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Abstract—This paper presents a risk-informed data-driven safe
control design approach for a class of stochastic uncertain nonlin-
ear discrete-time systems. The nonlinear system is modeled using
linear parameter-varying (LPV) systems. A model-based proba-
bilistic safe controller is first designed to guarantee probabilistic
A-contractivity (i.e., stability and invariance) of the LPV system
with respect to a given polyhedral safe set. To obviate the
requirement of knowing the LPV system model and to bypass
identifying its open-loop model, its closed-loop data-based repre-
sentation is provided in terms of state and scheduling data as well
as a decision variable. It is shown that the variance of the closed-
loop system, as well as the probability of safety satisfaction,
depends on the decision variable and the noise covariance. A min-
imum-variance direct data-driven gain-scheduling safe control
design approach is presented next by designing the decision vari-
able such that all possible closed-loop system realizations satisfy
safety with the highest confidence level. This minimum-variance
approach is a control-oriented learning method since it mini-
mizes the variance of the state of the closed-loop system with
respect to the safe set, and thus minimizes the risk of safety viola-
tion. Unlike the certainty-equivalent approach that results in a
risk-neutral control design, the minimum-variance method leads
to a risk-averse control design. It is shown that the presented
direct risk-averse learning approach requires weaker data rich-
ness conditions than existing indirect learning methods based on
system identification and can lead to a lower risk of safety viola-
tion. Two simulation examples along with an experimental vali-
dation on an autonomous vehicle are provided to show the effec-
tiveness of the presented approach.

Index Terms—Data-driven control, linear parameter-varying sys-
tems, probabilistic control, safe control.

I. INTRODUCTION

HE past few years have witnessed a surge of attention and
T advancement in developing safety certificates to equip
learning-enabled agents with safety guarantees during and
after learning. Specifically, to certify the safety of reinforce-
ment learning (RL) agents, as key enablers of autonomy, vari-
ous safety certificates have been presented [1]-[7]. These
safety certificates leverage control barrier functions (CBFs) to
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fix their actions myopically [8]-[16]. CBF methods, however,
rely on high-fidelity models of the system. As a result, when a
system model is not available, an indirect learning approach is
typically used to learn a system model from data. However,
indirect learning methods that rely on system identification
might not be suitable for safety-critical systems with limited
available data for the following reasons. First, they can only
learn a system model after some richness data conditions on
the state-input data are satisfied. Relaxing these data require-
ments is essential to the success of next-generation safe
autonomous systems. Second, the learned open-loop system’s
variance depends on the signal-to-noise ratio (SNR) of the
collected data and cannot be decreased by the control mecha-
nism. Therefore, it is necessary to introduce control-oriented
learning methods that minimize variance in safety violations,
given current data, to improve safety. Finally, model-based
CBF methods for stochastic systems are only limited to the
case where the support of noise is finite [11], [17].

Existing results on safe control leverage CBFs to only
myopically correct the actions of RL agents when they are not
safe. This myopic intervention can lead to convergence to
undesired equilibrium [18] and poor performance. Instead,
one can learn a safe control policy and merge it with an RL
control policy to provide safety and performance guarantees.
This will provide a completely model-free paradigm under
which both safe and RL controllers are directly learned from
data. This is in sharp contrast with CBF methods under which
the safety certificate requires the system model, even if the RL
controller can be learned directly from data. A challenge is
that direct data-driven safe control design for stochastic non-
linear systems is unsettled. Therefore, this paper presented a
direct data-driven safe control design method for a class of
uncertain stochastic nonlinear systems.

Designing safe controllers that guarantee safety for nonlin-
ear systems is a daunting challenge, even for deterministic
systems. This challenge can be overcome by using global lin-
earization methods such as the Koopman operator [19], and
local linearization approaches like dynamic-linearization [20],
[21]. Another approach is to use linear parameter varying
(LPV) systems with compact and convex safe sets by using
the Minkowski function [22]. LPV systems are represented by
linear systems whose dynamics depend on a set of gain-
scheduling parameters that can be estimated or measured dur-
ing the system’s operation. Many nonlinear systems, such as
aerospace [23], [24] and various robotic systems [25], [26],
can be expressed as LPV systems with unstructured bounded
uncertainties or disturbances within a convex set. While learn-
ing an explicit model for LPV systems can be data-hungry and
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conservative [27], it is essential to design a safe controller
directly from the LPV systems’ data without the intermediate
step of system identification.

Recently, direct data-driven control has been explored as a
way to design safe or optimal control while bypassing the sys-
tem identification step [28]-[32]. However, the current
research on direct data-driven safe control is mainly limited to
deterministic systems or treating noise as either a bounded
disturbance and designing a robust conservative controller for
the system or a measurable signal. Unfortunately, robust con-
trol is not effective for systems where noise has a distribution
with infinite support. It is of vital importance to design risk-
aware data-based safe controllers that account for the vari-
ance in safety violations and consequently avoid fluctuations
in performance when controllers are used in real systems. As
of yet, there is no established method for designing risk-aware
safe control for stochastic LPV systems.

This paper introduces a novel risk-informed data-driven
approach for designing safe control strategies for stochastic
uncertain nonlinear discrete-time systems modeled as LPV
systems. A risk-informed control solution is presented for
polyhedral safe sets to significantly improve predictability in
terms of safety satisfaction and variance reduction of trajecto-
ries around the equilibrium point compared to existing risk-
neutral methods. To our knowledge, there is no risk-informed
safe control solution, even for systems with known dynamics
and polyhedral safe sets. The presented approach borrows
techniques from set-theoretic control, chance constraints, and
primal-dual optimization to design risk-informed controllers
relying on the concept of A-contractivity. A closed-loop data-
based presentation of LPV systems is then provided and is
leveraged to design control-oriented data-based controllers in
which the variance of the closed-loop system is minimized
with respect to the safe set. This inherently risk-averse strat-
egy is better suited for safety-critical applications where mini-
mizing the likelihood of safety violations is crucial.

Another significant advantage of the presented approach is
its data efficiency. It is shown that one can learn a closed-loop
safe controller using a set of data that is not rich enough to
learn the open-loop system model from. Developing data-effi-
cient safety certificates is a crucial step toward transitioning
from current autonomous agents primarily operating in simu-
lated environments to future agents operating in the physical
world. One challenge in this transformation is that safety cer-
tificates must be learned and verified using only limited avail-
able data collected from the system. This is because, unlike
simulated environments under which agents can gain virtually
unlimited experience at minimal cost, collecting informative
data in high-stakes safety-critical settings might require per-
forming unsafe and costly actions.

The presented method guarantees probabilistic stability and
invariance of a given polyhedral safe set. This is in sharp con-
trast to works such as [28]-[31] that are limited to linear sys-
tems and deterministic disturbances, making them overly con-
servative for systems with stochastic noises. It also differs
from CBF-based methods limited to systems with known
models with deterministic dynamics [15], [16], [18] or
stochastic noises with finite support [11], [17].
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The effectiveness of the presented approach is demon-
strated through two practical simulation examples, providing
practical evidence of its utility and efficacy. In the first exam-
ple, the devised data-driven safe approach is employed for a
magnetic suspension system characterized by parametric
uncertainties. The aim is to ensure that the constraints
imposed on the position and velocity of the closed-loop sus-
pension system are satisfied. Subsequently, given the critical
role of safe control in autonomous vehicles [33]-[35], a prac-
tical scenario involving path tracking is explored. The objec-
tive is to govern the trajectory of a self-driving car in a man-
ner that avoids violating safety constraints, such as potential
collisions with road boundaries. To better reflect real-world
conditions, the presence of noise in the environment is taken
into account. The risk-aware safe controller presented is then
applied to manage the vehicle with assured safety guarantees
under these noisy conditions. Additionally, an experimental
validation of the approach on an autonomous vehicle is also
provided, further substantiating its practical applicability and
effectiveness.

