
Sonification of Motion of Robotic Systems with

Many Degrees-of-Freedom

By

Amal Kacem

A dissertation proposal submitted for the degree of

Doctor of Philosophy

Electrical and Computer Engineering

the University of Michigan – Dearborn

2025

Doctoral Committee:

Associate Professor Alireza Mohammadi, Chair

Professor Hafiz Malik

Assistant Professor Khouloud Gaaloul

Professor Selim Awad

i



Amal Kacem

Akacem@umich.edu

ORCID iD: 0000-0002-6247-7248

https://orcid.org/0000-0002-6247-7248

© 2025 Amal Kacem.

All rights reserved.

No part of this document may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, without prior written permission.

https://orcid.org/0000-0002-6247-7248


ACKNOWLEDGEMENTS

The completion of this PhD dissertation would not have been possible without

the support, guidance, and encouragement of many individuals and institutions, to

whom I owe a great debt of gratitude.

First and foremost, I would like to express my deepest gratitude to my supervisor,

Dr. Alireza Mohammadi, for your invaluable mentorship and guidance throughout

this journey. Your wisdom, patience, and unwavering support provided me with the

foundation to navigate the challenges of research and academia. I am profoundly

thankful for your constructive feedback, which has shaped both this dissertation and

my growth as a researcher.

I also extend my heartfelt thanks to my thesis committee members, Professor

Hafiz Malik, Professor Khouloud Gaaloul, and Professor Selim Awad, for their in-

sightful suggestions, critical evaluations, and constant encouragement. Your input

has significantly improved the quality of this work, and I am grateful for the time

and effort you invested in my research.

I would also like to thank the University of Michigan for the funding and resources

that made this research possible. The support I received from the National Science

Foundation (NSF) as well as the robotic equipment donation by Omron Foundation,

Inc were essential for the successful completion of the experimental work in this

dissertation.

Above all, I would like to express my deepest love and gratitude to my husband,

Khalil Zbiss, with whom I had the pleasure of working and collaborating. This journey

ii



has been especially meaningful because we have shared every step of it together—not

just as partners in life but as lab mates and collaborators in every project. Your

continuous support, intellectual insight, and the joy of working with you made this

experience even more fulfilling. From the long nights in the lab to celebrating mile-

stones, every moment was enriched because of you. I am so fortunate to have had

you by my side through this incredible journey, both academically and personally.

Lastly, I would like to thank my family and friends for their unwavering support,

patience, and encouragement. I am immensely grateful to my parents Farid and

Saoussan and my brother Amine ”Ninou”, for their heartfelt support—emotionally

and financially—throughout my academic journey. Your generosity and belief in my

potential made it possible for me to pursue my undergraduate and graduate studies

without the added burden of financial worries. I am deeply thankful for the sacrifices

you made to ensure that I had every opportunity to succeed and for your constant

encouragement throughout this process. I sincerely dedicate my success to you, Mom

and Dad.

And to my friends, who reminded me to take breaks and offered moral support, I

am grateful for your presence in my life.

This dissertation is the product of many contributions, and I am forever thankful

to all who have been part of this journey.

iii



PREFACE

This thesis focuses on the field of human-robot interaction (HRI) and specifically

on the sonification of robotic motion. It aims to foster more natural and effective com-

munication between robots and human users. The choice of the study is motivated

by the increasing complexity of robotic systems, where real-time, non-visual com-

munication is essential. Traditionally, robots convey their movements and intentions

through visual displays or speech. However, these methods often fail in situations

with an overwhelming amount of information or when rapid, unconscious interpreta-

tion is required. This gap forms the basis of the current study, prompting the search

for an alternative communication method.

The main idea of this research is that non-speech sounds, particularly sonification,

can effectively communicate complicated robotic movements and intentions to human

users, even in highly complex robotic systems with numerous degrees of freedom.

While existing sonification techniques have shown promise, they are limited to robots

with simple configurations and with a low number of degrees of freedom. To bridge

this gap, This study proposes a new approach based on the Wave Space Sonification

(WSS) framework. The main objective of this research is to systematically sonify

robot motion so that auditory information effectively and intuitively communicates

the robot’s state to human users, especially in situations where visual communication

is inadequate or unavailable.

The significance of this study lies in its potential to enhance collaboration between

humans and robots, particularly in industrial settings where human operators closely
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interact with autonomous systems. By making robotic motion more comprehensible

through sound, this research paves the way for safer and more efficient interactions,

reducing the risk of errors and enhancing overall system performance. The findings

show that the WSS-based approach can effectively represent complex robotic behav-

iors in real-time. The conclusions derived from the experimental results suggest that

sonification is not only achievable but also advantageous in promoting smoother and

more intuitive human-robot collaboration.

This dissertation contributes to the broader field of HRI by introducing a new

method that extends the use of sonification in robotic systems. This study recom-

mends further investigation of sound design for different robotic configurations and

testing the sonification method in various real-world situations. This work estab-

lishes a foundation for future research on using auditory representations to improve

the safety and efficiency of human-robot systems, especially in critical environments

where quick and accurate interpretation of robotic actions is essential.

The following section presents a comprehensive list of my publications during the

course of my PhD. The first four papers are closely tied to the central theme of this

dissertation, which focuses on the sonification of the motion of redundant robots.

These publications delve into the challenges of monitoring the kinematic behavior of

robots with many degrees of freedom and propose innovative sonification techniques as

an alternative to traditional visual methods. Specifically, they explore how auditory

feedback can be effectively applied to hyper-redundant robotic mechanisms, providing

intuitive ways to interpret complex motion patterns and improve system monitoring.

Additionally, these works extend the sonification approach to teams of mobile robots,

addressing the need for scalable and efficient methods to track and analyze the motion

of multiple robotic systems simultaneously.

The final two publications included in this list represent research I contributed to

outside the scope of the specific focus on sonification. Although not directly related to
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the core subject of this dissertation, these papers highlight my broader work within

the field of robotics, covering topics such as automation and robot design. While

these projects fall outside the main narrative of this dissertation, they demonstrate

the range of my research interests and contributions during my PhD journey.
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ABSTRACT

by

Amal Kacem

Effective human-robot interaction is increasingly vital across various domains, in-

cluding assistive robotics, emotional communication, entertainment, and industrial

automation. Visual feedback, a common feature of current interfaces, may not be

suitable for all environments. In settings where visibility is low or where robotic op-

erations generate extensive data, audio feedback serves as a critical supplementary

communication layer. Sonification, which transforms a robot’s trajectory, motion, and

environmental signals into sound, enhances users’ comprehension of robot behavior.

This improvement in understanding fosters more effective, safe, and reliable Human-

Robot Interaction (HRI). Demonstrations of auditory data sonification’s benefits are

evident in real-world applications such as industrial assembly, robot-assisted reha-

bilitation, and interactive robotic exhibitions, where it promotes cooperation, boosts

performance, and heightens engagement. Beyond conventional HRI environments,

auditory data sonification shows substantial potential in managing complex robotic

systems and intricate structures, such as hyper-redundant robots and robotic teams.

These systems often challenge operators with complex joint monitoring, mathematical

kinematic modeling, and visual behavior verification.
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This dissertation explores the sonification of motion in hyper-redundant robots

and teams of industrial robots. It delves into the Wave Space Sonification (WSS)

framework developed by Hermann [9], applying it to the motion datasets of pro-

tein molecules modeled as hyper-redundant mechanisms with numerous rigid nano-

linkages. This research leverages theWSS framework to develop a sonification method-

ology for protein molecules’ dihedral angle folding trajectories. Furthermore, it intro-

duces a novel approach for the systematic sonification of robotic motion across varying

configurations. By employing localized wave fields oriented within the robots’ con-

figuration space, this methodology generates auditory outputs with specific timbral

qualities as robots move through predefined configurations or along certain trajec-

tories. Additionally, the dissertation examines a team of wheeled industrial/service

robots, whose motion patterns are sonified using sinusoidal vibratory sounds, demon-

strating the practical applications and benefits of this innovative approach.
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CHAPTER I

Introduction

Sonification, the process of transforming data into sound, is increasingly recog-

nized as a valuable tool in bridging the gap between human operators and machines,

offering an intuitive and direct way to comprehend complex data and systems. In

the realm of robotics, this technique holds immense potential, as it allows users to

interpret information not solely through visual displays, but through the auditory

modality, which is highly sensitive to changes in patterns and rhythm. The use of

sonification has been applied across various domains, from assistive technologies to

healthcare innovations, scientific research, and industrial automation, all of which

benefit from its ability to present data in a form that can be processed in real time,

while reducing the cognitive load typically associated with complex visual interfaces.

In the context of robotic systems, the application of sonification extends far beyond

basic monitoring tasks. It enhances the user’s ability to interact with and control

highly complex, multi-dimensional systems in a manner that would otherwise be

unattainable through traditional visual methods. One prominent example of this is

its application in navigation assistance for the visually impaired (VIP). When robotic

trajectories are sonified, auditory cues can guide VIPs through different environments,

providing real-time feedback that facilitates navigation without reliance on visual

data. Ahemetovic et al. [10] introduced several sonification techniques tailored to
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navigation assistance for VIPs, demonstrating the effectiveness of auditory cues in

providing guidance during turns and straight paths. This research highlights the

practical value of sonification in overcoming the challenge of non-visual navigation,

offering a highly effective solution to a traditionally difficult problem.

For example, Ahemetovic and his collaborators [11] proposed a novel sonification

technique aimed at providing continuous guidance during rotations. This system was

designed for Indoor Navigation Systems (INS), where VIPs rely on mobile devices that

utilize location tracking and inertial sensors to follow routes to a given destination.

By converting spatial and motion data into sound, the researchers created a system

that offers continuous auditory feedback, allowing users to orient themselves and

navigate complex environments safely. Similarly, Hu et al. [12] explored how image

sonification techniques could be used to convey critical scene information to VIPs

via Electronic Travel Aids (ETA). Their approach included depth image sonification,

obstacle sonification, and path sonification, each of which mapped different types of

spatial data into sound. By translating visual information into distinct auditory cues,

these systems have empowered VIPs to navigate autonomously, even in environments

where traditional assistive technologies might falter.

Beyond assistive technology, sonification has been widely adopted in healthcare

and scientific research to enhance data interpretation and real-time monitoring. In

healthcare, for instance, researchers have explored sonification as a tool for converting

complex physiological data—such as heart rate variability or EEG recordings—into

sound [13; 14; 15; 16; 17]. The conversion of these data streams into auditory signals

provides an additional layer of insight for clinicians, who can detect anomalies, moni-

tor patient health, and even assist in diagnosing conditions such as heart arrhythmias.

Studies have shown that auditory patterns can reveal subtle irregularities in patient

data that might otherwise go unnoticed with traditional visual monitoring techniques.

By transforming multi-dimensional physiological data into sound, sonification has al-
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lowed healthcare professionals to monitor patient conditions more effectively and in

real time, enhancing diagnostic accuracy and improving patient outcomes.

Scientific research also benefits greatly from the application of sonification. In

fields such as genomics and astrophysics, where data is often vast, multi-dimensional,

and difficult to visualize, sonification provides a novel way to interpret and analyse

complex datasets [18; 19],. For example, in genomic research [20; 21; 22], sonification

has been employed to analyze large-scale datasets and uncover insights into genetic

sequences. Similarly, in astrophysics [23; 24; 25], researchers have used sonification

to explore celestial data, such as the movement of stars and galaxies, where tradi-

tional visualizations might not effectively convey the nuances of these phenomena.

The ability to listen to data, rather than solely relying on visual interpretation, of-

fers scientists a new dimension through which they can make discoveries and draw

conclusions.

Sonification’s potential is not confined to static data interpretation but also ex-

tends to real-time monitoring of dynamic systems, particularly in applications in-

volving human kinematic movement [26; 27; 28]. One growing area of research is the

sonification of kinematic data, where complex human movements are converted into

auditory signals that can be used for rehabilitation, sports performance analysis, and

training. In this context, sonification offers immediate feedback that helps individu-

als, whether patients or athletes, correct and improve their movements. By providing

real-time auditory feedback [29; 30; 31], patients can receive ongoing cues that help

them refine their motor skills, which is particularly valuable in rehabilitation settings

where continuous feedback is critical for motor learning and recovery.

In rehabilitation, sonification can provide feedback on key aspects of movement

such as joint angles, velocity, and trajectory. For patients recovering from a stroke,

injury or other motor impairments, or even neurological disorder [32; 33]. For in-

stance, a patient recovering from a stroke may need to focus on the smoothness and
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coordination of limb movements, while an athlete recovering from an injury might

need to pay attention to the speed and strength of their movements or improve their

physical abilities by sharing sports-related information to increase the accuracy of

the sport movements reproduction [34; 30; 35]. These auditory feedback allow them

to make small adjustments to their movements, improving coordination and overall

motor function. Unlike visual feedback, which often require focused attention on a

screen, auditory feedback can be processed peripherally, allowing patients to focus en-

tirely on their physical movements. This can lead to faster recovery times and more

effective rehabilitation outcomes, as patients are able to make corrections in real time

without interrupting the flow of their exercises. The flexibility of sonification also

allows for the customization of auditory signals to meet the specific needs of different

patients, whether they are focusing on regaining smooth movement in their limbs or

increasing the strength and speed of their motions.

In addition to enhancing precision in movement correction, the use of sound in

rehabilitation can significantly engage patients and maintain their motivation. Au-

ditory feedback can be designed to be pleasant and encouraging, transforming the

often monotonous and repetitive nature of rehabilitation exercises into a more engag-

ing and enjoyable experience [36; 37; 38]. Studies have shown that sonification can

lead to improved motor performance and increased engagement compared to tradi-

tional visual-only feedback systems [39; 40]. Patients are more likely to adhere to

their rehabilitation programs when they find the process enjoyable and rewarding.

In addition, for therapists, sonification offers a novel and effective tool to monitor

patient progress. The auditory signals can provide a continuous stream of infor-

mation that is easier to interpret in real-time, enabling more precise adjustments

to therapy plans. This dynamic feedback loop ensures that rehabilitation strategies

can be promptly modified based on the patient’s performance, thereby optimizing

recovery outcomes.
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Moreover, in the context of multi-robot systems, such as teams of mobile robots,

sonification has the potential to be an invaluable tool for real-time monitoring and

control. Teams of mobile robots generate vast quantities of motion data, much of

which is too complex for traditional visual methods of monitoring. Sonification al-

lows for the continuous tracking of the movements and interactions between robots,

offering operators an auditory representation of system states that would otherwise

be difficult to grasp visually. By converting this data into sound, operators can listen

for deviations in the expected motion patterns of individual robots or the team as

a whole, allowing for more effective management of these systems in dynamic envi-

ronments. The auditory feedback provided by sonification enhances the operator’s

situational awareness, enabling them to detect anomalies, monitor performance, and

make rapid adjustments to optimize system efficiency.

The benefits of sonification extend further into the realm of industrial automation,

where robots are deployed for complex tasks such as material handling, assembly, and

quality control. In such settings, the ability to monitor and control the behavior of

robotic systems in real time is essential for maintaining productivity and ensuring the

quality of output. Sonification offers a unique advantage in this context, as it allows

operators to remain attuned to the performance of their systems without needing to

constantly observe visual displays. By providing auditory cues that indicate changes

in system behavior, sonification can alert operators to potential issues before they

escalate into serious problems, thereby reducing downtime and enhancing operational

efficiency.

In conclusion, the growing recognition of sonification as a critical tool in human-

machine interaction highlights its potential to revolutionize the way complex systems

are monitored and controlled. Whether in the fields of assistive technology, healthcare,

scientific research, rehabilitation, or industrial automation, the ability to transform

data into sound opens up new possibilities for interpreting and interacting with infor-
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mation in real time. Sonification not only reduces the cognitive load associated with

visual monitoring but also offers a more intuitive and accessible means of understand-

ing complex, multi-dimensional data. As robotic systems become more advanced and

the volume of data they generate increases, the role of sonification will only become

more prominent, providing operators with the tools they need to effectively monitor

and manage these systems in dynamic, fast-paced environments.

1.1 Motivation

The increasing complexity of modern robotic systems, particularly those with a

large number of degrees of freedom, presents a significant challenge to traditional

methods of monitoring and control. These robots, whether hyper-redundant or part

of multi-robot teams, generate vast amounts of motion data, the interpretation of

which is critical for ensuring smooth operation, detecting anomalies, and optimizing

performance. As robotics continues to evolve and becomes more integral to industrial

automation, healthcare, service industries, and advanced manufacturing, the need

for effective monitoring grows. However, current approaches are largely reliant on

visual methods—dashboards, screens, and graphical interfaces—which are proving

insufficient in environments where high-dimensional, intricate motion data must be

processed in real-time. The overarching motivation for this research is to explore

and develop alternative, non-visual methods for system monitoring. Specifically, the

focus is on the sonification of motion data from robots with large degrees of free-

dom, including hyper-redundant robots and teams of mobile robots, with the goal of

providing real-time auditory feedback that aids in interpreting and managing their

behavior, hence, enhancing Human-Robot Interaction.

Hyper-redundant robots—characterized by their numerous joints and linkages—pose

unique challenges to system monitoring. Each of these robots’ many degrees of free-

dom represents a distinct trajectory that must be tracked and monitored as the robot
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operates. The sheer volume of motion data produced during the operation of such

robots makes it difficult, if not impossible, for operators to fully comprehend the sys-

tem’s behavior using visual feedback alone. Traditional visualization tools, such as

multi-dimensional graphs and time-series plots, become cluttered and hard to inter-

pret, especially in dynamic and fast-paced environments where real-time monitoring

is essential. In systems where many joints interact simultaneously, these traditional

tools are prone to information overload, ultimately hindering the operator’s ability

to effectively monitor the robot. As such, there is an urgent need for alternative

approaches that provide more intuitive, less cognitively demanding methods of mon-

itoring and controlling robots with many degrees of freedom.

