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Abstract

Sonification is a method to represent data and convey information using sound. Just like
the Geiger counter, humans can use sound to better understand complex sets of data that are either
unable to be seen or visualized or that are too complex to understand with visual displays.
Sonification research and learning have been predominantly conducted at the higher education
level. However, as STEM-related programs and activities continue to be increasingly important in
secondary school education, it is possible to expose high school students to university-level
research through project-based learning (PBL) activities in the classroom. Using a physical snake
robot prototype that was built and programmed with low-cost materials, high school students are
introduced to the field of sonification and its applications to snake robots. This dissertation
demonstrates the feasibility of using project-based learning to teach university level research in
secondary school education. Using the sonification of snake robot movement, students learned
advanced topics in robotics with the goal of realizing that university level research is accessible
and understandable through PBL. This paper will begin by discussing the concept of human-robot
interaction, introduce sonification, and give a brief overview of project-based learning. A detailed
discussion of how the snake robot prototype was constructed and programmed, an in-depth
explanation of the sonification algorithm that was used, and how sonification was taught in a high
school classroom using PBL is presented along with student feedback and suggestions for future

work.
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Chapter 1: Introduction

The “21st Century Skills” movement has been active for the last two or three decades [1].
At the core of this movement is the idea that students leaving education need to be prepared to
succeed in the global society that is rapidly changing and developing and one that is increasingly
complex and uncertain [2]. Herianto et al. studied this movement using a method they called the
“STEM engineering design learning cycle model” at the secondary school level and evaluated the
twenty-first century skills known as the 4C’s (critical thinking, creativity, communication, and
collaboration) [2]. Wagner’s book titled “The Global Achievement Gap”, suggests that no matter
the quality of education students receive, they are still not prepared to enter the global world and
are not equipped with essential skills to be successful [3]. No longer are rote memorization skills
the key to success. Instead, Wagner offers seven skills which he calls “survival skills”, which are
critical thinking and problem solving, collaboration and leading by influence, agility and
adaptability, initiative and entrepreneurialism, effective oral and written communication,
accessing and analyzing information, and curiosity and imagination [3]. Industry leaders that
Wagner talked with stated that they were not concerned with a newly hired engineer’s technical
skills; rather, they most value the ability of someone who can make observations and ask good
questions.

How students can be prepared for their lives after education is the task of educators at all
levels whether the 4C’s model, seven survival skills model, or another model is followed. Focusing
on the secondary school level, this paper proposes one methodology for preparation by using

project-based learning (PBL) to introduce complex university-level research problems to high



school students which will give them an opportunity to learn how to think critically and problem
solve an open-ended question that has no set pre-determined answer. This paper aims to provide
an example of this methodology by using a research topic in the field of robotics. Specifically,
human-robot interaction is currently a highly researched field in robotics since it is expected that
robots will become more social and part of society’s everyday life and should be able to adapt to
a human’s sensory impairments, if they exist. The example of robotics this paper employs is the
sonification of snake-robot locomotion which has various uses such as search and rescue
operations in hard-to-reach spaces. The remaining part of this section will introduce the three main
parts of this dissertation namely, Human-Robot Interaction, Sonification, and Project-Based
Learning.
1.1 Human-Robot Interaction

Human-robot interaction (HRI) is a growing and expanding field of study about how to
coexist and collaborate with robots that could potentially become a part of our everyday life.
Bartneck et al. [4] stress the importance of viewing HRI as a multidisciplinary approach with a
team of engineers, psychologists, computer scientists, and sociologists all working together to
determine the overall purpose of the robot being designed. It is important to know if the robot’s
primary design is for functionality, socializing, or both [4]. Robots that are designed to socialize
(social robots) have additional psychological design elements that functional robots do not
necessarily need. Social robots are expected to interact with humans on a level that is deemed
acceptable to societal norms. The robot's design plays an important role when it is expected to
interact with humans. Robots that mimic human anatomy can be more inviting to collaborate with

as there is a sense of comfort and familiarity during robot and human interaction.



However, there are many applications where a humanoid robot is not the ideal design.
Many robots that mimic non-human forms such animals, reptiles, and fish, for example, have
important applications that are currently performed by the live versions of these non-human forms
[5]. Robotic dogs, for example, have the potential to be used in search and rescue missions where
the environment is not safe for a live dog to navigate. Robotics snakes can be used to reach
enclosures that are much too small for humans or dogs [6]. Many of these types of non-human
animals, evoke certain emotions in humans. For example, a live dog usually confers a sense of
comfort while a snake can evoke a sense of fear. For humans to feel safe and secure around robotic
animals, a design element that encourages socialization is needed. For example, if a robotic snake
is sent on a search and rescue mission, there are psychological design considerations that are
needed for the robotic snake to be deemed safe and helpful by the rescued party such as the snake
emoting a sense of security.

In addition to evaluating the human response to a robot’s physical appearance, humans and
robots interact with each other using sensory queues. Many types of interactions are visual such
as blinking lights or the position and orientation (POSE) of a robot. For example, when a robot
arm picks up an object in an assembly line, a light may illuminate, indicating the arm’s direct
contact with the object and in a certain configuration. Both indicators provide visual feedback for
a robot’s status to the human operator [7]. However, many times, the human operator is not
physically near the robot, or the human is visually impaired. When these cases occur, there is a
need for the robot to continue to successfully communicate its status back to the human so that a
productive interaction can be established. For example, robots that are used in search-and-rescue
operations can enter spaces that are not accessible by humans or other types of robot

configurations. Due to a snake robot’s redundant degrees of freedom (DOF) structure, they can



access spaces and adapt to quickly changing kinematic pathways that other types of robots cannot
navigate as successfully. To maintain communication with the snake robot, it is possible that non-
visual feedback is necessary to inform the human operator about the current state of the robot.
Situations where cameras mounted on the robot do not give adequate visual display feedback due
to extreme dark lighting conditions or a dense environment, would require other types of sensory
feedback such as auditory displays. These could be in the form of tones or pieces of music that can
indicate the location and POSE of a snake robot that is out-of-sight.
1.2 Sonification

One technology that employs auditory displays and can be used to understand snake robot
movement is a methodology called sonification. Specifically, sonification is a method to represent
data sets and convey information using non-speech sound [8]. Humans can use sound to better
understand complex sets of data that are either unable to be seen or visualized or that are too
complex to understand with visual displays. Processing and analyzing large datasets are skills that
are mastered by the researcher that is accumulating the data usually through experimentation or
observation. How processed data is presented to experts and novices is a skill that can manifest in
various forms. Most commonly, the output of the processed data is presented using visual displays
such as graphs and tables. These mediums have been incredibly useful at presenting data and are
fully supported with printed text. A more uncommon and underexplored [8] method is to use
auditory displays to interpret and communicate processed data. According to Kacem et. al,
sonification allows users to “experience data by listening” [9].

According to Herman, data is sonified if it meets the necessary and sufficient conditions of

data-dependency, objectivity, systematicness, and reproducibility [8]. Sonification techniques



include audification, auditory icons, earcons, parameter-mapping, model-based, and wave-space
(71191

Robotic movements such as locomotion and POSE can generate a significant amount of
sensor data that can either require post processing after the data is acquired or on-demand (or real-
time) processing while the movement is occurring. Visual displays, such as graphs, can aid in
summarizing data as a post-processing method that allows the user to spend time analyzing the
results. However, there are instances when the user needs to understand and analyze the data in
real-time while watching the robotic movement or in the absence of having the robotic movement
available to view. In these cases, it may not be possible to effectively view data using visual
displays while concurrently watching robotic movement or there may be an absence of a human’s
ability to view visual displays. Sonification can provide a solution to these visual display issues
and can even enhance the ability to understand and detect certain movements in real-time.

Current work in sonification of snake-robot movement, while limited, is being researched
by Kacen et. al. using wave-space sonification to model the folding and unfolding of protein
molecules using snake robot movement with hyper-redundant degrees of freedom [29]. In their
paper, protein linkages are modeled as snake-robot links with their movement tracked using a
sonification methodology that causes a unique sound file to play when a certain configuration of
the protein linkages is achieved. Multiple, sequential configurations will chain unique sounds
together with the intent to play a resulting sound file that will reveal the protein’s folding/unfolding
pattern. The snake robot is used as a model having known equations of motion that can be applied
to the protein movement.

Using sonification as a means for human-robot social interaction is explored by Schwenk

et al which uses real time robot configurations to generate a non-speech audio sound which is used



as a social cue for communication [28]. According to Schwenk, audio is an acceptable social cue
and is a type of sensory stimulation that is welcomed by humans, thus suggesting that sonification
can be used as a means for humans and robots to effectively communicate with each other.
1.3 Project-Based Learning Implementation

“Learning by doing” [10] 1s an idea from educational reform pioneer, John Dewey, in his
1897 essay, “My Pedagogical Creed”. In his essay, he expressed his view that “the teacher is not
in the school to impose certain ideas or to form certain habits in the child but is there as a member
of the community to select the influences which shall affect the child and to assist him in properly
responding to these” [11]. Over the years, education has refined his beliefs into a methodology
known as project-based learning (PBL). Essentially, PBL is an educational model that challenges
students to identify real-world issues and problems to create solutions that can have meaningful
and lasting impact on society [10]. Instead of students sitting in class and learning by rote
memorization, the goal of PBL is for students to have agency and to learn how to become critical
thinkers, resilient problem solvers, and advocates for change to make the world a more sustainable
place to live by identifying problems within a chosen community and by working in teams to create
solutions to those problems. Students develop an ownership and commitment to their work and a
sense of responsibility to see their work succeed [12]. The Buck Institute for Education is one
example of a consortium of educators promoting the education of teachers on how to engage with
and conduct effective PBL activities either as the focus of the whole class or as a short-term class
activity [13].

Project-based learning (PBL) in a classroom can take on two forms. One form is the entire
duration of the class is project-based which typically means that the class does not have traditional

assessments such as quizzes or tests which are used to evaluate students’ mastery of the material



that was taught. Instead, mastery is evaluated based on a method known as standards-based grading
that evaluates a student’s success in defined areas of the project. These types of classes give
students the agency to determine their own project, usually in a small, team-based environment.
Some daily or weekly homework may be given to strengthen student background knowledge or
skill level to support the project. Another form of PBL is a short activity within a traditional class.
These activities can happen once or multiple times during a semester or school year and give
students an opportunity to work in small teams on a focused project that supports the topic of the
class and can span a few days to a few weeks in duration. According to the Buck Institute for
Education, there are seven essential design elements that should be followed in order to create a

“Gold Standard PBL”’[27]. Below, Figure 4-1 illustrates these design elements.

Sustained
Inquiry

Authenticity

Challenging
Problem or
Question LEARNING
GOALS Student
* Key Knowledge Voice &
» Understanding Choice
* Success Skills

Reflection
Critique
& Revision

Figure 1-1: Gold Standard PBL — Seven Essential Project Design Elements

Project-based learning has been the subject of classrooms both in higher education and

secondary school education across a variety of disciplines for many years. Using robotics for



student learning in a PBL environment was first pioneered by Seymour Papert who is credited for
using robots to create novel, experiential learning environments in a project-based setting [12].
According to Papert, this environment “helped students in ordered logical thinking, self-discipline,
responsibility, and creativity” [12]. He is credited as being the “Father of Education Robots” [14]
and invented the first education robot called the Turtle along with a programming language called
Logo. This invention was the result from his philosophy which Catlin coined “Papert’s Paradigm”
which promotes forming constructionist cultures in schools that encourage students to both fail
and succeed with equal importance and which also promote students to be creative, think, explore,
and love to learn all the while developing their socialization and community-building skills [14].
He saw educational robots as a vehicle to realize his philosophy where students are supported by
teachers as they develop their own knowledge from their surrounding culture and environment.
The Turtle robot was a piece of technology that students could interact with as it moved with their
body as they moved. Over the years, the education system has increasingly used the combination
of project-based learning and robotics as a model to help students understand complex,
unanswered issues in a more deterministic, predictable way.

For example, Mohammadi and Heilman conducted a joint-university, cross-disciplinary
PBL experience for college students to learn about protein folding and unfolding through the lens
of robotics and how snake robots articulate [15]. By bringing two seemingly different subject
matters together, namely biochemistry and robotics, students were able to experience, first-hand,
the importance of how one discipline can help aid the understanding of a problem in another
discipline. Designing this cross-disciplinary idea as a project-based learning experience provided
the students with an active learning educational model that created problem solving opportunities

and appreciation for collaboration among peers at both universities [15].



While the above examples illustrate the use of PBL in higher education, project-based
learning is also a teaching method that is used in secondary schools as well. While there are many
examples of PBL activities, this paper focuses on the use of PBL to expose university-level
research to high school students in a manner that is manageable, accessible, and engaging. By
doing so, students are introduced to STEM topics that are typically reserved for higher education;
however, exposing students to these topics in high school can generate increased interest in
pursuing a STEM-related field in college.

