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Abstract

Performance of collective communication is critical for distributed
systems. Using libraries to implement collective communication
algorithms is not a good fit for a multi-tenant cloud environment
because the tenant is not aware of the underlying physical net-
work configuration or how other tenants use the shared cloud
network—this lack of information prevents the library from select-
ing an optimal algorithm. In this paper, we explore a new approach
for collective communication that more tightly integrates the im-
plementation with the cloud network instead of the applications.
We introduce MCCS, or Managed Collective Communication as a
Service, which exposes traditional collective communication ab-
stractions to applications while providing control and flexibility
to the cloud provider for their implementations. Realizing MCCS
involves overcoming several key challenges to integrate collective
communication as part of the cloud network, including memory
management of tenant GPU buffers, synchronizing changes to col-
lective communication strategies, and supporting policies that in-
volve cross-layer traffic optimization. Our evaluations show that
MCCS improves tenant collective communication performance by
up to 2.4X compared to one of the state-of-the-art collective commu-
nication libraries (NCCL), while adding more management features
including dynamic algorithm adjustment, quality of service, and
network-aware traffic engineering.

CCS Concepts

« Networks — Data center networks; « Computing methodolo-
gies — Machine learning; - Computer systems organization —
Cloud computing.
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Figure 1: Comparison between existing approaches and our
approach (MCCS) to collective communication.

1 Introduction

Collective communication is fundamental to supporting many dis-
tributed computing workloads. Many popular collective commu-
nication libraries exist today, including the NVIDIA Collective
Communication Library (NCCL) [24], Intel MPI library [15], Open-
MPI [12], and Gloo [11]. These libraries provide common collective
communication primitives such as AllReduce and AllGather, which
developers leverage by linking these libraries directly into their ap-
plications. Beneath their high-level APIs, these libraries implement
primitives through various algorithms (e.g., AllReduce via Rings
or Trees) along with heavily-optimized, and sometimes hardware-
specific implementations (e.g., NVIDIA SHARP [26]).

Today, distributed workloads have increasingly moved to the
cloud for the ease of infrastructure management and resource pool-
ing. In a public cloud environment, however, existing collective
communication libraries have shown several shortcomings. First,
choosing the most efficient algorithm requires knowledge of the
physical network topology and link utilization, which are not avail-
able to cloud tenants. As a consequence, this may lead to sub-
optimal decisions between ring- and tree-based algorithms and
their configurations (e.g., participant ordering in a ring). Second,
current libraries (e.g., NCCL) decide the exact strategy at initial-
ization time and will not change the chosen strategy once the job
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starts. While this is fine for single-tenant settings (e.g., supercom-
puters), it is not ideal for multi-tenant settings because the best
choice of algorithm depends on the other tenants’ communica-
tion patterns. Finally, current libraries often make optimization
choices in a manner that is agnostic to the underlying physical net-
work configuration; however, these optimizations frequently rely
on assumptions regarding the configuration. For instance, NCCL
instantiates multiple TCP/RDMA connections between nodes to im-
prove throughput by exploiting multiple network paths in parallel
even though the connections may be routed via the same (shared)
physical path.

In this paper, we propose a new approach that more tightly inte-
grates collective communication with the cloud network instead of
the applications. We call our approach MCCS, which is short for
Managed Collective Communication as a Service. MCCS exposes
traditional collective communication abstractions to applications,
yet decouples the implementation from the applications themselves
to extend more control to the cloud infrastructure provider. With
MCCS, tenants are no longer responsible for implementing collec-
tives, which often relied on information unavailable to the tenants
themselves (e.g., physical configuration, properties of other ten-
ants’ applications). Meanwhile, MCCS extends significant flexibility
to the cloud provider to support a variety of benefits: First, the
provider can easily adopt custom, proprietary collective commu-
nication approaches without the need for changing existing user
applications. Second, the provider can enforce fine-grained qual-
ity of service (QoS) policies at the level of collective operations.
Third, the provider is no longer forced to choose between provid-
ing strong performance or the confidentiality of their proprietary
infrastructure.

Achieving our goals for MCCS requires us to address several key
challenges. First, we need to resolve the tension between decoupling
collectives from the application while maintaining the existing
interface. Second, collective communication is a group operation
that requires synchronization among a number of components
(e.g., application, service, hardware). Third, we need to support
policies driven by the changing status of the cluster which can
improve performance at both the logical-level (e.g., ring strategy)
and physical-level (e.g., flow scheduling).

We implement a prototype for MCCS that targets applications us-
ing GPU-based computation and provide a lightweight shim library
that connects applications with our system service. Our system
can easily integrate existing collective algorithms implemented
in NCCL through their CUDA kernels, as well as support more-
customized algorithms. We evaluate the performance of MCCS
using a small scale testbed and large scale simulations. Our testbed
results have shown that MCCS consistently outperforms NCCL by
up to 2.4x in terms of algorithm bandwidth, and improves training
workloads in a multi-tenant improves by up to 34%. Our simulation
results have demonstrated that MCCS enables an overall speed-
up of 3.4x on a large-scale cluster. Our source code is available at
https://github.com/phoenix-dataplane/MCCS/.

In this paper, we make the following contributions:

o A new architecture for supporting collective communication
in multi-tenant scenarios, shifting control from applications
to the cloud network to improve performance.
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Figure 2: Training time breakdown of models from various
product groups at a large social network company.

e An approach to enable dynamic reconfiguration of collective
implementations at runtime, which we leverage to demon-
strate strong policies such as collaborative transfer schedul-
ing across applications.

e A prototype implementation of MCCS targeting distributed
machine learning workloads that is conceptually a drop-
in replacement for NCCL, along with an evaluation that
demonstrates the benefits via real-world traces on a testbed
deployment and simulator.

2 Background

We first describe how existing collective communication libraries
work and their importance in deep learning. We then discuss why
they are an ill fit for a multi-tenant network.

2.1 Collective Communication Libraries

Collective communication is a fundamental building block for par-
allel computing. Common collective operators include broadcast,
reduce, allgather, reducescatter, and allreduce. To complete a col-
lective operation, multiple participants perform a sequence of send
and receive actions. The efficiency of these operations largely relies
on algorithms that reduce network transmission. Typical collective
communication libraries include NCCL [24], OpenMPI [12], and
Gloo [11].

