to

100Gbps. This means that the over-subscription ratio of our testbed

is 2. On each host, we use IB tra�c class (TC) and rate limit each

TC to emulate two 50Gbps virtual NICs (one per GPU).

We use AllReduce and AllGather benchmarks to evaluate how

MCCS can improve the collective performance in both the case of

a single application and the case of serving multiple applications

at the same time. For the single-application scenario, we use two

setups: a 4-GPU setup where one GPU and one 50Gbps NIC on

each host is used, and an 8-GPU setup where all two GPUs and

two 50Gbps NICs are used. To show the e�ectiveness of MCCS in

a multi-tenant environment, we construct 4 setups on our testbed.

These setups include applications with di�erent sizes and di�erent

placements, as shown in Figure 5b.

In addition to AllReduce and AllGather benchmarks, we evaluate

training workloads using a tra�c generator with pro�le traces. The

tra�c generator is implemented with Rust using the MCCS library.

To collect the traces, we used PyTorch [30] v2.1.0, DeepSpeed [37]

v0.10.3 and Megatron-LM [42] to pro�le a VGG-19 model [43] with

32KB
128KB

512KB
2MB

8MB
32MB

128MB
512MB

Data Size

0

2

4

6

8

A
lg

o 
B

W
 (G

B
/s

)

NCCL
NCCL(OR)
MCCS(-FA)
MCCS

(a) AllGather (4-GPU)

32KB
128KB

512KB
2MB

8MB
32MB

128MB
512MB

Data Size

0

1

2

3

4

A
lg

o 
B

W
 (G

B
/s

)

(b) AllReduce (4-GPU)

32KB
128KB

512KB
2MB

8MB
32MB

128MB
512MB

Data Size

0

3

6

9

12

A
lg

o 
B

W
 (G

B
/s

) NCCL
NCCL(OR)
MCCS(-FA)
MCCS

(c) AllGather (8-GPU)

32KB
128KB

512KB
2MB

8MB
32MB

128MB
512MB

Data Size

0

2

4

6

8

A
lg

o 
B

W
 (G

B
/s

)

(d) AllReduce (8-GPU)

Figure 6: [Single application]: Algorithm bandwidth of AllRe-

duce and AllGather. The shaded areas represent 95% per-

centile intervals.

data parallel training, and a 2.7B parameters GPT model [6] with

tensor parallel training.

Baselines: We compare MCCS with NCCL (v2.17.1), which is

not network topology aware and cannot perform inter-host ring

optimization. To quantify the performance overhead of MCCS, we

manually con�gure the inter-host ring used by NCCL with the

results from our locality-aware ring con�guration algorithm to

serve as one of the baselines. We denote this baseline asNCCL(OR),

i.e., NCCL with optimal ring.

6.2 Improving Single Application

We �rst evaluate how the performance of a single application can

be improved with topology-aware scheduling capability enabled by

MCCS. We run AllReduce and AllGather benchmarks of di�erent

data sizes (measured by output bu�ers). We report the algorithm

bandwidth [25] measurement, which is calculated as output bu�er

size divided by execution time. To evaluate the system overhead

introduced by MCCS, we also evaluate MCCS without our �ow as-

signment algorithm, and instead rely on ECMP for routing. Figure 6

shows the results in the 4-GPU and 8-GPU setups. Our full solution

is denoted as MCCS. We also evaluate a version of MCCS without

doing �ow assignment:MCCS(-FA).

MCCS’s system-level performance overheads can be calculated

by comparing MCCS(-FA) and NCCL(OR), which both use the opti-

mal ring from our ring con�guration algorithm. MCCS has negligi-

ble system-level performance overheads when data size is above

8MB. On 4 GPUs, MCCS(-FA)’s algorithm bandwidth is 63% lower

than NCCL(OR) on 512 KB AllGather (which corresponds to 128 KB

input per GPU) and 51% lower on 512 KB AllReduce, but the perfor-

mance di�erence decreases to 9.7% for 8MB AllGather and 0.75%

for 8MB AllReduce. The reason is that for large messages, MCCS’s

performance is bottlenecked by the collective communication’s



MCCS: A Service-based Approach to Collective Communication for Multi-Tenant Cloud ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

û

(a) Example scenario

0 5 10 15 20
Elapsed Time (s)

0

2

4

6

8

A
lg

o 
B

W
 (G

B
/s

) Recv ReconfigBT Starts

(b) Ring recon�guration

Figure 7: [Single application]: Showcase of adapting to back-

ground �ows.

data transfer. For small messages (less than 8MB), MCCS su�ers

from performance penalties due to the latency overhead introduced

on the datapath. The communication between the application and

the MCCS service, as well as between the internal engines of the

MCCS service, incurs an overall latency of 50-80 us.