Specifically, this paper focuses on a project-based learning activity about the sonification
of snake robot movement that was delivered to and executed by a group of high school students at
Hopkins School in New Haven, Connecticut. Sonification research and learning has been
predominantly conducted at the college level. However, as STEM-related programs and activities
become increasingly important in high school, this paper demonstrates the possibility to expose
high school students to college level research through project-based learning (PBL) activities in
the classroom using methods that are accessible to high school students but still maintain the
rigorous academic detail that is needed for college-level material. From this, the student can gain
an appreciation of how college-level research be used in real world engineering applications.

The objective of this thesis is to deliver a suggested solution for teaching higher education
robotics subjects — specifically sonification of snake robot movement - at the secondary school
level using Project-Based Learning. This thesis will cover the specifics of the snake robot in
Chapter 2, explain the software of the simulation in Chapter 3, the execution and results of the
PBL activity in a high school classroom in Chapter 4, and conclude with results and future work

in Chapter 5.



Chapter 2: Snake Robot Construction, Programming, and Data Collection

Snake robots have many applications due to their ability to navigate confined spaces such
as in search and rescue operations [6]. Many of these applications require snake robots to enter
areas that are not visible to humans. Understanding the movement and locomotion of snake robots,
without visual displays, with sonification provides valuable assistance to humans. To develop a
model that could be used to further explore and teach the importance of sonification and its
applications in robotics, a physical snake robot prototype was built before the PBL activity
conducted in the classroom. Additionally, building the robot outside of the classroom allowed the
teacher to assess the feasibility of each student or team of students building their own robot and
collecting POSE data in class given the amount of time that was dedicated to the PBL activity.
This chapter will explain how the prototype was constructed over the course of two iterations, how

the robot was programmed, and how movement data was collected.

2.1 Snake Robot Prototype

A prototype of a snake robot was constructed using simple materials that could realistically
model an actual snake's movement and interaction with its environment. Construction was based
on having an affordable prototype model that could be implemented in all high schools nationwide
and even internationally. A bill of materials is provided in the last section of this chapter. Tagboard
(32 0z or 907 g) was used for each piece of the snake body part (or linkage). Figure 2-1 shows the
design of a linkage which is 7.5 cm wide by 10 cm long with extra space left at each end to attach

additional linkages. A template is provided in Appendix A. The snake linkages were modeled after
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the snake robot in this video link [16]. As can be seen in Figure 2-1, the linkages have a curved
shape so that the oscillatory movement is not impeded by any square edges on the linkages. To
reduce friction between the tagboard and support surface, two roller beads were inserted with a
pin in the middle of each linkage as can be seen in Figure 2-1. The pin was attached to the tag
board with glue. The green dot indicates that the linkage is directly behind the head and is used for

data tracking which will be explained in a later section in this chapter.

Roller Bead
. Linkage

used forwvic

aNatysis

Figure 2-1: One Snake Robot Linkage

Five linkages were assembled and connected with small stick pins and fastened with hot
glue such that the robot could freely move side-to-side and locomote and oscillate at the same
time. Figure 2-2 shows the entire robot with five linkages. The entire length of the robot, including
the head, was 38 cm. The design of this robot is expandable as more linkages can be added if
needed; however, five linkages were chosen as the minimum number to achieve an oscillatory
movement that is sinusoidal. The colored, circle dots (green, orange, pink) are used when sensor
movement data is created.
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Figure 2-2: Snake Robot with Five Body Linkages

The leading linkage, also known as the snake head, was also 7.5 cm by 10 cm but was a rectangular
cutout for all the electronics, motors and battery to fit in one location which resulted in greater
inertia in the front so the head could more easily locomote its entire body. The template for the
head can also be found in Appendix A. The size of the head was chosen so that it is close in size
to the rest of the snake.

The electronics were powered by a 4 V rechargeable lithium-ion battery that was seated
with a holder on an Arduino Nano Motor Carrier as can be seen as a closeup in Figure 2-3. The
battery can either be charged externally with a charger or it can be charged with the embedded
code in the Arduino software which can be found in Appendix B. Overall, the snake robot was
controlled with an Arduino Nano 33 IoT microcontroller with 256 Mb of memory storage [17] as

can be seen in Figure 2-4 with the pinout diagram shown in Figure 2-5.
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Figure 2-5: Pinout Architecture for Nano IoT 33 [17]

The Nano was inserted into an Arduino Nano Motor Carrier [18] which was secured onto
the top of the head tagboard using hot glue; however, small screws could also be used. A diagram
for the Motor Carrier without the Nano installed can be seen in Figure 2- 6, while Figure 2-7 shows
the Nano 33 IoT installed in the middle socket of the Motor Carrier. The Motor Carrier was chosen
for its compact form factor, ability to accommodate a small microcontroller, as well as having
motor controllers integrated into the board, which manage the current draw between the Nano IoT
and the motors. The pinout diagram for the Motor Carrier can be found in Figure 2-8.

Other microcontrollers that are available, such as the Raspberry Pi Pico and the ESP32 are
also small form factors but require a breadboard and separate motor controllers which would
require additional space on the snake head than is available. A microcomputer such as a Raspberry
Pi is not feasible since it is a larger circuit board without motor controllers which would result in

not having enough space on the snake head to mount all the electronic parts.

Figure 2-6: Top View of Arduino Nano Motor Carrier [18]
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Figure 2-8: Pinout Diagram for Arduino Motor Carrier [19]

Motor selection was restricted to a size that could fit on the snake head yet still be powerful
enough to move the prototype. To determine an effective snake head design, two different types
of DC (direct current) motors were selected for experimentation resulting in two design iterations.
The first design used a Type 130 Miniature DC motor (Motor 1) and the second design used a
Type 280 Micro DC motor (Motor 2). The same tag board template for the snake head was used

for each design. A comparison of the specifications of each motor can be found below in Table 2-
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Table 2-1: Comparison of Motors Used for Two Iterations of the Snake Head

Motor 1 Motor 2
Type 130 Miniature DC 280 Micro DC
Size 15mm x 20mm 24mm x 31mm
Voltage 1V-6V 3V-12V
Reference Current 0.35A-0.40 A 0.25A - 0.50A
Speed 16000 RPM at 3V 13500 RPM at 3V
Shaft Diameter 2.0 mm 2.0 mm
Shaft Length 9.0 mm 9.5 mm
Mass 175¢g 208 g
Power Consumption 14 W 1W

Figures 2-9 and 2-10 show the diagram of Motor 1 and Motor 2, respectively.

N

Figure 2-9: Type 130 Miniature DC Motor (Motor 1) Used for First Iteration [23]

Figure 2-10: Type 280 Micro DC Motor (Motor 2) Used for Second Iteration [24]

Figure 11 shows the circuit diagram for the snake head. The circuit consisted of the Nano
33 10T, the Arduino Motor Carrier, two motors, and a rechargeable battery. Sensors and encoders
were not needed for this PBL activity. The intent was to keep the circuit simple for secondary
school students, especially if students do not have any STEM background. For each iteration, the

pair of motors were connected to two of the motor controller ports of the Motor Carrier using wire
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as can be seen in Figure 2-11. Specifically, motor port +/- M3 and +/- M4 were used but any
combination of +/- M1-4 pairs could be used. In general, motors require a larger amount of current
to operate than the Nano IoT can supply. Since the Nano board does not have the necessary
circuitry to directly power and control motors, the motor controllers provided the necessary current
management between the motors and the Nano. Since the Nano can only supply a maximum of
0.06 Amps, the motor controllers stepped up the current received from the Nano to the required

operational level for the motors.

Figure 2-11: Snake Robot Circuit Layout using Fritzing (without the Nano installed)

For the first iteration, two Motor 1 motors were mounted on the sides of the head linkage
at an angle such that the ends of the axles of each motor contacted the supporting surface, as can
be seen in Figure 2-12. Small eraser heads, as can be seen in Figure 13, were pressed on to each
axle to increase static friction between the two surfaces so that the robot could move along the

smooth surface.
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Battery with Holder

Figure 2-12: First Iteration of Snake Robot Head.

Eraser Head

Figure 2-13: Close Up of Eraser Head on Axle of Motor 1

The second iteration used the larger Motor 2 motors, as shown in Figure 2-14, which were
again mounted on either side of the head linkage but instead were mounted parallel to the support

surface. Plastic wheels having a diameter of 3 cm were 3D printed and pressed onto the axles along

18



with black bands installed on the rims to increase static friction between the wheels and the floor,

as can be seen in Figure 2-15.

Figure 2-14: Second Iteration of Snake Robot Head

Black Band

Figure 2-15: 3D Printed Wheel — Left diagram shows wheel face with 3 cm diameter and the diagram on the right
shows the black band on the wheel’s rim.

A comparison summarizing the similarities and differences between the construction of

each iteration for the snake robot head can be found below in Table 2-2.
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Table 2-2: Comparison Between First and Second Iteration of Snake Robot Head Construction

First Iteration Second Iteration
Motors Motor 1 Motor 2
Motor Mounts Angled using thick Flat with axle parallel to
cardboard floor
Type of End Attachment to Eraser from wood 3d printed wheel with
Axle pencil rubber band
Power Consumption 2.8 W 2W
(for both motors) (for both motors)
Snake Head Base Same thick cardboard and same shape.
Battery (Mount + Same mount, battery, and frontal location.
Location)
Embedded System Same Arduino Motor Carrier

Both iterations were programmed with the same code, which is described in the next

section, and the same surface was used to test the robot movement.

2.2 Snake Robot Programming

The snake robot was programmed in C using the Arduino IDE. The code, which is listed
in Appendix B, was written to mimic snake motion. More specifically, the goal was to develop
code so that the robot would oscillate while locomoting forward at the same time while taking
advantages of ground friction forces both sideways and longitudinally, according to prior research

in the area of snake locomotion by Hamidreza et al [25].
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Since each motor was mounted opposite each other, the motors were wired in opposite
directions for the snake to move forward. Three functions were written to assess which motor
movement more closely mimicked snake robot locomotion and each function was tested in the
loop() section of the program which continuously ran each function. Below, Table 2-3 illustrates

how each potential function operated the motors.

Table 2-3: Three Functions Written to Assess Proper Snake Motion

Function Operation

oldMove() One motor turns on at 25% speed for 350 msec and
then turns off. The other motors turn on at % speed
for 350 msec and then turns off.

simpleMove() One motor turns on at 50% speed for 1 sec then turns
off. Both motors turn on at '2 speed on for 50 msec
then off for 500 msec. The other motor turns on at 2
speed for 1 sec then turns off.

snakeMove() Both motors ramp up to 40% motor speed. After 15
msec, both motors ramp down to 0% motor speed.

It was found that the snakeMove() function best represented both the locomotion and
oscillation of a snake. The other two functions either oscillated only (oldMove()) or locomoted too
much without the snake's linkages oscillating (simpleMove()).

Once movement function was decided on, each iteration of the snake robot was
programmed, and movement was video recorded using an Android phone at 30 msec frame rate.
Each video was taken from a top view with the phone parallel to the path of the snake's movement,

otherwise known as a “bird’s eye view”. The video using the snakeMove() function using Motor

1 can be found with this link [20] and with Motor 2 can be found with this link [21].
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2.3 Data Collection

Two-dimensional position data of the snake’s movement was captured by processing the
video file with PASCO Capstone software [22]. Using the software’s Video Analysis feature, the
green dot on the snake’s first body linkage, which represented the snake’s center-of-mass (COM),
was tracked by mouse clicking on the same location of the green dot as each frame of the video
advanced. The first snake robot design used in Figure 2-16 shows the Capstone screen after
clicking was completed. The blue X’s denotes one click for each frame of data. It was important
to click on the same location of the green dot COM for each frame to accurately track the snake’s
movement. The indicator in the diagram marked “60 cm Ruler” denotes a 60 cm frame of reference
length for the video analysis software to use as it created the sensor position data. Since the data
was captured using mouse clicks instead of an actual electrical sensor, noise that would normally
be introduced into the data was minimized; therefore, post-processing of the data to eliminate noise

was not needed.

60 cm Ruler

Figure 2-16: Results for Clicking on the Green Dot for Each Frame
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The blue X’s generated two-dimensional position data which was graphed in Pasco
Capstone to create a visual display of the snake’s movement which is illustrated in Figure 2-17.