Notations: Throughout the paper, the Kronecker product is
denoted by ® and the Khatri-Rao product, which is a column-
wise Kronecker product of two matrices with the same num-
ber of columns, is denoted by ©. Moreover, [ is the identity
matrix with the appropriate dimension and 1 is a vector with
all of its elements being one. When 4 is a matrix, A; refers to
its 7-th row and A;; is the element in the i-th row and j-th col-
umn of A. If 4 and B are matrices or vectors with the same
dimensions, A(<,>)B denotes a component-wise inequality,
ie., A;j(<£,2)B;; for all i and j. If Q is a matrix and O(%,>)0,
it means that Q is negative or positive semi-definite. Given a
set S and a scalar u >0, uS is defined as the set of all ux
such that x € S.

The Boolean domain, also known as zero-one-valued
domain, is represented by B. A multi-index, which is a collec-
tion of indices, is defined as

i=(i,....ip) €eB? (1)
where B? ={i:i; €B,j=1,...,p}. The set of permutations of
the entries of i is represented as $(i), and P,,(M;) denotes a
matrix that contains all possible matrices M; arranged accord-
ing to the permutations in P(i).

Also, it is assumed that all random variables are defined on
a probability space denoted as (I',F,P), where I is the sam-
ple space, ¥ is its associated o-algebra, and P is the probabil-
ity measure. Given a random variable v:T' — R"” defined on
the probability space (I',7,P), the notation v € R” is used to
indicate its dimension. The mathematical expectation of v is
denoted as E[v], and if one has E[v] = 9, then the covariance
of v can be found using the formula E[(v — ?)(v—#)T].

Definition 1 [22]: A C-set is a set that is both convex and
compact, and its interior contains the origin.

Definition 2 [22]: A polyhedral C-set, denoted by S(F,g), is
represented by

S(F,g) ={xeR": Fx<g}
={xeR":Fjx<gj, j=1,....,q) (2)
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TABLE I
COMPARISON OF EXISTING METHODS AND THE PROPOSED METHODOLOGY

Reference System type Disturbance nature Safety certificate ~ Data requirements Key features

[18] Nonlinear Deterministic CBF-based N/A Myopic correction of RL agent actions

[19] Nonlinear Deterministic N/A Moderate Handles nonlinear systems through global linearization
[20]-[21]  Nonlinear Deterministic N/A Moderate Handles nonlinear systems through local linearization

[22] LPV Deterministic Minkowski function Moderate Compact and convex safe sets for LPV systems
[23]-[26] LPV Bounded N/A N/A Handles LPV systems with unstructured uncertainties

[27] LPV Bounded N/A High Data-hungry and conservative model learning for LPV systems
[28]-[31] Linear Deterministic Risk-neutral High Limited to linear systems and deterministic disturbances,

overly conservative

Proposed LPV Stochastic Risk-informed Low Handles stochastic LPV systems, probabilistic stability,

reduced data requirements

where F € R?" is a matrix with g rows, i.e., F; for j=1,...,
g, and g is a vector with elements g;, j=1,...,q.

Lemma 1 [36]: Assume that there is a joint chance con-
straint denoted by

P[Hx+Mw<g]>(1-¢&) 3)
where x € R” represents the decision variable, w is a random
variable with a normal distribution N(0,X), H and M are
matrices with dimensions g Xn, and g is a vector in RY. Now,
if the constraints

Hjx+Mjﬂng—kj1[MjZMj (4)
‘l_ .
are satisfied for all j=1,...,q, where k;= ;’ and

2.j€j < &, then the original joint chance constraint (3) is also
satisfied.

In Lemma 1, k; is a constant, and &; represents the accepted
probability of violation of the constraint Hx+ Mw < g.

II. PROBLEM FORMULATION

This section provides a discussion on LPV systems and then
states the safe control problem for nonlinear systems that can
be modeled by uncertain LPV systems.

A. LPV Systems

In this subsection, LPV and Quasi-LPV systems are dis-
cussed, for which a unified safe controller will be designed in
the subsequent sections.

LPV systems are a representation of nonlinear systems that
offer a structured framework for embedding nonlinearities
into varying parameters within a predefined range. LPV surro-
gate models are often used in practice to describe a large sub-
set of nonlinear systems, thereby providing a valuable tool for
solving complex control problems. The LPV systems are typi-
cally modeled as

x(t+ 1) = A(w(0))x() + B(w(®))u(t) + w(t) (5)
where x(f) e R" denotes the system’s state vector, and
u(r) € R™ represents the control signal. Furthermore, A(w(z))
and B(w(t)), referred to as A(w) and B(w) for simplicity from
now on, are the system’s internal dynamics and input matrix,
respectively. Also, w(t) is the noise vector, and w(f) repre-
sents the scheduling variables.

Assumption 1: The noise in the system (5), represented by
the vector w(f) = [wi(?),...,w,(H)]T, has a Gaussian distribu-
tion with a mean of zero and variance of X, i.e., w ~ N(0,X),
where E[w;(t)w;()] =0 Yi# j, and E[w* ()] =0? Vi=1,...,
n.

LPV systems are a versatile class of dynamic systems that
effectively capture both linear and nonlinear behavior by con-
sidering the system’s dynamics as a function of time-varying
parameters. These parameters, which encompass physical
quantities like operating conditions, inputs, or environmental
factors, directly influence the system’s behavior. LPV sys-
tems offer a flexible framework for modeling and controlling
complex systems that display time-varying characteristics.
The gain-scheduling variables in LPV systems can be mea-
sured in real-time, such as the speed of an aircraft [23], but
they cannot be predicted in advance.

LPV systems are typically classified as standard LPV sys-
tems, for which the gain-scheduling variables are independent
of the systems’ states, and quasi-LPV systems, for which the
gain-scheduling variables are functions of the systems’ states.
For LPV systems, the polytopic representation of (5) becomes

Ny

X(t+1) = Z wr(O(A,x(E) + Byu(®)) + w(t)

r=1

(6)

where N, represents the number of vertices, while A, and B,
refer to the system matrices at the rth vertex, accompanied by
its corresponding scheduling variable w,(f).

On the other hand, Quasi-LPV systems relax some of the
stringent requirements of LPV systems, enabling more practi-
cal modeling and control approaches [37]. In Quasi-LPV
modeling, the gain-scheduling variables are expressed as a
function of the system states, providing a comprehensive rep-
resentation that accounts for the interaction between state vari-
ables and scheduling parameters.

wr(x) =T (x(@®), r=1,....N, 7

also, w = [wy,...,w,] is the vector of gain-scheduling parame-
ters.

This approach enhances the ability to capture the complex
dynamics of real-world systems and facilitates the develop-
ment of accurate and robust control strategies that consider

both the system’s current state and varying operating condi-
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tions.