NCCL’s performance is the worst because NCCL itself does not

know the best ring con�guration. Comparing NCCL and NCCL(OR),

we �nd collective algorithm optimizations play a crucial role in

achieving high performance. NCCL(OR) is 56% better than NCCL

on the 4-GPU setup and 78% better on 8-GPU the setup for 512MB

AllReduce.

To understand how ECMP plays a role in AllReduce and All

Gather performance, let’s look at the 8-GPU case in Figure 6 because

the 8-GPU scenario has cross-rack tra�c. For 512M AllReduce,

MCCS outperforms MCCS(-FA) and NCCL(OR) by 46%. Note that

all three approaches use optimal ring con�gurations. The key reason

is that �ow assignment is fundamental to avoiding �ow collision in

ECMP, so only optimizing the collective algorithm insu�cient.

MCCS enables joint optimization of collective communication

algorithm and �ow scheduling by a cloud provider. Combining both

ring con�guration and �ow scheduling techniques, MCCS delivers

an 1.6x speed-up on the 4-GPU setup and a 2.4x speed-up on the

8-GPU setup on average for 8MB-512MB AllReduce and AllGather

compared to NCCL.

Dynamic changes of collective communication strategies to

adapt to background �ows.Here we also showcase the capability

to recon�gure an application’s collective strategy at runtime with-

out interrupting the application. We use an example scenario to

demonstrate this feature. We leave the monitoring of background

�ows to external components. For instance, a switch agent can be

con�gured to report to a centralized manager when there are per-

sistent large �ows that are not managed by MCCS. The centralized

manager can then send a new con�guration to MCCS service. With

our testbed, we emulate a topology shown in Figure 7a, where each

of the server is connected to a switch, and the four switches are

linked as a ring. We instantiate an 8-GPU AllReduce job, the the

AllReduce job uses a ring algorithm that connects hosts clockwise.

As shown in Figure 7b, at time 7.5 s, a background �ow of 75Gbps

between two switches in the clockwise direction, the available ca-

pacity for the AllReduce job drops to 25Gbps. However, the switch

links counterclockwise is not a�ected. If the collective strategy

con�guration is not adjusted, the AllReduce algorithm bandwidth

drops from 5.9GB/s to 1.7 GB/s. MCCS enables the application to

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A B

(a) Setup 1

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A

B
C

(b) Setup 2

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A

B
C

(c) Setup 3

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A B

(d) Setup 4

Figure 8: [Multi applications]: Application bus bandwidth.

Error bars represent 95% percentile intervals.

recover its collective performance by transparently reverse the ring

when the background �ow starts. After recon�guration command

is issued (at time 12 s) by the external centralized manager, the

AllReduce bandwidth immediately recovers to 5.9 GB/s.

6.3 Improving Multiple Applications

Next, we evaluate how MCCS improves the overall performance

with a centralized view of all applications and collaborative schedule

their collective communication. Figure 8 shows 128MB AllReduce

performance in the 4 di�erent setups, as described in §6.1. We

report bus bandwidth [25] of each application, which is normalized

version of the algorithm bandwidth. Here we use bus bandwidth

because it is independent of collective algorithm and the number of

participants. It re�ects the hardware peak bandwidth for inter GPU

communication. The aggregated bus bandwidth of all applications

indicates the overall network utilization, while the proportion each

application gets allocated re�ects fairness of allocation. For ablation

study, we also compare with the baseline of MCCS without fair

�ow assignment. We denote this baseline asMCCS(-FFA).

For all setups, MCCS (with FFA) not only achieves the highest

aggregated bus bandwidth but also ensures fairness across applica-

tions. It outperforms NCCL by 75% on average. All applications in

setups 1, 2, and 4 use the same amount of NICs per host, so they

should have identical inter-host GPU communication performance.