How does a collective communication library picks a strategy for
a distributed job? A collective communication library has several
built-in algorithms, and the library contains logic to select one of
them based on a set of static factors like data length and the number
of participants. Taking AllReduce as an example, OpenMPI uses
several criteria to choose the most suitable collective algorithm,
including a combination of factors such as the size of the data, the
number of processes involved, the network architecture, and the
bandwidth and latency requirement of the algorithm [14, 32].

The performance of collective communication has recently re-
ceived significant attention in the research community and industry,
due to the rise of distributed deep learning. Much efforts have been
place in designing algorithms to improve the performance of col-
lective operations such as AllReduce and AllGather [7, 29, 36, 40,
41, 44], as they play critical role in deciding the end-to-end deep
learning performance.

Figure 2 shows a statistics of contributions of to the overall train-
ing time of models across four major product groups at one of
the largest social network company in the world. Exposed (non-
overlapping) computation, CPU~GPU memory copy, communi-
cation time, and GPU idle time are measured. This breakdown
confirms that data communication constitutes a significant portion
of the training time.
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2.2 Using Collective Communication Libraries
in a Multi-Tenant Network?

In a multi-tenant datacenter network, traditional collective commu-
nication libraries face several challenges. Firstly, cloud networks
often provide a simplified, black-box abstraction, where all tenant
instances are connected through a big, virtual switch. However,
these instances may actually be distributed across multiple physical
racks, which are interconnected to upper-layer switches through
multiple links, sometimes with oversubscription.

This lack of visibility into the physical topology can lead to
suboptimal collective algorithm selection or configuration. For in-
stance, in a ring-based collective algorithms where data transfer
follows worker ranks (which are assigned by users), Without topol-
ogy information, randomly assign ranks to workers in different
racks could lead to the ring to cross racks back and forth multiple
times, causing substantially more inter-rack traffic than necessary.

Figure 3 illustrates the network overhead introduced by non-
optimal ring configuration with respect to job sizes. We have a
production trace collected at one of the largest social network
company, whose production cluster uses a spine-leaf architecture.
Each rack connects two hosts, each with 8 GPUs and 8 NICs. We
measure a job’s network overhead using cross-rack ratio, where
is the number of cross-rack flows of the collective ring used by
the job, normalized to that of an optimal ring configuration. A
ring configuration in the worst case introduces 2x cross-rack flows
compared to the optimal one. The performance degradation would
only grow as more hosts are placed under a rack. We simulate a
cluster with the same scale as the company’s and computes the
expected cross-rack ratios with different job sizes, if ring ordering
is randomly chosen and we assume jobs are perfectly packed to
hosts. The worst case overhead becomes 4x in this scenario. We
also find that the overhead grows with respect to the job size.

Further, in today’s multi-path datacenters, the most commonly
used network load balancing strategy is Equal-Cost Multi-Path
(ECMP). However, ECMP may not efficiently handle multiple flows
from a ring-based collective operation, potentially leading to con-
gestion on a single physical path and reduced throughput.

NetHint [8] suggests letting a cloud provider expose its network
topology and link utilization. This transparency will potentially
enable a collective communication library adjust its choices of col-
lective communication at runtime. However, this approach raises
security and privacy concerns, because a cloud provider has incen-
tive to maintain the confidentiality of its network topology and link
utilization.

In summary, cloud tenants face a significant challenge in select-
ing an optimal collective communication algorithm due to the lack
of visibility into the physical network’s structure. Providing tenants
with access to this information could introduce security risks for
cloud providers, as it exposes sensitive details of their infrastruc-
ture. A viable approach appears to be for the cloud provider to assume
responsibility for choosing the collective communication strategy on
behalf of the tenant. Our system, MCCS, explores this approach.

3 Overview

MCCS is a new design of collective communication for the multi-
tenant cloud setting. We have following goals. First, a cloud provider
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can decide the collective communication strategy for a cloud ten-
ants. The cloud tenant calls a higher-level collective communica-
tion interface like AllReduce, instead of instantiating point-to-point
data transfer by a collective communication library. Second, the
tenant has no knowledge of what algorithm is chosen and does not
know the cloud’s network topology, link utilization, etc. The cloud
provider hides all these sensitive information inside a cloud service.
Third, the cloud provider can change the collective communication
strategy without interrupting the running tenant to accommodate
changes in the multi-tenant network (e.g., to accommodate a new
tenant’s workload, to leverage more available bandwidth as other
tenants leave the network). Finally, our new design will enable the
cloud provider to do other optimizations (e.g., joint optimization
of collective communication and flow scheduling, having multiple
tenants’ workloads use the bandwidth in an interleaved fashion).

MCCS, realizes collective communication as a cloud service in-
stead of an application library. At the same time, MCCS maintains
a similar interface as traditional collective communication libraries
such as NCCL. Figure 1 presents an overview of the various compo-
nents of MCCS and its architecture different compared to traditional
collective communication libraries. MCCS service runs as a trusted,
user-space process with access to all GPUs and NICs on the host.
User applications on the host only have access to one or more GPUs
allocated to the application. Applications are compiled with MCCS
shim library, which communicates with MCCS service using shared
host and GPU memory. MCCS service is controlled by the cloud
provider, and applications can only access it through its collective
communication APIs.

MCGCS service issues collective communication operations for
GPU buffers on behalf of the cloud tenant. MCCS service decides
the collective communication strategy and can change the strategy
at runtime. Because MCCS service is controlled by a cloud provider,
for every flow in the collective communication, MCCS service can
also decide its network path in the cloud network using source
routing or other path control schemes. Further, MCCS service can
enforce QoS policies by controlling flow paths and the timing of
collective communication operation execution.

4 Design

In this section, we break down and discuss the design of MCCS in
three parts. First, we look at how MCCS meets the existing collec-
tive API while decoupling collectives from the application. Next,
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we discuss how MCCS supports the data path for collective com-
munication with support for runtime reconfigurability. Finally, we
present our solution to decouple policy from mechanism and enable
flexible management of collectives. While our design is agnostic
to any particular collective communication implementation, we
focus on the NCCL throughout this section; other GPU-based collec-
tive communication libraries such as RCCL [38] and oneCCL [28]
maintain similar semantics and terminologies as NCCL.