The matrix components A(w) and B(w) contain nonlinear
state-dependent terms that can be combined and represented
as scheduling variables denoted as T'(x) = (T1(x),...,T,(x)).
As a result, given that the scheduling variables are continuous
and belong to a compact set, there are limits such that T;-) <
Ti(x) < 'Tj]- , which allow us to express T;(x) as T;(x)=
T (X)wy(x)+ T} (X)w) (1) with wo(x) = (T} =T;(x)/(T} - T})
and w{ (x) = 1—0)6(96) for j=1,...,p. Therefore, the system
described in (5) can be represented as a polytopic form [38]

x(t+1) = )" wi(x)(Aix(0) + Bia(®)) + w(t)

ieB?

®

where wj(x) are the scheduling variables satisfying the con-
vex properties, i.e., Yjepr wi(x) =1 and wj(x) >0, and they
are computed as follows:

J2
_ j
wix) = l_ll wl () ©)
with i; € B, where B = {0,1}. The subscript i is a multi-index
defined in (1). Also, Aj € R™" and B; € R™™ are vertices of
the polytope.
Equation (8) can also be written as follows:

x(t+1) = Aj(wx(2)) + Bs(w®u(t)) + w(r)
where A = P,,,(A;) and B = P, (Bj).

Assumption 2: The scheduling map T'(x(¢)) and the number
of vertices in the polytopes, which is N, =27, are both
known.

This assumption is a common and standard assumption for
creating gain scheduling maps using prior knowledge of sys-
tem dynamics, as described in [39]. This prior knowledge typ-
ically encompasses information about the system’s behavior,
dynamics, or other pertinent characteristics. The methods
detailed in [39] facilitate the development of scheduling maps
that adjust the control parameters of a system based on its
operational conditions. These maps are devised with a com-
prehensive understanding of the underlying system behavior,
ensuring that the control modifications are suitable and effec-
tive. By assuming the knowledge of the scheduling map
T(x(r)) and the number of vertices N, =27, our research
builds on this proven methodology and capitalizes on the
advantages of gain scheduling to enhance control perfor-
mance.

In this paper, since a direct data-driven control is presented,
it is not necessary to have an explicit LPV model, and only the
scheduling map is required. That is, it is assumed that the sys-
tem matrices A; and B;j are unknown (e.g., due to parametric
uncertainties in the original nonlinear system for Quasi-LPV
systems). To directly learn a safe controller for its correspond-
ing LPV model, data collected from the original system will
be used. It is worth noting that, for the remainder of this
paper, the Quasi-LPV modeling will be considered for the
control design procedure without loss of generality. Neverthe-
less, it is important to highlight that the theoretical results also
hold true for the LPV modeling.

(10)
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B. Probabilistic Safe Control Design: Problem Formulation

This subsection provides the problem formulation for proba-
bilistic safe control of stochastic LPV systems under safety
constraints.

Before presenting the problem statement, given that set
invariance is the primary technique used to ensure safety, the
following definitions are provided to clarify the concept.
These definitions help to establish a framework for ensuring
that the system remains within a predetermined set of states
over time, which is essential for safety-critical applications,
and to facilitate the design of controllers that can enforce set
invariance.

Definition 3 [40]: For the system (5), the set S is a positive
invariant set in probability (ISiP) if the initial state x(0) is in
S, then the probability of the state x(f) remaining in the set S
for all >0 is at least (1 —¢), where ¢ is a small but accept-
able risk level.

To ensure that a safe set is ISiP, the concept of A-contractiv-
ity can be leveraged, which is defined next.

Definition 4: For the system (5), the set S is considered to
be A-contractive in probability if, for a given value of
0 < A< 1, when the state x(¢) is in the set S, the probability of
the next state x(¢+ 1) being contained within a scaled version
of S is at least (1—¢&) for all >0, i.e., Plx(z+1)€ AS] >
(1-¢), where ¢ is a small but acceptable risk level.

The A-contractive in probability property is important for
ensuring that the system remains safe and stable while
accounting for the probabilistic nature of the system dynam-
ics. As shown in [32], A-contractive in probability property
guarantees the ISiP. Therefore, by definition of the ISiP, once
the system starts from the safe sets, it does not leave it with a
high probability, which guarantees probabilistic safety. The
contraction rate A controls the speed of convergence, with
larger values leading to faster convergence but potentially
higher oscillations and overshoots.

Problem 1: Consider a nonlinear system modeled by the
stochastic LPV system (5). Design a gain-scheduling con-
troller in the form of

u(t) = K(@)x(t) = ) &i(x)Kix()

icB?

(11)

such that a given polyhedral safe set S(F,g) remains ISiP, or
equivalently it satisfies the A-contractive in probability prop-
erty.

Both model-based and data-based solutions to this problem
will be provided. The following assumption, followed by a
related definition is needed to solve this problem.

Definition 5 [22]: The system (5) is called gain scheduling
stabilizable, if a controller in the form of u(r) = K(w)x(r)
exists such that the nominal closed-loop system x(r+1)=
(A(w) + B(w)K(w))x() is globally asymptotically stable.

Assumption 3: The system (5) is gain-scheduling stabiliz-
able.

Assumptions 2 and 3 are commonly used in the field of
LPV systems, as demonstrated in [38] and [41]. The schedul-
ing map T(x(¢)) and the number of vertices N, = 2”7 can be
determined according to the specific nonlinearities present in
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the system model.

Now, a closed-loop form of the LPV system under the gain-
scheduling control of the form (11) is presented.

Lemma 2: Consider that Assumptions 2 and 3 are satisfied
for the system (5). Then, using the controller (11), the closed-
loop LPV system can be expressed as

X1 = ) @i Y oA+ BEDX+w() (19
ieB” jeBP
where i = (i1,...,ip) and j = (ji,..., j,) are multi-indices.
Proof: Substituting the gain-scheduling controller (11) into

the LPV system (8) results in
x(t+1) = ) (@iAXD)+ ) (@i0B;) ) (i(0)K;x(1)
icBP i€BP JeBP
+w(r). (13)
Also, due to the fact that ey wj(x) =1, (13) can be
rewritten as

(t+ 1) = D i) (A0 +Bi Y wi(x)Kjx(n)

ieB? jeBP JjeBr
+w(?). (14)
After some mathematical manipulation, (14) is equivalent to
(12), which concludes the proof. [ |

Remark 1: 1t should be mentioned that when the input
matrix, i.e., B(w), is fixed, the term Y icpr (wi(x)B;) in (13)
becomes a constant matrix B, and hence, one gets

X+ 1) = Z wi(X)(A; + BK)x(0) + w(?).

ieB?

(15)

LPV system (12) can be written as the following compact
form:

x(t+1) = (A, ®12,) +(Bs®13,)(Iorxor ® Ks.a))

X (0®w) ®x(1)) + w(t) (16)

where K, 4 is a block-diagonal matrix in which each diagonal
component is K; for ieB”. By defining A, =A,®1},,
B, =B;®1},, and K} = Lrxo» ® K4, (16) can also be repre-

sented as

x(t+1) = (A, + BK)(w@w)@x(D))+w(r). (17

In the literature, there is no existing risk-informed solution
for even linear systems with known dynamics and polyhedral
safe sets. To address this gap, we design a risk-informed con-
troller by integrating techniques from set-theoretic control,
primal-dual optimization, and chance constraint. In the subse-
quent sections, we present model-based and model-free solu-
tions to Problem 1. More specifically, Theorem 1 in Section
IIT provides a model-based solution to Problem 1. Since the
system models are not typically available, Theorem 2 in Sec-
tion IV-A leverages the results of Theorem 1 to provide a
data-based solution. Theorem 2, however, assumes that the
noise is measurable, which is not realistic. To provide a risk-
informed safe control solution that solves Problem 1 for sys-
tems with unmeasurable noise, Theorem 3 is presented in Sec-
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tion IV-B. That is, Theorem 3 extends the results of Theorem
2 for the case where the system noise cannot be measured.

