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1. INTRODUCTION

The success of learning-enabled autonomous systems has the
potential to bring unprecedented benefits to humanity and can
make a profound impact on variety of engineering sectors,
including unmanned vehicles and robots. Despite the rapid
progress on learning-enabled systems, tension is also increasing
in the community from a lack of safety guarantees. Ensuring
the safety of autonomous stochastic nonlinear systems remains
a formidable challenge, as traditional methods often resort to
simplified linear models, which may not adequately capture
the intricate dynamics of these systems (De Persis et al., 2023;
Guo et al., 2023). Although recent advancements in data-driven
control suggest potential solutions (Hou and Wang, 2013),
fully integrating robust safety measures into control designs
for systems with unknown nonlinear dynamics and limited data
availability is still challenging.

Safety certifications are particularly crucial for reinforcement
learning (RL), as key to learning-enabled autonomy. Existing
safety certificates typically rely on control barrier functions
(CBFs), which provide safety guarantees but may lead to sub-
optimal performance due to their myopic nature (Reis et al.,
2020; Brunke et al., 2022; Zanon and Gros, 2020; Grandia et al.,
2021; Mazouchi et al., 2021; Zhang et al., 2021; Alshiekh et al.,
2018; Li and Bastani, 2020). This highlights the need for a
model-free approach where safe and RL controllers are directly
learned from data, circumventing the limitations inherent in
CBF methods that depend on an explicit system model for the
safety certificate.

To address nonlinear systems, several approaches have been ex-
plored, such as dynamic linearization (Esmaeili et al., 2022) or
modeling them as linear parameter varying (LPV) systems (Lan
and Mezić, 2013). Despite these methodologies, research on
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designing safe controllers for nonlinear discrete-time systems
remains sparse. Some efforts have focused on leveraging the
LPV framework to develop efficient safe controllers for a spe-
cific class of nonlinear systems, as demonstrated in (Modares
et al., 2023). These methods, however, limit the class of non-
linear systems and can be data hungry. Bedsides, they often do
not fully address aleatory uncertainty, treating it as a bounded
disturbance and providing robust but conservative safety assur-
ances (Ahmadi et al., 2020; Bisoffi et al., 2020). Modeling the
noise with a bounded disturbance is particularly insufficient
in systems where noise exhibits infinite support, highlighting
the urgent need for robust data-based safe controllers that can
effectively manage variability in safety violations and reduce
performance fluctuations.

The paper introduces a novel data-based control design method-
ology tailored for autonomous stochastic nonlinear systems,
emphasizing safety and robustness. This method enhances the
conventional data-driven framework by incorporating stochas-
tic elements and noise, which are typically absent in standard
models such as those discussed in (De Persis et al., 2023).
Unlike prior models that do not account for stochastic behavior
and noise, this approach explicitly integrates these factors into
the control process, thereby improving safety and reliability
in control applications. The controller architecture combines
a linear component designed to maintain invariant safety sets
through λ -contractivity, with a nonlinear component crafted
to mitigate or neutralize the effects of nonlinearities on set
invariance. This comprehensive strategy is articulated through a
closed-loop data-based representation of both linear and nonlin-
ear dynamics. Here, the corresponding control gains are defined
directly in terms of data and decision variables, streamlining
the design process. The formulation of this control system is
expressed as a semidefinite programming (SDP) problem. This
framework allows for the learning of decision variables that
ensure robust set invariance, addressing the challenges posed
by unmeasured noise and residual nonlinearities. The design
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process incorporates additional constraints into the SDP to
strengthen the system’s resilience against these uncertainties.
This method significantly reduces the data requirements tra-
ditionally necessary for system stabilization, making it more
practical for real-world applications where extensive data may
not be readily available. The efficacy of this approach is demon-
strated through simulations, highlighting its capability to en-
hance both the safety and performance of stochastic nonlinear
systems by adeptly managing the complexities introduced by
nonlinear dynamics. The simulations reveal the method’s ro-
bustness in maintaining set invariance and reducing the impact
of stochastic disturbances and nonlinear interactions, affirming
its practical utility and potential for real-world applications.