The graph is created using the y-position data on the y axis and the x-position data on the x-axis.
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Snake Head Design with Motor 1

Figure 2-17: Graph of Vertical (yPositionl) and Horizontal (xPositionl) POSE Using Motor 1

The second snake robot design iteration was video recorded and processed through PASCO
Capstone’s Video Analysis feature by again tracking the green dot of the first body linkage. Figure
2-18 shows the results for clicking on the green dot and Figure 2-19 illustrates the horizontal and
vertical position data. The indicator in the Figure 2-18 diagram marked “90 cm Ruler” denotes a
90 cm frame of reference length for the video analysis software to use as it created the sensor

position data.
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90 cm Ruler

Figure 2-18: Results for Clicking on the Green Dot for Each Frame
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Figure 2-19: Graph of Vertical (yPosition2) and Horizontal (xPosition2) POSE Using Motor 2

While position data was required for the sonification algorithm, it should be noted that
PASCO Capstone can also generate velocity and acceleration data in each dimension as well for
the time that the snake moved. This could be an additional module to develop in a PBL activity.
2.4 Results

Both snake robot designs produced movement results; however, the different motors used
for each iteration resulted in different locomotion and oscillation movements even when the same
code was used. Table 2-5, below, summarizes the differences between the first and second

iterations.
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Table 2-4: Summarizing the Differences Between Both Iterations

First Iteration

Second Iteration

as a pivot which prevented
the robot to easily locomote
forward. Even though code
was turning the motors on
and off for oscillation, the
erasers used that motion to
only move in a circular
pattern of “S”like movement.

Motor Used Motor 1 Motor 2
Axle Attachment Rubber eraser Wheel plus band on rim
Observations Rubber erasers tended to act | The black band on the rim

provided just enough static
friction between the wheel
and floor to allow forward
motion while still allowing
the robot to oscillate because
of the on/off pattern of the
motors.

Type of Movement

Mostly oscillations and very
little locomotion, keeping the
snake essentially in one x-y
location.

More sinusoidal movement
such that the snake would
have a forward displacement
but still oscillate.

movement

Quality of Axle The rubber erasers would fall | The wheels stayed secure to
Attachment off periodically the axle and the black bands
remained on the rim.

Ability to Video Easy since the snake robot More challenging since the

Movement oscillated back and forth in snake robot move quickly
one place. out of the frame of the phone

Mimicking Snake Very little locomotion so not | Better model for snake

Movement the best model for snake movement since motion was

more sinusoidal.

The floor that was used was a faux wood floor type material. The wheels from iteration
two responded well to this type of floor material. The snake robot was also run on different types
of flooring, and it was found that floors that are waxed have an adverse effect on the POSE of the
robot as it is running. Some floors would not allow the robot to locomote even with the wheels as

the axle attachments. The differences in the robot performance based on the flooring could be
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taken care of in the Nano code by potentially changing the motor speed or the oscillation pattern;
otherwise, a stronger motor may be needed, or the axle attachment (such as the wheel) could be
modified by replacing the black band with a band that has a lower static friction component.

The most challenging part of the construction was mounting the motors next to the
electronics such as the motor carrier. The size of the head was chosen to be the same size as the
other linkages to model a real snake’s body proportions. However, once the electronics were
mounted, there was little space to mount the motors. The first iteration tried to save space by
mounting the motors at an angle, but the eraser head axle attachment did not allow the robot to
easily locomote. With the angled motors, the wheel attachments could not be mounted.
Fortunately, there was just enough space to mount the slightly larger motors in the horizontal
position which allowed the wheels to be used.

2.5 Bill of Materials

The snake robot prototype was designed to be affordable so that schools in the United

States and internationally can afford to incorporate this technology and research into their

classrooms. Table 2-4 lists all the parts that were used and their corresponding cost.

Table 2-5: Bill of Materials for Snake Robot Prototype

Part Qty Cost ($ US Dollars)
Tagboard 5 2.00
Roller Beads 8 0.50
Pins 8 0.25
Motor Carrier + Battery 1 80.00
Nano IoT 33 1 28.00
Wire 4 2.00
Motors 2 5.00
Wheels/Bands or Rubber 2 1.00
Eraser Tip

Total 118.75
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Since the Motor Carrier + Battery and the Nano [oT 33 are the most expensive parts in the
total cost ($108.00), it is possible for a different type of embedded system to be used such as an
ESP32 microcontroller, mounted on a small breadboard, which has a similar form factor as the
Nano IoT 33. Instead of the Motor Carrier, a separate motor controller could be used such as the
L298N Motor Driver Controller board. Together, their total cost is approximately $20.00 which
would save $88.00 towards the total cost of the prototype. Both replacements are separate parts

and would need to be mounted alongside each other on the snake head and then wired accordingly.
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Chapter 3: Simulation and Sonification

After the snake movement was recorded and tracked in Pasco, the x and y movement data
was saved in a .CSV file. This data was captured before the PBL activity was presented to the class
to assess the feasibility of building a snake robot and acquiring and POSE data with the entire
class; therefore, it was saved for later use in the next revision of this PBL activity. To provide an
introductory lesson about sonification and its application to snake robots, a simulation [26] that
used sonification of snake robot movement was used to motivate the class to develop an
appreciation and understanding of the mechanics of sonification. This simulation did not require
the captured data from Chapter 2 to be imported into the software, instead the simulation used data
that was created specifically for the three types of snake gaits that were used by the students. This
chapter explains the code for simulation in detail if part of the PBL classroom activity requires

students to create their own code or learn how to improve the documentation of the existing code.

3.1 Parameter-Mapping Sonification

There are several different types of sonification methods. The method used for this paper
was Parameter-Mapping Sonification (PMSon) which involves the association of data with
auditory parameters so that data is understood through hearing sound rather than seeing a visual
display via the use of a mapping transfer function. For this paper, non-speech sound was used to
understand the POSE of the snake-robot’s movement. Figure 3-1 shows the general guidance
provided by Herman for creating a PMSon model as there are many potential factors to consider

to correctly sonify data [8].
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Figure 3-1: General Parameter-Mapping Workflow [22]

The three major parts to this model are Thinking, Tuning, Listening. Thinking involves

collecting and preparing the data. Tuning requires the use of a transfer function to map data to

sound elements. Listening involves interpretation and understanding of the data through an

auditory display.
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Figure 3-2: Parameter-Mapping Workflow for Snake Robot Sonification

Using Herman’s guidance from the general model, Figure 3-2 illustrates a simplified
version of used to create the snake robot sonification. The elements of the workflow were executed
with MATLAB files that are presented and described in the remaining parts of this chapter. The
sonification algorithm that was used in the simulation was written by Dr. Alireza Mohammadi
from the Robot Motion Intelligence Lab at the University of Michigan-Dearborn [26]. The
algorithm consists of MATLAB files: DAFXsnakeGaitGen2.m and DAFXsoundSweep.m. Both
files are listed in their entirety in Appendix C and D, respectively. To gain a comprehensive
understanding of the mechanics of each file, the major sections of each file are described step-by-

step in the following sections of this chapter.

3.2 Snake Gait Generation
The first file that will be explained is DAFXSnakeGaitGen2.m. This file allows the user to

select from one of three gait patterns, namely, Concertina (inch-worm-like movement), Lateral
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Undulation (wave-like slithering) or Side Winding (diagonal movement). Figure 3-3 shows the

first part of the code that prepares the simulation environment and, as an example, sets the gait

pattern to 3, Side Winding, with a simulation time, Tfinal, equal to 1.5 seconds.

21
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close all; clc; clear;

% Set the gait pattern: 1 for Concertina, 2 for Lateral Undulation,
% 3 for Side Winding
gaitPattern = 3; ¥ <-- Set this to the desired pattern

a2

gaitPattern = ...

input(“”Choose the snake robot gait pattern (1 for Concertina, 2
for Lateral Undulation, 3 for Side Winding): “n™);

8 8

% Simulation time step
delT = 68.82;

% Simulation final time
Tfinal = 1.5;

switch gaitPattern

case 1
filename = 'snakeConcertina.gif’;
fileMameSound = 'snakeConcertina.wav';
case 2
filename = 'snakeLatUndul.gif’;
fileMameSound = 'snakelatUndul.wav’®;
case 3
filename = 'snakeSideWind.gif';
fileMameSound = 'snakeSideWind.wav’®;
end
o

if isempty(filenams)
filename = 'snake_gait_animation.gif’; % Default filename if none is provided
end

Figure 3-3: Select Gait Pattern and Simulation Time [26]

The next piece of code, shown in Figure 3-4, initializes the pose of the head of the robot

(x0, y0) and the number snake robot segments, n, each having a length of 1 units. Line 56 creates

a 2 x (n+1) zero matrix, r, which initials the segments’ position vector. Lines 59-69 set up the

graphical display environment.
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51 % Initial position and configuration of the snake robot

5! X8 = -l1@8; yo = 8;

53 n = 45; 1-=2;

54

55 % Initialize the position vectors for the snake's segments

56 r = zeros(2, n+l);

57 r(:,1) = [xe; yel;

58

59 % Create the figure for displaying the simulation with specified axis limits
60 figure('Color®, 'w'); % Set the background color to white during figure creation
61 set(gcf, 'WindowState', 'maximized'); ¥ Maximize the figure window

62 hold on;

63 grid on;

64 axis equal;

65

66 % Use axis limits that will contain the snake for all gait patterns

67 % You may need to adjust these limits based on your specific gaits

&8 axislimits = [-208, 280, -158, 158];

69 axis(axisLimits);

% Initialize the segment angles array
th = zeros(1, n);
a = 3@; % Counter used in the update step of the gait egquaticns

% Initialization
for i=1:length(th)

th(i) = gait(i, gaitPattern, a);
end

L S [ [y Ry R
W0 = o @

[ee]
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Figure 3-4: Initialize Snake Robots POSE and Setup Visual Display [26]

Starting with Line 74, the segment angles are initialized by creating a row vector, th, having
n elements. The for-loop uses a function called “gait” which generates the initial angles of each
segment based on the type of gait pattern chosen. The “gait” function will be described later in this

chapter and is a part of a set of helper functions that are called throughout the code.

3.3 Snake Gait Animation

The next piece of code in Figure 3-5 is the main loop and simulates the movement of the
robot based on the gait pattern chosen and generates an animated visualization of its motion as a
GIF file. Starting with the highest level for-loop in Line 82, the robot’s current position and angles
for the current time step, delT, is calculated until the simulation time, Tfinal is reached. The next

two for-loops starting at Line 84, calculates the position of each segment 1, starting with segment
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2 (one segment after the head). The inner loop calculates the cumulative offset from the head using
trigonometry to determine the horizontal offset (cosf) and vertical offset (sinf) with the segment
length, 1, scaling the offset. Line 89 shows that the position of segment i, in the array, r, is found
by adding the cumulative offset to the head position. The head’s POSE is found using the
headShape helper function which calculates the coordinates of a polygon that represents the
snake’s head, oriented according to the head angle. This function will be explained later in this
chapter. The elements in the headPos vector in Line 93 refer to the position of the snake’s head
and the cumulative angle, sum(th), of the entire snake which determines the orientation of the head.

Starting with line 97, the snake body segments start to be drawn, and the head is drawn
based on the coordinates calculated by headShape. The snake image is captured as a .GIF in line
103, saved to a file and the image is deleted. To simulate snake movement, the segment positions
are incremented by 1 in Line 120 and the helper functions, “updateCounter” and “updateGait” are
run so that new head POSE and segment orientation can be calculated. When this entire process is
run in a for-loop, the movement of the snake is successfully animated for the “Tfinal” time

duration.
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81 % Main simulation loop

32 for t=8:delT:Ttinal
83 % Update coordinates
24 for i=2:length{r)
85 temp = [@;@];
26 for j=1:i-1
87 temp = temp + 1*[cos(sum{th(1:3)));sin(sum(th(1:3)))]1;
28 end
89 r{:,i) = r(:,1) + temp;
ge end
o1
92 % Compute the head's position and orientation
93 headPos = [r(:,n+1); sum(th)];
g4 [headX, head¥] = headShape(headPos);
a5
96 % Draw the snake's body
97 snake = drawSnakeBody(r, n, 1};
o8
a9 #% Draw the head
188 head = fill(headX, heady, [&, 8, B8]);
181
182 % Capture the frame
183 drawnow; ¥ Ensure the figure updates have been processed
184 frame = getframe(gct),;
185 im = frame2im(frame);
186 [imind, em] = rgb2ind(im, 256);
1a7
188 % Write to the GIF file
189 if t ==
118 imerite(imind, cm, filename, ‘gif', 'Loopcount’, inf, 'DelayTime', delT);
111 else
112 imwrite(imind, cm, filename, 'gif', ‘WriteMode', "append’, 'DelayTime', delT);
113 end
114
115 % Remove the snake for the next frame
116 delete(snaks);
117 delete(head);
118
119 % Update positions for movement
128 r{:,1:n) = r{:,2:n+1);
121
122 % Update the gait
123 a = updateCounter(a, gaitPattern);
124 th = updateGait(th, n, gaitPattern, a);
125 end

Figure 3-5: Main Simulation Loop to Create Animation [26]

The three .GIF files that are generated are shown in Figures 3-6 — 3-8 below. To use the
desired gait, the “gaitPattern” variable was set to 1, 2, or 3 on Line25 in Figure 3-3. Figure 3-6
shows the concertina movement with a periodic oscillation and straight-line locomotion

movement. Figure 3-7 shows the lateral undulation movement with a constant oscillation
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movement and minimal locomotion. Figure 3-8 shows the side winding movement as the snake

moves from side-to-side along with forward locomotion.