III. MODEL-BASED DESIGN: A PROBABILISTIC SAFE
CONTROL APPROACH

This section presents a new solution for designing a model-
based controller for Problem 1. To this end, the presented
method establishes conditions for A-contractiveness of the safe
set for the system (5). Establishing this condition is challeng-
ing since it requires finding a risk-dependent term that tight-
ens the constraints to ensure achieving the desired risk level.
We formalize an optimization to characterize the risk-aware or
probabilistic set contractiveness and then provide its dual opti-
mization to find this term in a non-conservative manner.

The following theorem outlines the conditions required for
the safe set to be A-contractive, ensuring that the probabilistic
behavior of the system remains within a scaled version of the
safe set. By satisfying these conditions, the model-based con-
trol design can guarantee both safety and stability, even in the
presence of noise.

Theorem 1: Consider the LPV system (8) satisfying
Assumptions 1-3 with the controller (11). Then, the polyhe-
dral set S(F,g) is A-contractive in probability for the closed-
loop system if and only if there exist non-negative matrices
P; >0, i=(j,...,ip) such that

PiF = F(A; + BiK;) (18)
Pig<ag-1 (19)
where [ = (Iy,...,1,)T with
1—8j
lj= A FZF; (20)
€j

for j=1,...,q.

Proof: To demonstrate that the conditions (18) and (19) are
sufficient to ensure A-contractiveness of the safe set S(F,g),
one must first identify the conditions necessary for S(F,g) to
be A-contractive. By satisfying these necessary conditions, it
can be shown that the safe set is also A-contractive, as defined
by Definition 7. Specifically, if x belongs to S(F,g), which is
defined by Fx(¢) < g, then A-contractivity in probability of S
can be ensured by satisfying the following inequality:

Plx(t+1) € AS] > (1 - &) 1)

or
P[F(A(w) + Bw)K(w))x(H) + Fw(t) < gl > (1—¢).  (22)

This is the same as the following inequality obtained by
applying Lemma 1 on the joint chance constraint:

F(A() + B@)K()x(r) < Ag - . (23)
In terms of (12) and (23), one has
FY wi(v) ) wi(0(Ai+ BK)x() < Ag =1 (24)

ieB” jeBP

The next step is to show that the inequality in (24) holds for
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all @ in the set Q if it holds for each vertex of Q. The left
side of (24), which involves the polytopic term F(A(w)+
B(w)K(w))x(t), reaches its maximum value at one of its ver-
tices. Therefore, (24) and consequently, (22) hold if the fol-
lowing inequality holds for all i € B?:

F(Aj+ BiKj)x(t) < 1g— L. (25)

It is now shown that satisfaction of the model-based safety

conditions (18) and (19) satisfies (25). By virtue of (18), the
left hand-side of (25) becomes

F(A; + BiK;)x(t) = PiF x(1). (26)
Also, since x(r) € S, i.e., Fx(t) < g, and using (19), one gets

F(Aj+ BiKj)x(t) = PiFx(t) < Pig < Ag—1 (27)
which is the same as (25). The proof of sufficiency is now
complete. To demonstrate the necessity condition, suppose
that the safe set S is A-contractive in probability. It will now
be shown that both (18) and (19) are fulfilled. If x(¢) € S, then
(22) is satisfied due to A-contractivity in probability. Consider
the linear programming problem below:

%i,j = max F;((Aj+ BiKj)x+w) (28)
X

st. Fx<g, VYieB”, j=1,...,q. (29)

As a result of the A-contractivity condition in probability
given by (23), it follows that y; ; < Ag. This leads to the fol-
lowing dual optimization problem of (28):

Yij = nfnn fi,jTg + Fjl (30)
Si.j

st. &7 F = Fj(Ai+ BiKy), (1)

&,>0, YieB?, j=1,...,q. (32)

The Lagrangian multipliers for the optimization problem
given in (28) are denoted by & ;. As the primal problem has a
feasible solution, the optimal value of the dual problem is
equal to the optimal value of the primal problem.

Define P; as

(33)

fi,qT

P; is non-negative due to the non-negativity of & ;. Further-
more, since y;; is less than or equal to Ag according to the /-
contractivity in probability property, then for all i€ B” and
j=1,....q, the inequality &,”g+F;l<Ag holds. Equation
(31) is equivalent to (18), and using (33), (27) is equivalent to
(19). ]

Corollary 1: Consider the LPV system (8) with the control
input (11). Then, A-contractive in probability property of the
polyhedral set S(F,g) is met for the closed-loop system (12) if
and only if a non-negative matrix P =%,,(P;)! exists such
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that the following conditions are satisfied:
PyF = (Lrxor ® F)(Ay + BK)T (34)
PG < AG - L, (35)

where K, = P (K;) € R™ 2" with K; e R"™", A+ B,K, =
Pu(Ai+ BiK;), G =12x1®g), and L;=1orx ®[ with [=
(T lq)T defined in (20).

Proof: Theorem 1 states that the closed-loop LPV system
represented by (8) and controlled using the method defined in
(11) will be A-contractive in probability with respect to the
polyhedral set S(F,g) if and only if certain conditions are met.
Specifically, there must exist 2”7 non-negative matrices P; and
K; for i € B? that satisfy both (18) and (19). These two condi-
tions can be combined into a single equality and a single
inequality, respectively, as follows:

PP F = (Lrxor ® F)Pu(Ai + BiK)' (36)
[
PPN G <AG-| : (37)
[
which yields (34) and (35), respectively. [ ]

IV. DATA-DRIVEN PROBABILISTIC SAFE CONTROL DESIGN

This section aims at presenting a data-based version of con-
ditions (18) and (19) that eliminates the need for the system
model in the safe controller. To achieve this, let us suppose
that an input sequence of u(0),u(1),...,u(N —1) is applied to
the system (5), and N state and gain-scheduling variable sam-
ples are collected. These samples are then arranged as follows:

Uo = [u(0),u(1),...,u(N —1)] (38)
Xo = [x(0), x(1),...,x(N = 1)] (39)
Wo = [w(0),w(D),...,.w(N-1)] (40)
Qo = [w(0),w(]),...,w(N-1)] (41)
X) = [x(1),x(2),...,x(N)] (42)
X = (Q00Q0)® Xo (43)
Uy, = Q0 Up. (44)

It should be noted that the scheduling map in (41) is depen-
dent on the system’s states, which means that the data matrix
Qo can be easily obtained from state measurements. Mean-
while, to learn the dynamics of the LPV system described in
(5), it is necessary for the data matrix represented by

]
wa

to have a full-row rank. This condition can be satisfied by col-
lecting at least N > (m+ 1)n2P + m2P samples from the LPV

(45)
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system. However, to directly learn a safe controller, it is
shown that a significantly smaller number of samples is
required, which only needs to ensure that the matrix X, has
a full row rank.

These data are then used to derive data-based versions of
conditions (18) and (19). The resulting conditions can be
directly used to design a safe controller without requiring
knowledge of the system model.