4.1 Collective Interface

To support collective communication as a service, MCCS needs to:
1) provide an interface to applications for invoking collectives, and
2) enable synchronization between application computation and
collective operations. One goal that constrains our design is a desire
to maintain as close to the same interface as existing libraries, like
NCCL, so that MCCS could act as a drop-in replacement.

NCCL provides APIs that build on core CUDA primitives for
applications to issue collectives. A CUDA stream is similar to the
notion of a thread, allowing applications to enqueue a sequence
of operations (e.g., kernels) to be executed in-order by the GPU.
An application can use multiple threads to express concurrency
between operations by enqueuing them on different streams. When
invoking a NCCL collective API, developers specify the stream that
the collective will be enqueued on; this is used to capture the data
dependency between a collective and the (prior) computations that
generate the data for the collective to operate over.

To realize our design for MCCS, we need to address two chal-
lenges that relate to the inherent isolation between applications
that leverage CUDA. First, similar to host memory, GPU memory
between different processes is isolated by default. How can MCCS
service GPU buffers of applications and implement collectives on
them? Second, due to the fact that CUDA streams are limited within
a single process, how can MCCS service’s APIs maintain the same
thread semantics for the application’s CUDA calls, as respected by
NCCL? We will discuss each of these in turn.

Memory Management. We address the memory management
challenge by choosing to redirect control over GPU memory allo-
cations and deallocations to the MCCS service. Our shim library
provides APIs that applications can invoke directly to allocate mem-
ory that will be accessible to both the application and the MCCS
service; the application can use the existing CUDA APIs to man-
age private buffers that are not directly used as part of collective
operations. Alternatively, to minimize the changes to existing ap-
plications, we also support the redirection of all allocations to the
MCCS service.

The MCCS shim issues an allocation request to the MCCS service
over the shared memory command queue between the application
and the service. A dedicated front-end engine for the given applica-
tion will handle the request by internally allocating memory on the
specified GPU device and obtain an inter-process memory handle
to share with the application. The MCCS shim receives and opens
this handle to obtain the underlying device pointer to the allocated
memory, which it returns to the application. The application can
then use these pointers freely for invoking compute operations,
while for collective operations, MCCS shim passes an identifier for
the memory allocation and an offset to MCCS service. The service
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will check whether the data buffer user passes is within a valid
allocation before performing the operation. This process follows
similarly for deallocation requests — the shim is responsible for
closing the inter-process memory handle before forwarding the
request to the MCCS service.

Synchronization. We address the synchronization challenge by
designing an event-based mechanism that maintains the traditional
semantics of CUDA streams, which enables the sequential order-
ing of dependent compute and collective operations. Since CUDA
streams belong to a single application and cannot be shared (unlike
GPU memory via inter-process handles), we need an alternative
approach for MCCS. We leverage the CUDA event primitive, which
provides the ability to enqueue a stream operation that blocks wait-
ing on the notification of a event that was enqueued on a (different)
stream. Unlike streams, events can be shared via inter-process han-
dles.

MCCS addresses synchronization at the level of communicators,
a standard abstraction used in collective communication libraries
(e.g., NCCL) to specify a subset of n nodes, each assigned a unique
rank in [0, n), to take part in collective operations. While an ap-
plication may use an arbitrary set of streams for managing its
computation and collective operations, the MCCS service main-
tains one stream per communicator. When an application issues a
collective operation for a given communicator, the MCCS service
enqueues the communication kernels that implement the collective
request on the associated stream.

To enable communication kernels on MCCS-managed streams
to wait for compute kernels on application-managed streams to
finish (and vice-versa), we need to introduce event management
operations into the MCCS shim. When a communicator is created,
the MCCS service also creates a corresponding event object and
obtains an inter-process event handle that it returns to the MCCS
shim (along with the communicator handle). The MCCS shim will
use this event to enqueue an operation on the application’s stream
to block waiting for the collective to finish prior to executing any
subsequent operations. Likewise, the MCCS shim also creates an
event object for each application stream to share with the MCCS
service. Instead of hooking directly into CUDA’s stream manage-
ment API, the MCCS shim creates events in an on-demand fashion
whenever a new application stream is used for invoking a collective
operation. The MCCS shim shares an inter-process event handle
along with a stream identifier with the MCCS service, which it
uses to enqueue an operation on the internal stream for the com-
municator to block waiting for any computation to finish prior to
executing the subsequent communication kernel.

Now, we have developed an approach for decoupling the collec-
tive communication from the application while still providing the
same interface from our MCCS service. Next, we will explore how
MCCS actually implements the communication that underlies col-
lective operations while enabling more manageability as compared
to existing approaches.

4.2 Collective Communication

To support dynamic reconfiguration of the data path subject to
policies, we need to decouple the data path setup from the commu-
nicator’s initialization. In NCCL, most of the work that configures
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the data path takes place when a communicator is created by an
application, where NCCL first attempts to detect the intra-host
topology (e.g., NVLink between GPUs) to figure out how to connect
all of the intra-host GPUs, while also identifying the best NIC to use.
After the intra-host topology is decided, each rank communicates
with the root (i.e., rank 0) to form an AllGather TCP/IP-based ring
for exchanging control information. At this point, NCCL can set up
the underlying algorithm for implementing collective operations by
constructing rings and trees, which it uses to establish peer-to-peer
connections between nodes (e.g., consecutive ranks in the ring).

NCCL is mainly designed to run on infrastructure that is tightly
controlled by the user (i.e., application developer), focusing only
on optimizing the intra-host strategy while leaving the optimiza-
tion of inter-host strategy to users. In particular, NCCL simply
connects inter-host rings and trees according to the ordering of
user-specified ranks when establishing the communicator; there-
fore, users must carefully design the GPU-to-rank mapping, which
requires expert knowledge of the cluster topology (and is often
error prone). In multi-tenant settings for public cloud, where the
users and infrastructure provider are not the same principal, this be-
comes problematic. However, even intra-host optimization presents
issues in public cloud settings as well due to virtualization. NCCL
can potentially fail to optimize intra-host strategy because it re-
lies on sysf's information to discover the PCle topology of GPUs
and NICs. Typically, modern virtualization approaches may hide
such information from tenants (and thus from tenant-controlled
collective libraries like NCCL). This challenge has been noted in
other recent work on collective communication algorithms such as
TACCL [41].