150

Figure 3-6: Snapshot of Concertina Gait

50
-200 150 -100 50 o 50 100 150

Figure 3-7: Snapshot of Lateral Undulation Gait
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Figure 3-8: Snapshot of Side Wind Gait

All three of these gaits are uniquely mapped to non-speech audio sounds which allows the
user to “hear” the gait if the visual animated display is not able to be seen. The mechanics of

mapping the gait to the audio is explained below.

3.4 Snake Gait Audio Mapping

In Figure 3-9, starting at Line 127, sound generation is initialized by defining the sampling
rate, period, and duration of the audio (6 seconds) to match the duration of the animation.
Additionally, the C major scale is defined in terms of the frequency values for each note in the
octave. The array “audioSignal” is initialized as a zero array but will later be populated with audio

waveform values.
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126 % Sound Generation

127 Fs = 441@@; % Sample rate in Hz

128 T = 1/Fs; % Time step for audio

129 duration = 6; ¥ Duration to match the snake animation
13@ tAudio = @:T:duration; ¥ Time vector for audio

131

132 % Base notes for the major scale, starting from C

133 baseNotes = [261.63, 293.66, 320.63, 349.23, 392.00, 446.00,
134 493,88, 523.25];

135

136 % Initialize the audio signal array

137 audioSignal = zeros(l, length(tAudio));

138

Figure 3-9: Initialize Sound Generation [26]

Figure 3-10 shows the next piece of code which generates an audio signal based on the
chosen gait pattern by processing the audio in time steps which is referred to as frames. Based on
the gait pattern, the modulation amplitude and frequency are fed into the audioSignal function in
Line 166 using a C major sixth chord to calculate the actual audio signal. The snake’s gait is then

updated in Lines 173 and 174 and the loop runs again until the tAudio length is reached.
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139 % Loop through each frame in the audio

148 for frame = 1:length(thAudio)

141 % Select the current base note - C (index 1)

142 currentNoteIndex = 1;

143 currentNote = baseNotes(currentNoteIndex);

144

145 % Gait-specific modulations

146 switch gaitPattern

147 case 1 % Concertina

148 % Calculate modulation factor based on active segments

149 activeSegments = sum(abs(th) > 2.8); % Active segments thresholding
15@ % Simple amplitude modulation based on active segments

151 modulationAmplitude = activeSegments / n;

ElGH modulationFrequency = @.5;

153 case 2 % Lateral Undulation

154 % Freguency modulation extent in Hz

155 modulationFrequency = 1;

156 % Keep constant amplitude

157 modulationAmplitude = 1;

158 case 3 % Side Winding

159 % Tremolo effect based on time

168 modulationAmplitude = abs(sin(2*pi*5*tAudio(frame)));

161 modulationFrequency = 2;

162 end

163

164 % Calculate the actual audio signal for this frame with C major sixth chord
165 % Add three notes of the C major sixth chord: C, E, and A

166 audioSignal(frame) = modulationAmplitude * (

167 sin(2*pi*currentNote*tAudio(frame)*modulationFrequency) + ... % C (root note)
168 sin(2*pi*(currentNote + 4/12)*tAudio(frame)*modulationFrequency) + ... % E (major third)
169 sin(2*pi*(currentNote + 8/12)*tAudio(frame)*modulationFrequency) ... % A (major sixth)
178 hE

171

172 % Update the gait for the next frame

173 a = updateCounter(a, gaitPattern);

174 th = updateGait(th, n, gaitPattern, a);

175 end

176

Figure 3-10: Calculate the Audio Signal Based on the Gait Pattern [26]

The next code section starting at Line 178, in Figure 3-11, processes the audio signal
generated above and prepares it for playback and optionally saves it to a file. The audio file is
normalized to a safe range for playback. The function “soundsc” plays the audio file through the

computer’s sound system and the function “audiowrite” saves the audio to a . WAV file.
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177 % Normalize the audic signal

178 audiocSignal = audioSignal / max(abs(audioSignal));
179

18e #% Play the generated sound

181 soundsc(audioSignal, Fs);

182

183 % Uncomment below to save the sound to a WAV file
184 audiowrite(fileNamsSound, audioSignal, Fs);

Figure 3-11: Normalize, Play, and Save Sound [26]

The remaining parts of the code are labeled “helper functions” which are used throughout

the code above. A brief description of each function is given below.

187 % Gait equation for each segment based on the selected pattern

188 function th = gait(i, gaitPattern, a)

189 th = 8;

198 switch gaitPattern

191 case 1 % Concertina

192 n = 48;

193 th=8*pi/ n* sin(6 * pi / (n+1) * (1)) * exp(-8.81 * (i - (n+1)/2)"2);
194 case 2 % Lateral Undulation

145 n = 4a;

196 phase = 8.87;

197 th = 5.5 *pi /n * sin(4 * pi / (n+1) * (1)) + phase;
198 case 3 % Side Winding

199 n = 38;

200 p o= 4/3;

281 if (i < (n+1)/p)

282 th =4.5 *pi /fn *sin(p * 2 * pi/ (n+l) * (i));
283 glse

284 th = @;

285 end

206 end

287 end

Figure 3-12: Gait Equation to Determine Angles for Each Segment [26]

The above function in Figure 3-12, line 188, called “gait”, uses an equation specific to the
gait pattern to calculate the angle, ¢4, for each segment of the snake robot to produce the associated
movement during the animation. The gait equation [26] for the concertina movement is shown

below:
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th = 8—n<sin( o )) e 001(1_%) (1)
n n+1

This equation produces a stretch and compression type movement like the motion of an

accordion [23], where —is the amplitude of the sinusoid, sin (n+ ) produces the oscillations, and

n+1\2
T) ensures that the segment’s oscillation tapers off the farther the segment is from the

e—0.01(i—
head. Here, n is the number of segments and ¢4 is the angle of each segment with respect to the

defined horizontal x-axis.

The gait equation [26] for the lateral undulation movement is shown below:

th_5.57r<_ (4m’ )>+ i @)
=——|sin —— phase

This equation produces smooth, lateral, damped sinusoidal waves that propel the snake
forward, where % is the amplitude of the sinusoid, sm( = ) produces the oscillations, and

phase produces a shift as the snake oscillates. Here, n is the number of segments and ¢4 is the
angle of each segment with respect to the defined horizontal x-axis.

The gate equation [23] for the side-winding movement is shown below.

=12 o (22

This equation produces back-and-forth sideways motion but only for a portion of the snake

: . . : 4.57 .
as can be seen by the if-else condition to determine whether to use the equation, where Tn is the

amplitude of the sinusoid, sm( " ) produces the oscillations. In general, this function “gait” in
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Figure 3-13 is modular, and the switch statement allows the gait pattern to change as the snake

changes its motion.

288 % Update the counter based on the gait pattern
289 function a = updateCounter(a, gaitPattern)
216 switch gaitPattern

211 case 1

212 a = mod{a+l, 48);

213 case 2

214 a = mod{a+l, 4@);

215 case 3

216 a = mod{a+l, 38);

217 end

218 end

Figure 3-13: Update the Counter for Smoothness [26]

The function in Figure 3-14 updates the counter “a” and is written to ensure that each gait
pattern repeats periodically in a smooth fashion. The switch statement allows the counter to update

according to the chosen gain pattern.

219 # Update the gait based on the selected pattern
228 function th = updateGait(th, n, gaitPattern, a)
221 th(1) = th(1) + th(2);

222 th{2:n-1) = th{(3:n);

223 th{n) = gait(a, gaitPattern, a);

224 end

Figure 3-14: Update the Gait to Simulate Propagation [26]

The function in Figure 3-15 propagates each segment’s motion to the next segment in order
to simulate propagation and wave-like snake movement. Line 221 calculates the orientation angle
of the head, th(1), and updates it based on the angle for the next segment allowing the head segment

to move continuously with body segments.
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244

The function “headShape” in Figure 3-15, line 226, calculates the shape of the head as a
polygon of seven connected x-y coordinates. The polygon is determined by calculating the x and
y POSE values of each vertex of the polygon (headPos(1) and headPos(2)) and the overall

orientation amount, in radians, (headPos(3) of the head. The function is dynamic so that it can be

% Generate the head shape based on the snake’s head position
function [headX, headY] = headShape(headPos)
% Define the points for the head shape polygon

end

% Define the x-points of the head polygon

headX = [headPos(1) -
headPos(1) -
headPos(1) +
headPos(1) +
headPos(1) +
headPos(1) -
headPos(1) -
% Define the y-points
headY = [headPos(2) -
headPos(2) -
headPos(2) +
headPos(2) +
headPos(2) +
headPos(2) -
headPos(2) -

4*cos(headPos(3)),...

4*cos(headPos(3)) + 0.2*2*sin(headPos(3)),...
8*2%gin({headPos(3)), ...

( )
1*cos(headPos(3)
4*cos(headPos(3)
1*cos(headPos(3)
4*cos(headPos(3)
4*cos(headPos(3))];
of the head polygon

5]

4*sin(headPos(3)),...

4*sin
1*sin
4*sin
1*sin
4*sin
4*sin

headPos(3
headPos(3
headPos(3
headPos(3
headPos(3
headPos(3

) -
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) =
)
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]
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5]
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8*2%gin({headPos(3)), ...
.2*2*sin(headPos(3)),...

.2*2*cos(headPos(3)),...
.8*2*%cos(headPos(3)), ...

8*2*cos{headPos(3)), ...
.2*2*cos(headPos(3)),...

Figure 3-15: Snake Head Shape Polygon Calculation [26]

used as the snake’s POSE changes.

245
246
247
248
249
258
251
252
253

% Calculate the width of the snake’s body segment
function w = width(i, 1)
Width function used for drawing each segment

end

*

[ L= ]

= 5@;

=16 /f 1;
= ©8.083;

= -1 *pn *

2/

3
a * exp(-b * (i + t)*2); % Tapered width equation

>

Figure 3-16: Calculate Segment Width [26]
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The function “width” in Figure 3-16, line 246, calculates the width of each segment. The
exponential function in Line 252 causes the segments to be tapered the farther they are from the

head resulting in the smooth development of a tail which is a very tapered segment.

254 % Function to draw the snake's body by connecting the segments
255 function snake = drawSnakeBody(r, n, 1)

256 % Code to draw each line segment of the snake's body

257 snake = zeros(n, 2);

258 for i = 1:n-1

259 segmentWidth = width(i, 1); % Call the width function with the correct arguments

268 snake(i, 1) = line([r(1, 1), r(1, i+1)], [r(2, 1), r(2, i+1)], 'LineWidth’', segmentWidth, ‘color', '9.6,8,1.8');
261 end

262 for i = ceil(n/4}):n

263 snake(i, 2) = line([r(1, i), r(1, i+1)], [r(2, 1), r(2, i+1)], 'Linewidth', 2, ‘color’', '@,1,8,8.5');

264 end

265 end

Figure 3-17: Draw Snake Body [26]

The function in Figure 3-17 draws the body of the snake based on the matrix, r, which
contains the information about each segment’s x and y position. The matrix “snake” is an n-
segment by 2 matrix that contains the graphical data for each segment. The first column contains
data for the main segments while the second column contains data for highlighted segments that
enhance the visual display of the movement. The “width” helper function is called in Line 259 to
calculate the taper of each segment the further it is from the head. The “line” function in Line 260

draws a line connecting two consecutive points such as r(1, 1) and r(2, 1).

3.5 Spectrogram Generation

To more easily understand and analyze the audio qualities of the generated sound, a
spectrogram was created from the sound file. A spectrogram is a method that can visually represent
sound as a function of time by displaying the frequencies that are present and their strengths over
the course of a defined amount of time. Usually, these graphs present themselves as arrays of
various colors where the different colors represent the intensity of the frequency and the

concentration of the color represents the presence of a particular frequency.
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The second MATLAB file that was used was DAFXsoundSweep.m which was also written
by Dr. Alireza Mohammadi [26]. The purpose of this code is to seamlessly blend two of the gait
patten audio files and generate a blended spectrogram. This spectrogram can then be compared
with the two original audio file spectrograms to compare the frequency overlap and transitions
within the individual files. The blended file can be used to analyze a sound produced by two
overlapping gait patterns and determine which gait may have the more dominate presence if a
snake robot’s gait is a combination of two gait patterns. The next part of this Chapter will explain

the major parts of this code. The complete code is listed in Appendix D.