Assumption 4: The data matrix X, in (43) is full-row rank.

Assumption 4 introduces a data richness condition for the
design of a data-based safe controller. Rather than being
restrictive, this assumption actually eases the data-richness
requirement compared to existing indirect data-based con-
trollers, a point that will be further elaborated in Remark 2
later.

A. Data-Based Safe Control: Available Noise Measurements

Theorem 1 provided a model-based solution to Problem 1.
This subsection extends these results to the data-based case
and outlines the design procedure of an online data-driven
safe control, assuming the availability of noise measurements.

Theorem 2: Consider the LPV system (8). Let the open-loop
data be collected and arranged as shown in equations
(38)—(44). Let Assumptions 1-4 be satisfied. Then, the poly-
hedral set S(F, g) is A-contractive in probability for the closed-
loop system if and only if decision variables Gg s = P (Gk.i)
and P; > 0, for i € B?, exist such that

PiF = F(X1 = Wp)Gk; (46)
Pig<ag-1 47)
XowwGrs=1 (48)
where [ = (ll,...,lq)j is defined in Theorem 1. Moreover, the

controller gains are computed as K! ®1%, = U,Gg.;.

Proof: Using the proof of Lemma 2, (10) is written as
xt+1)=(A;® lgp N(w®w)®x(1) + Bs(w@u(t)) + w(t). (49)

Assumption 4 states that X, has full row rank, which
implies that there exists the right inverse matrix G s such that
XwwGk.s =1. Using this result and LPV system (49) along
with the open-loop data given by (38)—(44), one can express

X1 =A X0+ BsUy +W. (50)
By multiplying Gk s on both sides of (50), it yields
As + Bs UwGK,s = (Xl - WO)GK,s- (51)

Accordingto KT ®17, = UGk s,0onehas A, + B(K! @11 ) =
(X1 —Wp)Gk,s. Furthermore, since, in terms of (11), (8) is
equal to (12), it can be concluded that the closed-loop system
matrix, i.e., A% + B,K}, is equal to (X; — Wy)Gk.s, and hence,
(17) is written as the following data-based form:

x(t+1) = (X — Wo)Gk s(0Qw) ® x(1)) + w(t). (52)
Therefore, condition (18) becomes (46) for i € B”. The rest
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of the proof is analogous to that of Theorem 1. [ ]

The results of Theorem 2 can be trivially obtained under the
assumption that the noise is measurable based on the results of
Theorem 1 and a data-based closed-loop representation of the
system. However, the controller designed based on Theorem 2
has a drawback in that it needs the measurement of noise,
which is not practical. Therefore, to overcome this challenge,
a data-driven safe controller based on minimum variance is
designed in the subsequent part of the paper. It is a daunting
challenge to provide risk-informed controllers with safety
guarantees when the noise is not measurable. To achieve this
goal, we characterized the set of all the next states given a
probabilistic characterization of closed-loop systems and
leveraged set containment tools to provide a condition under
which risk-informed safety is guaranteed. We also provided
new optimization formulations to provide minimum-variance
controllers.

B. Minimum Variance-Based Method: Unavailable Noise Mea-
surements

In this subsection, a minimum variance-based approach is
presented to relax the restrictive assumption regarding the
availability of noise measurements. This approach aims to
mitigate the limitations associated with this assumption.

When using indirect learning approaches [30], [31], prede-
termined high-confidence sets are assigned for dynamics A(w)
and B(w). This means that the controller K(w) can only
impact the variance associated with the B(w)K(w) portion of
the closed-loop dynamics. Conversely, with the designed min-
imum variance-based direct learning, the entire closed-loop
dynamics A(w)+ B(w)K(w) is learned, and the control gain
K(w) can be developed to decrease the variance for the entire
dynamics.

To begin with, according to (52), the nominal model of
As+BsU,Gk s is X1Gk . Thereupon, the nominal next state
is computed as

Xa(t+1) = X1 Gg s(w@ w) ® X(1)). (53)
Then, the random part of x(z+ 1) is obtained as
x(t+1)=x(t+1)—x,(t+1)
= -WoGk,s(w®w) @ x(1)) + w(t). (54)

By defining (r) = ((w® w) ® x(1)), the variance of x,(t+1)
is computed as

ELx(t+ 1)x] (t + D] = E[WoGk XX (DG W 1+E

= XTr(¥(x" ()G (Gk.s) + . (55)

The last equality in (55) is obtained owing to the fact that
for a given random vector v € R"! and a matrix Q € R™",

one has [42]
Elv" Qv] = Tr(QE[# ) + E[v]” QE[v] (56)

where v=v—E[v]. Now, based on the Cauchi-Schwarz
inequality [43], one gets
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Tr(EOF (VG Gr.s) < [TH(EOF (G Gr.s)|

< \/Tr(()_C(t))_CT(t))z)Tl’((GIC,SGK,s)z)

< \/Tr(x(t)xT(t))zTr(G,QSGK,s)Z

=& (DX Tr(G Gk.s). (57)
Then, it yields
Elx(t+ 1)x] (t + D] < SIEO)PTr(GE (G.s) + . (58)
Since [IX(1)]| = (w®w)@x(®)]| = lw|Pllx(®] and [l <1,
one gets
ELx,(t + D} (t+ D] < ZIXOIPTr(G ,Gks) + 2
<IxOIPTe(G Gk +Z.  (59)
On account of the inequality F;x(f) < g; for j=1,...,q,itis
concluded that
I8! 2 lg,
X0l < —L = |Ix()|* < (max —L 60
I ( j IIF,-II) (€0)
Thus, (59) becomes
Elx(t+ Dxl ¢+ )] <V (61)

where V= Z(KTI‘(G?SG[(’S) + 1).

Now, the following theorem summarizes the results for the
minimum variance-based safe control design technique. This
extends the results of Theorem 2 for the more realistic case for
which the noise is not measurable.

Theorem 3: Consider the LPV system (8). Let the
input/state data be collected by applying an open-loop control
sequence to the system and organized by (38), (39), and
(41)—(44). Let Assumptions 14 be satisfied. Then, the con-
troller u(t) = K(w)x(t) guarantees a probabilistic A-contractive
property with risk level & for the safe set S(F, g) if there exist
matrices Gg; and non-negative matrices Pj > 0 for i € B” that
satisfy the optimization problem given by

Pi%gi,p p (62)
s.t. PiF = FX,Gg; (63)
Pig<ig-1, (64)
XowGrs =1 (65)
Pi>0 (66)
Tr(Gy ,Gk.s) S p (67)

wherely, = (I, o[, )T with [, ;= \[FjVuFl forj=1,....q

and Vm = Z(Kp + 1)(71 +2 A H’llOg(%) + 2]0g(%)) Furtherm()re,

the controller gains are calculated as K! ®17, = U, G.
Proof: 1t is firstly shown that the next state x(z+ 1) will,

with a probability of 1 -4, be contained in a particular confi-
dence ellipsoidal set described as
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(V1) = [x: (x= X1 G %) V7 (x= X1 G s X(D) < 1. (68)

According to (61) and since E[x,(t+1)]=0, x.(t+1) is a
sub-Gaussian random signal with covariance V. As a result, it
is possible to say with a probability of at least 1 —¢ that [44]

A+ DTV + 1) <n+24 /nlog(é) + 210g(%). (69)