By decoupling the implementation of collectives from the ap-
plications, we are uniquely positioned to transform these prior
challenges into opportunities for MCCS. First, we can leverage pro-
prietary (and thus often confidential) topology information within
the context of the MCCS service without revealing such informa-
tion to the applications. This involves architectural challenges in
terms of running collective communication strategies outside the
tenant application’s control and observability. Second, we can en-
able dynamic reconfiguration of collective strategies in response
to changes in the cloud network (or the set of multi-tenant ap-
plications). This involves addressing a key challenge for enabling
reconfiguration (e.g., at the level of ring orderings) that simulta-
neously achieves high-performance and ensures synchronization
across the participating nodes within a communicator. We will
discuss each of these in turn.

Multi-Tenant and Topology-Aware Architecture. For MCCS,
we need to develop a new architecture to simultaneously support
multiple applications sharing cluster, or even individual host, re-
sources while also being able to exploit low-level network infor-
mation (e.g., physical topology). Given that NCCL is focused on a
single application, the implementation of collective communication
for communicators consists of a “transport agent”, which is respon-
sible for managing the sending/receiving of inter-host collective
communication traffic via available NICs based on GPU data buffers.
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We choose to decompose the role of the MCCS service into two
main engines !: 1) a proxy engine, and 2) a transport engine.

The proxy engine is responsible for bridging the gap between
high-level communicators and low-level resources. For each GPU
on a given host, MCCS initializes a single proxy engine that han-
dles all communicators which include that GPU in their ranks.
When a collective is issued, the proxy engine manages the higher-
level collective strategies and network configurations for how the
collective communication will be implemented. For instance, this
enables MCCS to optimize how inter- and intra-host rings are con-
nected and ordered for improve resource utilization. Additionally,
MCCS enables the incorporation of various collective strategies
optimized for specific topologies, such as those proposed in re-
cent research [7, 29, 41] or even proprietary strategies developed
in-house by the provider. In all cases where communication takes
place over intra-host communication channels (e.g., NVLink, host
shared memory buffer), the proxy engine manages the setup and
use of those channels directly.

For all inter-host communication, the proxy engine offloads the
management to the transport engine. While conceptually similar
to the transport agent in NCCL, the transport engine in the MCCS
service is responsible for multiple applications simultaneously. Ad-
ditionally, the transport engine is responsible for providing the un-
derlying mechanisms for scheduling flows on network paths using
existing path control techniques (e.g., source routing, policy-based
routing). There may be one or more transport engines associated
with each GPU to support more communication parallelism.

Dynamic Reconfiguration. The MCCS service exposes support
for dynamic reconfiguration via a command that is made available
to the provider (not the applications). A key goal of our design
is to ensure that the performance overhead for performing a re-
configuration is low (since this otherwise reduces the benefit from
implementing smart policies) and that there is zero (or negligible)
performance overhead for collective operations when no recon-
figuration is issued. At a high-level, this motivates our choice to
support reconfiguration at the granularity of collective operations.
Reconfiguration should be a coarse-grained scheduling decision in
practice, reacting to events such as link utilization increasing due
to traffic that is outside the scope of collectives managed by MCCS
(e.g., fetching training data, background flows).

While it is straightforward for all nodes to agree on a configu-
ration at initialization time, which necessarily takes place before
collectives, this is much more challenging when implementing re-
configurations between collective operations. For an illustration
of this, consider the example shown in Figure 4. Here we assume
an application created a communicator consisting of three GPUs
and that it issues a series of AllReduce (AR) collectives for that
communicator. We differentiate between the launch of a collective,
which shows the ring configuration, and the subsequent completion
of a collective. At some point, a reconfiguration request (Req) is
sent to each of the MCCS service instances running on different
nodes; however, due to arbitrary network and processing delays, it
is possible for the command to be received and processed at differ-
ent times. Without appropriate synchronization, this could lead to

'We use the term “engine” to refer to a general wrapper around functions that can
asynchronously operate over inputs to generate some outputs.
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Figure 4: Example showcasing a potential synchronization
issue in handling dynamic reconfigurations (left) and the
MCCS protocol to address this (right).

correctness issues (shown on the left) in which rank 0 executes ARy
from the perspective of the previous ring ordering, while ranks 1
and 2 perform updates (Updt) to handle the reconfiguration request
prior to AR;. We need to address this problem without requiring
expensive synchronization operations on the fast path (i.e., between
collectives when no reconfiguration takes place).

Our solution is to leverage the per-communicator control ring
as the basis to construct an efficient barrier synchronization mech-
anism. Each proxy maintains a sequence number for the collectives
over time, which inherently matches across all nodes in a communi-
cator because each collective involves every node. After receiving
a reconfiguration request, each proxy enqueues all subsequent col-
lectives prior to issuing an AllGather (AG) collective on the control
ring to exchange the sequence number corresponding to the last
collective launched. Local updates will not be completed until the
AllGather completes, which will provide all nodes with the sequence
numbers for every other node; computing the maximum sequence
number enables nodes to identify which collectives should precede
any reconfiguration update (i.e., collective sequence number is less
than or equal to the maximum).

Looking back at Figure 4, we see on the right how this synchro-
nization prevents this correctness issue in this example. When the
proxies for ranks 1 and 2 receive the reconfiguration request (Req),
they issue the AllGather operation with their data containing 0 for
the latest collective (AR¢) that was launched. Later, when the proxy
for rank 0 receives the reconfiguration request, it also issues the
AllGather operation; however, since it already launched AR;y, its
data contains 1 for the latest collective. At this point, the AllGather
operation completes, which allows the proxies for all ranks to de-
termine that the maximum sequence number is 1; for ranks 2 and 3,
this means that they should issue the queued AR; collective prior
to updating the configuration. The updated ring ordering will be
used in all future collectives until a another future reconfiguration
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request is issued. To update a configuration, the proxy engines will
interact with the transport engines to close all existing peer-to-peer
connections for the communicator and clean up corresponding
resources. Afterwards, the new connections are instantiated based
on the chosen strategy (e.g., rank ordering within a ring), similar
to what is performed at the time of initialization.