Notations: In this paper, I denotes the identity matrix of suit-
able dimension. For a matrix A, Ai indicates its i-th row, and Ai j
represents the element located in the i-th row and j-th column.
For matrices or vectors A and B of identical dimensions, A(≤
,≥)B signifies a component-wise comparison, meaning Ai j(≤
,≥)Bi j for every i and j. Tr(A) stands for the trace of matrix
A, and ∥A∥2 and ∥A∥F signify its spectral and the Frobenius
norm, respectively. Also, logdet(A) denotes the logarithm of
the determinant of matrix A. If Q is a matrix, Q(⪯,⪰)0 implies
that Q is negative or positive semi-definite, respectively. For a
set S and a non-negative scalar µ , µS is defined as the set
containing all elements µx such that x ∈S . Additionally, it is
assumed that all random variables are defined on a probability
space represented as (Γ,F ,P), where Γ is the sample space,F
is the associated σ -algebra, and P is the probability measure.
For a random variable ν : Γ → Rn defined on the probability
space (Γ,F ,P), the notation ν ∈ Rn signifies its dimension.
The mathematical expectation of ν is denoted by E[ν ], and if it
is known that E[ν ] = ν̂ , then the covariance of ν is computed
using the formula E[(ν− ν̂)(ν− ν̂)T ].
Lemma 1. ((Coppens et al., 2020)). For a specified random vec-
tor ν ∈ Rn×1 and a matrix Q ∈ Rn×n, one has

E[νTQν ] = Tr(QE[ν̃ ν̃T ])+E[ν ]TQE[ν ], (1)
where ν̃ = ν−E[ν ].
Definition 1. ((Blanchini and Miani, 2008)). A C-set is charac-
terized as a set that exhibits both convexity and compactness,
and its interior includes the origin.
Definition 2. ((Blanchini and Miani, 2008)). A polyhedral C-
set, represented by S (F,g), is defined as

S (F,g) = {x ∈ Rn : Fx≤ g}
= {x ∈ Rn : Fjx≤ g j, j = 1, . . . ,q}, (2)

where F ∈ Rq×n is a matrix with q rows, represented by Fj for
j= 1, . . . ,q, and g is a vector with elements g j, for j= 1, . . . ,q.
Definition 3. ((Blanchini and Miani, 2008)). For a specified pos-
itive definite matrix P, an ellipsoidal C-set is represented by

E (P,1) = {x ∈ Rn : xTP−1x≤ 1}. (3)

2. PROBLEM FORMULATION

Consider the following discrete-time stochastic nonlinear sys-
tem

xt+1 = f (xt)+But +wt , (4)
where xt ∈ Rn is the state vector at time t, f : Rn → Rn is an
unknown nonlinear function mapping the state vector at time
t to the state vector at time t + 1, B ∈ Rn×m is an unknown
matrix representing the input matrix, ut ∈ Rm is the control
input vector at time t, and wt ∈ Rn is the process noise vector

at time t, accounting for uncertainties or disturbances in the
system. According to (De Persis et al., 2023), system (4) can
be equivalently represented as follows

xt+1 = A′z′(xt)+But +wt , (5)
where z′(.) :Rn →Rr denotes a vector-valued continuous func-
tion, and A′ ∈ Rn×r is a constant matrix.
Assumption 1. A continuous function z : Rn → Rn

z exists such
that z(x) = Tz′(x) for a certain matrix T ∈ Rr×nz .

Given Assumption 1, system (5) can be equivalently expressed
as

xt+1 = Az(xt)+But +wt , (6)
where z(xt) is a dictionary of functions used to capture the sys-
tem dynamics. In this paper, z(xt) is chosen such that it contains
both linear and nonlinear functions, i.e., z(xt) =

[
x⊤t S(xt)⊤

]
,

with S(xt) comprising solely the nonlinear functions. Addi-
tionally, the matrix A is partitioned as A = [Al Anl ], where
Al ∈ Rn×n represents the matrix for linear component of z(xt),
and Anl ∈ Rn×(nz−n) represents its nonlinear component.

Assumption 1 means that we choose a library of functions
capable of describing the dynamics of the system, a necessity in
many practical cases such as mechanical and electrical systems
where the dynamics can be derived from first principles, but
exact system parameters may be unknown. This assumption
ensures that the chosen functions z(xt) can adequately capture
the system’s dynamics, facilitating control design.
Assumption 2. The vector wt = [w1,t , . . . ,wn,t ]

T , which repre-
sents the noise in system (4), is assumed to follow a Gaussian
distribution. This means that it has a zero mean and a variance
of Σ, expressed as w∼N (0,Σ), where E[wi,tw j,t ] = 0 for i ̸= j,
and E[w2

i,t ] = σ2
i for i= 1, . . . ,n.

Assumption 3. The unknown matrix pair (Al ,B) is stabilizable.