This can also be written as

X+ DIV I+ 1)< 1. (70)
If the following condition is met, then probabilistic A-con-
tractivity with the risk level ¢ is satisfied:

x(1) e S(F,g) > Plx(t+ 1) e S(F,Ag)] = 1 6. (71)

To ensure that the right-hand side of (71) holds, it is neces-

sary to make sure that the set of all feasible next states is a

part of the safe set S with a probability of 1-4§. In other
words, it is required that

{x: (x=X1Gg X)) V7 (x - X1 G X(1)))

Ci{x:Fx<Aag} (72)
Equivalently,
1—(x—X1Ggix()) V' (x— X1 Ggix(1) = 0
= Ag—Fx>0, VieBP. (73)

The application of the S-procedure allows for the identifica-
tion of certain scalars 7 ; for which the fulfillment of the sub-
sequent condition, for ie B” and j=1,...,q, is equal to the
fulfillment of (73)

/lgj—ij—Ti,j
x[1=(x=X1Ggix()) V1 (x - X1Gk;ix(1)] = 0,
Vx,ieB?, j=1,...,q. (74)
By defining Li,j = Ag; — Fjx— i j[1 - (x— X Grix(t) V1x
(x—X1Gg;ix(1)], the optimal x that minimizes L;; is calcu-
lated as

1 _
x= (Eri‘} V)FT + X, G ix(1). (75)
Substituting (75) into L; ; yields
1 _
Lij=Ag;— ZTi,}FjVF; -7~ FiX1Gg;ix(t) 2 0. (76)

Condition (76) is equivalent to the following optimization
problem:

Bi,j = min Li,j >0 (77)
X

st. Fx<g, YieB?, j=1,...,q. (78)

The dual optimization problem can also be written as fol-
lows:

1
Bi’j:n;;?jx /lgj_ZTi,}FjVF]T_Ti,j_']iT,jg (79)
st F = FiXiGkj (80)
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mijz0, VieBP, j=1,....q (81)

where 7;; are the Lagrangian multipliers. Since a feasible
solution exists for the primal problem, the optimal value of the
dual problem is equivalent to the optimal value of the primal
problem.

To analyze the feasibility of the dual problem (79), and
since 0 < B ;, one has

1
Agi>—
8j 2

By computing first and second derivatives of the right-hand-
side of (82) with respect to 7j;, it is deduced that ‘ri*l.z
% JEiVF jT is its maximum value. Hence, by substituting T;"j
into (79), it yields

Tij} FiVF! +7ij+n] 2 (82)

Bi,j=1?]3x Agj=li—nl =0 (83)
sty F = FiXiGg; (84)
20, VieB’, j=1,...,q (85)

where l;= |[F;VF JT Equation (83) is equivalent to minimiz-

ing [ or in other words, Tr(G[];,SGK,s) in V. Thus, with respect

to condition (67), the optimization problem (62) incorporates

upper bounds for V" and /', denoted as V,, and [, respectively.
Now, consider

(86)

iy

Therefore, the proof is completed by using (85) to show that
the matrix P; is non-negative. Also, according to (86) and
(84), (63) is obtained, and inequality (82) using T;j is shown
to be equivalent to (64). Next, the decision variable p > 0 sat-
isfying condition (67) is defined, and the minimization prob-
lem (62), which is a linear programming, is obtained. |

Remark 2: Compared to the indirect data-based safe control
design methods that rely on system identification, the pre-
sented direct learning control scheme requires a considerably
smaller amount of independent data to identify the LPV sys-
tem. Specifically, to identify the system, 2N, (n+m) indepen-
dent data points must be collected to learn about the open-loop
system dynamics. On the other hand, the presented scheme
only requires 2N,n independent data points to learn directly
about the closed-loop system that satisfies safety. Reducing
the required amount of data is advantageous in practical appli-
cations, as it can significantly decrease the time and resources
needed to collect and process the necessary data. Therefore,
the presented scheme is a more efficient and practical
approach to data-based safe control. Moreover, the presented
approach’s reduced data requirement does not lead to higher
computational demands. We use a linear program (LP),
known for its computational efficiency. The smaller number
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of data translates into fewer decision variables, lowering com-
putational needs. Also, reducing the number of data samples
required for learning avoids risky exploration to collect more
data, which is crucial in safety-critical systems.

Remark 3: If vertices of a polyhedral safe set, which are its
extreme points, are activated, the corresponding weights of
other dynamics, ie., (A;,Bj) for i#j, become zero. This
implies that for designing a safe controller, only the extreme
points of a polyhedral safe set are essential in learning the safe
control gains during the simulation. In other words, similar to
the model-based case, i.e., Theorem 1, other cases do not con-
tribute to the learning process of the data-based safe gains.
This consideration ensures that the hypothesis of X,,, becom-
ing full row rank is satisfied during the implementation step.

Remark 4. In this paper, we have developed two types of
safe control methods: a model-based approach and a data-
based probabilistic approach. When a comprehensive under-
standing of the LPV system is accessible, the model-based
controller outlined in Theorem 1 can be seamlessly applied.
However, in situations where the complete model is not acces-
sible, the data-based version of the designed safe controller, as
outlined in accordance with Theorem 3, can be employed.

Remark 5: The safe control design based on A-contractivity
is not myopic; it ensures safety not just for the immediate next
step, but for all future time steps. This approach aims to iden-
tify a feedback controller that guarantees the invariance of a
set, ensuring long-term safety. If a linear controller exists that
can achieve this, our method is capable of finding it [22].

V. SIMULATION AND EXPERIMENTAL VALIDATION

In this section, two practical examples are provided to vali-
date the efficiency of the designed approach. First, the
designed method is applied to a magnetic suspension system,
and then, a safe control of an autonomous vehicle is consid-
ered in Example 2.

A. Example 1: Magnetic Suspension System

Magnetic suspension systems are used in many engineering
applications, such as high-speed trains, frictionless bearings,
vehicle suspension systems, and wind tunnels. These systems
are inherently nonlinear and exhibit open-loop instability,
necessitating closed-loop control to ensure their states remain
within a safe operating range. Fig. 1 depicts the magnetic sus-
pension system under closed-loop control using the presented
method. A reference point is established to stabilize the ball at

q

Probabilistic safe

gain-scheduling
control

Sensor

Fig. 1.
designed safe control approach.

Control diagram of the magnetic suspension system using the
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a specific location.
Discrete-time dynamics of a magnetic suspension system is
considered as follows [45]:

x1(t+1)=x1(t) + hxy (1)

hgap(px (1) + 2pyo + 2)x1 (1)
(1+ p(x1(5) +y0))?

o(t+1)=

x1(8)

hLu
2m(1 + p(x1(2) +0))?

+(1- }%)XZ(I)— u(t) + w(r).

(87)

The ball’s deviation from its intended position is repre-
sented by x;, while its vertical velocity is represented by x;.
The coil voltage noise is denoted as w(f). The desired posi-
tion for the ball is set at yg = 0.05 m. It should be noted that
the learning algorithm does not utilize the system dynamics
(87), but instead uses it to generate data for learning solely
within a simulation environment.