25 FileNames = {'snakeConcertina.wav', 'snakelatUndul.wav®, 'snakeSidebind.wav'};
26 userChoice = [1, 3]; % The elements can be chosen from 1, 2, 3.

27

28 % Ask for input WAV filenames

29 firstFileMame = FileNames{userChoice(1)};

3@ secondFileName = FileMames{userChoice(2)};

31

32 % Read in the two sound files

33 [firstAudio, firstFs] = audioread({firstFileName);

34 [secondAudic, secondFs] = audioread{secondFileMame);

35

36 % Check if both files have the same sampling frequency

37 if firstFs ~= secondFs

33 error('Sampling freguencies of the input files do not match.');
39 end

48

41 % Assuming both sound files have the same length

42 if length(firstAudic) ~= length{secondiudio)

43 error{ Audio files do not have the same length.');

- end

45

46 % Generate & sine sweep from 28 Hz to 28 kHz over the duration of the files
47 sweepDuration = length(firstludio) / firstFs;

438 t = linspace(®, sweepDuration, length(firstAudio));

49 startFreq = 28;

endFreq = 20000;
sweepSignal = chirp(t, startFreq, sweepDuration, endFreq);

[N I e, |
[ LT e B x ]

Figure 3-18: Importing Files and Performing Sine Sweep [26]

The first part of this code, as shown in Figure 3-18, imports two of the audio .WAV gait

pattern files. The example shows in Line 26 that the Concertina and SideWind files were chosen.
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The code then checks that both files were created with the same sampling frequency and have the
same length. The “chirp” function in Line 51 generates a sine sweep from 20 Hz to 20 kHz for the
duration of the files so that all frequencies are represented in the audio file which will make for a

smooth transition when the two files are blended.

53 % ¥ Assuming sweepSignal is a column vector at this point

54 ¥ Generate a smooth fade-im for the first audio file and a fade-out for the| second
55 fade = 8.5 * (1 - cos(2 * pi * linspace(®, 1, length(sweepSignal))));

56

57 % Apply fading to the first audioc signal and its inverse to the second

58 firstAudicFaded = firstAudio .* fade';

59 secondAudioFaded = secondAudic .* flipud{fade'};

6a

Figure 3-19: Fading First Audio File and Inverse Fading Second Audio File [26]

The next part of the code in Figure 3-19 fades and inverse fades the two files for smooth
blending and seamless transition between the two audio files. A cosine function is used in Line 55
to fade the first audio file (snakeConcertain.wav) where the amplitude starts at 0 and gradually
increases to a value of 1. The second audio file (snakeSideWind.wav) is inverse faded in Line 59
where the amplitude starts at 1 and gradually decreases to a value of 0. Each audio file is then

multiplied by its fading process to create two new faded audio files.
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61 % Blend the two faded audio clips

62 blendedAudio = firstAudioFaded + secondfudioFaded;
63

64 % Normalize the blended audio to prevent clipping
G5 maxVal = max(abs{blendedAudio(:})});

66 if maxVal » 1

67 blendedAudio = blendedaudio / maxWVal;

68 end

69

7@ % Output filename

71 outputFileMame = 'blendedSweep.wav’;

72

73 % Write blended signal to new audic file

74 audiowrite{outputFileName, blendedAudio, firstFs);
75

76 disp(['Blended audioc created and saved as ' outputFileMame]);
77

78

Figure 3-20: Blending the Two Faded Audio Files [26]

After fading/inverse fading, the two audio files are blended (Line 62) and the blended file
is normalized to prevent clipping (Line 67), as can be seen in Figure 3-20. The new file is then

saved as “blendedSweep.wav”.

36 % Create the figure for displaying the simulation with specified axis limits

87 figure('Color®, 'w'); % Set the background color to white during figure cregtion
88 set(gcf, 'WindowState', 'maximized’); ¥ Maximize the figure window

g9 hold on;

98 grid on;

91 axis equal;

92 % Plot the spectrogram for the first audio file

93 subplot(3, 1, 1};

94 spectrogram{firstaAudic, hamming{1824, ‘pericdic’), 512, 1824, firstfFs, ‘yaxis');
95 title('Spectrogram of the first sound file');

96

97 % Plot the spectrogram for the second audio file

98 subplot(3, 1, 2);

99 spectrogram{secondAudio, hamming(1©24, 'periodic'), 512, 1824, secondFs, 'yaxis');
lea title('Spectrogram of the second sound file');
181
182 % Plot the spectrogram for the blended sound
163 subplot(3, 1, 2);
1e4 spectrogram{blendedaudio, hamming(le24, ‘periodic'), 512, 1024, firstFs, 'yaxis');
185 title('Spectrogram of the blended sound');
186
1e7 % Adjust the colormap to improve visibility
108 colormap( ' jet”);

Figure 3-21: Plotting the Original Audio and Blended Audio Spectrograms [26]
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The last part of the code, as shown in Figure 3-21, plots the spectrograms for each original
audio (before fading) and the blended audio file to analyze the frequency spectrum for the duration
of the audio. Before the results of the above code are discussed, the individual spectrograms of

each audio file are generated and displayed below in Figures 3-22 — 3-24.
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Figure 3-22: Spectrogram for snakeConcertina.wav
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Figure 3-24: Spectrogram for snakeSideWind.wav

The spectrogram for snakeConcertina.wav in Figure 3-22 shows a distinct frequency
pattern like accordion movement which is the expected pattern. The darker blue vertical lines
represent a band of low energy while the lighter bands in between the darker lines represent areas
of higher energy. The spectrogram for snakeLateralUndulation.way in Figure 3-23 shows

pronounced oscillatory movement with a periodic shift from high to low energy. The spectrogram
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for snakeSideWind.wav in Figure 3-24 shows less pronounced oscillatory movement and is overall
lighter in color than the other two spectrograms indicating that this movement has more energy for
the same time duration.

Once the last part of the code is executed in Figure 3-21 using the selected files, the blended
audio spectrogram is generated and compared to the two original audio files as can be seen in

Figure 3-25.
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Figure 3-25: Spectrograms for Original Audio and Blended Audio Files

The last spectrogram is for the blended sound and is a representation of the combined
Concertina and Side Wind movements. While both movements are represented, the frequency
pattern from the Side Wind audio appears to be more represented than the Concertina audio
however, there are overall more areas of lower energy for the duration of the spectrogram.

The two MATLAB files discussed in this chapter are used during the PBL activity. How

the files are used during the activity will be explained in the next chapter. These files can be
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extended to include additional snake movements buy adding more audio files that correspond to
additional snake movements. Additional blending of audio files can be done to analyze the

spectrograms for other combined movements.
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Chapter 4: Project-Based Learning Activity Implementation

4.1 Motivation

The traditional high school science curriculum requires students to enroll in one or more
of the three science disciplines, namely Physics, Chemistry, and Biology, to fulfill requirements
for graduation. Beyond the traditional sciences, elective courses are usually offered that dive
deeper into a science topic while keeping the level of technical understanding at a high school
level. These courses are typically one semester (or trimester) in length and may use a textbook or
a collection of reading and audio-visual materials accumulated by the teacher. The format of these
courses can involve traditional note-taking, discussion-based meetings, experiments, and short or
long-term projects. Students who enroll in these classes have an interest to further their knowledge
in a certain type of science

Many high schools also offer Engineering classes either within the Science department or
as a separate department. The topics of these classes are also designed to be at a high school level,
using classical projects such as bridge building and robot building using popular microcontrollers
such as Arduinos. Many of these topics are well-defined engineering challenges and are staples in
a high school’s engineering curriculum. Going past these types of engineering topics and exposing
students to advanced college-level topics can be challenging for the teacher to have the time and
access to materials to educate themselves such that they are able to successfully deliver information
to their students. While there is an incredible amount of engineering research that would be very
engaging for high school students to experience, it is challenging to make university-level research

accessible to high school students, given that most research requires an advanced technical
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understanding of concepts that rely on math and science skills that are not taught that the high
school level. However, engaging high school students with university-level research at the
appropriate depth, can potentially increase the level of STEM interest and desire to enroll in an
Engineering curriculum in college by demonstrating to students the idea that advanced engineering
topics are exciting fields of research that are accessible and possible pathways to a professional
college degree. The method by which these advanced topics are delivered is important to convey
to students the desired message that Engineering is an excellent college major and career choice.
One very effective method that allows students to take an active role in learning and experiencing
the material is through Project-Based Learning (PBL). The following sections in this chapter will
explain the foundations of PBL and how it was used for the snake robot sonification project that
was delivered in the Advanced Robotics Engineering class at Hopkins School in New Haven,

Connecticut. For the remainder of this chapter, the school will be referred to as Hopkins.

4.2 Project-Based Learning at Hopkins School

The Fall Term class, called Robotics Engineering, at Hopkins is an example of a PBL class.
In this class, teams of two to three students learn about the Engineering Design Process by
identifying a problem in a community of their choice and designing a robot that can provide a
solution to the problem. They are allowed the agency (voice and choice) to design, build, and test,
a robot of their choice. Students are required to document their journey in an online Engineering
Notebook.

The Advanced Robotics Engineering class at Hopkins is a fusion of both forms of PBL
meaning that this class is a project-based class but with several medium-to-long-term projects that

at times run parallel to one another. The topics of this class focus on artificial intelligence and
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machine learning for robotics. One of the main projects is training a reinforcement learning (RL)
model that can be used to teach a robotic dog how to walk. Seeing that the training and retraining
can take several weeks to complete using the classroom computers, additional projects are
introduced to the students that can be learned and worked on concurrently. The sonification of
snake robot movement that is the subject of this dissertation is an example of a PBL activity that
was introduced to the Advanced class while RL training was in progress. The entire PBL activity

can be found in Appendix E.

4.3 Snake Robot Sonification Activity

The goal of this PBL activity was to introduce high school students to a college-level
engineering research topic and assess their ability to understand the material and their level of
engagement and interest. The PBL activity was titled “Exploring Robotic Snake Motion and
Sonification with MATLAB” and was piloted for two class days of 55 minutes each. The class
was comprised of 16 high school Juniors and Seniors and was delivered in May 2024 at Hopkins
in the Advanced Robotics Engineering class. Lynn Connelly was the high school teacher present
in person and Dr. Mohammadi of University of Michigan-Dearborn was present online using a
Zoom connection. The objective of the activity was to introduce students to the subject of
sonification and how it applies to the movement of a snake robot, which is a current research
activity being investigated by Dr. Mohammadi in his Robotics Intelligence Lab. MATLAB scripts
were used for the students to modify and investigate. For this pilot, students were not assigned any
pre-reading or video watching before the activity began.

The students were first introduced to sonification through a class discussion and by

watching short videos in class together. We talked about how we commonly interpret data using
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visual methods such as graphs and tables. Students suggested that any sort of visual impairment
would require an alternate method for data interpretation. Since high school math and science
classes rely predominately on visual interpretation of data, thinking about a different type of
method for understanding data was a thought-provoking exercise for the students. The class was
not previously aware of sonification, nor its applications. Being able to “hear” the data was an
engaging experience for the students.

The snake robot prototype was then shown, and its movement was demonstrated. We talked
about how it was constructed and how the code was written. Further, students were asked questions
about how this prototype resembles the movement of a real snake and what were some similarities
and differences between features of the snake robot as compared to biological snakes. To highlight
the thought process of an engineer, we discussed advantages and disadvantages of snake robots as
compared to other types of robots with different types of mobility such as wheels and tread. To
further students’ understanding, we had an open discussion about the importance of these types of
robots in search and rescue operations, industrial inspections, and medical procedures. Students
showed great interest and curiosity in snake robots performing in these applications and were not
previously aware of robotic snakes. We also discussed more novel applications such as underwater
search and rescue and showed a short video on how a snake robot can move in water.

Once students understood the concept of sonification and the operation of snake robots, we
talked about how these two ideas can be merged to engineer a solution for the applications that
were suggested such as search and rescue. While these solutions are highly technical and advanced
in their design and implementation, we stressed that all engineering solutions begin with a model,
which is what the prototype presented to the students, was meant to achieve. As explained in

Chapter 3, the snake robot motion data was previously videoed and processed using PASCO
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Capstone software before the activity and the MATLAB scripts were generated before the class
began. Students in this class were concurrently enrolled in or had previously taken a physics class,
so they were aware of terms like center-of-mass (COM) and were familiar with using PASCO
software for video analysis. Additionally, they were already using MATLAB as part of their
Advanced Robotics class, so there was minimal learning curve when the MATLAB scripts were
presented to them. Hopkins has a perpetual site license for the PASCO Capstone software and a
secondary school license of MATLAB that includes fifty toolboxes with unlimited seat licenses
and is renewed annually for $500. The software is available to the students download on their
personal device and also to access as an online version on the MathWorks website.