In this research, we propose the application of sonification as an innovative method

for addressing these challenges. Sonification is the process of translating data into

sound, providing users with an auditory representation of complex information that

might otherwise be difficult to grasp visually. By converting motion data into non-

speech auditory cues, sonification leverages the human auditory system’s innate abil-

ity to detect changes, patterns, and anomalies in real time. This auditory feedback

can complement or even replace traditional visual methods, providing an alternative

means for users to monitor robotic systems that are too complex for effective vi-

sual interpretation alone. In particular, for hyper-redundant robots, where multiple

degrees of freedom interact in a high-dimensional space, sonification offers an oppor-

tunity to represent the intricate and often non-linear behavior of the system in a more

accessible and comprehensible format.

The motivation to explore sonification as a monitoring tool for hyper-redundant

robots is driven not only by the practical challenges of real-time monitoring but also

by the conceptual parallels between these robots and other high-dimensional systems,

such as molecular structures. Specifically, hyper-redundant robots, with their large

number of flexible joints, can be modeled similarly to protein molecules, which exhibit
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complex folding pathways as they move from unfolded to folded states. Just as the

molecular movements of protein folding are difficult to visualize in high-dimensional

space, the motion of hyper-redundant robots presents similar challenges in visual

monitoring. This analogy provides an interesting framework for exploring sonification

as a tool to map these high-dimensional trajectories into an auditory domain, where

users can intuitively track, understand, and respond to the system’s behavior.

However, hyper-redundant robots are not the only type of robotic system that

stands to benefit from a sonification-based monitoring approach. Teams of mobile

robots, which are increasingly deployed in industrial and service environments, also

generate complex motion data that can overwhelm traditional visual monitoring sys-

tems. In such scenarios, multiple robots operate simultaneously, coordinating their

movements and interacting with each other in ways that are often difficult to monitor

using only visual data. The need for real-time, intuitive feedback in these systems is

critical, especially in environments where robots are tasked with complex, dynamic

missions such as material transport, assembly, or inspection. The coordination of

these robots requires careful monitoring to ensure that all units work together effi-

ciently, avoiding collisions, task misalignments, or inefficiencies in execution.

The challenge in monitoring teams of mobile robots lies not only in the complexity

of the motion data but also in the interaction dynamics between individual robots.

Visual methods, although widely used, are limited in their capacity to provide real-

time feedback on the behavior of these multi-agent systems, particularly when quick

decisions must be made to avoid operational failures. By transforming the motion

data from these robots into auditory feedback, sonification offers a solution that pro-

vides immediate, intuitive insight into the system’s performance. It allows operators

to track not only the movements of individual robots but also the coordination and

collective behavior of the team. This is particularly important in environments where

visual information can be incomplete, overwhelming, or difficult to process at the
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speed required for effective decision-making.

Given the complexity of these systems, traditional monitoring methods are inad-

equate in capturing and conveying the full scope of robot behavior. This inadequacy

underscores the importance of developing sonification techniques tailored to both

hyper-redundant robots and teams of mobile robots. In systems with many degrees

of freedom, the high-dimensional motion data requires a monitoring approach that

is not only capable of representing intricate behaviors but also scalable and robust

enough to handle real-time data streams. Sonification fills this need by providing an

alternative means of conveying complex system states through sound, making it pos-

sible to track subtle variations in movement and performance that might otherwise

go unnoticed through visual monitoring alone.

In the case of hyper-redundant robots, each joint or linkage operates within a

multi-dimensional space, and their collective movements result in complex trajecto-

ries that describe the robot’s behavior. Monitoring these trajectories through visual

methods alone is impractical due to the sheer volume and intricacy of the data. Soni-

fication, however, offers a way to map these trajectories to auditory signals, allowing

operators to detect shifts in the robot’s behavior, such as deviations from expected

movements or the emergence of inefficiencies in the system. By converting motion

data into sound, this approach enhances the user’s ability to track and respond to

changes in real time, providing a more accessible and efficient means of understanding

the robot’s performance.

Similarly, in teams of mobile robots, where each robot operates independently but

in coordination with others, the collective motion data poses a significant challenge

for visual monitoring. Sonification enables the auditory tracking of these interactions,

allowing operators to assess the team’s performance without having to parse through

dense visual representations of the data. This auditory feedback is particularly useful

in environments where robots must coordinate tightly to avoid collisions, complete
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tasks, or navigate through complex spaces. The ability to monitor these interac-

tions through sound provides an additional layer of feedback that complements visual

monitoring, offering operators a more comprehensive understanding of the system’s

behavior.

Despite its promise, the field of robotic trajectory sonification is still in its early

stages. Existing research has focused on simpler robotic systems, such as those used in

human-robot interaction (HRI) studies, where sonification has been applied primarily

to small-scale, low-dimensional systems. The application of sonification to robotic

systems with large degrees of freedom or teams of robots operating collaboratively has

remained largely unexplored. This research aims to address this gap by developing

a systematic sonification framework that can be applied to both hyper-redundant

robots and teams of mobile robots, offering a novel solution to the challenges posed

by high-dimensional motion data and multi-agent coordination.

The motivation for this work is also grounded in the broader trend toward increas-

ing automation and the deployment of robots in complex, real-world environments.

As robots become more integral to tasks such as material handling, transportation,

and assembly, the need for reliable, real-time monitoring will only grow. Sonifica-

tion offers a powerful tool for addressing this need, providing an intuitive means of

interpreting the behavior of these systems without over-reliance on visual feedback.

In industrial settings, where robots often operate in close coordination and at high

speeds, the ability to detect deviations or anomalies in real time is critical to ensur-

ing safe and efficient operation. Sonification provides a way to augment traditional

monitoring techniques, offering a new dimension of feedback that can enhance system

performance and reliability.

In conclusion, this dissertation is motivated by the growing need for alternative

approaches to system monitoring in complex robotic systems, particularly those with

large degrees of freedom and multi-robot teams. Traditional visual methods are in-

10



creasingly inadequate in handling the scale and complexity of modern robotics, neces-

sitating the development of new tools for real-time feedback and control. Sonification

offers a promising solution to this challenge, transforming high-dimensional motion

data into intuitive auditory signals that enhance the operator’s ability to monitor

and manage robotic systems. By applying sonification techniques to hyper-redundant

robots and teams of mobile robots, this research seeks to develop a robust, scalable

framework for auditory monitoring, contributing to the broader effort to improve the

performance, safety, and efficiency of complex robotic systems.

1.2 Dissertation Organization

This dissertation is organized as follows: Chapter II begins by laying the neces-

sary background on sonification and various sonification techniques. It explores the

current state-of-the-art applications of sonification in robotics, highlighting its rele-

vance in non-visual system monitoring. The chapter also examines how sonification

has been applied to protein-related datasets, linking this work to robotics through

a brief overview of the Kinetostatic Compliance Method (KCM)-based approach to

protein folding. This provides a conceptual foundation that connects the sonification

of protein folding pathways to robotic trajectory monitoring, setting the stage for the

discussion of more complex robotic systems in subsequent chapters.

In Chapter III we provide an in-depth look at redundant robots. First, we focus on

Hyper-redundant robots and their unique kinematic structure and their applications

by emphasizing on their high degree of dexterity and flexibility due to their numer-

ous degrees of freedom. Despite the structural differences between hyper-redundant

robots and teams of mobile robots, the chapter draws parallels between these systems

by emphasizing their shared fundamental principles of redundancy, coordination, and

adaptability. It explores how the kinematic structures of both types of robots are

essential for designing systems that can execute complex, coordinated tasks, paving
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the way for the integration of sonification techniques.

Chapter IV, we discuss the importance of studying the folding pathways of protein

molecules and how challenging is to represent the vast amount of data generated by

protein folding simulations. This chapter presents the contributions of this research

to the sonification of protein folding pathways, specifically addressing the unsolved

problem of representing conformational changes in proteins through auditory feed-

back.

Thereafter, we formulate our problem statement related to the sonification of

folding pathways of protein molecules modeled as hyper-redundant robots. We also

provides our solution to the problem of sonification of datasets associated with con-

formational changes during protein folding. Then, in this chapter we present exam-

ples and results of the Wave Space Sonification (WSS)-based methodology developed

for the backbone chain of a protein molecule with a dihedral angle space of dimen-

sion 82. Specifically, we utilize a canonical wave space function based on a sum-of-

sinusoids with protein conformation-dependent frequencies and a sample-based wave

space function based on Mozart’s Alla Turca for sonification of the peptide chain

folding trajectories. The chapter concludes with a discussion on how the proposed

sonification method could be extended to other hyper-redundant robotic systems,

demonstrating the interdisciplinary potential of this research.

In chapter V, the focus shifts to the sonification of the motion of teams of mobile

robots using our developed data-driven localized WSS method. Despite the signifi-

cance of sonification of the motion patterns of industrial/service robots as an impor-

tant human-robot collaboration enabler, there is still no general method for real-time

sonification of the motion of teams of these robots with any arbitrary number of

team members. The chapter begins by outlining the formal problem of sonifying the

real-time motion of multi-robot systems, which is a critical challenge in industrial

and service environments. It describes the experimental settings used in this study
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and presents the data-driven localized WSS methodology as a solution for monitor-

ing the motion patterns of teams of mobile robots. The methodology is applied to a

team of OMRON LD series autonomous mobile robots, showcasing how sonification

can enhance real-time tracking of robot coordination and performance. The chapter

emphasizes the importance of sonifying the motion of teams of robots, particularly

in scenarios where human-robot collaboration is essential, and discusses the broader

implications of this work in enabling more intuitive and responsive interaction with

robotic systems.

Finally, Chapter VI concludes the dissertation by evaluating the overall signifi-

cance of the proposed WSS-based sonification framework. This chapter reflects on

the contributions of the research to the field of sonification, specifically in the context

of hyper-redundant robots and teams of mobile robots. It also considers the potential

for applying the developed methodology to other complex robotic systems, offering

insights into future research directions. The chapter highlights the scalability and

adaptability of sonification as a tool for real-time monitoring in robotics, proposing

future advancements and applications of the techniques presented in this dissertation.
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CHAPTER II

Background

In this section, we provide a brief background on sonification techniques and

their applications to datasets resulting from studying protein molecules as well as

robotic motion sonification. We further highlight the contributions of the method in

the context of the state-of-the-art sonification techniques applied to these important

problems. Finally, we conclude the chapter by providing an overview of the Kineto-

static Compliance Method for modeling the folding of protein molecules.

2.1 Sonification

Sound, from Rene Laennec’s stethoscope to the Geiger-Muller counter, has had

longstanding importance in the process of scientific discovery and technological de-

velopment [41]. Despite this significance, the utilization of non-speech audio for

conveying information, which is known as sonification, is still in its developing phase

(see, e.g., [42; 43; 44]). Formally, sonification can be defined as the technique of using

datasets as input and generating sound signals as output, while satisfying the four

conditions of: (i) reflecting the objective and/or relational properties in the input

data; (ii) transforming datasets systematically; (iii) being reproducible; and (iv) ap-

plying to versatile datasets [45].
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The Sonification Handbook [45] categorizes (see, also, [46]) the sonification tech-

niques into five different structural classes, namely, earcons, auditory icons, parameter-

mapping sonification, audification, and model-based sonification. Earcons refer to

structured sounds serving as an index for abstract messages, such as the Windows

abstract operating system sounds or the signature three-tone melody of the National

Broadcasting Company (NBC). Auditory icons refer to short sound messages that

convey information about an event, situation, or object [47] such as the sound of

crumpling a piece of paper when deleting a document in Windows. Audification is a

special case of WSS where data is directly translated into sound. Finally, in model-

based sonification [48], the data is converted to a dynamical system that demonstrates

acoustic behavior, e.g., utilizing the data to determine the mass-spring system pa-

rameters of an acoustic device.

2.2 Wave Space Sonification

2.2.1 Wave Space Sonification Overview

In addition to the five established classes of sonification, a new class known as

the wave space sonification (WSS) has been recently proposed by Hermann [9]. This

framework lies in the spectrum between parameter-mapping sonification and audifi-

cation. WSS, whose essence is based on effective navigation of sound signal spaces

by using high-dimensional data, has been utilized in a few applications such as the

development of audiovisual dance displays [49].

WSS is a method for representing data acoustically by mapping it to the frequency,

amplitude, and other characteristics of sound waves. The framework converts data

points into sound parameters such as pitch, volume, and timbre, enabling auditory
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exploration and interpretation of complex data sets belonging to the multidimensional

space of sound waves.

Depending on the nature of the data and the desired auditory output, the data

gets mapped based on mathematical algorithms, physical models, or subjective inter-

pretation before it gets converted to sound waves.

The resulting acoustic signal lets users perceive patterns, trends, and anomalies in

their data by listening. By leveraging the human ear’s ability to detect subtle changes

in sound, WSS provides a unique and intuitive way to explore complex datasets and

complement traditional visualization techniques.

WSS demonstrates potential applicability across diverse domains and disciplines,

including scientific research, data analysis, and artistic expression. In scientific re-

search, it could be of huge help in discovering patterns and relationships in data,

making it easier to create and test hypotheses. Providing Data analyst with an-

other perspective on the dataset and revealing insights that are not evident through

visual inspection alone. In art, it can be used to create immersive and interactive

experiences.

Overall, WSS is a powerful tool for converting data into sound, providing a rich

and expressive medium for data exploration and communication. This is the main

reason behind utilizing the WSS framework for solving the problem of sonification

of folding trajectories of protein molecules, which are modeled as hyper-redundant

robotic mechanisms (see, e.g., the line of work in [49; 50; 51; 52] for such a robot

kinematics-based point of view on the structure of proteins). This is the first time

that Hermann’s WSS framework [9] is utilized for navigating sound signal spaces by

using high-dimensional data resulting from the folding process of protein molecules.
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2.2.2 Wave Space Sonification Elements

The WSS framework requires defining the following three elements [9]: (i) a tra-

jectory in the wave space; (ii) a suitable definition of a wave space function; and, (iii)

a proper way of moving along the trajectory in the wave space.

In the context of sonification of folding pathways of protein molecules, the wave

space is the configuration space Q to which the vector of dihedral angles (introduced

in Section 2.5.1) belongs (see Equation 2.2). Furthermore, the dihedral angle vector

trajectory θ(t) obtained from the protein folding process defines an embedded trajec-

tory within the high-dimensional wave space Q. Moreover, in the WSS framework,

one needs to select a morphing function M : t −→ M(t), which determines how the

dihedral angle folding trajectory is traversed. Finally, one needs to construct a scalar

field V : Q −→ R, which is also known as the wave space function (see, also, Figure

4.1). After determining the wave space function V (.) (see Sections 4.5.1 and 4.5.2),

the sound signal, which can be sent to the PC sound card for listening to the folding

pathway, is given by

s(t) = V (θ(M(t))) (2.1)

Figure 4.1 depicts the WSS elements in the context of sonification of protein

folding pathway datasets. In the figure, the morphing function is considered to be

the identity mapping, i.e., M(t) = t.

2.3 Sonification Techniques Applied to Structural/Vibrational

Protein Data

One of the very first endeavors to sonify the structure of proteins and their en-

coding gene sequences is due to Dunn and Clark [53] In their work, fixed pitches were

assigned to each amino acid based on an absolute basis or more consonant intervals
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were assigned to the more frequently occurring amino acids based on a relative basis.

Furthermore, water solubility of amino acids was also considered as a third metric

for pitch assignment. Another pioneering work on molecular data sonification is due

to Delatour [54], where a process for the acoustic and musical conversion of vibra-

tional spectra data was proposed. Following Dunn and Clark [53] and Delatour [54],

many of the important methods in this area such as the innovative line of work by

Buehler and collaborators [21; 55; 56; 57; 58] all within translation of either struc-

tural properties or vibrational spectra of proteins into sound/musical compositions.

Of notable importance is the work by Franjou et al. [56] where a neural network

model is trained on ‘protein music’ and gives rise to new musical structures. These

novel musical compositions, in turn, can be utilized to generate new protein structures

through proper translation mappings. In another notable work, Qin and Buehler [55]

employ frequency spectra of proteins, which result from a high-throughput automatic

computational method, to produce audible sound. Moreover, using the concept of

transpositional equivalence in music theory, they overlay the vibration of molecular

structures and translate them to the audible frequency range (see [55] for further

details).

Despite all the previous developments for sonification of protein molecule struc-

tural/vibrational data, the problem of sonification of protein folding pathway datasets

is still an open one. This challenge is mainly due to the existence of an overwhelming

amount of data, which are generated using physics-based numerical simulations (see,

e.g., [59; 60; 61; 62; 63; 64; 7; 65; 66]), associated with time-indexed dihedral angle

trajectories. Indeed, it is not clear how one can assign sound/music signals to these

trajectories lying in the high-dimensional conformation space of protein molecules.

It is important to note that in the biochemistry literature, ‘conformation’ is the

standard word for describing the geometric structure of a protein molecule. In the

robotics literature, on the other hand, the terminology ‘configuration’ is frequently
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used to describe the kinematic structures of robots.