Before delving into the problem formulation, the concept of
contractive sets, as a fundamental tool for ensuring safety in
this paper, is introduced.
Definition 4. (Contractive Set for Deterministic Systems,
i.e., the system (4) with wt ≡ 0): If for every xt ∈ S ⊆ Rn,
it holds that xt+1 ∈ λS for all t ≥ 0, where 0< λ ≤ 1, thenS
is called a λ -contractive set.
Definition 5. ((Modares, 2023)). (Contractive Set in Expec-
tation (CSiE)): A set S ⊆ Rn is considered λ -contractive in
expectation for the system (4) if xt ∈S implies that E[xt+1] ∈
λS for all t ≥ 0.
Definition 6. (Admissible Set): An admissible set is character-
ized by the permissible physical boundaries within which the
system is allowed to operate.
Definition 7. (Safe Set): A subset of an admissible set is termed
a safe set if, under certain conditions, the system’s trajectories
remain within it, ensuring safety.
Assumption 4. The permissible operational boundaries are rep-
resented by a polyhedral set as described in equation (2).

In (Bisoffi et al., 2020), it is demonstrated that for a deter-
ministic system, a λ -contractive set is also an invariant set.
Specifically, if a set S is λ -contractive and x0 ∈ S , then it
follows that xt ∈ S for all t ≥ 0. In the context of stochastic
systems, (Modares, 2023) establishes that if the set S satisfies
the conditions of being CSiE, then such a set is deemed safe
in expectation. Consequently, if x0 ∈S , then E[xt ] ∈S for all
t ≥ 0.
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Although system trajectories are allowed to evolve within the
admissible set, it is not always feasible to ensure that the entire
admissible set is safe. The size of the safe set is dependent on
the quality of the data and the design of the control system.
Consequently, to enhance safety, the controller is designed to
maximize the size of the safe set, utilizing the available data
and control structure. This approach leads to the identification
of the largest invariant ellipsoid contained within the admissible
set by implementing a model-free safe nonlinear state-feedback
controller.

Furthermore, since the exact model of the systems’ dynamics
are not fully known, and to reduce the impact of modeling
errors, a data-based approach will be used to design the safe
controller.

The following problem summarizes the core challenge ad-
dressed by this research.
Problem 1. Let S be a polyhedral admissible set. The objec-
tive is to find a nonlinear state-feedback control in the form of

ut = Kz(xt) (7)
with K as the feedback gain matrix to make the largest ellipsoid
contained in the polyhedral admissible setS invariant.

This data-driven method allows for the incorporation of real-
time data and learning techniques to adapt to the actual behavior
of the system, ensuring safety even in the presence of noises.

3. CONTROL DESIGN

To construct the data-driven safe nonlinear control, we initiate
the process by applying a sequence of inputs

U0 := [u0 u1 · · · uN−1] ∈ Rm×N (8)
to the system (4) and gathering N + 1 samples of the state
vectors as follows

X := [x0 x1 · · · xN ] ∈ Rn×(N+1) (9)

The collected samples are subsequently arranged in the follow-
ing manner:

X0 := [x0 x1 · · · xN−1] ∈ Rn×N (10)

X1 := [x1 x2 · · · xN ] ∈ Rn×N (11)

Z0 :=
[

x0 x1 · · · xN−1
S(x0) S(x1) · · · S(xN−1)

]
∈ Rnz×N (12)

Moreover, the sequence of unknown disturbances can be repre-
sented as

W0 = [w0 w1 . . . wN−1] ∈ Rn×N . (13)

The initial phase is to construct a representation of the closed-
loop system based on data. Influenced by the work in (De Persis
et al., 2023), and leveraging the data obtained along with
the nonlinear system (4), the data-based form is presented as
follows
Lemma 2. Consider the existence of matrices K ∈ Rm×nz and
G ∈ RN×nz such that [

K
Inz

]
=

[
U0
Z0

]
G, (14)

where G= [G1 G2] with G1 ∈ RN×n and G2 ∈ RN×(nz−n).

Under these conditions, the stochastic nonlinear system (4) with
the controller (7) exhibits the following closed-loop dynamics:

xt+1 = (X1−W0)G1xt +(X1−W0)G2S(xt)+wt . (15)

Fig. 1. Time history of the system trajectory under the designed
nonlinear state-feedback controller.