MCCS therefore equally distributes the bandwidth between di�er-

ent applications. In setup 3, application A uses 2 GPUs and 2 NICs

per host, while B and C use only 1 per host. Therefore, application

A’s inter-host collective performance should be 2 times that of ap-

plications B and C. Again, MCCS achieves fair allocation as the bus

bandwidth distribution among A, B and C is close to 2:1:1. Using

ECMP fails to guarantee fairness among applications. For instance,

in setup 3, the performance ratio between applications A and B for

MCCS(-FFA) is 1.7:1 instead of 2:1.



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

ECMP FFA PFA PFA+TS
Solution

0

1

2

N
or

m
. J

C
T VGG (A) GPT (B) GPT (C)

Figure 9: [Training workloads]: Job completion time using

di�erent scheduling and QoS strategies. A has the highest

priority, followed by B, while C is the lowest. Error bars

represent 95% percentile intervals.

0 t1 t2 t3 t4 200
Elapsed Time (s)

0

1

N
or

m
. T

pu
t

A
B
C

Figure 10: Normalized training throughput with dynamic job

arrivals and QoS.

6.4 Training Workloads with QoS

We evaluate MCCS using GPT and VGG training traces. We use

setup 3 for our evaluation. We assume A, B, C represent three

tenants sharing the cluster. A is assigned 4 GPUs to train a VGG

model from scratch on a large dataset, while B and C are assigned

2 GPUs each to �netune GPT models.

Fair scheduling speed-ups every workload. Using our tra�c

generator on MCCS to simulate the workloads, we report their

job completion time (JCT) in Figure 9 under di�erent scheduling

approaches. The JCT of each workload is normalized to its respec-

tive value under fair �ow assignment (FFA). We �nd that ECMP

routing degrades every workload. Besides having high performance

variance across 10 trails, it also leads to 18%, 22%, 14% slower job

completion on average, for A, B, C respectively.

QoS capabilities enable workload prioritization. Running the

workloads from all three tenants at the same time inevitably result

in contention of network resources. Even with fair �ow scheduling,

the performance of a workload would still degrade, compared to

dedicate the entire network for that workload by running it indepen-

dently. In this case, the infrastructure administer may prefer priori-

tizing some tenants. We showcase our two QoS techniques in §4.3

to demonstrate MCCS’s capabilities for enabling QoS through con-

trolling both coarse-grained resource allocation and �ne-grained

communication.

We assume an administrator wants to prioritize A over both B

and C. Using priority �ow assignment (PFA), we dedicate one of

the two routes between the two racks to A, with B and C sharing

the other one. PFA speeds up A’s training by 13% compared to FFA

and 34% compared to ECMP.

With A prioritized using PFA, B and C now shares a single bot-

tlenecked route, so their performance degrades. If the administer

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Speedup to Random Ring

0.00

0.25

0.50

0.75

1.00

C
D

F

OR (2.63x)
OR+FFA (3.27x)

(a) Random placement

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Speedup to Random Ring

0.00

0.25

0.50

0.75

1.00

C
D

F

OR (3.28x)
OR+FFA (3.43x)

(b) Compact placement

Figure 11: [Simulations]: MCCS’s speedup of AllReduce com-

pletion time compared with random ring. The numbers in

the legend and the vertical dashed lines represent the average

speedups across jobs relative to random ring.

wants to further prioritize B over C without a�ecting A, �ow as-

signment no longer works no remaining routes are available that

we can dedicate B to. Fine-grained communication-level QoS mech-

anism needs to be utilized. Hence, in this scenario, we apply our

time window based tra�c scheduling (PFA+TS) to prioritize B.

Compared with PFA, in PFA+TS tenant B’s training is sped up by

16%.

Dynamic policy enforcement. We demonstrate MCCS’s �exibil-

ity in policy enforcement, by showing how network administers

can adapt their QoS policies based on current cluster status with

dynamic application arrivals. We illustrate the training throughput

of A, B, C in Figure 10, where they arrive sequentially. The through-

put is normalized to their values under FFA. A already occupies

the cluster at the start, which is followed by B’s arrival at Ī1. As

A has two 50G NICs per host, it can utilize all the 100G switching

capacity of the network when there are no other tenants share

the network. After B arrives, A’s throughput is decreased by 17%.