2.4 Sonification of Robotic Motion/Gestures

Sonification of the motion of robots is a relatively new paradigm with many poten-

tials for efficient communication of robotic motion/intentions to human users while

relying less on visual engagement [67; 68; 69], [70; 71; 72; 73; 74]. A notable approach,

which belongs to the family of Parameter Mapping Sonification methods, is proposed

by Schwenk et al. [74]. In their approach, a robot sonification system based on sound

modulation of a synthesizer has been developed, where joint state and sensor data

are fed into the synthesizer. Another notable line of work is the SONAO project led

by Frid, Bresin, and collaborators [67; 70; 71], where limitations in robot commu-

nicative channels with humans are compensated through mapping humanoid robot

expressive gestures to non-speech audio. For instance, Frid and Bresin [71] used a

rectangular oscillator with a short envelope duration while mapping the magnitude

of the input to pitches in a C major scale to convey sensations of joy. In the con-

text of virtual reality-based robot teleoperation, Bremner et al. [72] have decreased

the stress and perceived workload of human operators working with remote robots

in hazardous environments by using proper data sonification through the Parame-

ter Mapping Sonification framework. Another relevant project is SonifyIt [73] that

enables sample playback and live sound synthesis for robots using Robot Operating

System (ROS) and a visual programming language for multimedia called Pure Data.

Despite the advancements in the field of robot motion sonification, one major

limitation of the current state-of-the-art methods is that they are limited to robots

with a low number of degrees-of-freedom (e.g., less than ten like the robot Daryl in

[74]). On the other hand, hyper-redundant robots such as elephant trunk robotic

arms or segmented space manipulators (see, e.g., [75; 76; 77]), which are useful for

operation in highly constrained environments or executing novel types of locomo-
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tive patterns, have a very large or infinite number of degrees-of-freedom. The KCM

approach [59; 51; 78] for protein molecules also relies on modeling the proteins as

hyper-redundant robotic mechanisms with each dihedral angle corresponding to one

degree-of-freedom of the mechanism (see Section 2.5.1 for further details). Further-

more, each dihedral angle trajectory is a time series generated by the protein folding

dynamical model. For instance, the backbone chain of the protein Triponin with 159

amino acids has 320 dihedral angles that change with time during the Triponin fold-

ing process. Consequently, Triponin folding results in 320 time-indexed trajectories.

For the first time, we provide a systematic way of sonifying the high-dimensional data

resulting from the motion of protein molecules that are modeled as hyper-redundant

robotic mechanisms.

2.5 Protein Folding Pathways Prediction Method

To execute a variety of important biological functions such as force generation in

motor proteins and protein-ligand binding, protein molecules go under conformational

transitions between two or more native conformations through the processes of folding

and unfolding [79]. Numerical algorithms, which can predict the three-dimensional

structures of folded protein molecules and the pathways/transitions through which

proteins fold/unfold, have an integral role in computer-aided drug discovery [80] and

in designing protein-based nanomachines [81; 82].

2.5.1 Kinetostatic Compliance-Based Protein Folding

In this section, we provide an overview of the Kinetostatic Compliance Method

(KCM) for modeling the folding of protein molecules in vacuo. For brevity, we limit

our presentation to the protein main chain.
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2.5.2 Nano-linkage-based kinematic model of protein molecules

The kinematic structure of protein molecules and hyper-redundant robots exhibits

a striking resemblance. Figure 2.1 clearly illustrates the parallel kinematic similarities

or the analogy between the kinematic structure of a protein molecule and a hyper-

redundant robot by comparing their structural elements. In the upper part of the

figure, the hyper-redundant robot is depicted, showing multiple rigid links connected

through flexible joints. Each joint introduces degrees of freedom, represented by the

rotational axes, allowing for a wide range of motion and adaptability in the robot’s

structure. These joints enable the robot to adjust its configuration dynamically,

ensuring smooth and continuous movements. These joints are known as universal

joints and are used to provide multi-axis rotational freedom. they allow two rigid

links to rotate about multiple axes (typically two), which significantly increases the

robot’s flexibility and its ability to change configurations. This type of joint can rotate

in different directions simultaneously, giving the robot a higher degree of adaptability

in maneuvering through constrained spaces or performing intricate tasks.

In the lower part of the figure, the protein molecule is depicted with its kinematic

components aligned to the robot’s structure. The backbone comprises a series of

rigid nano-linkages (analogous to the robot’s rigid bodies). These rigid sections of

the protein chain are made up of amino acid residues, while the peptide bonds act

like the joints of the robot, providing rotational flexibility. The figure highlights

the peptide bond angles, similar to joint angles in robotics, that enable the protein

backbone to fold into various conformations. These bonds, much like the joints in the

hyper-redundant robot, allow for flexibility and dynamic adjustments in the overall

structure of the protein. This flexibility enables proteins to adopt a wide variety of

configurations, giving rise to their ability to fold into specific shapes required for their

biological functions, such as enzyme catalysis or molecular recognition. The degrees

of freedom in this structure are largely dictated by the angles at the peptide bonds,
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which define how one rigid segment rotates relative to the next.

Figure 2.1: The kinematic structure of the protein backbone chain is similar to that
of robotic mechanisms with hyper degrees of freedom. Specifically, Cα atoms play the
role of hinges connecting peptide planes together. These Cα atoms are kinematically
the same as universal joints with two degrees-of-freedom. In kinetostatic protein
folding, the peptide linkages articulate with respect to each other through dihedral
angular variations facilitated by the Cα atoms.
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Both systems rely on their kinematic structure to accomplish their respective

tasks—proteins rely on their structure to carry out biochemical functions, while

hyper-redundant robots use theirs to achieve mechanical objectives. The similarity

lies in the way rigid segments (nano linkages in proteins and rigid bodies in robots) are

interconnected by flexible, universal joints (peptide bonds in proteins and mechanical

joints in robots), resulting in a flexible, highly adaptable system with numerous de-

grees of freedom. This structural parallel allows both proteins and hyper-redundant

robots to adapt to their environments and perform complex tasks with precision and

flexibility.

Proteins, unlike mechanical systems, operate at a molecular scale where their

flexibility directly influences their biological functions. The complexity of protein

behavior is governed by the interactions and rotations at atomic levels, specifically

around the peptide bonds connecting the amino acids. Understanding the kinematic

chain of a protein involves analyzing these peptide planes, the specific atomic bonds,

and the dihedral angles that dictate the spatial orientation of the protein backbone.

Protein molecules are long chains of peptide planes joined together via peptide

bonds, where each plane consists of six coplanar atoms. As demonstrated in Figure

2.2, these planes can be considered as the linkages of the protein kinematic mech-

anism [50; 51]. Central carbon atoms, which are also known as the alpha-Carbon

atoms denoted by Cα, play the role of inter-peptide plane hinges. Indeed, Cα atoms

in protein molecules can be considered as the revolute joints in this kinematic mech-

anism. The red line segments in Figure 2.2 represent the covalent bonds between the

peptide plane atoms.

The coplanarity assumption of the six atoms Cα − CO − NH − Cα, which constitute

each of the peptide planes (see Figure 2.2), is based on the high-resolution X-ray

crystallographic experimental observations of the structure of protein molecules (see,

e.g., [79]). This coplanarity assumption has been the basis of various robotics-inspired
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Figure 2.2: The protein molecule kinematic structure consisting of peptide planes
(similar to robotic linkages) and Cα atom hinges (similar to robotic revolute joints).
There also exists a hydrogen atom that is bonded to each alpha-Carbon atom using
a covalent chemical bond but not shown in the figure. Bottom: Dihedral angles.

approaches in the literature that model protein molecules as hyper-redundant mech-

anisms (see, e.g., [59; 52]).

As it can be seen from Figure 2.2, each Cα is bonded to four other components,

namely, a variable side chain denoted by SR and the three atoms C, N, and H. The

first Cα of the protein chain structure is connected to N-terminus, which is an amino

group, as well as one other peptide plane. Finally, the last Cα atom hinges to the

C−terminus, which is a carboxyl group, as well as one other peptide plane. The

backbone conformation of the protein molecule kinematic structure consisting of − N

− Cα − C − atoms, is completely described by a set of bond lengths and a collection

of pairs of dihedral angles, i.e., the rotation angles around Cα − C and N − Cα

bonds (see Figure 2.2). A protein molecule dihedral angle can be defined as the
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internal angle of the polypeptide backbone at which two adjacent planes meet (i.e.,

at each Cα atom). Therefore, the backbone conformation can be represented by two

dihedral angles per residue, because the backbone residing between two juxtaposing

alpha-Carbon atoms are all in a single plane (see Figure 2.2). Accordingly,

θ := [θ1, . . . , θ2N ]
T ∈ Q (2.2)

is the configuration vector of the kinematic structure of a given protein backbone

chain with N − 1 peptide planes. As indicated by Equation 2.2, the dihedral angle

vector θ belongs to the 2N-dimensional configuration space Q := S1×· · ·×S1, where

S1 is the unit circle.

Each of the dihedral angles in the conformation vector θ in Equation 2.2 corre-

spond to one degree-of-freedom (DOF) of the protein molecule kinematic chain. As-

sociated with each DOF, one may consider a unit vector denoted by uj, 1 ≤ j ≤ 2N .

Each of these unit vectors is aligned with the rotation axis about which the protein

kinematic chain can rotate. Therefore, as demonstrated in Figure 2.2, the vectors u2i

and u2i+1 are the unit vectors along the Cα − C and N − Cα bonds of the ith peptide

plane, respectively. Finally, u1 and u2N correspond to the unit vectors of the N-(the

amino group) and C-termini (the carboxyl group), respectively.

In addition to the unit vectors uj, one may utilize the so-called body vectors to

complete the description of the spatial orientation of the rigid peptide nano-linkages

in protein molecules. The body vectors, which are denoted by bj, 1 ≤ j ≤ 2N ,

completely describe the relative position of any two coplanar peptide plane atoms.

Specifically, the relative positions of any two atoms are determined by a linear combi-

nation of the form k1mb2i+k2mb2i+1, in which the coefficients k1m and k2m, 1 ≤ m ≤ 4,

are constant and the same across all peptide linkages (see, e.g., [83; 84] for further

details). The unit vectors uj and the body vectors bj can be utilized to completely de-
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scribe the conformation of a protein molecule using the conformation vector θ, which

consists of the peptide dihedral angles. Indeed, after designating the zero-position

configuration with θ = 0, the transformations

uj(θ) = Ξ(θ, u0j)u
0
j , bj(θ) = Ξ(θ, u0j)b

0
j (2.3)

where the transformation matrix Ξ(θ, u0j) is defined according to:

Ξ(θ, u0j) :=

j∏
r=1

R(θj, u
0
j) (2.4)

where the superscript 0 indicates the reference zero position (ZP) conformation.

The zero-position conformation of the protein molecule refers to a linear structure in

which all the amino acid peptide nano-linkages lie on the same plane (i.e., a completely

stretched protein chain with dihedral angle vector θ = 0). Therefore, using the ZP

conformation, we are expressing all the possible directions of the unit vectors uj and

body vectors bj in terms of rotational transformations applied to these vectors at the

zero conformation where the protein chain is completely stretched.

The matrix Ξ(θ, u0j) determines the molecule’s kinematic structure using the di-

hedral angle conformation vector θ.

In Equation 2.3, the rotation matrix R(θj, u
0
j) ∈ SO(3) describes the rotation

about the direction given by the unit vector u0j with an angle equal to 0. It is

remarked that the special orthogonal group SO(3) is the set of all rotational matrices

about the origin of three-dimensional Euclidean space. Furthermore, any rotation

matrix R(α, v̂), where α is an angle and v̂ =

[
v̂x v̂y v̂z

]T
is a unit vector, can be

written as:
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R(α, v̂) =


v̂2xVα + Cα v̂xv̂yVα − v̂zSα v̂xv̂zVα + v̂ySα

v̂xv̂yVα + v̂zSα v̂2yVα + Cα v̂yv̂zVα − v̂xSα

v̂xv̂zVα − v̂ySα v̂yv̂zVα + v̂xSα v̂2zVα + Cα

 , (2.5)

where Vα := 1− cos(α), Cα := cos(α), and Sα := sin(α).

After the body vectors bj(θ) are determined from Equation 2.3 and assuming

that the N-terminus atom is located at the origin, the position vectors of the atoms

belonging to the backbone chain, which are located in the kth peptide plane, are

computed from

ri(θ) =
i∑

j=1

bj(θ), 1 ≤ i < 2N − 1, (2.6)

where the indices i = 2k - 1 and i = 2k are associated with the N and alpha-Carbon

atoms, respectively.

The zero position for the conformation of the protein molecule refers to a linear

structure in which all the amino acid peptide nano-linkages lie on the same plane (i.e.,

a completely stretched protein chain with dihedral angle vector θ = 0 ∈ R2N). On

the other hand, the zero position for the N-terminus nitrogen atom means that this

atom is treated as the fixed base of the mechanism located at [0, 0, 0]T. The reason

for fixing the position of the N-terminus nitrogen atom at the origin is that it is only

the changes in the conformation vector of the protein molecule that result in changes

of the three-dimensional structure of the molecule independent of the choice of the

N-terminus nitrogen atom base position.

2.5.3 Folding according to the KCM iteration

The KCM approach for modeling the protein folding process pioneered by Kaze-

rounian and collaborators is based on the experimental fact that the inertial forces

can be neglected in the folding process (see, e.g., [78; 85; 86; 87]). Instead, the pro-
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tein chain dihedral angles vary under the kinetostatic influence of the van der Waals

and electrostatic interatomic forces in the protein molecules. Consequently, in the

KCM framework, the dihedral angle variation about the alpha-Carbon atoms at each

molecule individual conformation is proportional to the effective torques acting on

the peptide chain.

Considering a peptide chain with Na atoms and N - 1 peptide planes with the

configuration vector θ ∈ Q and denoting the Cartesian position of any two single

atoms ai, aj belonging to the molecule chain by ri(θ), ri(θ), their distance can be

computed from dij(θ) := |ri(θ)− rj(θ)|.

It is remarked that the number of atoms in the main backbone chain of the protein

molecule (ignoring the side chains and the individual hydrogen atoms connected to

alpha-Carbon atoms which are not in the peptide planes) is equal to Na = 5N + 8,

where the added constant takes into account the number of atoms in the N-terminus

and C-terminus.

Furthermore, we denote the respective electrostatic charges of ai, aj by qi, qj, their

van der Waals radii by Ri, Rj, their van der Waals distance by Dij = Ri + Rj, their

dielectric constant by ϵij, and their potential well depth as ∈ij.

Finally, we let welec
ij and wvdw

ij represent the weight factors for the electrostatic and

van der Waals forces between the two atoms ai, aj, respectively. All these parameters

are provided in [84] and its references. Under these considerations, the molecule

aggregated free energy can be computed from

G(θ) := Gelec(θ) +Gvdw(θ), (2.7)

where,

Gelec(θ) =
Na∑
i=1

∑
j ̸=i

welec
ij

4πεij

qiqj
dij(θ)

(2.8)
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is the molecule potential energy resulting from the interatomic electrostatic inter-

actions, and

GvdW (θ) =
Na∑
i=1

∑
j ̸=i

wvdW
ij ∈ij

[(
Dij

dij(θ)

)12

− 2

(
Dij

dij(θ)

)6
]

(2.9)

is the molecule potential energy due to the van der Waals interactions. The

resultant Coulombic and van der Waals forces on each atom ai, 1 ≤ i ≤ Na, can

be computed from F elec
i (θ) = −∇riG

elec and F vdw
i (θ) = −∇riG

vdw, respectively. It

is remarked that ∇riGj where j = elec or j = vdw, is the gradient of the potential

function ∇riGj with respect to the position vector ri.

The KCM-based folding process is performed according to a successive numerical

iteration up to the moment that all the kinetostatic torques converge to a local min-

imum on the aggregated free energy landscape. To perform this numerical iteration,

one can compute the effective forces and torques acting on each of the N - 1 peptide

planes, which are the rigid nano-linkages of the protein kinematic mechanism and

appending them in the generalized force vector F(θ) ∈ R6N .

Using a proper mapping, it is possible to map the generalized force F(θ) to the

equivalent torque vector influencing the configuration vector θ. Specifically, the vector

τ(θ) ∈ R2N , which is the overall joint torques resulting from the interatomic forces in

the protein kinematic structure, and can be computed according to

τ(θ) = JT (θ)F(θ), (2.10)

where the Jacobian matrix JT (θ) ∈ R6N×2N is determined by the kinematic struc-

ture of the protein chain at conformation θ (see [59; 78] for the calculation details).

It is remarked that the vector F(θ) is generated by the torques and forces acting on

the peptide planes at each conformation vector θ.
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Starting from the initial unfolded conformation θ0, the difference equation

KCM Iteration: θk+1 = θk +
h

|τ
(
θk

)
|∞

τ
(
θk

)
, (2.11)

describes the KCM-based numerical iteration due to Kazerounian and his collab-

orators, where the non-negative integer k determines the iteration number and h is a

positive real constant equal to the maximum magnitude of the dihedral angle rotation

in each step. Starting from an unfolded conformation, the KCM iteration in Equa-

tion 2.11 gives rise to the protein folding pathway data. A flowchart of the successive

kinetostatic folding iteration is depicted in Figure 2.3. The most computationally

intensive procedure at each conformation of the protein molecule (highlighted in red)

consists of the electrostatic and van der Waals force computations.

In particular, the protein molecule backbone folding pathway trajectory is the di-

hedral angle vector series {θk}Ns
k=0, with θu := θ0 corresponding to the initial unfolded

conformation and θf := θNs corresponding to the final folded conformation.

The KCM framework also renders itself to control input synthesis interpretations.

For instance, it has been shown in [7] that entropy-loss constraints during protein

folding can be encoded in the KCM framework using nonlinear optimization-based

control algorithms (see the flow chart in 2.3 here below).