Students were taken through the process of how the snake robot movement was captured
using the Video Analysis feature of PASCO Capstone. They watched the video that was used for
data capture, the data capture tracking picture, and the motion graphs that were created. It was
decided that the sonification algorithm that was used to process that snake robot movement data,
was too complex to present and teach during two class days; however, it was important for the
students to understand how data can be interpreted using sound. As a result, two MATLAB scripts
were created to provide a model for the sonification algorithm and to simulate the three different
snake robot locomotion patterns, concertina, lateral undulation, and side winding that were
presented in Chapter 3.

The PBL activity had four main parts — Familiarization with the Code, Simulation
Observation, Code Modification, and Exploration of Sound Generation — which are summarized

in Table 4-1 below, and results are explained in detail in the paragraphs that follow.
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Table 4-1: Task and Description for PBL Snake Robot Activity

PBL Task

Description

Familiarization with Code

Study the MATLAB scripts and understand their structure and
functionality. Identify which parts of the code are responsible for
generating the three different snake gaits.

Simulation Observation

Run the MATLAB scripts for each of the three gait patterns and
observe the resulting animations and sounds. Describe the distinct
characteristics observed in both the movement patterns and the
generated sounds for each gait.

Code Modification

Modify the line of code: activeSegments = sum(abs(th)>0.1) by
changing the number 0.1 and setting it to different values and note
how that changes the sonification of the robot’s movement. Adjust
the code so that the gait parameter can be asked from the user at the
outset in an interactive manner.

Exploration of Sound
Generation

Investigate the relationship between the snake’s movement and the
corresponding sounds generated in the script. Modify the sound
generation code to change the modulationFrequency and the
modulationAmplitude parameters to observe how that changes the
sonification of the robot’s movement.

Familiarization with Code — Since the students had been working with MATLAB for the

past three months before the PBL activity started, they were comfortable scanning the code for

understanding. The code was shared on a Google Drive to each student, who was able to open the

MATLAB scripts on their personal device. The code was commented so that even the students

who were not as proficient, could understand the code’s functionality. Everyone was able to find

the implementation of the three different snake gaits.

Simulation Observation — Each student was able to run both MATLAB scripts without

issue. The students were allowed to independently run the code for each gait multiple times to

familiarize themselves with each gait’s functionality. Together the class then discussed the

similarities and differences between each gait pattern and why the name of the gait suggested its
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movement. Since no one in the class had previous experience with snakes, students were curious
as to whether the three gaits were the only types of snake movement. We talked about how each
gait represented core snake movement, but that actual movement is based on a combination of the
three core gaits.

Code Modification — Students were able to modify the line of code that varied the number
of active snake segments and ran the script to see the results. They were encouraged to work
together in case some students needed peer assistance. Together the class discussed why the robot’s
sonification and movement were directly related to the number of segments. Since all students had
Physics experience, the discussion was technical and involved kinematics and degrees of freedom.
Students were able to correctly suggest that more active snake segments gave the robot more
degrees of freedom which therefore translated into more curved snake movement. Students were
not asked to modify the code for user interactive input since they were very interested in discussing
snake gait patterns and how they can combine to make new patterns.

Exploration of Sound Generation — Students were asked to experiment with changing the
modulation frequency and amplitude and observe the results by running the code. They developed
an appreciation for the importance of sonification to interpret data. We had a good discussion about
how snake robots can aid search and rescue operations especially when the search site is not
feasible for a human to enter either because of space size or environmental conditions. When
visibility is limited, students gained an appreciation for the importance of sonification to
communicate snake robot movement which would translate into the type of environment it would

be exploring since snakes take the shape of the path they are traversing.
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4.4 Student Feedback

After the activity ended, students were asked to complete a feedback survey. This was used
to evaluate the students’ experience and to learn what should be improved or continued the next
time this PBL activity is delivered. Instead of ranking questions using a numbering system,
students were given questions that required a short answer response so that we could gain more
detailed insight into their feedback. They were asked the following questions:

- Questionl: What did you like about this activity?

- Question 2: What can be done to improve this activity?

- Question 3: What did you learn from these last two days?

For Question 1, students were excited to learn about sonification and how it can apply to
robotics. They liked that the activity was interactive and that it was about a topic that was novel
and not part of their prior learning. For Question 2, students were looking to do more investigation
with MATLAB and suggested that giving students a chance to create their own snake algorithms
would be an improvement to the activity. Since all of them knew how to use MATLAB, they were
all ready and capable of creating their own code or make more in-depth modifications to the
existing snake code. Next time this PBL activity is run, we will look into the possibility of
extending the PBL duration time from 2 days to possibly 5 — 6 days and include more learning on
how the sonification algorithm works from a mathematical process. If more time allowed, the
activity could be extended even further and students could create their own snake robot and
experience the entire process of data capture and processing through MATLAB. For Question 3,
students met the goals for learning about sonification, snake robots, and how both are used together
for various engineering applications. While no one commented on the use of MATLAB, it was a

necessary delivery tool that allowed students to easily see and hear the different snake gait patterns.

58



Appendix F is the table of the entire survey results. The main issue with the activity was
the timing which was in May 2024 during a week when Hopkins was administering AP exams.
Some students were able to experience the full two days of PBL and others were only able to attend
for one of the two days which also resulted in feedback responses from nine students instead of
sixteen students. However, even with nine responses, the feedback provided helpful detail and

reflection on how to modify the activity for the next year.

4.5 Reflections About PBL Activity and Additional Work

The format of the PBL activity was designed to follow the Gold Standard for PBL as
outlined by the Buck Institute for Education, according to Section 4.3. The student feedback
showed that this activity generated genuine interest in the fields of sonification and snake robots
and introduced these topics, that were previously unknown, to the students and how engineering
can use robotics in helpful ways for society.

After reflecting on the student feedback and how the two-day PBL activity was conducted,
there are suggested improvements that can be incorporated into the activity next time it is
delivered. It is possible that each improvement might extend the duration of the activity. Table 4-

2 below, gives suggestions and recommended total duration time.

Table 4-2: Suggested Modifications and Additional Class Time Needed for PBL Activity

Modification Additional Class Additional
Time Needed Equipment Needed
(Past 2 Days)
Include non-snake example of sonification such None None

as watching a short video of a Geiger counter.

Allow students to use MATLAB to combine the 1 Day None but some
snake gait patterns instead of viewing them instruction maybe
separately. In groups, students can then make a needed to help with
pattern of movements that another group has to MATLAB syntax.

listen to determine the correct pattern.
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Expose the mathematical model of the 1 Day None
sonification algorithm used to create the gate
patterns and associated sound and step through
the code with examples.

Create a mock search and rescue maze with the 2 days Materials to create a
snake prototype and, in another room, have the maze.
students listen to the snake movement using the
MATLAB code to map out the maze.

Use the snake robot prototype and allow the 3 days Phone camera, tripod,

students to video the snake movement and PASCO Capstone

collect data using PASCO Capstone. software

Let students, in small groups, make their own 5 Days using a Materials used in

snake robot from a kit that is created by the pre-programmed Chapter 3. Approx

teacher. Nano cost is $20 per robot.
10 Days using a

Nano that the
students program

This activity was given to a group of students that had math skills at the Pre-Calculus level
and higher, already had experience with PASCO Capstone, had already taken a Physics class, and
had been working with MATLAB for the past three months. They were well positioned to acquire
the knowledge quickly over the course of the two-day period and based, on feedback, were eager
to go even deeper into the material. Not all classes will have this same skillset so there are some
considerations that should be made so that this PBL activity is accessible to all high school students
no matter their skills. Some barriers that would need to be overcome when using the PBL activity

in its current form are listed in Table 4-3 below.
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Table 4-3: Problems and Solutions to Students Not Meeting the Expected PBL Skillset

Problem

Solution

Students do not have access to
MATLAB

The teacher uses a free trial copy and shows the code
in the front of class as a group demo.

Students sign-up for their own free trial

The school purchases a secondary school license for
$500 that can be renewed annually.

Students do not have their own
device or their device is not fast
enough to run MATLAB

The activity can be conducted on a school computer
lab that may have enough computers for each
student or for a small group to share.

Students use laptops from a school computer cart.
Teachers show the code and demos in the front of
the room using their device.

Students use the online version or phone version of
MATLAB.

Students have not taken a
Physics class

The teacher should explain the minimum amount of
physics needed in terms of objects that students can
relate to.

Students have not taken a Pre-
Calculus math class

Teachers should not explain the sonification
algorithm

Students do not have access to
PASCO Capstone

Use the PBL activity as it is.

If the teacher wants to have the students do their
own Video Analysis, then students can sign up for a
free 30-day Capstone trial.

Students are visually impaired

The teacher can conduct the activity as it is and
explore even more sonification using snake robots
with the students by creating mock mazes.

The goal with this PBL activity is to engage students with Engineering as a possible career
path and for the students to realize that Engineering is accessible and is a major in college that they
can realistically pursue. Before the PBL activity is delivered to a class of students, it is

recommended that the classroom teacher does the activity ahead of time and learn about each

student’s skillset that they will bring to the class.
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Chapter 5: Conclusions and Future Work
5.1 Conclusions

Teaching university-level research in a high school classroom is possible using project-
based learning. This concept which uses the “learning-by-doing” process engages students in an
active classroom so that they experience the research by doing hands-on activities that demonstrate
the main concepts with a method that is accessible and provides the motivation to further their
learning. While these advanced math and science concepts are still present during a PBL activity,
the way in which these concepts are taught are important for keeping students interested and
invested in the project and realizing that a career such as Engineering is something that they can
pursue. Instead of having students read lengthy university research papers, these advanced
concepts are presented in a project-based learning environment that require the students to
dynamically interact with the subject material in a manner that makes the concepts tangible and
understandable while still maintaining the rigor of the research.

The PBL activity presented in this dissertation was focused on teaching the sonification of
snake robot movement to the Advanced Robotics class at Hopkins School in New Haven,
Connecticut. The duration of this pilot activity was two class days and students did not have
previous knowledge of sonification and only had previous knowledge of non-snake robots.
Overall, there was an overwhelming positive response to learning about these two concepts and
how they can work together for various engineering applications. They were very receptive to
learning advanced material and, if time allowed, would have preferred to dig deeper into the

MATLAB code provided to them. High school students are incredibly curious individuals.
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Exposing them to novel material beyond the typical high school curriculum has the potential to
provide the motivation they need to enter college in a field that is exciting for them such as
Engineering.

The PBL Activity in this dissertation was run for two class days of 55 minutes each as a
small module in an advanced robotics class where the focus was not on building robots but instead
on mathematically advanced robot concepts such as machine learning. There are many iterations
that this activity can take to satisfy the teachers’ goals and curricular requirements. If the focus of
the class is building and coding a robot, then this PBL activity could be modified to span several
weeks where students start from the beginning and build a custom snake robot, learn about
embedded systems and code and test the snake robot motion. From there they can use similar
methods as this dissertation and record video of the robot moving and create motion data that can
be processed by the sonification algorithm. The class could then focus on sonification and learn

how to create a search and rescue robot using sound to navigate a maze.

5.2 Future Work
5.2.1 Snake Robot Construction Improvements

The preparation that was needed to conduct this PBL activity was approximately one year.
It was important to construct and code the snake robot so that it accurately reflected the motion of
a biological snake. After several iterations both in physical construction and coding, a snake robot
model was completed that could be used for video analysis and accurate data capture movement.
The materials that were used to construct the snake robot were low cost but took time to assemble
and perfect. Knowing this, it could be time consuming in a classroom setting for students to make

the snake robot using the same materials in this dissertation. Instead, it would be interesting for
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the teacher create computer-aided design (CAD) models of the snake head and linkages for easy,
snap-together assembly. The CAD design could also incorporate the ability to modify the surface
of the linkages and their interaction with the ground to model the kinetic friction force of snake
scales. If knowing to CAD a model is one of the goals of the PBL, students could learn a CAD

system such as Onshape and create simple three-dimensional snake linkages.

5.2.2 Embedded System Improvements

The use of the Arduino Nano and Nano Motor Carrier proved to be a convenient method
to code simple snake movement and make changes as needed. This embedded system is a good
entry level piece of hardware. If a machine learning feature was added to the PBL activity, it would
be beneficial to switch to a Raspberry PI Pico W embedded system which has Wi-Fi capabilities
and can communicate with a Raspberry PI that can house a machine learning model. The Pico W
would also need a motor controller such as the L298N in order to control the current between the

Pico and the motors.