Then, C arrives at Ī2 , and all three of them share the network using

FFA. The throughput of A now drops further by 14%. There are also

some �uctuations in the throughput of all applications, which could

attribute to network congestion. After Ī3, the administer prioritizes

A over B and C using PFA, A’s performance therefore improves

by 13%. At time Ī4, the administer the further prioritizes B over C

using TS, the throughput of B is increased by 18%. The �uctuations

after Ī3 is introduced by our time window based TS.

6.5 Simulations

We evaluate how a larger scale deployment can bene�t from MCCS

via simulations. We compare among three solutions (1) random

ring selection, (2) optimal ring (OR) selection, and (3), OR with fair

�ow assignment (FFA). In OR, we always create optimal rings, with

the number of rings equal to the number of network multi-path

choices. In OR+FFA (representing MCCS), we assign each ring to

each of the path in the network.

We simulate a cluster of 768 GPUs. We have 16 spine switches

and 24 leaf switches fully connected. Each leaf switch has 4 hosts

connect to it. Each host has 8 GPUs and 8 NICs. All the network

links and NICs are 200Gbps. The oversubscription of the network is

2, which is identical to our testbed setting. Our �ow-level simulator

assumes per-�ow fairness. For the workload and job arrival pat-

tern, we adopt a similar setting as the distributed data-parallel deep



MCCS: A Service-based Approach to Collective Communication for Multi-Tenant Cloud ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

learning experiment in NetHint [8]. We run 50 jobs of ResNet-50

of model size 100MB in each experiment. The job sizes are either

16 or 32 GPUs with equal probability. We consider two types of

job placement. Random placement means the simulator allocate

randomly GPUs to a job. Compact placement means the simula-

tor assigns GPUs that belong to the same rack to a job whenever

possible. The jobs arrival follows a Poisson distribution with the

lambda set to 200ms. We run each experiment 5 times and report

the average speedup for each job’s AllReduce completion time.

Figure 11 shows the CDF of performance improvement of using

MCCS compared to using NCCL. For random placement, OR and

OR+FFA speed up the collective communication by 2.6x and 3.3x

compared with using random rings. With �ow assignment, each job

can maximize the utilization of the inter-rack network bandwidth.

This is because for each network path, we assign a ring to utilize

it. Without FFA, the �ows within a job can collide on the same

physical path. In compact placement setting, OR and OR+FFA still

outperform random ring by 3.3x and 3.4x. However, FFA does not

add much to OR because the job almost never span more than two

racks, and the link capacity of even a single path between two racks

would su�ce the tra�c demand. We observed that the schedule

computation takes within 1ms on average for a job size of 32 GPUs

and scales linearly with the job size. The rescheduling occurs only

when a job joins or exits.

7 Related Work

Integrating collective communication into the network.There

are several prior e�orts in integrating collective communcation into

the network. ATP [21], SwitchML [39], and PANAMA [10] propose

o�oading AllReduce operations to in-network hardware to enable

multi-tenant distributed machine learning. The key di�erence is

that MCCS targets at the public cloud environment, where these

works all require tenant applications to be trusted. In these works,

a misbehaving or malicious application can circumvent the cloud

provider designed collective communication strategy, and this will

require well-behaving tenants to adjust their strategies accordingly.

In MCCS, all the collective operations are managed through the

MCCS daemon. Another di�erence is that MCCS’s performance

gain is not from in-network gradient aggregation but from dynamic

adjustment to collective communication strategy.

Exposing public cloud network information for tenants to

pick collective communication strategies. A separate line of

work focuses on letting tenant acquire information about the physi-

cal network of the cloud provider in order to pick collective commu-

nication strategies. NetHint [8] presents an approach that the cloud

provider periodically exposes a hint, containing a subset of the

physical network topology and link utilization, to help the tenant

pick collective communication strategy. However, a cloud provider

may have security and privacy concerns of exposing their physi-

cal network topology and network utilization to cloud tenants to

prevent adoption. PLink [23] and Choreo [20] let tenant applica-

tions measure their VM-level network bandwidth in order to pick

collective communication strategies or decide on job scheduling.