In analyzing the performance implications of this design, we
can make two observations. First, issuing a reconfiguration request
can introduce some performance overhead, since collectives will be
stalled until the AllGather for the reconfiguration is complete (i.e.,
until the last proxy receives and handles the request). Additionally,
there is some overhead in tearing down and establishing new peer-
to-peer connections. As we will demonstrate in the evaluation, the
performance overhead for handling reconfigurations is rather small,
and enables significant performance benefits from smart policies.
Second, in the absence of a reconfiguration request, there is no
performance overhead. Note that the proxy for rank 0 is able to
launch the AR; collective before even being aware that the other
ranks received a reconfiguration request — any synchronization
via the control channel (or blocking) only occurs after a request is
received.

At this point, we have the ability for applications to issue collec-
tives and for the MCCS service to implement them while supporting
reconfigurations at runtime while taking into account low-level
topology information. Next, we will explore how MCCS enables
flexible and expressive management according to provider-defined
policies that build on top of the reconfiguration mechanisms that
we just discussed.

4.3 Enabling Manageability

One of our key goals in MCCS is to cleanly decouple policy from
mechanism. The design of our proxy and transport engines within
the MCCS service enables management of both the control and
data paths for collective communication. On the control path, the
MCCS service can support different collective strategies for various
applications as well as control network resource allocation (e.g.,
NICs per application, network routing). On the data path, the MCCS
service can support fine-grained control of communication through
augmentation of the transport engine to control the conditions
for sending network traffic. Our architecture enables this through
dynamic loading of provider-supplied logic that can handle policy
decisions determined by an external controller.

To enable an external controller (e.g., centralized manager) to
schedule the collective communication across all applications on
the cluster, the MCCS service needs to provide an interface for
exposing necessary information. For each application, this informa-
tion is based on the set of active communicators, including the set of
GPUs (and hosts) that make up the ranks within the communicator,
and the current configuration of collective strategy (e.g., ring config-
uration) and network resources (e.g., flow mapping). Additionally,
the MCCS service can perform fine-grained tracing of collectives
issued by applications to determine properties of their computation
and communication patterns. The controller consumes this data to
make a policy decision.
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Next, we look at several concrete examples of scheduling and
quality-of-service (QoS) policies, which will also be used in our eval-
uation of MCCS. While these examples are admittedly straightfor-
ward, they effectively illustrate MCCS’s system capabilities beyond
what today’s collective communication library can offer. MCCS
can also incorporate topology-optimized collective algorithms from
MSCCL [7, 41], while they only apply to a single-tenant environ-
ment.

Topology-aware collaborative scheduling. We explore the fol-
lowing two heuristics to enable the joint optimization of the algo-
rithmic strategy at the collective level and flow assignment at the
network layer.

Example #1: Locality-aware ring configuration. The order-
ing of how the hosts are chained in the ring collective algorithm
directly dictates the overall communication pattern. If many flows
have to go through links above the leaf level (assuming a Clos
network topology), severe congestion could occur due to over-
subscription. Hence, our goal is to minimize the number of cross-
rack / cross-pod flows. We apply a greedy algorithm to configure
the ring ordering for each communicator (application). We group
the participant hosts by their locality (e.g., under the same rack,
under the same pod) and then connect them in a sequential order.
The algorithm takes the set of participant GPUs for each communi-
cator obtained by MCCS service management APIs, and sends an
optimized ring ordering back to MCCS service.

Example #2: Best-fit fair flow assignment (FFA). Once the
ring configuration for all applications are optimized, the commu-
nication patterns between hosts and hence the set of flows can
be determined. Still, using the standard ECMP approach to map
flows into network routes could lead to significant overall collective
performance degradation and inconsistency due to flow collision.
Our goal is to maximize the aggregated collective performance of
all applications, and ensure fairness between different applications.
We use a slightly modified version of the greedy heuristics proposed
in Hedera [1], where for each flow we assign it the path that has
minimal excess bandwidth demand. We round-robin between flows
from different jobs for fairness. For example, if two applications are
both performing collectives using hosts on rack A and B. There are
2 routes between A and B and each application have 2 flows from A
to B. FFA would assign each route a flow from both application. FFA
takes the collective strategy configuration of all communicators as
input. As communication patterns solely depend on the collective
strategy, FFA knows all flows (RDMA connections) in the network.
It then assigns each flow a route ID, where the mapping is issued
to MCCS service.

QoS features. MCCS enables priority control at both coarse-grained
resource allocation and fine-grained communication.

Example #3: Priority flow assignment (PFA). We modify
FFA to allow some routes to be reserved for high priority appli-
cations. We first fit flows of low priority applications using only
non-reserved routes, and flows of high priority applications are
assigned best routes from all available ones. In our example, PFA
can dedicate one of the two routes between rack A and B to the
prioritized application.
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Example #4: Traffic scheduling (TS). With priority flow as-
signment, we can dedicate networks links to some of the highest
priority applications. However, we may still have some applications
sharing links. MCCS could enforce a traffic schedule to control
when each application can send out traffic. In our implementa-
tion, we apply a simple time window based approach inspired by
CASSINI [35] to interleave traffic. TS invokes MCCS tracing API
and requests a trace of a prioritized application. TS then analyzes
the idle cycles of the application when it is not issuing collectives.
TS sends a time interval schedule to MCCS service. Transport en-
gines in MCCS service then allow other applications to send traffic
only when the prioritized application is idle.

5 Implementation

MCCS is implemented in 13.5K lines of Rust: 1.5K for the shim
library and IPC implementation, 6K for control and management
planes, and 6K for transport engine and transport protocols.

Collective CUDA kernels and transports. We adapt CUDA
kernels from NCCL v2.17.1 for computation and intra-host commu-
nication. We modify the kernels so that the communicator resources
on the kernel side (e.g., ring buffers) can be set up by proxy engines
in the MCCS service. We focus on ports of NCCL'’s ring AllReduce
and AllGather kernels; however, it is straightforward to implement
other collective operations, P2P communication, and other algo-
rithms (e.g., tree algorithms). For transport protocols, we implement
support for channels using host shared memory and RDMA; other
channels, such as NVLink, can also be integrated.