In this method we consider the time series associated with the dihedral angle

vector folding pathway generated by the robotics-based KCM numerical iteration in

2.11 or its variations (see, e.g., [7; 65]). The dihedral angle pathway datasets can also

be generated by other means such as all-atom molecular dynamics simulations, e.g.,

GROMACS [88]. The sonification methodology proposed can also be applied to such

pathway datasets.

The most computationally intensive step in each iteration of this process, oc-

curring at every conformation of the protein molecule, involves the computation of
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electrostatic forces and van der Waals interactions between atoms. These force calcu-

lations are critical for accurately simulating the folding pathways of protein molecules.

When interatomic forces are computed exactly, the computational complexity for a

molecule containing Na atoms grows quadratically, i.e., it follows an order of O(N2
a )

[89]. This quadratic growth in complexity is a direct result of the need to evaluate

the interactions between every pair of atoms, which becomes increasingly expensive

as the number of atoms increases.

The computational complexity of numerical algorithms can be defined using big

O notation, as follows: consider any two real-valued functions h1(·) and h2(·); if there

exists a real number a0 > 0 and the real number z0 such that the inequality |h1(z)| ≤

a0|h2(z)| is satisfied for all z ≥ z0, then we say that h1(z) = O(h2(z)). Moreover,

to encode more physical constraints in protein folding numerical simulations, such as

entropy-loss constraints [7], it is necessary to solve a box-constrained convex quadratic

program (QP) at each conformation of the protein molecule. The computational cost

of such a convex QP using a state-of-the-art interior-point QP solver is of order O(N3)

[90], where there are N − 1 peptide planes in the protein backbone chain.

Also, instead of using traditional methods for simulating protein folding, such as

those using KCM which face computational inefficiencies when paired with explicit

Euler integration methods, we can use one of the recent advancements in numerical

integration, such as the development of the pseudo-transient continuation (ψTC)

method [2], which offers a more efficient approach compared to those with integration

step requiring intensive calculations of interatomic forces and the incorporation of

physical constraints, which becomes computationally expensive. This method, which

is an expansion of a preliminary version presented as a conference poster [1] adapts

step sizes based on underlying dynamics and proximity to a steady state, significantly

improving convergence and stability properties when applied to kinetostatic protein

folding. Importantly, ψTC has proven to reduce the number of computational steps
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required, offering a faster and more accurate way to simulate these complex kinematic

motions compared to traditional KCM approaches reliant on fixed step sizes.

The explicit ψTC integration with fixed step size for solving the PFPCP can be

described using the following flowchart:
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Figure 2.3: The flow chart associated with the KCM iteration with entropy-loss con-
straints encoded in the protein folding process (see [7] for further details). Such
iterative KCM-based numerical algorithms give rise to the protein folding pathway
datasets. The objective of this method is the sonification of such folding pathway
dihedral angle trajectories.
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Figure 2.4: Flowchart of the proposed explicit ψTC integrator for computing protein
folding pathways in kinetostatic folding simulations. The ψTC algorithm consists
of four main steps: (Step 1) Initiation; (Step 2) Predictor–Corrector Computations;
(Step 3) Checking Convergence; and, (Step 4) SER-based Step Size Update. In the
ψTC integration scheme with a fixed step size, (Step 4) is skipped.
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CHAPTER III

Redundant Robots, Robotic Teams, and Their

Kinematic Structure

3.1 Introduction

In the field of robotics, redundancy serves as a fundamental design principle that

significantly enhances a robot’s ability to perform tasks with greater flexibility, adapt-

ability, and fault tolerance. Redundancy refers to the presence of more degrees of

freedom than are minimally required to achieve a specific task, which offers a mul-

titude of advantages in terms of task versatility and robust performance in complex

environments. This chapter explores two distinct forms of redundant robotic systems:

hyper-redundant robots and teams of mobile robots.

3.2 Hyper-Redundant Robots

3.2.1 Introduction

Hyper-redundant robots [91], often referred to as snake-like robots, are charac-

terized by their large or infinite number of degrees of freedom. This high degree

of redundancy allows these robots to achieve remarkable flexibility and adaptability,

making them suitable for navigating through constrained, and complex environments
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where standard robots would encounter difficulties operating in such situations.

3.2.2 Kinematic Structure of Hyper-Redundant Robots

The kinematic structure of hyper-redundant robots is designed to mimic contin-

uous and versatile movements such as snake and worm motion. These robots have

typically a sequential chain-like structure from the base to the end-effector as shown

in 3.1 composed of a series of interconnected rigid links denoted by Li, 0 ≤ i ≤ n

joined together with universal joints Ui, 0 ≤ i ≤ n.

The kinematic structure of hyper-redundant robots is different from that of robot

manipulators. While conventional robots often rely on a limited number of joints and

links to achieve their movements, hyper-redundant robots utilize a large number of

smaller, often identical, rigid links. These links are connected by universal joints, also

known as U-joints, which provide two rotational degrees of freedom per joint allowing

the rotation of each rigid link around two independent, perpendicular axes. The

universal joints enable the links to rotate in multiple directions, allowing for smooth

and continuous curvature along the length of the robot. This flexibility is essential

for the robot’s ability to operate through tight spaces and bend around obstacles.

The use of universal joints ensures that the robot can achieve a high degree of

dexterity and range of motion. This is particularly important in many applications

[92; 93] such as medical surgery [94], search and rescue missions [95], and industrial

inspection [96; 97], where the robot must navigate through complex and variable

environments.

Advanced algorithms and computational techniques are employed to solve the in-

verse kinematics problem [98; 99; 100], which involves determining the necessary joint

angles to achieve a specific end-effector location or trajectory. However, designing and

controlling hyper-redundant robots, managing their complexity, and ensuring smooth

and precise overall behavior and movements remain a significant challenge. Current
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Figure 3.1: The kinematic Structure of a Hyper-Redundant robot manipulator con-
sisting of rigid body links Li and universal joints Ui. Ui is the i-th 2DOF revolute
joint.

research predominantly focuses on traditional visual feedback systems for monitoring

and controlling these robots, allowing operators to visually track the robot’s move-

ments and make necessary adjustments based on visual data analysis. Yet, given

the complex kinematic structures and the vast amount of real-time data generated by

hyper-redundant robots, visual feedback systems often fail to maximize their effective-

ness and performance. These robots are designed to navigate complex, constrained

environments, such as inside pipes, around obstacles, or within the human body dur-

ing surgery. In such scenarios, maintaining a clear line of sight for visual monitoring

can be challenging, if not impossible. Due to the complex and obscured paths these

robots must traverse, the operators may not always have access to comprehensive
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visual data. This limitation can result in delays in movement correction, reduced

precision and effectiveness, and a higher likelihood of errors, eventually impeding the

robot’s full potential. These limitations highlight the need for alternative feedback

mechanisms, such as sonification, to enhance the robot’s functionality and effective-

ness in challenging environments.

Despite the extensive research on hyper-redundant robots for their distinctive

kinematic structures and applications in complex environments, and the widespread

utilization of sonification across various fields to enhance data interpretation and

provide real-time feedback, the convergence of these two technologies remained largely

unexplored in the past literature. No existing studies or applications have investigated

the potential benefits and use of sonification that could be applied to hyper-redundant

robots to improve their control and performance.

In summary, hyper-redundant robots represent a significant advancement in robotic

design and functionality. Their kinematic structure, characterized by a large number

of segments joined together with universal joints, provides exceptional flexibility and

adaptability for their operation. These features enhance hyper-redundant robots’ ef-

fectiveness in navigating complex environments and executing tasks requiring a high

degree of dexterity and precision. As the development of these robots continues, their

applications and capabilities are also expanding, offering innovative solutions to chal-

lenges across various fields such as science and engineering. Despite the extensive

amount of data that hyper-redundant robots can generate, alternative feedback sys-

tems, such as sonification, hold promise for providing new insights into the exploration

and advancement of these robots.
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3.3 Team Of Mobile Robots

3.3.1 Introduction

A team of mobile robots (example shown in figure 3.2) employs a distributed form

of redundancy. Instead of relying on a single robot with many joints or actuators

to perform complex tasks, the team of mobile robots involves multiple robots, each

operating with a smaller number of DOF, working together toward a shared objective

or even distinct objectives. The redundancy in this system is not internal to any one

robot but is distributed across the entire team, enabling a more flexible and scalable

approach to problem-solving.

Figure 3.2: A team of OMRON Mobile robots: LD-250, LD-105CT, and LD-90.

3.3.2 Kinematic Structure of a Team of Mobile Robots

The kinematic structure of a team of mobile robots refers to how each robot

in the group is engineered to move and interact within its environment, and how

these movements are collectively coordinated to achieve a common goal. While the

kinematics of a single robot typically involves a sequence of joints, links, and actuators
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that define how it moves, in a team of robots, the kinematic structure is spread

across multiple independent units. Each of these robots has its own kinematic design,

but when working as a team, they combine their movements to perform complex,

coordinated tasks.

In teams of mobile robots, the robots may differ in their specific kinematic struc-

tures depending on their type and function. For example, wheeled robots [101]

often utilize differential drive systems, omnidirectional wheels, or car-like steering

mechanisms. These systems enable the robot to move efficiently on flat surfaces.

Wheeled robots typically have two degrees of freedom—translational movement along

the ground plane and rotational movement around their vertical axis. Their ability

to navigate smooth surfaces makes them ideal for tasks in structured environments

like warehouses or factory floors [101].

On the other hand, legged robots [102] have more complex kinematic systems.

Each leg can have multiple joints, allowing for greater freedom of movement. This

higher number of joints provides these robots with enhanced flexibility and stability

when navigating uneven or challenging terrain [103]. The kinematics of legged robots

are designed to mimic the gait of animals, making them suitable for environments

that are too rugged for wheeled robots.

Similarly, aerial robots [104] —such as drones—operate in three-dimensional space

and typically have six degrees of freedom. These include three translational degrees

(movement along the x, y, and z axes) and three rotational degrees (pitch, roll, and

yaw). Their ability to move in all directions and rotate in space allows them to

perform complex maneuvers, making them well-suited for tasks like aerial mapping,

inspection, or delivering payloads [105].

When these different types of mobile robots collaborate, the overall kinematic

structure of the team reflects the combined capabilities of each unit which is known as

distributed kinematics. The multi-robot kinematics refers to the collective kinematic
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behavior of multiple independent robotic units working together in a coordinated sys-

tem, where each robot has its own kinematic structure and degrees of freedom, but the

overall behavior of the group is defined by their combined movements and interactions

This form of distributed kinematics allows the team to achieve behaviors that an in-

dividual robot might not be capable of. For instance, in a search-and-rescue mission,

legged robots might navigate rough terrain while wheeled robots handle transporta-

tion tasks in flat areas, and drones provide aerial surveillance. The interaction and

coordination between these robots, each with its distinct kinematic properties, create

a robust and adaptable system.

This distributed nature of the kinematic structure in a team of mobile robots

offers significant advantages. It allows the team to scale easily, adapting to larger or

smaller tasks by simply adding or removing robots from the group. The team can

also remain highly flexible, re-configuring itself to respond to dynamic environments

or unexpected challenges. Additionally, because the robots are often able to function

autonomously while coordinating with each other, these teams can operate with a

degree of fault tolerance [106]. If one robot fails, the others can adjust their tasks

and maintain overall mission performance.

Understanding the kinematic structure of a team of mobile robots is crucial for

designing systems that are efficient, adaptable, and capable of working together in

a range of coordinated tasks. Whether for exploration in unknown environments

[107], transporting goods [108; 109], or performing distributed sensing over a large

area [110; 111], the effectiveness of the team depends on the careful coordination of

each robot’s movements. By leveraging the strengths of different robotic types and

optimizing their collaboration, such teams can perform tasks with a high level of

autonomy and reliability, even in complex and uncertain conditions.

Additionally, the concept of sonification—the process of using sound to represent

data—offers a novel and intuitive way to analyze and understand the complex dy-

41



namics within robotic systems. By converting key parameters such as movement, task

execution, and coordination into sound, sonification transforms abstract or difficult-

to-visualize data into auditory representations. This can provide valuable insights

into the performance, redundancy, and interaction patterns of both individual robots

and teams of robots.

In the next chapters, the potential of sonification as a tool for both hyper-

redundant robots and teams of mobile robots is explored. By converting robotic

behaviors and interaction patterns into sound, sonification offers an intuitive medium

for interpreting complex robotic systems. It allows researchers and operators to per-

ceive and monitor performance and behavior in a way that is immediate and often

more accessible than visual data or numerical outputs, especially in dynamic or un-

certain environments. This exploration demonstrates how sound can be exploited to

enhance our understanding of redundancy, coordination, and overall system function-

ality, providing an additional layer of insight into robotic performance and interaction.
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CHAPTER IV

Wave Space Sonification of The Folding Pathways

of Protein Molecules Modeled as

Hyper-Redundant Robotic Mechanisms

4.1 Introduction

To execute a variety of important biological functions such as force generation in

motor proteins and protein-ligand binding, protein molecules go under conformational

transitions between two or more native conformations through the processes of folding

and unfolding [79]. Numerical algorithms, which can predict the three-dimensional

structures of folded protein molecules and the pathways/transitions through which

proteins fold/unfold, have an integral role in computer-aided drug discovery [80] and

in designing protein-based nanomachines [81; 82].

Despite their high computational burden, physics-based approaches relying on

physical first principles are still the preferred way to numerically compute the pro-

tein folding pathways [112]. To address the high computational times associated

with the physics-based approaches, the promising framework of kinetostatic com-

pliance method (KCM), pioneered by Kazerounian, Ilies, and collaborators, models

protein molecules as mechanisms with a large number of rigid nano-linkages form-
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ing a hyper-redundant robot, which fold under the nonlinear effect of interatomic

forces [59; 60; 61; 62]. Since its advent, the KCM framework has been successfully

applied to investigating the role of hydrogen bond formation in protein kinematic

mobility problems [63] and design of peptide-based molecular nano-linkages [82]. Fur-

thermore, using nonlinear optimization-based control algorithms, it has been shown

that entropy-loss constraints during protein folding (see, e.g., [64] for the importance

of these constraints) can be encoded in the KCM framework [7]. Finally, Chetaev

instability analysis can be utilized for synthesizing unfolding control inputs (e.g.,

computing proper optical tweezer forces for unfolding in desired directions) for the

KCM-based model of protein molecules [65].

Numerical simulation of protein folding for computing the molecule conforma-

tional changes generates an overwhelming amount of data. Accordingly, one is still

left with the problem of representing these large folding pathway datasets. Despite

the recent advent of visualization techniques developed for representing the protein

folding pathway datasets (see, e.g., [66]), their sonification, where non-speech audio

is utilized for conveying information, has remained an unaddressed question. In the

presented method, we employ the recent Wave Space Sonification (WSS) paradigm

due to Hermann [9] to answer the challenging question of generating a non-speech au-

ditory representation of large datasets associated with protein folding pathways (see

Figure 4.1). WSS is a class of sonification techniques developed for high-dimensional

data (indexed by time or space), which relies on generating auditory data represen-

tation by scanning a scalar field along a data-driven trajectory of interest. In this

method, we demonstrate that WSS provides a novel approach for creating non-speech

auditory representations of protein folding pathway datasets through a data-driven

audio signal sampling, which is afforded by a high-dimensional scalar sound field de-

fined on the dihedral angle space of protein conformations.
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Figure 4.1: A novel WSS-based technique for creating non-speech auditory represen-
tations of protein folding pathway datasets is proposed. Such sonification is achieved
through a data-driven audio signal sampling, which is afforded by a high-dimensional
scalar sound field defined on the dihedral angle space of protein conformations.

4.2 Contributions of the Method

The contributions of this method are as follows. First, despite the innovative ap-

plication of numerous sonification techniques to the problem of translating protein

structural/vibrational data to musical compositions (see, e.g., [21; 55; 56; 57; 58]), the

problem of folding pathway sonification is still an open problem. This article, relying

on the WSS framework, provides a solution to this problem for the first time. Our

non-speech auditory representation framework for protein folding processes comple-

ments the recent line of work by Ferina and Daggett for visualization of folding [66].

Second, this method contributes to the field of robotic trajectory sonification, which

is still in its early development stages. Despite the application of sonification tech-

niques to several human-robot interaction (HRI) problems [67; 68; 69], the problem

of sonification of joint space trajectories for robots with a very large number of de-

grees of freedom has remained unaddressed. The proposed sonification methodology
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paves the path for the sonification of robotic trajectories in other contexts such as

soft robotics [113; 114] and industrial collaborative multi-robot systems [5; 115; 116],

where the robotic system operation generates an overwhelming amount of motion

data.

Notation: Given the real vector x ∈ RM , we denote the Euclidean and the

maximum norms of the vector by ∥x∥ :=
√
x⊤x and ∥x∥∞ := max1≤i≤M |xi|, respec-

tively. Given a function f : U → V with domain U and codomain V , we let f : u 7→ v

denote f(u) = v for all u ∈ U and v = f(u) ∈ V . Finally, by f(·), we mean that f is

a function without identifying its domain and codomain.

4.3 Wave Space Sonification of the folding Pathways of Pro-

tein Molecules Methods

In this section we provide our solution to the problem of sonification of datasets

associated with conformational changes of protein molecules during folding. Our

solution to this problem is based on the Wave Space Sonification (WSS) framework

due to Hermann [85]. After providing the problem statement and the formal definition

of WSS, we elaborate on the three WSS elements needed in the context of protein

folding. Next, we present two WSS-based solutions to this problem, namely, canonical

WSS and sample-based WSS in Sections 4.5.1 and 4.5.2, respectively.