These approaches are not guaranteed to be accurate, because re-

verse engineering the network con�gurations from a single tenant’s

observation is generally hard. Further, in both approaches, tenants

are making their own decisions on collective communication. In

comparison, MCCS controls all tenants’ collective communication.

Choosing collective communication strategies based on net-

work topology and bandwidth. Optimizing collective communi-

cation strategies for particular network topology and bandwidth

con�guration is a standard task for developers running large-scale

workloads on supercomputers [9, 17]. For machine learning work-

loads, several prior works have focused on improving collective

performance [31, 41, 44]. These works all focus on the single-tenant

scenarios. Our work focuses on the multi-tenant public cloud set-

ting. We need to deal with challenges of dynamically changing

collective communication strategies, which is not a concern in

single-tenant scenarios.

Quality of Service (QoS) in a multi-tenant network. How to let

multiple tenants share a cloud network with QoS guarantees is an

old topic. A cloud datacenter network often uses a combination of

congestion control [3, 13, 34, 46], load balancing [2, 18, 27, 45], and

various types of rate limiting techniques [4, 5, 16, 19, 22, 33]. These

works focuses on how to share bandwidth given a set of point-

to-point network demand. The optimizations MCCS addresses is

on having multiple collective communication operations share the

bandwidth by selecting collective communication strategies (e.g.,

the ordering of nodes in an AllReduce ring for each tenant), which

is a di�erent and complementary problem.

8 Conclusion

This paper explores a new service-based approach to collective com-

munication called MCCS. MCCS allows a cloud provider to select

collective communication strategies for cloud tenants and enable

the cloud provider to enforce QoS policies on collective commu-

nication operations. Collective communication strategies selected

by the cloud provider improves tenant performance because the

strategies is picked with the knowledge of the underlying cloud net-

work characteristics (i.e., topology, utilization) and can adapt when

network characteristics changed. Our testbed and simulation-based

evaluations have shown that MCCS improves tenant collective com-

munication performance by up to 2.4x compared to state-of-the-art

collective communication libraries, while addingmoremanagement

features including dynamic adjustment of collective communication

algorithm, quality of service, and network-aware tra�c engineering.

This work does not raise any ethical issue.

Acknowledgments

We thank our shepherd Yuliang Li and other anonymous reviewers

for their insightful feedback. Our work is partially supported by

NSF grant CNS-2238665 and by gifts from Adobe, Amazon, IBM,

and Meta.

References
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In SIGCOMM.



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Wu et al.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In SIGCOMM.

[4] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno
Thereska. 2014. End-to-end Performance Isolation Through Virtual Datacenters.
In OSDI.

[5] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards Predictable Datacenter Networks. In SIGCOMM.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[7] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkow-
icz, Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing Optimal Collective
Algorithms. In PPoPP.

[8] Jingrong Chen, Hong Zhang, Wei Zhang, Liang Luo, Je�rey Chase, Ion Stoica,
and Danyang Zhuo. 2022. NetHint: White-Box Networking for Multi-Tenant
Data Centers. In NSDI.

[9] Mathijs Den Burger, Thilo Kielmann, and Henri E Bal. 2005. Balanced Multi-
casting: High-Throughput Communication for Grid Applications. In ACM/IEEE
Conference on Supercomputing (SC).

[10] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-Network Aggregation
for Shared Machine Learning Clusters. In MLSys.

[11] Gloo 2023. Collective Communications Library with Various Primitives for
Multi-Machine Training. https://github.com/facebookincubator/gloo. (2023).

[12] Richard L Graham, Timothy SWoodall, and Je�rey M Squyres. 2005. Open MPI: A
Flexible High Performance MPI. In International Conference on Parallel Processing
and Applied Mathematics. Springer, 228–239.

[13] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In SIGCOMM.

[14] Olaf Hartmann, Matthias Kühnemann, Thomas Rauber, and Gudula Rünger.
2005. Adaptive Selection of Communication Methods to Optimize Collective MPI
Operations. In PARCO.

[15] intelmpi 2024. Intel MPI Library. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html. (2024).

[16] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical Network Perfor-
mance Isolation at the Edge. In NSDI.

[17] Nicholas T Karonis, Bronis R De Supinski, Ian Foster, William Gropp, Ewing Lusk,
and John Bresnahan. 2000. Exploiting Hierarchy in Parallel Computer Networks
to Optimize Collective Operation Performance. In IPDPS.