Internal engine scheduling. Our engines are designed similar
to asynchronous futures in Rust. A pool of runtimes is used to
execute the engines, where each runtime corresponds to a kernel
thread. Engines can be scheduled on either a dedicated runtime
or a shared one. Runtimes without active engines can sleep to
release the CPU. Currently, we dedicate a runtime to each engine.
Compared with NCCL, which only uses an additional thread per
GPU for the transport agent, our prototype would use 2 more
threads for the frontend and proxy engines. However, we note that
if multiple applications use the same GPU, they will share a proxy
engine. We do not focus on CPU usage optimization as a core goal
in our prototype, and we could implement better engine scheduling
strategies to lower CPU utilization (e.g., frontend and proxy sharing
a runtime if only one application uses the GPU).

Management. We leverage policy-based routing at the switch to
achieve explicit route control for implementing FFA and PFA. Based
on the assigned route ID for each RDMA connection, MCCS service
modifies the UDP source port of ROCEv2 packets. The source port
is not used by ROCEv2 protocol, hence we install a routing policy
on switch that maps flows to routes based on the UDP source port
specified by MCCS service. To implement TS, we currently use
a hard-coded logic directly embedded in the transport engines,
and we manually profile applications offline. We note that such TS
scheduling logic could be easily integrated into a dynamic library
function loaded by the transport engine, while the communication
trace of applications can be retrieved from the MCCS management
APL
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Figure 5: Testbed topology and multiple applications evalua-
tion setups.

For our evaluation, we consider the case in which all tenants
utilize MCCS for collective communication. However, this is not
strictly required. Even if only a subset of tenants use MCCS, MCCS
can still collaboratively schedule the collectives of that subset, while
treating other flows as background flows (and adapt to them).

6 Evaluation

We evaluate the capabilities of MCCS using a small-scale testbed.
We also conduct large-scale simulations to quantify the perfor-
mance benefits of collaborative scheduling enabled by MCCS for
large compute clusters.

6.1 Testbed Setup and Workloads

Figure 5a presents the setup of our testbed. We have four nodes in
our testbed, each equipped with 2 NVIDIA RTX 3090 GPUs and
a 100 Gbps Mellanox ConnectX-5 NIC. Using a single 100 Gbps
Mellanox SN2100 switch, we emulate a spine-leaf topology with 2
leaf switches and 2 spine switches through self-wiring. Four nodes
are placed under two racks, where each rack corresponds to a leaf
switch. The links between the switches are limited to 50 Gbps, while
the links between each host and the leaf switches are limited to
100 Gbps. This means that the over-subscription ratio of our testbed
is 2. On each host, we use IB traffic class (TC) and rate limit each
TC to emulate two 50 Gbps virtual NICs (one per GPU).

We use AllReduce and AllGather benchmarks to evaluate how
MCCS can improve the collective performance in both the case of
a single application and the case of serving multiple applications
at the same time. For the single-application scenario, we use two
setups: a 4-GPU setup where one GPU and one 50 Gbps NIC on
each host is used, and an 8-GPU setup where all two GPUs and
two 50 Gbps NICs are used. To show the effectiveness of MCCS in
a multi-tenant environment, we construct 4 setups on our testbed.
These setups include applications with different sizes and different
placements, as shown in Figure 5b.

In addition to AllReduce and AllGather benchmarks, we evaluate
training workloads using a traffic generator with profile traces. The
traffic generator is implemented with Rust using the MCCS library.
To collect the traces, we used PyTorch [30] v2.1.0, DeepSpeed [37]
v0.10.3 and Megatron-LM [42] to profile a VGG-19 model [43] with
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Figure 6: [Single application]: Algorithm bandwidth of AllRe-
duce and AllGather. The shaded areas represent 95% per-
centile intervals.

data parallel training, and a 2.7B parameters GPT model [6] with
tensor parallel training.

Baselines: We compare MCCS with NCCL (v2.17.1), which is
not network topology aware and cannot perform inter-host ring
optimization. To quantify the performance overhead of MCCS, we
manually configure the inter-host ring used by NCCL with the
results from our locality-aware ring configuration algorithm to
serve as one of the baselines. We denote this baseline as NCCL(OR),
i.e., NCCL with optimal ring.

6.2 Improving Single Application

We first evaluate how the performance of a single application can
be improved with topology-aware scheduling capability enabled by
MCCS. We run AllReduce and AllGather benchmarks of different
data sizes (measured by output buffers). We report the algorithm
bandwidth [25] measurement, which is calculated as output buffer
size divided by execution time. To evaluate the system overhead
introduced by MCCS, we also evaluate MCCS without our flow as-
signment algorithm, and instead rely on ECMP for routing. Figure 6
shows the results in the 4-GPU and 8-GPU setups. Our full solution
is denoted as MCCS. We also evaluate a version of MCCS without
doing flow assignment: MCCS(-FA).

MCCS’s system-level performance overheads can be calculated
by comparing MCCS(-FA) and NCCL(OR), which both use the opti-
mal ring from our ring configuration algorithm. MCCS has negligi-
ble system-level performance overheads when data size is above
8 MB. On 4 GPUs, MCCS(-FA)’s algorithm bandwidth is 63% lower
than NCCL(OR) on 512 KB AllGather (which corresponds to 128 KB
input per GPU) and 51% lower on 512 KB AllReduce, but the perfor-
mance difference decreases to 9.7% for 8 MB AllGather and 0.75%
for 8 MB AllReduce. The reason is that for large messages, MCCS’s
performance is bottlenecked by the collective communication’s
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data transfer. For small messages (less than 8 MB), MCCS suffers
from performance penalties due to the latency overhead introduced
on the datapath. The communication between the application and
the MCCS service, as well as between the internal engines of the
MCGCS service, incurs an overall latency of 50-80 us.

NCCL’s performance is the worst because NCCL itself does not
know the best ring configuration. Comparing NCCL and NCCL(OR),
we find collective algorithm optimizations play a crucial role in
achieving high performance. NCCL(OR) is 56% better than NCCL
on the 4-GPU setup and 78% better on 8-GPU the setup for 512 MB
AllReduce.

To understand how ECMP plays a role in AllReduce and All
Gather performance, let’s look at the 8-GPU case in Figure 6 because
the 8-GPU scenario has cross-rack traffic. For 512 M AllReduce,
MCCS outperforms MCCS(-FA) and NCCL(OR) by 46%. Note that
all three approaches use optimal ring configurations. The key reason
is that flow assignment is fundamental to avoiding flow collision in
ECMP, so only optimizing the collective algorithm insufficient.