4.4 Problem statement

Consider a protein molecule with a backbone chain consisting of N - 1 peptide

planes modeled as a hyper-redundant robotic mechanism (see Section 2.5.1 for such

a robotics-inspired modeling approach). Consider the protein molecule backbone
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folding pathway trajectory, namely, the dihedral angle vector time-indexed trajectory

θ(t), with θu := θ(0) corresponding to the initial unfolded conformation and θf :=

θ(Tf ) corresponding to the final folded conformation. Find a non-speech auditory

representation of the folding pathway trajectory given by θ(·).

4.5 Solution To The Sonification of the folding Pathways of

Protein Molecules Problem

In this section we present our wave space sonification solution to the Sonification

of the folding Pathways of Protein Molecules stated in Section 4.4 by presenting two

classes of WSS functions. The first class uses explicit algebraic expression for embed-

ding the folding trajectories of the protein molecules, whereas, the second class defines

the wave space function through available samples from recorded sound signals.

4.5.1 Canonical wave space sonification Solution

In this section we present a canonical WSS-based scalar field for solving the stated

sonification problem in Section 4.4. Canonical wave space functions, according to

Hermann [9], are explicit algebraic expressions that utilize the data-driven trajectory

under study for embedding in the wave space. In our context, these trajectories are

given by time-indexed vectors of the form θ(t), which are the dihedral angle vector

folding pathway trajectories. For solving the sonification problem using the canonical

WSS approach, we utilize a canonical wave space function Vc : Q → R, which is a

sum-of-sinusoids with conformation-dependent frequencies. In particular, we let

Vc(θ) :=
A0

2N

2N∑
i=1

sin (2πf0h(θ)θi) (4.1)

where the positive constant f0 represents a desired base frequency, A0 is a positive

design parameter, and
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h(θ) = exp

(
− ∥θ − θf∥
σ2
0∥θu − θf∥

)
(4.2)

is a frequency weighting function, where σ0 ∈ (0, 1) is some positive constant less

than one. We are using an exponential frequency resolution function h(θ) given by

4.2 because of the logarithmic nature of the way that the human auditory system

perceives sounds (see, e.g., [117] for further information on how humans perceive

sound). Indeed, two pure-tone sounds, which slightly differ from each other in their

frequencies are not heard as separate notes by a single human ear. Since we are

interested in making the listener clearly perceive the protein folding process from

an unfolded conformation to a folded one, such an exponential frequency resolution

function is utilized within the proposed wave space function.

The significance of the proposed canonical wave space function in 4.1 and 4.2 is the

generation of sounds with conformation-dependent frequencies. In particular, as the

protein conformation approaches the final folded configuration θf from its unfolded

initial conformation θu, sounds with higher frequency contents will be generated. The

only design parameters for controlling the canonical wave space function in 4.1 and

4.2 are the base frequency f0 and the parameter σ0. To generate a sound file of

duration Ts from a folding pathway of time duration Tf , we use the linear morphing

function M(t) =
Tf

Ts
t. Therefore, the generated sound signal takes the following form

s(t) =
A0

2N

2N∑
i=1

sin

(
2πf0h

(
θ

(
Tf
Ts
t

))
θi

(
Tf
Ts
t

))
(4.3)

In Hermann’s original work [9], the canonical wave space functions, which are

written as sums-of-sinusoids, do not depend on the function h(θ) (or, equivalently,

h(θ) = 1 in Hermann’s work). In this work, we are introducing the novel element

of dependency of frequency components on the distance to desired locations in the

dataset (here, folded and unfolded conformations of protein molecules). From this
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perspective, our proposed wave space function in 4.1 and 4.2 can also be viewed as a

hybrid of Hermann’s canonical wave space function (because of being written in terms

of algebraic functions) and of Hermann’s data-driven localized wave space function

(because of dependency on designated points in a given dataset).

4.5.2 Sample-Based Wave Space Sonification Solution

In this section we present a sample-based WSS scalar field for solving the stated

sonification problem in Section 4.4. The key idea behind sample-based scalar fields

is that instead of merely relying on mathematical functions as in their canonical

counterparts in Section 4.5.1, one can define the wave space function through avail-

able samples from recorded sound signals [9]. Indeed, this point of view on wave

space functions is motivated by the desire to generate acoustically more artistic and

appealing sounds.

In the context of protein folding, datasets are given by time-indexed vectors of the

form θ(t), which are the trajectories of the dihedral angle vector obtained from the

folding process. For solving the sonification problem using the sample-based WSS

approach, we utilize a sample-based wave space function V : Q → R, which relies

on recorded sounds, e.g., pieces of classical music. In particular, considering the

collection of sound files ẋi : t 7→ ẋi(t), 1 ≤ i ≤ 2N , we let

Vs(θ) :=
1

2N

2N∑
i=1

si(ci(θ)) (4.4)

where ci : Q → R, 1 ≤ i ≤ 2N , are nonlinear scaling functions. In this article,

we let these mappings have the conformation-dependent form

ci(θ) := αi

{
λ0,i exp

( −∥θ − θf∥
σ2
0,i∥θu − θf∥

)
+ βi

}
, (4.5)

where λ0,i and σ0,i are some positive constants to be chosen by the sound designer.
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Having selected the design parameters λ0,i and σ0,i the constants αi and βi are given

by

βi = −λ0,i exp
(−1

σ2
0,i

)
, αi =

Ts,i
λ0,i + βi

, (4.6)

where Ts,i is the duration of the file si(·). the equality constraints in 4.6. ensure

that ci(θu) = 0 and ci(θu) = Ts,i. In other words, the nonlinear scaling functions are

guaranteed to map the initial unfolded conformation to time instant 0 in the sound

file and the final folded conformation to time instant Ts,i, which corresponds to the

duration of the i-th sound file sM (·).

The significance of the proposed sample-based wave space function in equations

4.4–4.6 is the generation of sounds from available recordings si(·) by scanning the

scalar field Vs(·) along the data-driven conformation trajectories of protein molecules

during the folding process. Each of the sound files si is chosen arbitrarily and specific

to the artistic flavor of the application at hand. For instance, they could be recorded

by the sound designer in an ad hoc manner or as demonstrated in Section 4.6 sourced

via other means (e.g., a piece of classical music). The nonlinear scaling functions

ci(·) in 4.5, 1 ≤ i ≤ 2N , based on which the data-driven audio signal sampling

is performed, guide the scanning process of the scalar field Vs(·) using the molecule

conformations during folding.

In Hermann’s original work [9], the static sample-based wave space functions uti-

lize linear scaling mappings of the form ci(θ) = ci · θi, 1 ≤ i ≤ 2N . In this article,

we are introducing a new type of nonlinear scaling function depending on desig-

nated conformations of protein molecules, namely, the folded θf and the unfolded

θu conformations. From this perspective, our proposed sample-based wave space

function in equations 4.4–4.6 can also be considered as a hybrid of Hermann’s static

sampling-based method (because of relying on recorded sound signals) and Hermann’s
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data-driven localized method (because of dependency on designated points in a given

dataset).

4.6 Results

In this section, the results associated with the proposed sonification methodology

applied to a peptide backbone chain with a dihedral angle space of dimension 82 is

presented. All of the numerical implementation has been carried out in MATLAB

R2018b by utilizing the PROTOFOLD I framework [78; 84] on an Intel® Core™

i7-6770HQ CPU@2.60GHz. Figure 4.2 depicts the folding process resulting from

our numerical simulations. As expected from the KCM-based folding iteration the

molecule aggregated free energy converges to a local minimum located on the folding

energy landscape (see [78; 89] for further details). Furthermore, as can be seen from

4.2a, the protein molecule conformation converges to a helix from its unfolded initial

configuration. We are interested in generating non-speech auditory representation

of this process according to the problem statement in Section 4.4. Finally, 4.2b

depicts two sample projected folding pathway curves with the red and green diamonds

corresponding to the unfolded and folded conformations, respectively. Indeed, these

two three-dimensional curves are the projections of the original folding pathway, which

is embedded in a configuration space of dimension 82.

4.6.1 Canonical WSS Results

The canonical wave space sonification method proposed in 4.5.1 is applied to the

folding pathway dataset associated with the protein backbone peptide chain whose

folding process is depicted in Figure 4.2.

The five sound signals generated by the proposed canonical wave space function

in Equation 4.1 and Equation 4.2 are depicted in Figure 4.3. The base frequency in

all these canonical wave space functions is chosen to be f0 = 250 Hz. Furthermore,
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(a) (b)

Figure 4.2: The folding process of a protein peptide backbone chain with 82 DOFs: (a)
the free energy of the molecule with its corresponding conformations along the folding
pathway; and, (b) two sample 3D curves obtained by projecting the protein folding
pathway on lower-dimensional spaces with the red and green diamonds corresponding
to the unfolded and folded conformations, respectively.

the duration of the sound files, which is a tunable parameter, is selected as Ts = 5

seconds. Moreover, the design parameters σ0 for generating these sounds signals (see

4.2 are chosen to be σ0 = 0.1, σ0 = 0.15, σ0 = 0.2, σ0 = 0.3, and σ0 = 0.4, respectively.

Finally, the parameter A0 is set equal to 1 in all these sound signals.

The sepctrograms of the five sound signals generated by the proposed canonical

wave space function are depicted in Figure 4.4. As expected from our sonification de-

sign methodology, while the conformation of the protein molecule approaches its final

folded state, the frequency of the generated sound by the scalar field Vc(·) in Equation

4.1 increases according to the frequency weighting function given by Equation 4.2.

All the code used to generate the results of the Canonical WSS method presented

in this section can be found in Appendix C. This includes the scripts for data pro-

cessing, implementation of the sonification methodology, and the simulations carried

out. Detailed comments and instructions are provided within the code to facilitate

understanding and replication.

52



Figure 4.3: The sound signals generated by the proposed canonical wave space
function in Equation 4.1 applied to a protein backbone peptide chain with 82
DOFs. As the conformation of the protein molecule approaches its final folded
state, the frequency of the generated sound increases. The generated sound files
(in .wav format) can be downloaded from https://dralirezamoha.github.io/
proteinpathway/wssFoldingSoundFiles.zip

4.6.2 Sample-Based WSS Results

The sample-based wave space sonification method proposed in Section 4.5.2 was

applied to the folding pathway dataset whose folding process is depicted in Figure

4.2. We have chosen a piece of Mozart’s Alla Turca for applying our sample-based

WSS method. This piece has been performed by Walter Gieseking and is available

from his “Historic Broadcast Performances (1944–1950)” collection [8]. The original

sound signal sM (·) and its spectrogram are depicted in Figure 4.5.

To determine the sample-based wave space function given by Equations 4.4-4.6,

we need to determine the sound files si(·) and the scaling functions ci(·). We have

chosen all the sound files to be given by si(·) = sM (·), where si(·) is the piece of

Mozart’s Alla Turca demonstrated in Figure 4.5. Furthermore, we have chosen all
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Figure 4.4: The spectrograms of the sound signals generated by the proposed canon-
ical wave space function in (12) applied to a protein backbone peptide chain with 82
DOFs. As the conformation of the protein molecule approaches its final folded state,
the frequency of the generated sound increases

the tuning parameters fs,i and σs,i to be the same for the nonlinear scaling functions,

which results in ci(·) = c0(·), 1 ≤ i ≤ 2N . Therefore, in this example, our scalar field

takes the form Vs(θ) = sM (c0(θ)), where c0(θ) := α0

{
λ0 exp

( −∥θ−θf∥
σ2
0∥θu−θf∥

)
+ β0

}
.

Figure 4.6 depicts the result of applying our sample-based WSS method to the

chosen piece of Mozart’s Alla Turca. The resulting sound signals1 and the nonlinear

scaling function c0(·) along the protein folding pathway are demonstrated in the figure.

In all the plots in Figure 4.6, the parameter λ0 is chosen to be equal to 1. We have

chosen three different values for σ0, namely, 0.25, 0.5, 0.75, and 1. The spectrograms

of the sound signals generated by the proposed sample-based wave space function are

depicted in Figure 4.7. In the beginning, when the conformation of the peptide chain

is far away from the final folded conformation, the scaling function c0(·) varies very

slowly resulting in sound patterns not familiar to the ear. This is specifically evident

in the case of σ0 = 0.25 and σ0 = 0.5. This unnatural sound corresponds to the low-
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Figure 4.5: The music piece taken from Mozart’s Alla Turca: (a) the original sound
signal; and, (b) the spectrogram associated with the sound signal

frequency content of the generated sound as demonstrated by the spectrograms in

Figure 4.7. As the peptide chain starts approaching its final folded conformation, the

heard sound begins taking the familiar form of Mozart’s All Turca. In other words, the

listener hears a sound file that gradually takes a familiar auditory form as the protein

backbone peptide chain approaches its final folded conformation. The transition to

a familiar sound and emergence of an ordered music pattern also corresponds to the

protein configurational entropy loss while the molecule converges to its native folded

state (see, e.g., [87] for further details on entropy loss during protein folding).

All the code used to generate the results of the Sample Based WSS method pre-

sented in this section can be found in Appendix D. This includes the scripts for

data processing, implementation of the sonification methodology, and the simula-

tions carried out. Detailed comments and instructions are provided within the code

to facilitate understanding and replication.
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4.7 Discussion on the application of the proposed sonification

method to other hyper-redundant robotic mechanisms

Sonification could provide an auditory means of conveying complex motion data,

allowing users to perceive and interpret the robot’s configuration changes in real-

time. This would be especially useful for monitoring and controlling hyper-redundant

robots, where visual feedback alone may be insufficient due to the large number of

joints and the intricate nature of their movements. As discussed in Section 2.5.1, the

KCM-based folding framework relies on describing the motion of protein molecules

by modeling them as hyper-redundant robotic mechanisms consisting of numerous

rigid nano-linkages that fold under the nonlinear effect of the protein molecule in-

teratomic forces. The justification for such a modeling approach is the experimental

observations verifying that the six atoms Cα − CO − NH − Cα are coplanar in each

of the protein-peptide planes (see Figure 2.2). Another notable fact is that each

alpha-Carbon atom acts as a 2 DOF revolute joint playing the role of hinges in the

kinematic mechanism as shown in Figure 2.1. Modeling the peptide planes as rigid

links and treating the alpha-carbon atoms as revolute joints have been the basis for

various robotics-inspired approaches in the literature that model protein molecules

as hyper-redundant mechanisms. For instance, the robotic kinematics-based point

of view on the structure of proteins can be seen in the line of work by Kavraki

and collaborators (see, e.g., [52; 50]), and Kazerounian and collaborators (see, e.g.,

[51; 89]), to name a few. Another interesting fact is that the protein kinematic model

described in Section 2.5.1 has the exact same kinematic structure as robotic manip-

ulators with hyper degrees-of-freedom as described in the work of Mochiyama et al.

(see, e.g., [118]). This type of kinematic modeling has also been used for multisection

continuum robots (see, e.g., [119]). Indeed, considering a hyper-redundant robotic

mechanism with configuration vector θ ∈ Q, where Q is a manifold of dimension
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N0, the time-indexed configuration vector θ(t) ∈ Q represents the joint time profile

trajectories of the hyper-redundant robot. Therefore, the same problem statement

presented in Section 4 can also be considered for such robots. The only difference

with the protein folding setting presented in this application is the choice of desig-

nated configurations in the joint space of the robot. These designated configurations

given by θ∗, instead of θu and θf in the case of protein molecules, can be generated

by proper trajectory planning and obstacle avoidance algorithms designed for these

hyper-redundant robotic mechanisms (see, e.g., [75]).

By mapping different aspects of the robot’s motion—such as joint angles, speed, or

proximity to obstacles—into distinct sound patterns, operators could develop an in-

tuitive understanding of the robot’s state without relying on detailed visualizations.

This technique could streamline operations in environments where rapid decision-

making is crucial, such as in medical robotics, search-and-rescue missions, or indus-

trial applications, where the robot’s ability to navigate and manipulate within tight

spaces is vital. Additionally, integrating sonification with trajectory planning and

obstacle avoidance algorithms could further enhance the robot’s functionality by pro-

viding auditory cues that assist in anticipating or avoiding collisions, making the

system more efficient and safer to operate. Thus, sonification has the potential to

significantly improve both the real-time control and monitoring of hyper-redundant

robotic systems.

4.8 Conclusion

In this project, we proposed a Wave Space Synthesis (WSS)-based solution to

the sonification of protein folding pathway datasets. Sonification, or the process of

transforming data into sound, provides a powerful alternative to visual representa-

tions, particularly for understanding complex, multi-dimensional systems like protein

folding. By utilizing the WSS framework, we developed a systematic and structured
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method to generate sounds from the dihedral angle folding trajectories of protein

molecules. These folding pathways describe the angular movements between bonds

within a protein as it transitions from an unfolded to a folded state. Given the com-

plexity and high dimensionality of protein folding, we modeled these molecules as

hyper-redundant robotic mechanisms—a type of robotic system known for its numer-

ous degrees of freedom and flexibility, similar to the many rigid nano-linkages that

define a protein’s structure. This analogy allows us to treat protein molecules in

a manner similar to highly flexible robots, where each bond in the molecule corre-

sponds to a joint or linkage in the robotic model, and the folding pathways represent

the trajectories of movement.

To demonstrate this sonification methodology, we applied it to the backbone chain

of a protein molecule, which features a dihedral angle space with 82 dimensions. This

means the folding process involves tracking a highly complex and multi-dimensional

set of angular movements, making it challenging to visualize or represent through

traditional means. To sonify this folding process, we employed two distinct wave space

functions, each providing a different auditory perspective on the protein’s behavior.

The first method used a canonical wave space function based on a sum of sinusoids.