The admissible set for the system states is defined as
Cy={x = (x1,x2) € R?||x1] < 0.05,]x2] < 1}. This set is used to
establish the boundaries of the scheduling variables. A subset
of the admissible set, which is a polyhedral set in the form of
(2) with the following F matrix, is considered the safe set:

203835  1.3397
-20.3835 -1.3397

F= . (88)
~19.8079  0.6697
19.8079  —0.6697

The values of the unknown parameters m (the mass of the
ball), K,, (the viscosity friction coefficient), and L (the induc-
tance capacity) are not known, but their actual values are
m=0.068 kg, K,, =0.001 Nsm~!, and L=0.46 H. The sam-
pling time for the system is set to 2 =0.01 s, the gravitational
constant is g, = 9.8 ms™2, and the coefficient for inductance
variation is 4 =2m~!. Using the Quasi-LPV modeling, the
scheduling variables in (7) are defined as follows:

hgapt(px () + 2uyo +2)x1 (1)
(1+u(x1 (1) +y0))’
hLu
2m(1+p(x1 (1) +y0))*

Ti(x) = (89)

Tr(x) =~

(90)

With the given parameters and the safety set Cj, the
scheduling variables T1(x) and T,(x) meet the conditions
—0.0206 < T1(x) <0.0157 and -0.0676 < T»(x) < —0.0470,
respectively. Due to the extreme values of 7T1(x) and T,(x),
the LPV representation of the nonlinear system (87) requires
four vertices, which corresponds to 27 = 4. The unknown val-
ues of A; and B;, for all i € B2, are

o 4 _| 10000 0.0100 on
00 =011 _0.0206 0.9990
w4 _[1:0000 00100 o)
0= =16.0157 0.9990

1927
Boo=Biy=| O (93)
00 =107 60676
Bo=Bi=| ° (94)
Or= P 00470

Furthermore, the gain-scheduled variables are defined as
| _ 00157-Ty(®) 1,2 _ =0.0470-T5(x)
Wy = "00363 »w; =1-wy, Y9 ="0006

a)(z). It is worth noting that 7';(x) can be expressed as a func-

,andw%: 1-

tion of w(l) and wi using the equation T(x) = —0.0206w(1)+
0.0157w] . Similarly, one gets T5(x) = —0.0676wj —0.0470w] .
In order to conduct the simulation, it is presumed that the
noise w(z) follows a Gaussian distribution and has a covari-
ance of 0.00001/, with 1 =0.90 and 6 = 0.10.

To ensure a fair comparison and highlight the robustness of
the presented minimum-variance method, it is important to
note that the safe control approach outlined in Theorem 2 is
performed without the inclusion of any noise measurements.
This particular approach is referred to as the certainty-equiva-
lence safe control method. By adopting this approach, one can
assess the core performance of the minimum-variance method
and its capability to handle challenging conditions, such as
noisy environments, without any additional considerations or
adjustments.

It should be pointed out that as stated in Remark 2, indirect
learning methods like [28] require 2Ny(n+m)=2x4x 2+
1) = 24 independent samples to design a control policy for the
system (87), while the presented data-based approach in Theo-
rem 3, which bypasses system identification, only requires
2Nyn =2 x4 X2 =16 independent samples to learn a safe con-
trol policy.

Fig. 2 illustrates the state trajectories of the closed-loop sys-
tem, starting from x = [-0.0333,0.5071]7, and computed for
100 distinct realizations of the noise for both safe control
learning methods. By analyzing this figure, it is evident that
utilizing the designed minimum variance-based approach

1.0
0.5
. ) -\)
-0.5
-1.0
—0.05 —-0.03 —0.01 0.01 0.03 0.05
X
(a)
1.0
0.5 x
By 0
-0.5
-1.0
—0.05 —0.03 —0.01 0.01 0.03 0.05

X

(b)

Fig. 2.
Gaussian noise with X = 0.00001/ using a) certainty-equivalence safe control

Time history of the system trajectory for 100 realizations of the

and b) minimum variance-based probabilistic safe control.

Authorized licensed use limited to: Michigan State University. Downloaded on July 20,2025 at 17:30:52 UTC from IEEE Xplore. Restrictions apply.



1928

results in system trajectories that remain within the bounds of
the safe set with a probability of at least 1 -6, and do not
exceed them. In contrast, the system trajectories using the cer-
tainty-equivalence method have the potential to violate the
safety conditions. This indicates that the presented safe con-
troller is more robust in the presence of noise.

Fig. 3 displays the progression of the system’s states for one
of the realizations of w(r) utilizing the certainty-equivalence
and the presented probabilistic safe controllers. It should be
pointed out that no control approach can guarantee exact con-
vergence to the equilibrium point in the presence of noise. The
presented approach offers probabilistic convergence, which
provides more predictability and reduced variance around the
equilibrium point, as illustrated in Fig. 3. Additionally, the
simulation results demonstrate that after one second, the sys-
tem states converge to a vicinity of the origin with high proba-
bility. Also, time traces of the system input under both meth-
ods are exhibited in Fig. 4.

0.6
0.5}
0.4
0.3
0.2
0.1
0
—0.1

0

— X |
-

System states

Time (s)
(a)

0.6 <
0.4
0.3
0.2
0.1

System states

0.1
Time (s)
(b)

Fig. 3.
sian noise with X = 0.00001/ using a) certainty-equivalence safe control and

Time history of the system states for 100 realizations of the Gaus-

b) minimum variance-based probabilistic safe control.

To further demonstrate the effectiveness of the established
probabilistic safe controller, another Gaussian noise with a
covariance of 0.0001/ is applied to the system described in
(87). The initial values of the system states are set to
x=[0.0167,—1]7. The phase portrait of the system states for
100 different realizations of the noise are exhibited in Fig. 5.
The result clearly indicates that the presented approach
exhibits significantly higher robustness in noisy environments
compared to the certainty-equivalence method, which is prone
to safety violations. Therefore, the superiority of the proba-
bilistic safe gain-scheduling controller is further highlighted
through this simulation.

Additionally, to better verify the performance of the pre-
sented approach, Figs. 6 and 7 provide the results of applying
the method established in [46] to the system (87). Specifically,
Fig. 6 is compared to the results shown in Fig. 2(b) starting
from the same initial condition, and Fig. 7 is compared to
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sian noise with X = 0.00001/ using a) certainty-equivalence safe control and

Time history of the system input for 100 realizations of the Gaus-

b) minimum variance-based probabilistic safe control.
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Fig. 5.
Gaussian noise with X =0.0001/ using a) certainty-equivalence safe control

Time history of the system trajectory for 100 realizations of the

and b) minimum variance-based probabilistic safe control.

those in Fig. 5(b) starting from the same initial condition. The
results clearly demonstrate that the designed probabilistic safe
control significantly reduces the variance of the closed-loop
system in the presence of noise, thereby underscoring its supe-
rior performance.