5.2.3 Snake Robot Movement and Data Capture Improvements

Three different snake robot motions were created by turning the left and right motors on
and off at different time intervals in the Nano code to experiment with achieving the best model
for snake motion. While this was not explored with the students in detail, part of the PBL activity
could be to give students the opportunity to research how and why biological snakes move and
how to best mimic that in a robot and in code. While this would add on several days to the activity,
it would increase the students’ investment in understanding snake motion and how robots can be

used to model biological animals.
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5.2.4 MATLAB Script Improvements

Using Dr. Mohammadi’s sonification algorithm, three examples of snake movement were
made and presented to the class. While the students did not learn the actual mathematical workings
of the algorithm, they did learn how different snake movements can be represented as different
sounds. They were essentially able to experience the mathematical model in action both visually
and auditorily. Students were very intrigued at how math can be used to model movement and how
sound can be used to interpret and understand data. There are further enhancements that can be
made to this PBL activity based on the amount of class time that is available. Based on student
feedback, the students were eager to learn more about the sonification algorithm functions. More
time devoted to explaining the technical details is appropriate if the class can accommodate the
additional PBL time.
5.2.5 Additional Advanced Topics

For a robotics class where the focus is not on building robots but instead, learning about
more advanced topics, the motion of the snake could be trained using a reinforcement learning
model (RL). Students could use MATLAB to first train a Simulink version of the snake that was
imported from a CAD model. Once the simulation was running an acceptable snake movement,

the trained model could be deployed to the actual snake robot and assessed for correct movement.
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Appendix A: Snake Robot Head and Linkage Patterns with Dimensions

€“—5cm —m>

Cutout 1x2 cm
rectangle

Cutout 1x2 cm
rectangle

Snake Robot Linkage Template (Actual Size)
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10 cm

Snake Robot Head Template (Actual Size)
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Appendix B: Snake Robot Movement Code for Arduino Nano

This code was written using the Arduino IDE. It controls the snake robot movement. Three

functions were written to experiment with achieving the correct snake motion.

//The one that was chosen can be found in the void loop() function
call.
//Author: Lynn Connelly Jan 2024

#include <ArduinoMotorCarrier.h>

//Variable to change the motor speed and direction

static int duty = 0;

void setup ()

{
//Serial port initialization
Serial.begin (9600) ;
//while (!Serial);

controller.begin(); //needed in order to start battery charging

//Establishing the communication with the Motor Carrier
if (controller.begin())
{
Serial.print ("Motor Carrier connected, firmware version ");
Serial.println(controller.getFWVersion());
}
else
{
Serial.println("Couldn't connect! Is the red LED blinking? You
may need to update the firmware with FWUpdater sketch");
while (1);
}

// Reboot the motor controller; brings every value back to default
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Serial.println ("reboot");
controller.reboot () ;
delay (500) ;

int dutyInit = 0; // at 50 it works as expected, at 60 shift sides
and is too small duty to move, at 70 is very big duty.

Ml.setDuty (dutyInit) ;

M2 .setDuty (dutyInit) ;

M3.setDuty (dutyInit) ;

M4 .setDuty (dutyInit) ;

Serial.print ("Duty init: ");

Serial.println(dutyInit);

delay(5000); //Wait 5 secs until loop begins.

void loop () {

snakeMove () ;

//Keep active the communication between Nano & Motor Carrier
//Ping the SAMDI1

controller.ping();

//wait

delay (50);

void snakeMove () {

int motor speed = 40;

int motor time = 500;
int transition amount = 15;
for (int i = 1; i <= motor speed; i++) {

M3.setDuty (-motor speed);
M4 .setDuty (-motor speed + 1i);

delay(transition amount);

//delay (motor time);

for (int i = 1; i <= motor speed; i++) {
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M3.setDuty (-motor speed + 1);
M4 .setDuty (-motor speed);

delay(transition amount);

volid oldMove () {
Ml.setDuty (25) ;
M2 .setDuty (0) ;
delay (350) ;
M1.setDuty (0) ;
M2 .setDuty (-25) ;

delay (350) ;
}
void simpleMove () {
int motor speed3 = 50;
int motor speed4 = 50;
int motor time3 = 1000;
int motor time4 = 1000;

M3.setDuty (-motor speed3); // turn one way
delay (motor time3);
M3.setDuty (0) ;

//delay (25) ;

M3.setDuty (-motor speed3); // drive straight
M4 .setDuty (-motor speed4);

delay (500) ;

M3.setDuty(0) ;

M4 .setDuty (0) ;

//delay (25) ;

M4.setDuty (-motor speed4); // turn other way
delay (motor time4);
M4 .setDuty (0) ;

//delay (25);
M3.setDuty (-motor speed3); // drive straight
M4 .setDuty (-motor speed4) ;
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delay (500) ;
M3.setDuty (0) ;
M4 .setDuty (0) ;
//delay (25) ;

//delay (motor time);
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Appendix C: MATLAB Code for Snake Robot Gait and Animation Generation

This MATLAB code, which is explained in detail in Chapter 3, generates three sample
snake gaits and runs an animation for each gate.

%

% DAFXsnakeGaitGen2.m

% Snake Gait Generation (Animation and Sound)

% Author: Prof. Alireza Mohammadi

% Affiliation: Robotic Motion Intelligence Lab, Univ. Michigan-Dearborn
% First Version: February 26, 2024

% This Version: May 8, 2024

%

% Description:

% This script generates animations for different snake robot locomotion
% patterns. It allows the user to select between concertina, lateral

% undulation, and side winding gaits, and saves the animation as a GIF
% file. The filename for the GIF is prompted from the user.

%

% Usage:

% Set the 'gaitPattern' variable at the top of the script to choose the

% desired gait: 1 for concertina, 2 for lateral undulation, and 3 for

% side winding. Run the script, and provide a filename when prompted to
% save the animation as a GIF.

%

close all; clc; clear;
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% Set the gait pattern: 1 for Concertina, 2 for Lateral Undulation,
% 3 for Side Winding
gaitPattern = 3; % <-- Set this to the desired pattern

% gaitPattern = ...
% input("Choose the snake robot gait pattern (1 for Concertina, 2
% for Lateral Undulation, 3 for Side Winding): \n");

% Simulation time step
delT = 0.02;
% Simulation final time

Tfinal = 1.5;

switch gaitPattern
case 1
filename = 'snakeConcertina.gif';
fileNameSound = 'snakeConcertina.wav';
case 2
filename = 'snakeLatUndul.gif";
fileNameSound = 'snakeLatUndul. wav';
case 3
filename = 'snakeSideWind.gif';
fileNameSound = 'snakeSideWind.wav';
end
%
if isempty(filename)
filename = 'snake gait animation.gif'; % Default filename if none is provided

end

% Initial position and configuration of the snake robot
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x0 =-100; y0 = 0;
n=45; 1=2;

% Initialize the position vectors for the snake's segments
r = zeros(2, n+1);

r(;,1) = [x0; yO[;

% Create the figure for displaying the simulation with specified axis limits
figure('Color', 'w"); % Set the background color to white during figure creation
set(gef, 'WindowState', 'maximized'); % Maximize the figure window

hold on;

grid on;

axis equal;

% Use axis limits that will contain the snake for all gait patterns
% You may need to adjust these limits based on your specific gaits
axisLimits = [-200, 200, -150, 150];

axis(axisLimits);

% Initialize the segment angles array
th = zeros(1, n);

a = 30; % Counter used in the update step of the gait equations

% Initialization
for i=1:length(th)
th(i) = gait(i, gaitPattern, a);

end

% Main simulation loop
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for t=0:del T:Tfinal

% Update coordinates

for i=2:1length(r)
temp = [0;0];
for j=1:i-1

temp = temp + 1*[cos(sum(th(1:))));sin(sum(th(1:)))];

end
r(:,1) =1(:,1) + temp;

end

% Compute the head's position and orientation
headPos = [r(:,n+1); sum(th)];
[headX, headY] = headShape(headPos);

% Draw the snake's body
snake = drawSnakeBody(r, n, 1);

% Draw the head
head = fill(headX, headY, [0, 0, 0]);

% Capture the frame

drawnow; % Ensure the figure updates have been processed
frame = getframe(gcf);

im = frame2im(frame);

[imind, cm] = rgb2ind(im, 256);

% Write to the GIF file
ift==20

imwrite(imind, cm, filename, 'gif', 'Loopcount’, inf, 'DelayTime', delT);
else

imwrite(imind, cm, filename, 'gif', "WriteMode', 'append', 'DelayTime', delT);
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end

% Remove the snake for the next frame
delete(snake);
delete(head);

% Update positions for movement

r(:,1:n) =r(:,2:n+1);

% Update the gait
a = updateCounter(a, gaitPattern);
th = updateGait(th, n, gaitPattern, a);

end

% Sound Generation

Fs =44100; % Sample rate in Hz

T = 1/Fs; % Time step for audio

duration = 6; % Duration to match the snake animation

tAudio = 0:T:duration; % Time vector for audio

% Base notes for the major scale, starting from C

baseNotes = [261.63, 293.66, 329.63, 349.23, 392.00, 440.00, ...

493.88, 523.25];

% Initialize the audio signal array

audioSignal = zeros(1, length(tAudio));

% Loop through each frame in the audio
for frame = 1:length(tAudio)
% Select the current base note - C (index 1)

currentNotelndex = 1;
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currentNote = baseNotes(currentNoteIndex);

% Gait-specific modulations
switch gaitPattern
case 1 % Concertina
% Calculate modulation factor based on active segments
activeSegments = sum(abs(th) > 2.0); % Active segments thresholding
% Simple amplitude modulation based on active segments
modulationAmplitude = activeSegments / n;
modulationFrequency = 0.5;
case 2 % Lateral Undulation
% Frequency modulation extent in Hz
modulationFrequency = 1;
% Keep constant amplitude
modulationAmplitude = 1;
case 3 % Side Winding
% Tremolo effect based on time
modulationAmplitude = abs(sin(2*pi*5*tAudio(frame)));
modulationFrequency = 2;

end

% Calculate the actual audio signal for this frame with C major sixth chord
% Add three notes of the C major sixth chord: C, E, and A

audioSignal(frame) = modulationAmplitude * ( ...
sin(2*pi*currentNote*tAudio(frame)*modulationFrequency) + ... % C (root note)

sin(2*pi*(currentNote + 4/12)*tAudio(frame)*modulationFrequency) + ... % E (major

third)
sin(2*pi*(currentNote + 9/12)*tAudio(frame)*modulationFrequency) ... % A (major

sixth)
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% Update the gait for the next frame
a = updateCounter(a, gaitPattern);
th = updateGait(th, n, gaitPattern, a);

end

% Normalize the audio signal

audioSignal = audioSignal / max(abs(audioSignal));

% Play the generated sound

soundsc(audioSignal, Fs);

% Uncomment below to save the sound to a WAV file

audiowrite(fileNameSound, audioSignal, Fs);

%

% Helper Functions:

% Gait equation for each segment based on the selected pattern
function th = gait(i, gaitPattern, a)
th=0;
switch gaitPattern
case 1 % Concertina
n=40;
th=8 * pi/n *sin(6 * pi/ (n+1) * (1)) * exp(-0.01 * (i - (n+1)/2)"2);
case 2 % Lateral Undulation
n=40;
phase = 0.07;
th=5.5*pi/n *sin(4 * pi/ (n+1) * (1)) + phase;
case 3 % Side Winding
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n=30;

p =4/3;
if (i < (n+1)/p)
th=4.5*pi/n*sin(p * 2 * pi/ (n+1) * (1));
else
th=0;
end
end
end

% Update the counter based on the gait pattern
function a = updateCounter(a, gaitPattern)
switch gaitPattern
case 1
a =mod(a+1, 40);
case 2
a=mod(a+1, 40);
case 3
a=mod(a+1, 30);
end

end

% Update the gait based on the selected pattern
function th = updateGait(th, n, gaitPattern, a)
th(1) = th(1) + th(2);
th(2:n-1) = th(3:n);
th(n) = gait(a, gaitPattern, a);

end

% Generate the head shape based on the snake's head position

function [headX, headY] = headShape(headPos)
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% Define the points for the head shape polygon

% Define the x-points of the head polygon
headX = [headPos(1) - 4*cos(headPos(3)),...

headPos(1) - 4*cos(headPos(3)) + 0.2*2*sin(headPos(3))....
headPos(1) + 1*cos(headPos(3)) + 0.8*2*sin(headPos(3)),...
headPos(1) + 4*cos(headPos(3)),...
headPos(1) + 1*cos(headPos(3)) - 0.8*2*sin(headPos(3))....
headPos(1) - 4*cos(headPos(3)) - 0.2*2*sin(headPos(3)),...
headPos(1) - 4*cos(headPos(3))];

% Define the y-points of the head polygon
headY = [headPos(2) - 4*sin(headPos(3))....

end

headPos(2) - 4*sin(headPos(3)) - 0.2*2*cos(headPos(3)),...
headPos(2) + 1*sin(headPos(3)) - 0.8*2*cos(headPos(3)),...
headPos(2) + 4*sin(headPos(3)),...
headPos(2) + 1*sin(headPos(3)) + 0.8*2*cos(headPos(3)),...
headPos(2) - 4*sin(headPos(3)) + 0.2*2*cos(headPos(3))....
headPos(2) - 4*sin(headPos(3))];

% Calculate the width of the snake's body segment

function w = width(i, 1)

% Width function used for drawing each segment

n

50;

a=16/1;

b =0.003;

t=-1*n*2/3;

w=a * exp(-b * (1 +t)"2); % Tapered width equation

end

% Function to draw the snake's body by connecting the segments

function snake = drawSnakeBody(r, n, I)
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% Code to draw each line segment of the snake's body
snake = zeros(n, 2);
fori=1:mn-1
segmentWidth = width(i, 1); % Call the width function with the correct arguments
snake(i, 1) = line([r(1, 1), r(1, i+1)], [r(2, 1), r(2, i*+1)], 'LineWidth', segmentWidth,
'color', '0,0,0,1.0");
end
for i = ceil(n/4):n
snake(i, 2) = line([r(1, 1), r(1, i+1)], [r(2, 1), r(2, i+1)], 'LineWidth', 2, 'color’,
'0,1,0,0.5");
end

end
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Appendix D: MATLAB Code for Blending Sound Files

This MATLAB code, which is explained in detail in Chapter 3, blends the sounds files and
generates a spectrogram.