In this approach, the frequencies of the sound waves were directly influenced by

the conformation, or shape, of the protein as it folded. By adjusting the sound

frequencies based on the real-time dihedral angles of the molecule, we were able to

audibly represent the dynamic transitions of the protein, with changes in pitch or tone

reflecting specific shifts in the folding pathway. This provided an immediate auditory

cue to the different stages of folding and allowed for a more intuitive understanding

of the protein’s structural transformations.

The second method employed a sample-based wave space function, where we used

a well-known piece of classical music—Mozart’s Alla Turca—to sonify the folding tra-

jectories. In this case, the protein’s angular movements were translated into variations
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within the musical framework of the piece, creating an auditory experience that tied

molecular motions to recognizable musical motifs. This artistic approach not only

provided a unique way to interpret the data but also allowed for a more engaging and

familiar sonification, linking molecular complexity to the world of music.

By combining both the canonical and sample-based approaches, we demonstrated

the versatility of the WSS framework in representing highly complex molecular sys-

tems through sound. Sonifying the protein folding pathways not only provided a

novel way to monitor the dynamic process of folding but also opened the door to new

insights, enabling researchers to detect patterns and behaviors in protein folding that

might be difficult to spot using traditional visual methods. Ultimately, this project

highlights the potential of sonification as a tool for understanding the intricate be-

haviors of molecular systems, offering a fresh perspective on how we interpret and

interact with high-dimensional biological data.
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Figure 4.6: The sound signals generated by the proposed sample-based wave space
function in 4.4-4.6) with sound samples taken from Mozart’s All Turca [8] applied
to a protein backbone peptide chain with 82 DOFs. The embedded smaller plots
demonstrate how the nonlinear scaling function c0(·) varies along the protein folding
pathway. The generated sound files (in .wav format) can be downloaded from https:

//dralirezamoha.github.io/proteinpathway/wssFoldingSoundFiles.zip
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Figure 4.7: The sepctrograms of the sound signals generated by the proposed sample-
based wave space function in 4.4-4.6 with sound samples taken from Mozart’s All
Turca [8] applied to a protein backbone peptide chain with 82 DOFs
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CHAPTER V

Transforming Motion Into Sound: A Novel

Sonification Approach for Teams of Mobile Robots

5.1 Introduction

Sonification refers to the translation of data into non-speech audible informa-

tion, hence allowing to experience data by listening [45]. The emerging paradigm of

robot motion sonification, which converts robotic motion data to non-speech audio

for communicating information, presents significant potential for enhancing the effi-

ciency of human-robot interaction (HRI) by reducing reliance on visual engagement

and a reduction in stress and perceived workload for human operators working with

robots [120; 73; 121; 71].

Herman et al. [45] classify sonification techniques into five broad categories: earcons,

auditory icons, parameter-mapping sonification, audification, and model-based sonifi-

cation. In audification, data is directly mapped to sound features, while model-based

approaches translate data into dynamic systems exhibiting desired acoustic behaviors.

For example, data can be used to manipulate the parameters of a mass-spring sys-

tem generating sound waves. For further details on these classifications and specific

techniques, readers are directed to Hermann et al [45].

Within the realm of parameter-mapping sonification for robotic motion, Schwenk
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et al. [74] propose a notable approach. Their system leverages a synthesizer modu-

lated by joint state and sensor data, effectively sonifying robot movement. Conversely,

the SONAO project, led by Frid and collaborators, explores compensating for limited

human-robot communication channels through non-speech audio mapped to expres-

sive gestures [67; 70; 71]. For instance, Frid and Bresin [71] employed a rectangular

oscillator with a short envelope, manipulating its pitch within a C major scale based

on input magnitude, to convey joy. Bremner et al. [72] investigated the impact of

parameter-mapping sonification in virtual reality-based telerobotics, demonstrating a

reduction in stress and perceived workload for human operators controlling robots in

hazardous environments. Similarly, the SonifyIt project [73] leverages Robot Oper-

ating System (ROS) and the multimedia visual programming language Pure Data to

enable both sample playback and live sound synthesis for robots, expanding potential

avenues for sonification implementation.

While advancements in robot motion sonification have yielded promising results,

current state-of-the-art methods largely face the limitation of being designed for

robots with a low number of degrees of freedom (DOFs), as exemplified by Daryl in

Schwenk et al.’s work [74]. This poses a challenge for a diverse range of robotic sys-

tems possessing significantly higher or even infinite DOFs. Examples include elephant

trunk arms and snake robots (e.g., [76; 122]), essential for navigating constrained en-

vironments and diverse locomotion patterns, as well as industrial collaborative multi-

robot systems (e.g., [5; 115; 116]).

In addition to the five conventional sonification methods, a novel approach termed

Wave Space Sonification (WSS) was recently proposed by Hermann [123]. WSS,

designed for high-dimensional data, relies on creating an audible representation of the

data by exploring a scalar field using a data-driven trajectory. This novel framework,

which falls within the spectrum of sonification techniques that map parameters to

sound and techniques that directly convert data into sound, has only been applied to
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very few applications, such as the creation of audiovisual dance performances [124]

and sonification of protein folding pathways modeled as mechanisms with numerous

rigid nano-linkages [3].

We employ the WSS paradigm due to Hermann [123] to answer the challenging

question of generating non-speech auditory representation of the motion of robotic

systems with any number of mobile robots. The motion data generated by the robotic

system consisting of a team of industrial mobile robots is fed into a properly designed

wave space sonification function that performs a data-driven audio signal sampling

and generates pure tonal sounds from the robotic motion data. The generated sounds

using our WSS-based approach exhibit selected timbre when passing close to the

designated configurations and/or along desired directions in the robot configuration

space.

5.2 Contributions of the Method

Despite the utilization of sonification techniques in several HRI settings [67; 68;

69], the problem of robotic motion sonification for systems consisting of teams of

mobile robots has remained unaddressed. This article, relying on the WSS frame-

work [123], provides a novel data-driven solution to the problem of systematic soni-

fication of motion data generated by robotic systems consisting of any number of

mobile robots. Our WSS-based algorithm generates sounds from the motion data of

mobile robots so that the generated audio signal exhibits a chosen timbre when the

mobile robots pass near designated configurations or move along desired directions.

Our general solution contributes to the field of robotic trajectory sonification, which

is still in its early development stages, and paves the path for sonification of robotic

trajectories in other emerging areas such as soft robotics [113; 114]. To demonstrate

its versatility, our WSS-based sonification algorithm is applied to a team of OMRON

LD series autonomous mobile robots, sonifying their motion patterns with pure tonal
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sounds.

5.3 Sonification of Robotic Motion

In this section, we provide the formal problem statement and the experimental

setting of the robotic motion sonification problem. Our solution investigates the

problem of designing sonification algorithms that translate the motion of teams of

industrial mobile robots to non-speech sounds. Our proposed solution leverages the

WSS framework and utilizes localized wave fields with specific orientations within the

system configuration space. Therefore, in this section, we also elaborate on the three

WSS elements needed in the context of robotic motion.

5.4 Problem statement

Let us consider a robotic system with configuration vector

q :=
[
q1, · · · , qN ]⊤ ∈ Q, (5.1)

where Q ⊂ RN is the configuration manifold of dimension N . Assume that the time

evolution of the robotic system configuration during a certain maneuver is given by

the smooth function q : t 7→ q(t) (i.e., a curve on the configuration manifold Q).

5.4.1 Robotic Motion Sonification Problem

The Robotic Motion Sonification Problem (RMSP) is concerned with gen-

erating a non-speech auditory representation (i.e., a sound signal s(t)) associated with

this evolving configuration.

To state the RMSP for a team of mobile robots, we consider a group of M indus-

trial wheeled mobile robots with possibly different underlying kinematics/dynamics.

Assuming planar motion and ignoring the DOFs internal to the robots and their
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wheels, the chassis coordinates with respect to a common global reference frame are

given by [125]

ξξξi = [xi, yi, θi]
⊤, 1 ≤ i ≤M, (5.2)

where xi, yi are the Cartesian coordinates of the robot chassis center of mass, and θi

is the planar orientation of the chassis. Consequently, the motion data of the team

of M robots is given by q(t) = [ξξξ1(t), ξξξ2(t), · · · , ξξξM(t)]⊤. The RMSP for a team of

mobile robots is concerned with generating a sound signal s(t) from the motion data

q(t).

In our experiments (Section 5.6), we consider a subset of the configuration space

containing the vectors

q = [x1, y1, · · · , xM , yM ]⊤ ∈ R2M , (5.3)

by ignoring the chassis orientations in (5.2). Accordingly, a configuration trajectory

q(t) describes the movement of the chassis centers of the industrial wheeled mobile

robot with respect to a common global reference frame. We would like to sonify this

motion pattern in real-time, where at each moment of time t0, a sound signal sample

s(t0) is generated based on q(t0) at that particular instance of time.

We utilize the wave space sonification (WSS) framework due to Hermann [123] to

provide an answer to the RMSP. WSS, which relies on generating an auditory data

representation by scanning a scalar field along a data-driven trajectory of interest,

requires defining the following three elements (see Figure 5.1): (i) a trajectory in the

wave space; (ii) a suitable definition of a wave space function; and, (iii) a proper way

of moving along the trajectory in the wave space. In the context of the RMSP, the

wave space is the configuration manifold Q to which the vector of robot configurations

q given by (5.1) belongs. The configuration vector trajectory q(·) obtained from the

motion of the robotic system defines an embedded curve within the wave space Q.
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Figure 5.1: The proposed approach for converting the motion data of robotic systems
consisting of industrial mobile robots to non-speech auditory information. The motion data
generated by the robotic system is fed into a wave space sonification function that performs a
data-driven audio signal sampling and generates pure tonal sounds from the robotic motion
data.

Moreover, in the WSS framework, one needs to select a morphing function M : t 7→

M(t), which determines how the configuration trajectory q(·) is traversed. Finally,

a scalar field Vr(·), which is known as the WSS function, needs to be constructed.

Figure 5.1 depicts these elements, where the morphing function is considered to be

the identity mapping, i.e., M(t) = t.

RMSP is solved when the WSS function Vr(·) is constructed. As depicted in Fig-

ure 5.1, the sound signal s(·), which can be sent to a sound card for listening to the

non-speech auditory representation of the robot motion, is given by

s(t) = Vr
(
t,q(M(t) )

)
. (5.4)

Here, the WSS function Vr(·) maps the motion data generated by the robotic system

to sound signals for HRI purposes.
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5.5 Solution to The Robotic Motion Sonification Problem

In this section we present our wave space sonification solution to the RMSP stated

in Section 5.4.1 by presenting two classes of WSS functions. The first class utilizes

the information of the absolute position of the mobile robots whereas the second class

utilizes the information of the relative position of the mobile robots with respect to

each other.

5.5.1 WSS Function Utilizing the Absolute Position of the Mobile Robots

Let us consider the robotic motion configuration trajectory q(t) in anN -dimensional

configuration manifold Q. Figure 5.2 depicts a collection of K designated config-

urations
{
µµµk

}K

k=1
⊂ Q (also called the anchor points), a set of K designated N -

dimensional unit vectors
{
ûk

}K

k=1
⊂ RN , and a group of K sound signals sk : t 7→

sk(t), 1 ≤ k ≤ K.

Each sound sk(·) can either utilize algebraic expressions, e.g., sinusoidal vibratory

sounds, or pre-recorded sound files, e.g., pieces of classical music. Since we are inter-

ested in creating alarm systems similar to industrial chemical process settings (see,

e.g., [126]), we choose sinusoidal vibratory sounds as described later in this section.

A localized data-driven WSS function Vr(·) that anchors each of the sound signals

sk(·) to the designated robotic configuration µµµk within Q and aligned to the desired

direction ûk is given by the sum (see, also, Figure 5.2)

Vr(t,q) =
K∑
k=1

Sk(t,q)Kσ

(
∥ΞΞΞk (q− µµµk)∥

)
, (5.5)

whereKσ(y) = exp(−y2

2σ0
) is a window function with σ0 being a positive constant design

parameter, and the matrix is

ΞΞΞk = IN − ûkû
⊤
k , 1 ≤ k ≤ K, (5.6)
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Figure 5.2: Construction of the data-driven localized WSS function Vr(·) on the configu-
ration manifold Q. The WSS function anchors each of the sound signals to a designated
robotic configuration (called the sonification anchor points) within Q aligned with a desired
direction.

where IN ∈ RN×N is the identity matrix. Furthermore, Sk, 1 ≤ k ≤ N , is some

smooth function encoding the sound signals sk(·) in a proper way. In its simplest

form, one can choose Sk(t,q) = sk(t). As a more complicated example, one can choose

Sk(t,q) = gk sk
(
û⊤
k (q − µµµk)

)
, where gk is a constant sound signal gain. In (5.6), ΞΞΞk

is a symmetric projection matrix, i.e., ΞΞΞ2
k = ΞΞΞk and ΞΞΞ⊤

k = ΞΞΞk.

As it can be seen from (5.5), data-driven localized WSS scalar fields can be defined

through available samples from recorded sound signals. The generated sounds exhibit

selected timbre encoded in Sk when passing close to the designated configurations/an-

chor points
{
µµµk

}K

k=1
and/or along desired directions

{
ûk

}K

k=1
(see Figure 5.2).

For the team ofM industrial mobile robots, we construct a WSS function for each

of the M mobile robots utilizing the scalar function given by (5.5). In particular, for

the ith robot, 1 ≤ i ≤M , we define the WSS function

Vr,i(t,q) =
K∑
k=1

Sk,i(t,q)Kσ

(
∥ΞΞΞk,i ([xi, yi]

⊤ − µµµk,i)∥
)
, (5.7)

where µµµk,i ∈ R2, 1 ≤ k ≤ K, are the designated positions/anchor points in the
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common workspace of the robots (e.g., the location of conveyor belts and charging

stations on the manufacturing floor). Furthermore, ΞΞΞk,i = I2 − ûk,iû
⊤
k,i, where the

unit vector ûk,i ∈ R2 is a designated direction in the plane (e.g., a pre-specified line

on the manufacturing floor).

For the timbres Sk,i(t,q) of the WSS function in (5.7), we are choosing sinusoidal

vibratory sounds since we are interested in creating alarm systems similar to industrial

chemical process settings (see, e.g., [126]). In particular, we choose

Sk,i(t,q) = gk,i sin
(
2πrk,iû

⊤
k,i([xi, yi]

⊤ − µµµk,i) + αk,i

)
, (5.8)

where gk,i, rk,i, and αk,i are amplitude, frequency, and phase constant design param-

eters, respectively.

The intuition behind the choice of Sk,i(t,q) in (5.8) is that the motion pat-

tern of each of the mobile robots, which is given by the position vector trajectory

[xi(t), yi(t)]
⊤, would generate a desired vibratory sinusoidal timbre depending on their

direction of movement [xi, yi]
⊤ − µµµk,i, the designated direction ûk,i, and their prox-

imity to the anchor µµµk,i. For instance, if the phase parameter αk,i is set to zero and

the ith robot is moving in a direction almost perpendicular to ûk,i, then a diminishing

sound associated with the motion of the ith robot will be generated.

Using (5.7) and (5.8), which are defined for each of the mobile robots, we can

construct the WSS function

Vr(t,q) =
M∑
i=1

Vr,i(t,q), (5.9)

for sonification of the motion patterns of the robots.
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5.5.2 WSS Function Utilizing the Relative Position of the Mobile Robots

In addition to the WSS function given by (5.7)–(5.9), it is possible to use the

relative position of the mobile robots to construct yet another class of WSS func-

tions. In contrast with the WSS function in the previous section, which utilizes fixed

designated anchor points and directions, we use the relative positions of the robot

team members to define the anchor points and directions.

Let us consider the ith robot and utilize the position vectors of the other M − 1

robots in the team as the designated positions. In other words, the kth anchor point

for the ith robot, where 1 ≤ k ≤ M and k ̸= i, is given by µµµk,i(t) = [xk(t), yk(t)]
⊤.

Furthermore, we can choose the kth designated direction ûk,i for the ith robot, where

1 ≤ k ≤M and k ̸= i, to be the unit vector

ûk,i(t) =
[xk(t)− xi(t), yk(t)− yi(t)]

⊤√
(xk(t)− xi(t))2 + (yk(t)− yi(t))2

, (5.10)

which points from the ith robot to the kth robot. It is remarked that the unit direction

vectors given by (5.10) are always well-defined. Because the denominator in (5.10)

is always bounded away from zero, since the chassis centers never coincide with each

other even in the case of a collision between the robots.

Under the choice of anchor points and designated directions given by (5.10), it

can be easily seen that Kσ

(
ΞΞΞk,i ([xi(t), yi(t)]

⊤ − µµµk,i(t))
)
= 1. Accordingly, the WSS

function Vr,i(·) given by (5.9) takes the position-dependent form

Vr,i(q) =
M∑

k=1, k ̸=i

gk,i sin
(
2πrk,i∥(Ei − Ej)q∥+ αk,i

)
, (5.11)
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in which Ei ∈ R2×2M , 1 ≤ i ≤M , is the projection matrix

Ei :=

0 · · · 1 0 · · · 0

0 · · · 0 1 · · · 0

 , (5.12)

satisfying Ei q = [xi, yi]
⊤. Indeed, the projection matrix Ei can be used to extract

the position of the ith robot from the aggregate vector q ∈ R2M given by (5.3).

Using the functions in (5.11), we construct the WSS function

Vr(q) =
∑

1≤i, j≤M

gi,j sin
(
2πri,j∥(Ei − Ej)q∥+ αi,j

)
, (5.13)

for motion pattern sonification of the wheeled mobile robots.