MCCS enables joint optimization of collective communication
algorithm and flow scheduling by a cloud provider. Combining both
ring configuration and flow scheduling techniques, MCCS delivers
an 1.6x speed-up on the 4-GPU setup and a 2.4x speed-up on the
8-GPU setup on average for 8 MB-512 MB AllReduce and AllGather
compared to NCCL.

Dynamic changes of collective communication strategies to
adapt to background flows. Here we also showcase the capability
to reconfigure an application’s collective strategy at runtime with-
out interrupting the application. We use an example scenario to
demonstrate this feature. We leave the monitoring of background
flows to external components. For instance, a switch agent can be
configured to report to a centralized manager when there are per-
sistent large flows that are not managed by MCCS. The centralized
manager can then send a new configuration to MCCS service. With
our testbed, we emulate a topology shown in Figure 7a, where each
of the server is connected to a switch, and the four switches are
linked as a ring. We instantiate an 8-GPU AllReduce job, the the
AllReduce job uses a ring algorithm that connects hosts clockwise.
As shown in Figure 7b, at time 7.5 s, a background flow of 75 Gbps
between two switches in the clockwise direction, the available ca-
pacity for the AllReduce job drops to 25 Gbps. However, the switch
links counterclockwise is not affected. If the collective strategy
configuration is not adjusted, the AllReduce algorithm bandwidth
drops from 5.9 GB/s to 1.7 GB/s. MCCS enables the application to
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Figure 8: [Multi applications]: Application bus bandwidth.
Error bars represent 95% percentile intervals.

recover its collective performance by transparently reverse the ring
when the background flow starts. After reconfiguration command
is issued (at time 12s) by the external centralized manager, the
AllReduce bandwidth immediately recovers to 5.9 GB/s.

6.3 Improving Multiple Applications

Next, we evaluate how MCCS improves the overall performance
with a centralized view of all applications and collaborative schedule
their collective communication. Figure 8 shows 128 MB AllReduce
performance in the 4 different setups, as described in §6.1. We
report bus bandwidth [25] of each application, which is normalized
version of the algorithm bandwidth. Here we use bus bandwidth
because it is independent of collective algorithm and the number of
participants. It reflects the hardware peak bandwidth for inter GPU
communication. The aggregated bus bandwidth of all applications
indicates the overall network utilization, while the proportion each
application gets allocated reflects fairness of allocation. For ablation
study, we also compare with the baseline of MCCS without fair
flow assignment. We denote this baseline as MCCS(-FFA).

For all setups, MCCS (with FFA) not only achieves the highest
aggregated bus bandwidth but also ensures fairness across applica-
tions. It outperforms NCCL by 75% on average. All applications in
setups 1, 2, and 4 use the same amount of NICs per host, so they
should have identical inter-host GPU communication performance.
MCCS therefore equally distributes the bandwidth between differ-
ent applications. In setup 3, application A uses 2 GPUs and 2 NICs
per host, while B and C use only 1 per host. Therefore, application
A’s inter-host collective performance should be 2 times that of ap-
plications B and C. Again, MCCS achieves fair allocation as the bus
bandwidth distribution among A, B and C is close to 2:1:1. Using
ECMP fails to guarantee fairness among applications. For instance,
in setup 3, the performance ratio between applications A and B for
MCCS(-FFA) is 1.7:1 instead of 2:1.



ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Ia 2 I VGG (A) @ GPT (B) EEE GPT (C)
154
] | ﬂ?
(o]
= 0
ECMP FFA PFA+TS
Solutlon

Figure 9: [Training workloads]: Job completion time using
different scheduling and QoS strategies. A has the highest
priority, followed by B, while C is the lowest. Error bars
represent 95% percentile intervals.

1
5 —_
a1 : hatiauan !
E —A : : } ‘
£ B ! ! i
5 c : : : :
Z O Il Il Il Il
0 t1 t3 ts 200

Elapsed Time (s)

Figure 10: Normalized training throughput with dynamic job
arrivals and QoS.

6.4 Training Workloads with QoS

We evaluate MCCS using GPT and VGG training traces. We use
setup 3 for our evaluation. We assume A, B, C represent three
tenants sharing the cluster. A is assigned 4 GPUs to train a VGG
model from scratch on a large dataset, while B and C are assigned
2 GPUs each to finetune GPT models.

Fair scheduling speed-ups every workload. Using our traffic
generator on MCCS to simulate the workloads, we report their
job completion time (JCT) in Figure 9 under different scheduling
approaches. The JCT of each workload is normalized to its respec-
tive value under fair flow assignment (FFA). We find that ECMP
routing degrades every workload. Besides having high performance
variance across 10 trails, it also leads to 18%, 22%, 14% slower job
completion on average, for A, B, C respectively.

QoS capabilities enable workload prioritization. Running the
workloads from all three tenants at the same time inevitably result
in contention of network resources. Even with fair flow scheduling,
the performance of a workload would still degrade, compared to
dedicate the entire network for that workload by running it indepen-
dently. In this case, the infrastructure administer may prefer priori-
tizing some tenants. We showcase our two QoS techniques in §4.3
to demonstrate MCCS’s capabilities for enabling QoS through con-
trolling both coarse-grained resource allocation and fine-grained
communication.

We assume an administrator wants to prioritize A over both B
and C. Using priority flow assignment (PFA), we dedicate one of
the two routes between the two racks to A, with B and C sharing
the other one. PFA speeds up A’s training by 13% compared to FFA
and 34% compared to ECMP.

With A prioritized using PFA, B and C now shares a single bot-
tlenecked route, so their performance degrades. If the administer
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wants to further prioritize B over C without affecting A, flow as-
signment no longer works no remaining routes are available that
we can dedicate B to. Fine-grained communication-level QoS mech-
anism needs to be utilized. Hence, in this scenario, we apply our
time window based traffic scheduling (PFA+TS) to prioritize B.
Compared with PFA, in PFA+TS tenant B’s training is sped up by
16%.