[18] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In CoNEXT.

[19] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-
gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. 2019. PicNIC: Predictable Virtualized NIC. In SIGCOMM.

[20] Katrina LaCurts, ShuoDeng, Ameesh Goyal, andHari Balakrishnan. 2013. Choreo:
Network-Aware Task Placement for Cloud Applications. In IMC.

[21] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-Network Aggregation for Multi-tenant
Learning. In NSDI.

[22] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee,
Joon-Myung Kang, and Puneet Sharma. 2014. Application-Driven Bandwidth
Guarantees in Datacenters. In SIGCOMM.

[23] Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze. 2020.
PLink: Discovering and Exploiting Locality for Accelerated Distributed Training
on the Public Cloud. In MLSys.

[24] nccl 2023. The NVIDIA Collective Communication Library (NCCL). https:
//developer.nvidia.com/nccl. (2023).

[25] NVIDIA. 2023. Performance Reported by NCCL Tests. https://github.com/
NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md. (2023).

[26] nvidiasharp 2024. NVIDIA Scalable Hierarchical Aggregation and Reduction Pro-
tocol (SHARP). https://docs.nvidia.com/networking/display/sharpv300. (2024).

[27] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. 2018.
Stateless Datacenter Load-balancing with Beamer. In NSDI.

[28] oneccl 2023. oneAPI Collective Communications Library (oneCCL). https://
github.com/oneapi-src/oneCCL. (2023).

[29] Siddharth Pal, Liangyu Zhao, Jason Fantl, Joud Khoury, Arvind Krishnamurthy,
and Prithwish Basu. 2023. E�cient All-to-All Collective Communication Sched-
ules for Direct-Connect Topologies. arXiv preprint arXiv:2309.13541 (2023).

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32 (2019).

[31] Y Peng, Y Zhu, Y Chen, Y Bao, B Yi, C Lan, C Wu, and C Guo. 2019. A Generic
Communication Scheduler for Distributed DNN Training Acceleration. In SOSP.

[32] Jelena Pješivac-Grbović, George Bosilca, Graham E. Fagg, Thara Angskun, and
Jack J. Dongarra. 2007. MPI Collective Algorithm Selection and Quadtree Encod-
ing. Parallel Comput. (2007).

[33] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Je�rey C. Mogul, Yoshio
Turner, and Jose Renato Santos. 2013. ElasticSwitch: Practical Work-Conserving
Bandwidth Guarantees for Cloud Computing. In SIGCOMM.

[34] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving Datacenter Performance and
Robustness with Multipath TCP. In SIGCOMM.

[35] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. CASSINI:
Network-Aware Job Scheduling in Machine Learning Clusters. In NSDI.

[36] Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan, and
Tushar Krishna. 2022. Themis: A Network Bandwidth-Aware Collective Schedul-
ing Policy for Distributed Training of DL Models. In ISCA.

[37] Je� Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[38] rccl 2023. ROCm Communication Collectives Library (RCCL). https://github.
com/ROCm/rccl. (2023).

[39] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Pe-
ter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In NSDI.

[40] Daniele De Sensi, Tommaso Bonato, David Saam, and Torsten Hoe�er. 2024.
Swing: Short-cutting Rings for Higher Bandwidth Allreduce. In NSDI.

[41] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musu-
vathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. 2023.
TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches.
In NSDI.

[42] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv preprint arXiv:1909.08053
(2019).

[43] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[44] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,
Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and Generic Collectives for
Distributed ML. In MLSys.

[45] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.
Resilient Datacenter Load Balancing in the Wild. In SIGCOMM.

[46] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
SIGCOMM.


	Abstract
	1 Introduction
	2 Background
	2.1 Collective Communication Libraries
	2.2 Using Collective Communication Libraries in a Multi-Tenant Network?

	3 Overview
	4 Design
	4.1 Collective Interface
	4.2 Collective Communication
	4.3 Enabling Manageability

	5 Implementation
	6 Evaluation
	6.1 Testbed Setup and Workloads
	6.2 Improving Single Application
	6.3 Improving Multiple Applications
	6.4 Training Workloads with QoS
	6.5 Simulations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