5.6 Results

In our experimental setting, we are using the family of OMRON LD autonomous

mobile robots. These differential-drive industrial/service mobile robots are designed

for moving material in settings such as manufacturing floors and warehouses with

confined passageways while in the presence of other dynamically moving objects/hu-

mans [127; 128]. The utilized OMRON robots are LD-90 and LD-250 that scan the

environment with a 240-degree laser scanner for primary navigation and are capable

of transporting payloads up to 90 and 250 kilograms, respectively.

To control the motion of and gather data from these two robots, we have developed

a Python-based interface for interacting with the OMRON Advanced Robotics Com-

mand Language (ARCL). ARCL, which is a text-based and command-and-response

operating system, can be utilized to integrate a fleet of OMRON LD mobile robots

with external automation systems. More details are found in Appendix E. The block

diagram of our in-house Python interface is depicted in Figure 5.3. In all of our exper-

iments, we are collecting data with a sample rate of 25 Hz. The detailed experimental
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Figure 5.3: The block diagram of our in-house Python interface for interacting with the
Omron LD robots and performing the sonification experiments. LD-90 and LD-250 are the
robots with the white and gray chassis, respectively.

results can be viewed at https://youtu.be/Aqtf6ImaIWo.

Figure 5.4 depicts the trajectories of LD-90 and LD-250 utilized within our soni-

fication experiments. As demonstrated in Figure 5.4, the designated anchor points

for LD-90 are chosen to be µµµ1,1 = [xD, yD]
⊤ and µµµ2,1 = [xC, yC]

⊤, where i = 1 is the

index associated with LD-90. The designated sonification directions for LD-90 are

chosen to be the unit vectors û1,1 and û2,1 that point along the directions connecting

D to C and C to A, respectively. Furthermore, in (5.8), we have chosen gk,1 = 10,

rk,1 = 0.25, and αk,1 = 0, for k = 1, 2. Finally, we set gk,2 = 0 for LD-250 in the first

set of our experiments.

Figures 5.5 and 5.6 depict the snapshots of the movement of the robots, the

generated sound time profile (the upper left embedded plots in Figure 5.5), and the

associated spectrogram, respectively. As expected from the way of construction of the

WSS function in (5.7), (5.8), and (5.9), the generated sound within the time interval

between t ≈ 12 and t ≈ 15 completely fades away. This is due to the fact that the

direction of movement of LD-90 is almost perpendicular to both of the designated
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Figure 5.4: The trajectories of LD-90 (dashed blue) and LD-250 (dashed red) in the two
experiments. The points A, C, and D are used to define the anchor points and designated
directions for constructing the generic WSS function for each of the robots.

directions û1,1 and û2,1.

In our sonification experiments with the custom WSS function in (5.13), we set

the phase design parameters as αi,j = 0. Consequently, when i = j, the sinusoidal

term will become equal to zero. Furthermore, we set the amplitude design parameters

as g1,2 = g2,1 = 5. Finally, we choose the frequency design parameters to be r1,2 =

r2,1 = 0.05.

Under the choice of the aforementioned design parameters, we apply the WSS

function in (5.13) to the trajectories of LD-90 and LD-250 given by the vector q(t)

(see Figure 5.4). Furthermore, we use a linear morphing function of the formM(t) = t

that results in sound signal samples be given by s(t) = Vr(q
∗(t)). Figures 5.5 and 5.7

depict the snapshots of the movement of the robots, the generated sound time profile

(the embedded plots in the upper middle part of Figure 5.5), and the associated

spectrogram, respectively. As expected from the way of construction of the custom

position-dependent WSS function in (5.13), the generated sound volume when the

two robots start approaching each other keeps decreasing. Indeed, the sound signal

74



amplitude in the interval between t ≈ 7 and t ≈ 15 seconds is the smallest. As

the robots start moving away from each other at around t ≈ 15 seconds, the sound

volume starts increasing.

5.7 Conclusion

Motivated by the growing need to translate complex motion data from robotic sys-

tems into audible information, we developed a Wave Space Sonification (WSS)-based

solution aimed at creating sonification algorithms that can convert the movements of

teams of industrial mobile robots into non-speech sounds. Sonification, as an audi-

tory representation of data, offers an innovative and intuitive way to understand the

dynamics and interactions of robotic systems, particularly in environments where vi-

sual monitoring is challenging or impractical. In this project, we focused on applying

this methodology to a team of OMRON LD autonomous mobile robots, where the

motion data from multiple independent units working collaboratively was converted

into sound, providing an auditory pathway to monitor and analyze their behaviors in

real-time.

The sonification of mobile robotic systems presents unique challenges, especially

when dealing with teams of robots that exhibit complex, multi-agent behaviors. In our

proposed solution, we utilized the WSS framework to systematically map the motion

data of these robots—such as their paths, speeds, and coordination patterns—into

sound. By capturing the underlying kinematic patterns of the robots’ motion, the

sonification provided a way to monitor not only the movement of individual robots

but also the overall interaction and coordination within the team. This method can

help operators and researchers detect anomalies, optimize performance, and ensure

the robots are working effectively as a group. The resulting non-speech sounds reflect

the movement, task execution, and interaction of the robots in an easily interpretable

form, offering an alternative means of analyzing complex robotic systems.
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One of the key advantages of this approach is its potential to provide real-time

feedback on the operational status of the robotic system. In environments where

visual data might be overwhelming or difficult to process, the auditory cues gener-

ated through sonification can alert operators to changes in performance, potential

malfunctions, or deviations from expected behavior. This auditory feedback adds an

extra layer of monitoring and control, making it especially useful in industrial settings

where teams of robots are deployed for tasks like material handling, transportation,

and assembly.

In conclusion, the WSS-based sonification solution we developed for teams of

mobile robots represents an innovative approach to monitoring and analyzing robotic

systems through sound. By translating complex motion data into non-speech auditory

feedback, we have created a powerful tool for interpreting robotic behavior in real-

time. As the field of robotics continues to evolve, particularly with the rise of soft

robots and collaborative robotic arms, expanding the use of sonification will open

up new possibilities for managing and understanding increasingly complex robotic

systems in dynamic and data-rich environments.
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Figure 5.5: Applying the proposed sonification method with the WSS function given
by (5.7)–(5.9) (embedded plot in the upper left) and the WSS function given by (5.13) (em-
bedded plot in the upper middle) to a team of wheeled mobile robots. The embedded plots in
the two snapshots demonstrate the generated sound signal using our sonification technique.
The detailed experimental results can be viewed at https://youtu.be/Aqtf6ImaIWo.
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Figure 5.6: Generated sound spectrogram resulting from the WSS function given by (5.7)–
(5.9).

Figure 5.7: Generated sound spectrogram resulting from the WSS function given by (5.13).
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CHAPTER VI

Concluding Remarks and Future Research

Directions

In this dissertation, we explored the potential of Wave Space Sonification frame-

work as a powerful tool for translating complex, multi-dimensional data into auditory

representations, offering new ways to interpret and monitor systems that are chal-

lenging to analyze visually. We first applied this methodology to the sonification of

protein folding pathway datasets, where the intricate folding trajectories of protein

molecules were modeled as hyper-redundant robotic mechanisms. These mechanisms,

with their numerous degrees of freedom and rigid nano-linkages, mirrored the flexibil-

ity and complexity found in high-dimensional robotic systems. By converting the di-

hedral angle folding trajectories into sound using two distinct wave space functions—a

canonical sum of sinusoids and a sample-based approach incorporating Mozart’s Alla

Turca—we demonstrated the effectiveness of WSS in capturing and representing the

dynamic transitions of protein folding. This sonification not only offered an alterna-

tive way to visualize the folding process but also provided auditory cues that allowed

researchers to detect previously hidden patterns and behaviors, ultimately opening

up new avenues for understanding high-dimensional biological systems.

We then extended the use of WSS framework to the motion of teams of industrial

mobile robots, focusing specifically on OMRON LD autonomous mobile robots. In
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this context, the sonification of the robots’ motion data—such as their paths, speeds,

and coordination patterns—allowed for real-time monitoring of their behaviors. By

converting the complex, multi-agent dynamics into non-speech sounds, this approach

enabled us to better understand and manage the interactions and coordination within

the team. This auditory feedback proved to be particularly useful in industrial envi-

ronments where visual data might be overwhelming or impractical, offering a novel

means of detecting anomalies, optimizing performance, and ensuring smooth opera-

tion.

Looking toward future applications, both projects highlight the potential for ex-

panding sonification to more advanced systems. For instance, in the domain of

robotics, the sonification framework could be adapted to soft robots, which exhibit

continuous deformation and generate vast amounts of motion data that are difficult to

track visually. By providing real-time auditory feedback on the fluid, adaptive move-

ments of soft robots, sonification could enhance our ability to monitor and interpret

their complex behaviors. Additionally, teams of industrial collaborative robotic arms,

which produce overwhelming amounts of data as they work in coordination with hu-

mans and other robots, could benefit from sonification to ensure safety, efficiency,

and smooth performance. The auditory monitoring of these systems could help oper-

ators detect deviations or issues in real time, ensuring the seamless operation of such

collaborative environments.

In conclusion, the WSS-based sonification techniques developed in this disserta-

tion offer a novel and versatile solution for representing complex, high-dimensional

data through sound. Whether applied to protein folding pathways or the motion of

teams of mobile robots, sonification provides an intuitive and engaging way to in-

terpret intricate systems, making it a valuable tool for both biological and robotic

applications. As technology continues to advance, expanding the use of sonification

to emerging fields such as soft robotics and collaborative robotic systems will open
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new possibilities for managing and understanding complex, data-rich environments,

further enhancing our ability to interact with and control these advanced systems.
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APPENDIX A

Data Availability

The datasets codes generated during and/or analyzed during the current study are

available in the GitHub repository, https://dralirezamoha.github.io/proteinpathway/

wssFoldingSoundFiles.zip, https://dralirezamoha.github.io/proteinpathway/

wssFoldingSoundFiles.zip, https://dralirezamoha.github.io/proteinpathway/

2023MTAP Canonical WaveSpaceSonification.zip and https://dralirezamoha.github.io/

proteinpathway/2023MTAP MatlabFiles SampleBasedWSS.zip.
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APPENDIX B

Sound Files

The generated sound files (in .wav format) based on our WSS-based proposed

method can be downloaded from https://dralirezamoha.github.io/proteinpathway/

wssFoldingSoundFiles.zip. See Chapter IV for further details.
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APPENDIX C

Canonical WSS MATLAB Code

1 % MTAPCANONICALWSS.m:

2 % Canonical WSS M−File for sonification of the folding trajectories

3 % of the backbone chain of the example protein molecule using

4 % sinusoidal functions

5 %

6 % MATLAB M−File associated with the article: ”Wave Space Sonification of

7 % Folding Pathways of Protein Molecules Modeled as Hyper−Redundant Robotic

8 % Mechanisms” Multimedia Tools and Applications (Springer Nature)

9 %

10 % Note: Contact the corresponding author Dr. Alireza Mohammadi

11 % (amohmmad@umich.edu) for any further assistance/information.

12 %

13 %

14 % This version: 02−11−2023

15 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

16 %

17 clear ; close all ; clc ;

18 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

19 % Step−0: Set the figure/sound file names for writing the final results to.

20 %
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21 % Choose flagNum to be an integer between 1 and 5.

22 flagNum = 1; %1−>sigma0=0.1; 2−>sigma0=0.15; 3−>sigma0=0.2; 4−>sigma0=0.3;

23 %5−>sigma0=0.4;

24 %

25 figStr2 = ’canonicalSt’ ;

26 figStr3 = ’canonicalSpectro’;

27 %

28 figStr2 = [figStr2 ,num2str(flagNum)];

29 figStr3 = [figStr3 ,num2str(flagNum)];

30 fileStr = ’simulResult’;

31 fileStr2 = {’1.mat’,’ 2.mat’,’ 3.mat’,’ 4.mat’,’ 5.mat’};

32 audioStr = ’canonicalWSS’;

33 audioStr = [audioStr,num2str(flagNum),’.wav’];

34 %

35 fileStr = [ fileStr , fileStr2 {flagNum}];

36 sigma0Mat = [0.1; 0.15; 0.2; 0.3; 0.4];

37 %

38 disp( ’ ’ )

39 disp( ’Your chosen sigma0 parameter for the frequency scaling function: ’ )

40 disp( ’ ’ )

41 disp(sigma0Mat(flagNum))

42 disp( ’ Sonification in process. Please wait ... ’ )

43 %

44 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

45 % Step−1: Load the folding pathway trajectory dataset

46 % provided in the data file ”sonificationData.mat”.

47 %

48 % Load the protein folding pathway dataset.

49 load(”sonificationData .mat”);

50 thVec = thVec(2:end−1,:);

51 % Extract the information about the folded and unfoled conformations

52 xStart = thVec(:,1);

53 xFinish = thVec(:,end);
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54 mu unf = xStart ; % The unfolded protein conformation

55 mu fol = xFinish; % The folded protein conformation

56 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

57 % Step−2: Load the folding pathway trajectory dataset provided in the

58 % data file ”sonificationData.mat”.

59 %

60 % The design parameters that are chosen by the use

61 Fs = 6000; %Sampling frequency

62 F0 = 250; %Fundamental frequency

63 sigma0 = sigma0Mat(flagNum);

64 %

65 % Set the duration of the desired canonical WSS−based sound file

66 duration = 5; % in seconds

67 % Set L, i .e ., the length of the generated WSS−based sound vector

68 L = Fs∗duration;

69 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

70 % Step−3: The main computations for generating the canonical WSS−based

71 % sound file .

72 %

73 % The linear interpolation function.

74 Nsmax = length(thVec(1,:));

75 Ns = (Nsmax−1)/(L−1);

76 %

77 N = 1:Nsmax;

78 NN = 1:Ns:Nsmax;

79 %

80 fi = zeros(length(thVec(:,1)) ,L);

81 % Create a spline object for faster computations.

82 thVecNew = spline(N,thVec);

83 %

84 for k=1:length(thVec(:,1))

85 sigma(k) = (sigma0ˆ2)∗norm(mu fol(k) − mu unf(k));

86 end
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87 %

88 thVec new = ppval(thVecNew,NN);

89 %

90 for k =1:length(thVec(:,1))

91 for m=1:L

92 fi (k,m) = F0∗exp(−(norm(thVec new(k,m)−mu fol(k))/sigma(k)));

93 end

94 end

95 %

96 V = zeros(1,L);

97 %

98 % The canoncial WSS summation

99 for i=1:length(thVec(:,1))

100 V = (1/82) ∗ (V + sin(2∗pi∗fi(i ,:) .∗thVec new(i,:))) ;

101 end

102 %

103 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

104 % Step−4: Draw the final results and generate the WSS−based sound. Save the

105 % generated data in files defined in Step−0.

106 %

107 fig1 = figure( ’units ’ , ’normalized’, ’ outerposition ’ ,[0 0 1 1]) ;

108 plot( linspace (0,duration,length(V)),V,’k’ , ’ linewidth’ ,0.01)

109 grid on

110 xlabel( ’$$t$$ [ s ] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

111 ylabel( ’$$s(t)$$’ , ’ interpreter ’ ,...

112 ’ latex ’ , ’ fontSize ’ ,40)

113 set(gca, ’FontSize’ ,40)

114 %

115 % Uncomment to print the figure to a png file .

116 % print(fig1 , figStr2 ,’−dpng’,’−r300’)

117 %

118 fig2 = figure( ’units ’ , ’normalized’, ’ outerposition ’ ,[0 0 1 1]) ;

119 %
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120 subplot(1,2,1)

121 plot3(thVec(3,:) ,thVec(29,:) ,thVec(79,:) , ’k’ , ’LineWidth’,2)

122 hold on

123 plot3(thVec(3,1),thVec(29,1),thVec(79,1), ’d’ , ’MarkerSize’, 20,...

124 ’MarkerFaceColor’, ’r’)

125 plot3(thVec(3,end),thVec(29,end),thVec(79,end),’d’ , ’MarkerSize’, 20,...

126 ’MarkerFaceColor’, ’g’)

127 xlabel( ’$$\theta 4$$ [rad] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

128 ylabel( ’$$\theta {30}$$ [rad]’ , ’ interpreter ’ ,...

129 ’ latex ’ , ’ fontSize ’ ,40)

130 zlabel ( ’$$\theta {80}$$ [rad]’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

131 set(gca, ’FontSize’ ,40)

132 grid on

133 %

134 subplot(1,2,2)

135 plot3(thVec(5,:) ,thVec(49,:) ,thVec(71,:) , ’k’ , ’LineWidth’,2)

136 hold on

137 plot3(thVec(5,1),thVec(49,1),thVec(71,1), ’d’ , ’MarkerSize’, 20,...

138 ’MarkerFaceColor’, ’r’)

139 plot3(thVec(5,end),thVec(49,end),thVec(71,end),’d’ , ’MarkerSize’, 20,...

140 ’MarkerFaceColor’, ’g’)

141 xlabel( ’$$\theta 6$$ [rad] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

142 ylabel( ’$$\theta {50}$$ [rad]’ , ’ interpreter ’ ,...

143 ’ latex ’ , ’ fontSize ’ ,40)

144 zlabel ( ’$$\theta {72}$$ [rad]’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

145 grid on

146 set(gca, ’FontSize’ ,40)

147 %

148 % Uncomment to print the figure to a png file .

149 % print(fig2 ,’ canonicalProjectedPath’,’−dpng’,’−r300’)

150 % clear fig1

151 %

152 fig3 = figure( ’units ’ , ’normalized’, ’ outerposition ’ ,[0 0 1 1]) ;
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153 pspectrum(V,Fs,’spectrogram’)

154 title ( ’ ’ )

155 xlabel( ’$$t$$ [ s ] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

156 ylabel( ’$$f$$ [kHz]’, ’ interpreter ’ ,...