Dynamic policy enforcement. We demonstrate MCCS’s flexibil-
ity in policy enforcement, by showing how network administers
can adapt their QoS policies based on current cluster status with
dynamic application arrivals. We illustrate the training throughput
of A, B, C in Figure 10, where they arrive sequentially. The through-
put is normalized to their values under FFA. A already occupies
the cluster at the start, which is followed by B’s arrival at ¢;. As
A has two 50G NICs per host, it can utilize all the 100G switching
capacity of the network when there are no other tenants share
the network. After B arrives, A’s throughput is decreased by 17%.
Then, C arrives at t2 , and all three of them share the network using
FFA. The throughput of A now drops further by 14%. There are also
some fluctuations in the throughput of all applications, which could
attribute to network congestion. After ¢3, the administer prioritizes
A over B and C using PFA, A’s performance therefore improves
by 13%. At time t4, the administer the further prioritizes B over C
using TS, the throughput of B is increased by 18%. The fluctuations
after 3 is introduced by our time window based TS.

6.5 Simulations

We evaluate how a larger scale deployment can benefit from MCCS
via simulations. We compare among three solutions (1) random
ring selection, (2) optimal ring (OR) selection, and (3), OR with fair
flow assignment (FFA). In OR, we always create optimal rings, with
the number of rings equal to the number of network multi-path
choices. In OR+FFA (representing MCCS), we assign each ring to
each of the path in the network.

We simulate a cluster of 768 GPUs. We have 16 spine switches
and 24 leaf switches fully connected. Each leaf switch has 4 hosts
connect to it. Each host has 8 GPUs and 8 NICs. All the network
links and NICs are 200 Gbps. The oversubscription of the network is
2, which is identical to our testbed setting. Our flow-level simulator
assumes per-flow fairness. For the workload and job arrival pat-
tern, we adopt a similar setting as the distributed data-parallel deep
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learning experiment in NetHint [8]. We run 50 jobs of ResNet-50
of model size 100 MB in each experiment. The job sizes are either
16 or 32 GPUs with equal probability. We consider two types of
job placement. Random placement means the simulator allocate
randomly GPUs to a job. Compact placement means the simula-
tor assigns GPUs that belong to the same rack to a job whenever
possible. The jobs arrival follows a Poisson distribution with the
lambda set to 200 ms. We run each experiment 5 times and report
the average speedup for each job’s AllReduce completion time.

Figure 11 shows the CDF of performance improvement of using
MCCS compared to using NCCL. For random placement, OR and
OR+FFA speed up the collective communication by 2.6x and 3.3x
compared with using random rings. With flow assignment, each job
can maximize the utilization of the inter-rack network bandwidth.
This is because for each network path, we assign a ring to utilize
it. Without FFA, the flows within a job can collide on the same
physical path. In compact placement setting, OR and OR+FFA still
outperform random ring by 3.3x and 3.4x. However, FFA does not
add much to OR because the job almost never span more than two
racks, and the link capacity of even a single path between two racks
would suffice the traffic demand. We observed that the schedule
computation takes within 1 ms on average for a job size of 32 GPUs
and scales linearly with the job size. The rescheduling occurs only
when a job joins or exits.

7 Related Work

Integrating collective communication into the network. There
are several prior efforts in integrating collective communcation into
the network. ATP [21], SwitchML [39], and PANAMA [10] propose
offloading AllReduce operations to in-network hardware to enable
multi-tenant distributed machine learning. The key difference is
that MCCS targets at the public cloud environment, where these
works all require tenant applications to be trusted. In these works,
a misbehaving or malicious application can circumvent the cloud
provider designed collective communication strategy, and this will
require well-behaving tenants to adjust their strategies accordingly.
In MCCS, all the collective operations are managed through the
MCCS daemon. Another difference is that MCCS’s performance
gain is not from in-network gradient aggregation but from dynamic
adjustment to collective communication strategy.

Exposing public cloud network information for tenants to
pick collective communication strategies. A separate line of
work focuses on letting tenant acquire information about the physi-
cal network of the cloud provider in order to pick collective commu-
nication strategies. NetHint [8] presents an approach that the cloud
provider periodically exposes a hint, containing a subset of the
physical network topology and link utilization, to help the tenant
pick collective communication strategy. However, a cloud provider
may have security and privacy concerns of exposing their physi-
cal network topology and network utilization to cloud tenants to
prevent adoption. PLink [23] and Choreo [20] let tenant applica-
tions measure their VM-level network bandwidth in order to pick
collective communication strategies or decide on job scheduling.
These approaches are not guaranteed to be accurate, because re-
verse engineering the network configurations from a single tenant’s

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

observation is generally hard. Further, in both approaches, tenants
are making their own decisions on collective communication. In
comparison, MCCS controls all tenants’ collective communication.

Choosing collective communication strategies based on net-
work topology and bandwidth. Optimizing collective communi-
cation strategies for particular network topology and bandwidth
configuration is a standard task for developers running large-scale
workloads on supercomputers [9, 17]. For machine learning work-
loads, several prior works have focused on improving collective
performance [31, 41, 44]. These works all focus on the single-tenant
scenarios. Our work focuses on the multi-tenant public cloud set-
ting. We need to deal with challenges of dynamically changing
collective communication strategies, which is not a concern in
single-tenant scenarios.

Quality of Service (QoS) in a multi-tenant network. How to let
multiple tenants share a cloud network with QoS guarantees is an
old topic. A cloud datacenter network often uses a combination of
congestion control 3, 13, 34, 46], load balancing [2, 18, 27, 45], and
various types of rate limiting techniques [4, 5, 16, 19, 22, 33]. These
works focuses on how to share bandwidth given a set of point-
to-point network demand. The optimizations MCCS addresses is
on having multiple collective communication operations share the
bandwidth by selecting collective communication strategies (e.g.,
the ordering of nodes in an AllReduce ring for each tenant), which
is a different and complementary problem.

8 Conclusion

This paper explores a new service-based approach to collective com-
munication called MCCS. MCCS allows a cloud provider to select
collective communication strategies for cloud tenants and enable
the cloud provider to enforce QoS policies on collective commu-
nication operations. Collective communication strategies selected
by the cloud provider improves tenant performance because the
strategies is picked with the knowledge of the underlying cloud net-
work characteristics (i.e., topology, utilization) and can adapt when
network characteristics changed. Our testbed and simulation-based
evaluations have shown that MCCS improves tenant collective com-
munication performance by up to 2.4x compared to state-of-the-art
collective communication libraries, while adding more management
features including dynamic adjustment of collective communication
algorithm, quality of service, and network-aware traffic engineering.
This work does not raise any ethical issue.
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