%

% DAFXsoundSweep.m

% Sound File Frequency Content Analysis

% Sine Sweep Audio Mixing Script

% Author: Prof. Alireza Mohammadi

% Affiliation: Robotic Motion Intelligence Lab, University of Michigan-Dearborn
% First Version: February 26, 2024

% This Version: February 26, 2024

%

% Description:

% This script analyzes the frequency content of two sound files and a blended

% sound file generated from them. It computes the Short-Time Fourier Transform
% (STFT) for each sound file and displays their spectrograms for comparison.

%

% The script reads WAV files whose names are provided by the user and outputs
% visualizations of their frequency content over time. It assumes that sound

% files are monophonic and have the same sampling frequency and duration.

%

% Usage:

% Run the script in MATLAB and follow the prompts to input the filenames of
% the sound files to be analyzed. Ensure that the MATLAB workspace is clean

% prior to running the script to avoid any conflicts with existing variables.

%
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FileNames = {'snakeConcertina.wav','snakeLatUndul.wav','snakeSideWind.wav'};

userChoice = [1, 3]; % The elements can be chosen from 1, 2, 3.

% Ask for input WAV filenames
firstFileName = FileNames {userChoice(1)};

secondFileName = FileNames {userChoice(2)};

% Read in the two sound files
[firstAudio, firstFs] = audioread(firstFileName);

[secondAudio, secondFs] = audioread(secondFileName);

% Check if both files have the same sampling frequency
if firstFs ~= secondFs
error('Sampling frequencies of the input files do not match.");

end

% Assuming both sound files have the same length
if length(firstAudio) ~= length(secondAudio)
error('Audio files do not have the same length.");

end

% Generate a sine sweep from 20 Hz to 20 kHz over the duration of the files
sweepDuration = length(firstAudio) / firstFs;

t = linspace(0, sweepDuration, length(firstAudio));

startFreq = 20;

endFreq = 20000;

sweepSignal = chirp(t, startFreq, sweepDuration, endFreq);

% Assuming sweepSignal is a column vector at this point
% Generate a smooth fade-in for the first audio file and a fade-out for the second

fade = 0.5 * (1 - cos(2 * pi * linspace(0, 1, length(sweepSignal))));
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% Apply fading to the first audio signal and its inverse to the second
firstAudioFaded = firstAudio .* fade';
secondAudioFaded = secondAudio .* flipud(fade');

% Blend the two faded audio clips
blendedAudio = firstAudioFaded + secondAudioFaded;

% Normalize the blended audio to prevent clipping
maxVal = max(abs(blendedAudio(:)));
if maxVal > 1

blendedAudio = blendedAudio / maxVal,;

end

% Output filename

outputFileName = 'blendedSweep.wav';

% Write blended signal to new audio file

audiowrite(outputFileName, blendedAudio, firstFs);

disp(['Blended audio created and saved as ' outputFileName]);

% Compute the STFT for the first audio file

% [sl, fl, tl] = stft(firstAudio, firstFs, "'Window', hamming(1024, 'periodic'),
'OverlapLength', 512, 'FFTLength', 1024);

% % Compute the STFT for the second audio file

% [s2, f2, t2] = stft(secondAudio, secondFs, 'Window', hamming(1024, 'periodic'),
'OverlapLength', 512, 'FFTLength', 1024);

% % Compute the STFT for the blended audio
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% [s3, 3, t3] = stft(blendedAudio, firstFs, "Window', hamming(1024, 'periodic'),
'OverlapLength', 512, 'FFTLength', 1024);

% Create the figure for displaying the simulation with specified axis limits
figure('Color', 'w"); % Set the background color to white during figure creation
set(gef, 'WindowState', 'maximized'); % Maximize the figure window

hold on;

grid on;

axis equal;

% Plot the spectrogram for the first audio file

subplot(3, 1, 1);

spectrogram(firstAudio, hamming(1024, 'periodic'), 512, 1024, firstFs, 'yaxis');
title('Spectrogram of the first sound file");

% Plot the spectrogram for the second audio file
subplot(3, 1, 2);
spectrogram(secondAudio, hamming(1024, 'periodic'), 512, 1024, secondFs, 'yaxis');

title('Spectrogram of the second sound file');

% Plot the spectrogram for the blended sound

subplot(3, 1, 3);

spectrogram(blendedAudio, hamming(1024, 'periodic'), 512, 1024, firstFs, 'yaxis');
title('Spectrogram of the blended sound');

% Adjust the colormap to improve visibility

colormap('jet’);
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Appendix E: In-Class PBL Activity Handout

Snzke Robot Motion Sonification PBL Module May 2024

Project: Exploring Robotic Snake Motion and Sonification with MATLAB
Instructors: Ms. Lynn Connelly (Hopkins School) &
Dr. Alireza Mohammadi (The University of Michigan-Dearborn)

Objective: Understand the principles of snake robot locomotion and the concept of motion
sonification by modifying and extending a given MATLAB script.

Background: Snake robots are robotic devices that mimic the movement patterns of biological
snakes. These robots can navigate through challenging terrain and confined spaces. making them
useful for varnious applications, including search and rescue missions. mdustrial ispections, and
medical procedures. A sample snake robot has been constructed by vour teacher. You will be
working with a MATLAB simulator that will sonify the motion pattern of snake robots. In this
project, vou will first see a simple snake robot in action!

Part 1) A Simple Snake Robot Prototype:

Ms. Connelly has created a prototype snake robot! Using the data and videos below. carefully
observe the robot's movements and answer the questions that follow.

+ Video 1: Snake Robot Motion and Motion Data Plots (The video “snakebot wav™ and
the gif files “time profiles animation gif” as well as “trajectory animation gif” will be

provided fo you by Ms. Connelly)
s Video 2: Biological Snake Motion (https://www youtube com/watch™v=5CchyctRFr(Q)

Feeure 1 THe Snaxe Rosor ProToTYPE CoNSTRUCTED BY Ms. CONNELLY

Questions:

1. Summarizing Robot Movement: Describe the motion of Ms. Connelly's snake robot.
How does it propel itself? In what ways does it resemble the movement of a real snake?

Pagelof3
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Snake Robot Motion Sonification PBL Module May 2024

2. Comparing Movement: Identify the key similarities and differences in the way the snake
robot and the biological snake move. (Hint: Snakeskin versus the beads, snake muscles
versus the fwo motfors)

3. Advantages and Challenges: What might be some advantages of a snake robot's motion

compared to a robot with wheels or legs? Can you think of anv challenges engineers might

face when designing a snake robot?

Part 2) A MATLAB Snake Motion Simulator and Sonification of Its Motion Patterns:

Ficure 2 A SampLE SHAKE LocomoTioN PATTERN (CONCERTINA]

Motion sonification refers to the process of translating the movement of a system into sound (check
Dr. Mohammadi’s Dec. 2023 slides). In this part of the project. yvou will work on a script that
simulates different snake robot locomotion patterns and creates corresponding sound patterns. The
MATLAB M-files will be shared with vou by Ms. Connelly.

Tasks/Questions:

1. Tamiliarization with the Code:
o Study the provided MATLAB scripf and understand ifs structure and main
COmponents.
o Identify the segments of code responsible for generating the three different snake
gaits (concertina. lateral undulation. and side winding).
2. Simulation Observation:
o Funthe MATLAB seript for each of the three gait patterns and observe the resulting
animations and sounds.
o Describe the distinct characteristics you observe in both the movement patterns and
the generated sounds for each gait.
3. Code Modification:

Page 20of 3
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Snake Robot Motion Sonification PBL Module May 2024

o Modify the line of code activeSegments = sum(abs(th) > 0.1) by changing the
number 0.1 and setting it to different values and note how that changes the
sonification of the robot's movement.

o Adjust the code so that the gait parameter can be asked from the user at the outset
1n an interactive manner.

4 Exploration of Sound Generation:

o Investigate the relationship between the snake's movement and the corresponding
sounds generated in the script.

o Modify the sound generation code to change the modulationFrequency and
modulationAmplitude parameters and observe how that changes the sonification of
the robot's movement.

5. Report:

o Write a report detailing your observations, modifications. and the implementation
of the new gait and 1ts somification. Include screenshots of the animations and an
explanation of the somification choices you made.

o Discuss potential real-world applications of snake robots and the value of sonifiing
their movements.

Acknowledgements: This work 1z supported by the National Science Foundation (NSF) through
the award number CMMI-2153744.
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Appendix F: Student Feeback Survey Results

What did you like about this

What can be done to improve

What did you learn from these two

movement is replicated in
practice. I also enjoyed the
interactive discussion.

week would be a slight
improvement...

Timestamp |, 019 this activity? days?
5/16/2024 learnine about sonification I don't know, I don't know
9:26:29 & what we did the second day
I learned the different gaits of
5/16/2024 I loved the interactive element as snakes, how they can be
9:27-03 well as learning the applications Maybe more MATLAB stuff? represented with sound, and the
o of sonification. applications of both snake robots
and sonification.
5/16/2024 It was interesting to see whatis  Scheduling du.rlng., anon AP The use cases and benefits of
. being done in the current week. Otherwise it was . .
9:27:04 . . sonification.
sonification field. awesome.
The content matter was Data = audio audio can be changed.
5/16/2024  interesting and bringing in Not doing it during ap week I also missed the first day due to an
9:28:22 another professor was a good & £ap ap exam and was a bit confused on
experience. the next day.
I liked how we worked with a I think doing a little bit more I learned the applications of snake
5/16/2024 university professor which I in depth learning and robots and usirlfp sonification to
9:28:58 think is a unique experience for experimentation would be . &
. track their movement
high school students better
o theeie e rls e mor
esung: . Y participation with Matlab - the different types of snake
considered how important snake- . .
5/16/2024 . would've been cool. Maybe if movement
like robots were, and I also . . .
9:31:21 . . . there was some more time, - sonification
thought it was interesting how . .
sound can be a better device for students could make their own - applications for snake robots
. snake algorithms.
data than visual sources.
T liked the aspect of learning a At first I thought sonification was
5/16/2024 new topic and being able to talk | . . . pointless but now [ realized that it
. Don't do it during AP week.  is actually pretty cool to be able to
9:32:09 to a professor in the field of . !
study recognize a pattern from hearing
) instead of sight.
I liked how the activity was Maybe make it at a different i;ﬁ?ﬁti?i(?ﬁoﬁﬁgskﬁ tr?tbvzzlss 2;2211
5/16/2024 interactive and he was really time when seniors are more interestin l'earnin gabou t how y
9:34:25 good at answering our questions locked in—earlier in the & & . .
and helping us learn semester? snakes move and how their bodies
' ' interact differently with friction.
I enjoyed how the activity I learned about how snakes move! I
explained both the mathematical I was only here for the first had never stopped to consider how
5/16/2024 models for snake movement and day, but I enjoyed all of it! the slither actually works, but
9:34:36 also learning about how this Maybe not doing it during AP learning about how snakes lift their

bodies to redistribute their weight
and how similar this is to human
movement was very interesting.
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