B. Example 2: Autonomous Vehicle

Kinematic model of an autonomous vehicle is considered as
follows [34]:

Xe = WYe +VvqgC080, — vy

Ve = —WiXe +Vg8in6,

Qe = Wi, — Wi (95)
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Fig. 6.

sian noise with covariance £ =0.00001/ using the safe control method pre-

Time history of the system trajectory for 100 realizations of Gaus-

sented in [46]. This can be compared to the result of the control method
designed in this paper, as shown in Fig. 2(b), starting from the same initial

condition.
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< 0
-0.5
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—0.05 -0.03 —-0.01 0.01 0.03 0.05
X
Fig. 7. Time history of the system trajectory for 100 realizations of Gaus-

sian noise with covariance X =0.0001/ using the safe control method pre-
sented in [46]. This can be compared to the result of the control method
designed in this paper, as shown in Fig. 5(b), starting from the same initial
condition.

in which x,, y., and 6, denote the errors in position and orien-
tation. The variables v, and wy represent the longitudinal and
angular velocities, while v; and wy, are the reference veloci-
ties for longitudinal and angular motion, respectively. It is
important to note that the autonomous vehicle’s kinematic
model is open-loop unstable, requiring careful control design
to ensure stability and safety. By defining T’ as the sampling
time, the vector of scheduling variables as I'(f) := [wi(?), va(?),
6.(t)], where each component is constrained within wy €
[-1.417,1.417] rad/s, v4 €[0.1,18] m/s, and 6, € [-0.0873,
0.0873] rad, and the state, input, and reference vectors as

Vy v4C€0s6,
u= , rg= .
Wi Wiy

The nonlinear kinematic model transforms into a discrete-
time LPV representation, as expressed below:

x=|Yel,

(96)

x(i+1) = AC@)x() + Bu(t) - Bra(t) 97)
where
1 wkTs O _1 0
AT = -7, 1 w2l g=l0 0|7,
0.
0 -1
0 0 1

(98)
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According to Remark 1, the system (97) can be expressed as
the following LPV model:

Ny
x(t+1)= )" wi(Aix(t) + Bu() - ra(0). (99)
r=1
Defining (1) := u(r) — ry(t) = ¥, Kix(t), one gets
Ny
(100)

X(t+1) = Z wi(A; + BK)x(?).
r=1

Here, number of vertices, i.e., N, is computed as N, = 2N,
where Ng shows the number of gain-scheduling variables.
Furthermore, the gain-scheduling weights are computed as

N,
W, = l—g[vrs(w(s),wf), r=1,...,N, (101)
s=1
with
wh = —FF__FFEI) (102)
wy=1-wy, s=1,...,Ng (103)

where I'y(#) is the s-th component of the vector of gain-
scheduling variables, i.e., I'(¢), and FIS and I'{ denote their
corresponding lower and upper bounds, respectively. Also,
vrs(wy, w]) signifies any weighting function associated with
eachrulerforr=1,...,N,.

Since, in this example, there are three gain scheduling vari-
ables, i.e., I'(t) = [wr(?),vq(t),0.(¢)], and each of them are
bounded with their corresponding lower and upper bounds,
one has N, =2%=8. Each of the polytopic vertex systems,
i.e., A;, is derived as a combination of the extreme values of
the scheduling variables [47].

The admissible set for the system states is specified as
Cy = {x=(x1,x2,x3) € R?| x1] < 0.2,]x2] < 0.5,]x3] < 0.0873}.

It’s important to note that, as mentioned in Remark 2, indi-
rect learning techniques such as those discussed in [28] neces-
sitate the collection of 2N, (n+m) =2x (3 +2) =80 indepen-
dent samples to create a control strategy for the system
defined in equation (95). In contrast, the data-driven approach
introduced in Theorem 3, which avoids the need for system
identification, only mandates the gathering of 2N,n=2X
8% 3 =48 independent samples to acquire the information
needed for developing a safe control policy.

During the simulation phase, all states are subject to Gaus-
sian noise with a variance of 0.01. We then apply the acquired
data-based probabilistic safe control policy to the system
described in (95). Fig. 8 provides a time-based representation
of the system states, while Fig. 9 displays the trajectory of the
autonomous vehicle operating in a noisy environment.
Notably, these visualizations reveal that the autonomous vehi-
cle successfully achieves safe path tracking even in the pres-
ence of noise, without encountering any safety violations such
as collisions with road boundaries!.

! To watch the animation of the path tracking performance, please click on the
following link: Safe path tracking animation.
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Fig. 9.
sents the vehicle).

Time evolution of the vehicle’s trajectory (the red rectangle repre-

C. Experimental Implementation: Autonomous Vehicle

In this part, the designed controller is implemented on an
actual autonomous vehicle, named the ROSbot 2R robot, as
shown in Fig. 10. The robot operating system (ROS) is used to
control its kinematics. The robot environment is illustrated in
Fig. 11, where the black boxes represent obstacles and the
polyhedral safe set is defined as the 2D space between them.
The black dot on the floor indicates the desired set-point for
the robot. The kinematic model of this robot is as follows:

X =vcosf
y=vsinf
0= wp. (104)

In this model, x and y represent the robot’s positions, and 6
denotes its orientation. Additionally, v and w; are the linear
and angular velocities of the robot, respectively. By defining
x5 = [x,y,0]" as the state vector and x4 = [x4,y4,64]" as the
desired state, the discrete-time error model of the kinematic
system is obtained as follows:

Xe(t+ 1) = Ax.(t) + B(6, + 04)us(t) (105)

where
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Fig. 10. The ROSbot 2R robot.

Fig. 11. Robot’s environment.

cos(@.+6;) O

A=1, B, +6;) =|sin(6.+6z) O|T,
0 1

(106)

and x, = Xy — X5q = [Xe,Ye,0.]7 is the error system’s state. The
objective is to stabilize the error system, which is equivalent
to tracking a desired set-point.

Initially, the environment and the controller are imple-
mented in Gazebo. The dynamic behavior of the robot in
Gazebo is illustrated in Fig. 12 with different episodes of the
simulation over time?. Subsequently, a real implementation on
the robot, as shown in Fig. 10, is conducted. Different
episodes of this real implementation are presented in Fig. 13
to provide a visual representation of the robot’s performance
over time3. It is demonstrated that, under the designed proba-
bilistic safe control approach, the robot can effectively follow
the desired set-point in practice. In the experimental valida-
tion, no significant computational burden is encountered due
to the fact that a linear programming optimization problem is

2 To watch the video of the set-point tracking performance of the robot in
Gazebo, please click on the following link: Safe set-point tracking simulation.
3 To watch the video of the set-point tracking performance of the robot in
real-world, please click on the following link: Safe set-point tracking imple-
mentation.
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Fig. 12.  Time evolution of the vehicle’s motion in the Gazebo simulation.

Fig. 13.
tion (the black boxes are obstacles, and the black dot on the floor is the

Time evolution of the vehicle’s motion in real-world implementa-

desired-point).

solved once using the data collected offline to calculate the
LPV gains. These gains are then employed in the implementa-
tion, resulting in a considerable decrease in computational
requirements, particularly in practical scenarios.

VI. CONCLUSION
This paper presents a risk-informed model-free safe con-
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troller for nonlinear discrete-time systems. A probabilistic safe
gain-scheduling controller is directly learned from data to
bypass the system identification and learn a safe controller
while only relying on measured data. The presented data-
based safe control design amounts to a numerically-efficient
linear program for polyhedral safe sets. In comparison with
the existing indirect approaches, a minimum-variance direct
safe controller that takes into account the risk of safety viola-
tion is learned using less data, and provides robustness guar-
antees.

A limitation of the presented approach, in contrast to the
existing barrier certifier approach, is that it is limited to only
convex safe sets. Future work will extend these results to sys-
tems with nonconvex safe sets. Furthermore, the designed safe
control scheme will be integrated with reinforcement learning-
based controllers to certify their safety while minimizing
interference with their actions. Additionally, for situations
where the LPV approximation is inadequate and significant
nonlinear dynamics persist, our future work will aim to
develop a combined LPV and explicit nonlinear representa-
tion approach. This will provide a more accurate depiction of
the system’s dynamics. We will then design a direct data-
driven safety control strategy that utilizes the LPV framework
while also addressing residual nonlinearities in the closed-
loop behavior.
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