157 ’ latex ’ , ’ fontSize ’ ,40)

158 set(gca, ’FontSize’ ,40)

159 %

160 % Uncomment to print the figure to a png file .

161 % print(fig3 , figStr3 ,’−dpng’,’−r300’)

162 % clear fig2

163 %

164 % Uncomment to save the results in a .mat file .

165 % save( fileStr )

166 %To Play the output sound uncomment this line

167 sound(V,Fs);

168 %

169 % Uncomment to write the generated sound to a .wav file.

170 % audiowrite(audioStr,V,Fs)

90



APPENDIX D

Sample Based WSS MATLAB Code

1 % MTAPSAMPLEBASEDWSS.m:

2 % Sample−Based WSS M−File for sonification of the folding trajectories

3 % of the backbone chain of the example protein molecule using

4 % Mozart’s Alla Turca

5 %

6 % MATLAB M−File associated with the article: ”Wave Space Sonification of

7 % Folding Pathways of Protein Molecules Modeled as Hyper−Redundant Robotic

8 % Mechanisms” Multimedia Tools and Applications (Springer Nature)

9 %

10 % Note: Contact the corresponding author Dr. Alireza Mohammadi

11 % (amohmmad@umich.edu) for any further assistance/information.

12 %

13 %

14 % This version: 02−11−2023

15 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

16 %

17 clear ; close all ;

18 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

19 % Step−0: Set the figure/sound file names for writing the final results to.

20 figStr1 = ’sampleBasedcFun’;
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21 figStr2 = ’sampleBasedst’;

22 figStr3 = ’sampleBasedSpectro’;

23 audioStr = ’mozartSampleBased’;

24 %

25 % Choose flagNum to be an integer between 1 and 4.

26 flagNum = 1; %1−>sigma0=0.25; 2−>sigma0=0.5; 3−>sigma0=0.75; 4−>sigma0=1

27 figStr1 = [figStr1 ,num2str(flagNum)];

28 figStr2 = [figStr2 ,num2str(flagNum)];

29 figStr3 = [figStr3 ,num2str(flagNum)];

30 audioStr = [audioStr,num2str(flagNum),’.wav’];

31 fileStr = ’simulResult’;

32 fileStr2 = {’1.mat’,’ 2.mat’,’ 3.mat’,’ 4.mat’,’ 5.mat’,’ 6.mat’};

33 %

34 fileStr = [ fileStr , fileStr2 {flagNum}];

35 % Set the sample based sonification parameters.

36 lambda0= 1;

37 sigma0Mat = [0.25; 0.5; 0.75; 1];

38 sigma0 = sigma0Mat(flagNum);

39 flagInnerPlot = 1;

40 %

41 disp( ’ ’ )

42 disp( ’Your chosen sigma0 parameter for the scaling function: ’ )

43 disp( ’ ’ )

44 disp(sigma0Mat(flagNum))

45 disp( ’ Sonification in process. Please wait ... ’ )

46 %

47 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

48 % Step−1: Create a spline object from the folding pathway trajectory

49 % provided in the data file ”sonificationData.mat”

50 %

51 load(”sonificationData .mat”);

52 Nfolding = length( thVec(1,:) ) ;

53 thVecSpline = spline(linspace (0,1,Nfolding),thVec );
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54 %

55 % Compute the nonlinear scaling function for later use in sample−based WSS

56 % sonification .

57 cscale = zeros(1,Nfolding);

58 %

59 mu unf = thVec(:,1); % Unfolded protein conformation

60 mu fol = thVec(:,end); % Folded protein conformation

61 %

62 % Set the denominator of the nonlinear scaling function.

63 denominator = (sigma0ˆ2) ∗ ( norm(mu unf − mu fol) ) ;

64 %

65 % Compute the samples of the nonlinear scaling function

66 for ii = 1 : Nfolding

67 cscale ( ii ) = lambda0 ∗ exp( −( ...

68 norm( thVec(:, ii )−mu fol )/ denominator ) );

69 %

70 if ˜sigma0 % Use sigma0 = 0 for playing the base sound file (i .e .,

71 % Mozart’s Alla Turca in this example)

72 cscale ( ii ) = (ii−1)/Nfolding;

73 end

74 end

75 %

76 % Create a spline object from the nonlinear scaling function for sampling

77 % from Mozart’s Alla Turca.

78 %

79 cscale = ( cscale − min(cscale) ) / max(cscale);

80 cscale = cscale/max(cscale);

81 cscaleSpline = spline( linspace (0,1,Nfolding), cscale ) ;

82 %

83 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

84 % Step−2: Pre−process the original sound file ’moz.wav’.

85 NumLow = 3; % NumLow = 1 −−−> sound with original quality

86 Fs0 = 44000; % Base music playback frequency
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87 %

88 yMozart = audioread(’moz.wav’)’;

89 NMozartMusic = length(yMozart); % NMozartMusic

90 yMozart = yMozart(:,1:NMozartMusic);

91 %

92 % Sample the original sound file for a faster computation.

93 yMozart = yMozart(1:NumLow:NMozartMusic);

94 % Create a spline object from the sampled sound file.

95 mozSpline = spline(linspace (0,1, length(yMozart)) , yMozart) ;

96 %

97 % Set the frequency for playback of the protein folding pathway sonified

98 % dataset on the PC speakers

99 %

100 Fs = floor(Fs0 / NumLow) ;

101 Nmozart = length(yMozart);

102 Tmozart = Nmozart / Fs;

103 %

104 % Uncomment to hear the original piece of music.

105 % sound(yMozart,Fs);

106 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

107 % Step−3: Use the sample−based WSS function to sonify the folding pathway

108 % of the protein molecule.

109 %

110 % Pre−assign the variable for accelerating the loop computations.

111 yMozartWSS = zeros(1,Nmozart);

112 %

113 % The main computational loop for the generation of the WSS−based sound

114 % from the protein folding pathway.

115 %

116 for ii = 1 : Nmozart

117 tii = (ii−1)/Nmozart;

118 yMozartWSS(ii) = ppval(mozSpline , ppval(cscaleSpline,tii));

119 end
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120 %

121 %˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

122 % Step−4: Draw the final results and generate the WSS−based sound. Save the

123 % generated data in files defined in Step−0.

124 %

125 fig1 = figure( ’units ’ , ’normalized’, ’ outerposition ’ ,[0 0 1 1]) ;

126 plot( linspace (0,Tmozart,length(yMozartWSS)),yMozartWSS,’k’,...

127 ’ linewidth’ ,0.01)

128 hold on

129 grid on

130 xlabel( ’$$t$$ [ s ] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,30)

131 ylabel( ’$$s(t)$$’ , ’ interpreter ’ ,...

132 ’ latex ’ , ’ fontSize ’ ,30)

133 set(gca, ’FontSize’ ,30)

134 if ˜flagInnerPlot

135 ylabel( ’$$s {\mathcal{M}}(t)$$’,’interpreter’ ,...

136 ’ latex ’ , ’ fontSize ’ ,40)

137 else

138 axes(’Position’ ,[.16 .72 .2 .2])

139 box on

140 plot( linspace (0,Tmozart,Nfolding), cscale, ’k’ , ’LineWidth’,2)

141 hold on

142 grid on

143 ylabel( ’$$c 0($${\boldmath$\theta$}$$(M(t)))$$’,’interpreter’ ,...

144 ’ latex ’ , ’ fontSize ’ ,25)

145 xlabel( ’$$t$$’ , ’ interpreter ’ ,...

146 ’ latex ’ , ’ fontSize ’ ,25)

147 set(gca, ’YTickLabel’,[]) ;

148 set(gca, ’XTickLabel’,[]) ;

149 %

150 end

151 %

152 % Uncomment to print the figure to a png file .
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153 % print(fig1 , figStr2 ,’−dpng’,’−r150’)

154 % clear fig1

155 %

156 fig2 = figure( ’units ’ , ’normalized’, ’ outerposition ’ ,[0 0 1 1]) ;

157 pspectrum(yMozartWSS,linspace(0,Tmozart,...

158 length(yMozartWSS)),’spectrogram’)

159 %

160 title ( ’ ’ )

161 xlabel( ’$$t$$ [ s ] ’ , ’ interpreter ’ , ’ latex ’ , ’ fontSize ’ ,40)

162 ylabel( ’$$f$$ [kHz]’, ’ interpreter ’ ,...

163 ’ latex ’ , ’ fontSize ’ ,40)

164 set(gca, ’FontSize’ ,40)

165 %

166 % Uncomment to print the figure to a png file .

167 % print(fig2 , figStr3 ,’−dpng’,’−r150’)

168 % clear fig2

169 %

170 sound(yMozartWSS,Fs);

171 % Uncomment to write the generated sound to a .wav file.

172 % audiowrite(audioStr,yMozartWSS,Fs)

173 %

174 % Uncomment to save the results in a .mat file .

175 % save( fileStr )
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APPENDIX E

Gathering Data From OMRON LD Series

Through ARCL

To control the motion of and gather data from the OMRON mobile robots, we

have developed a Python-based interface for interacting with the OMRON Advanced

Robotics Command Language (ARCL). ARCL, which is a text-based and command-

and-response operating system, can be utilized to integrate a fleet of OMRON LD

mobile robots with external automation systems. The block diagram of our in-house

Python interface is depicted in Figure 5.3

We are employing the ARCL to gather data from the OMRON LD series mobile

robots. The first step in our data-gathering process involves configuring the ARCL

parameters within MobilePlanner, the software provided by OMRON for controlling,

configuring, and communicating with their mobile robots. This software serves as

a critical interface for setting up the necessary parameters that facilitate effective

interaction with the OMRON LD series robots.

In MobilePlanner, we begin by defining the ARCL server address, port number,

and password parameters. These settings are essential for establishing a secure and

reliable connection to the mobile robots. After inputting these core parameters, we

proceed to configure additional ARCL settings tailored to our specific research needs,
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ensuring that the communication between our system and the robots is optimized for

data gathering.

Once the ARCL parameters are correctly set, we connect to the ARCL using a

Telnet client. This connection allows us to initiate real-time communication with the

mobile robots, enabling us to send commands and retrieve data efficiently. The Telnet

protocol provides a versatile and straightforward method for remote access, making

it easier to interact with the robots’ systems.

We are utilizing a terminal interface in conjunction with the Telnet protocol.

This approach is particularly important because OMRON mobile robots, designed

for industrial applications, often present challenges in terms of data collection and

control due to their advanced functionalities and configurations.

Through this carefully structured setup, we can effectively utilize ARCL to com-

mand the robots and gather valuable data regarding their operations. This systematic

approach not only simplifies the control process but also enhances our ability to moni-

tor and analyze the performance of OMRON’s mobile robots in various environments.

Once connected, we utilize the terminal interface to input ARCL commands, which

are specifically designed to interact with the robot’s internal systems and functions.

The use of ARCL enables us to send a variety of commands to the robots, allowing

us to access real-time data regarding their operational status, performance metrics,

and environmental interactions. This data includes information on the robot’s posi-

tion, velocity, battery status, and any errors or alerts that may arise during operation.

Also, through the ARCL it is very simple to reconstruct the map of the robot’s envi-

ronment which captures the stationary obstacles present in the robot’s surroundings.

As we execute these commands, the output generated by the robots is systemat-

ically recorded. We save this output in a text file, which serves as a repository for

the data collected. This method not only ensures that we capture a comprehensive

dataset but also allows for easy retrieval and analysis in subsequent phases of our
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research.

By implementing this structured approach of data gathering, we can effectively

monitor the performance of the OMRON LD series robots and gain valuable insights

into their operation within industrial environments. This process is crucial for ad-

vancing the study on converting the robot’s movement into auditory representations.

The following code was used to extract data from MobilePlanner software as well

as computes the distance to a specific, predefined goal in the map:

1 import telnetlib

2 import getpass

3 from turtle import heading

4 import numpy as np

5 import matlab.engine

6 import matplotlib.pyplot as plt

7 import time

8

9 def toc() :

10 import time

11 if ’startTime’ in globals () :

12 t = time.time() − startTime

13 print( ’elapsed time is : ’ , str (t) , ’seconds’)

14

15 def tic () :

16 import time

17 global startTime

18 startTime = time.time()

19

20 host = ’192.168.1.63’

21 port = ’1996’

22 lookfor = ’Location’

23 LocalizationScore = ’LocalizationScore: ’

24 password = ’admin’
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25 numberOfIterations = 150

26 threshold = 8

27

28 ’Call a matlab script to extract the locations of the goals in the map file ’

29 eng = matlab.engine.start matlab()

30 eng.DataExtracFromMatlab(nargout=0)

31 a= eng.DataExtracFromMatlab()

32

33 goalpos = a[2]

34 xgoal = goalpos[0]

35 ygoal = goalpos[1]

36 print(xgoal) #5325

37 print(ygoal) #8146

38

39 # Establish the connection to the robot and run a macro

40 tn = telnetlib .Telnet(host,port)

41 tn. read until (b’assword:’)

42 tn.write(password.encode(’ascii ’ ) + b’\n’)

43 tn.write(b’goto Goal3 \n’)

44 time.sleep(2)

45 tn.write(b’executeMacro Macro2 \n’)

46 tn.write(b’dsfv RobotX \n’)

47

48 def getData():

49

50 tic ()

51

52 tn.write(b’dsfv RobotX \n’)

53 tn. read until (b’RobotX’)

54 X = tn.read some().decode(’ascii’)

55 X = X.split()

56 X = X[0]

57 print( ’X =’, int(X))
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58

59

60 tn.write(b’ \n’)

61 tn.write(b’dsfv RobotY \n’)

62 tn. read until (b’RobotY’)

63 Y = tn.read some().decode(’ascii’)

64 print( ’y = ’, int(Y))

65

66 tn.write(b’ \n’)

67 tn.write(b’dsfv RobotTh \n’)

68 tn. read until (b’RobotTh’)

69 theta = tn.read some().decode(’ascii ’ )

70 theta = float(theta)

71 print( ’heading = ’, (theta))

72

73 tn.write(b’ \n’)

74 tn.write(b’dsfv RotVel \n’)

75 tn. read until (b’RotVel’)

76 rotVel = tn.read some().decode(’ascii ’ )

77 print( ’rotVel = ’, int(rotVel))

78

79 tn.write(b’ \n’)

80 tn.write(b’dsfv LeftVel \n’)

81 tn. read until (b’LeftVel’ )

82 leftVel = tn.read some().decode(’ascii ’ )

83 print( ’LeftVel = ’, int( leftVel ))

84

85 tn.write(b’ \n’)

86 tn.write(b’dsfv RightVel \n’)

87 tn. read until (b’RightVel’)

88 rightVel = tn.read some().decode(’ascii ’ )

89 print( ’RightVel = ’, int(rightVel))

90
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91 #tn.write(b’dsfv batterystateofcharge \n’)

92 #tn.read until(b’BatterySateOfCharge’)

93 #Bat = tn.read some().decode(’ascii’)

94 #print(’Battery = ’)

95 #print(Bat)

96

97 #tn.write(b’Odometer \n’)

98 #tn.read until(b’Odometer: ’)

99 #time = tn.read some().decode(’ascii’)

100 #print(time)

101 toc()

102 return int(X) , int(Y), (theta), int(rotVel) , int( leftVel ) , int(rightVel)

103

104 xpos = np.empty(numberOfIterations)

105 ypos = np.empty(numberOfIterations)

106 heading = np.empty(numberOfIterations)

107 leftVel = np.empty(numberOfIterations)

108 rightVel = np.empty(numberOfIterations)

109 rotVel = np.empty(numberOfIterations)

110

111 i = 0

112 xpos[i ], ypos[i ], heading[i ], rotVel [ i ], leftVel [ i ], rightVel [ i ] = getData()

113 dist = (((xpos[i]−xgoal)∗∗2 + (ypos[i]−ygoal)∗∗2)∗∗0.5)

114 c =((((xpos[i]−xgoal)∗∗2 + (ypos[i]−ygoal)∗∗2)∗∗0.5) > threshold )

115 #print(c)

116 print(dist )

117 c = True

118

119 while c:

120 xpos[i ], ypos[i ], heading[i ], rotVel [ i ], leftVel [ i ], rightVel [ i ] = getData()

121 dist = (((xpos[i]−xgoal)∗∗2 + (ypos[i]−ygoal)∗∗2)∗∗0.5)

122 print( ’Distance to goal: ’ , dist )

123 c =((((xpos[i]−xgoal)∗∗2 + (ypos[i]−ygoal)∗∗2)∗∗0.5) > threshold )
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124 print(c)

125 i = i+1

126

127 if c == False:

128 break

129

130 # Print the positions up to the end goal

131 print( ’number of iterations = ’, i , ’\n’)

132 print( ’x position : ’ )

133 print(xpos[1: i ] , ’\n’)

134 print( ’y position : ’ )

135 print(ypos[1: i ], ’\n’)

136 print( ’Heading: , ’ )

137 print(heading[1: i ], ’\n’)

138

139 print( ’Rotation Velocity: ’ )

140 print(rotVel [1: i ], ’\n’)

141 print( ’Left wheel Velocity: ’ )

142 print( leftVel [1: i ], ’\n’)

143 print( ’Right Wheel Velocity: ’)

144 print(rightVel [1: i ], ’\n’)

145

146 xpos = xpos[0:i]

147 ypos = ypos[0:i]

148

149 # Plot path of the Robot

150 plt .plot(xpos,ypos)

151 plt .show()

152

153 plt .plot(heading)

154 plt .show()

155

156 tn.write(b’quit\n’)
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157 tn.write(b’exit\n’)

158 tn. close ()
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