Proof. By substituting ut =Kz(xt) into (6) and employing (14),
one obtains

xt+1 = [B A]
[
K
Inz

]
z(xt)+wt

= [B A]
[
U0
Z0

]
Gz(xt)+wt

= (AZ0+BU0)Gz(xt)+wt . (16)

Given that the data sequencesU0, X0, X1, Z0, andW0 fulfill (6),
the relation X1 = AZ0+BU0+W0 is valid. By applying this to
(16) and dividing G into G = [G1 G2] with G1 ∈ RN×n and
G2 ∈ RN×(nz−n), one gets

xt+1 = (X1−W0)Gz(xt)+wt

= (X1−W0)[G1 G2]

[
xt

S(xt)

]
+wt . (17)

This concludes the proof. �

3.1 Motivating Example

Consider the following nonlinear discrete-time system

x1,t+1 = x2,t + x31,t +ut , (18a)
x2,t+1 = 0.5x1,t . (18b)

This serves as a motivating example for designing a safety-
oriented nonlinear state-feedback controller. To achieve this, we
choose the following dictionary of functions

z(x) =
[
x⊤ x21 x22 x1x2 x31 x32 x1x22 x21x2

]⊤
. (19)

where x= [x1 x2]
⊤. The computed gain for the controller is

K = [0.1814 −0.5000 0 −1.0000 0 0 0 0 0] . (20)

With this gain, the nonlinear term x31,t in the system dynamics is
effectively canceled, enhancing the safety of the control design.
Figure 3 illustrates the time history of the system trajectory
under the designed nonlinear state-feedback controller.

Motivated by the aforementioned example, initially, the ap-
proach assumes the availability of noise measurements, which
facilitates the design of a safe nonlinear controller in Theorem
1. This initial design leverages the noise data to enhance the
controller’s ability to maintain system safety under stochastic
disturbances. However, recognizing the restrictive nature of this
assumption, the methodology is further developed to address
scenarios where noise measurements are unavailable.
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In Theorem 2, the strategy evolves to design a controller with-
out relying on direct noise measurements. To mitigate the effect
of ignoring the noise data and reduce the impact of noise on
the closed-loop system, the revised design focuses on minimiz-
ing the variance of the closed-loop system. This optimization
objective aims to enhance system robustness by diminishing
the influence of stochastic disturbances, thereby maintaining
performance and safety in a more uncertain environment.
Theorem 1. Consider the stochastic nonlinear system (6) sat-
isfying Assumptions 1–4, along with the controller (7). Let us
assume that the noise is also measured and collected as (13).
Then, the largest ellipsoid E (P,1) contained within the polyhe-
dral set S (F,g) is λ -contractive for the closed-loop system if
and only if there exist a decision variable G2 and non-negative
matrices P and Y such that

min
P,Y,G2

− logdet(P) (21)

s.t. Z0Y =

[
P

0(nz−n)×n

]
, (22)

Z0G2 =

[
0n×(nz−n)
Inz−n

]
, (23)

[
P ((X1−W0)Y )T

(∗) λP

]
⪰ 0, (24)

[
P PFT

j
(∗) g2j

]
⪰ 0, ∀ j = 1, . . . ,q, (25)

P⪰ 0, (26)
(X1−W0)G2 = 0. (27)

Then, Problem 1 is solved, and the safe control gain is obtained
by

K =U0
[
YP−1 G2

]
. (28)

Proof. First, we start with the contractivity condition. Accord-
ing to Definition 5 and condition (27) (which is considered to
cancel the effect of system nonlinearities), the expected value of
the next state is E[xt+1] = x̄t+1 = X1G1xt . Hence, the set E (P,1)
contained in the polyhedral admissible set S is λ -contractive
in expectation, if the following holds

x̄⊤t+1P
−1x̄t+1 ≤ λ x̄⊤t P

−1x̄t (29)
or

(X1G1)
⊤P−1X1G1 ≤ λP−1 (30)

DefineY =G1P. Applying the Schur complement to (30) yields
(24). Condititions (22) and (23) are also directly obtained in
terms of (14).

We now establish criteria for ensuring the contractive set is en-
compassed by the admissible set. The inclusion of the ellipsoid
E (P,1)within the polytopeS occurs if and only if (Boyd et al.,
1994)

max{Fjx|x ∈ E (P,1)} ≤ g j ∀ j = 1, ...,q, (31)
which corresponds to (25). This stems from the requirement
that the ellipsoidal set remains inside the polytope, indicated by

Fjx≤ g j ∀ j = 1, ...,q. (32)

When (32) is multiplied by its transpose, the resulting equation
is

FjxxTFT
j ≤ g2j ∀ j = 1, ...,q. (33)

Considering the definition of ellipsoidal sets, where xxT ⪯ P,
the inequality (33) transforms into

FjPFT
j ≤ g2j ∀ j = 1, ...,q. (34)

Applying the Schur complement to (34) leads to the formula-
tion of the constraint (25). This concludes the proof. �

Building on the initial framework where noise measurements
were assumed available, the discussion now advances by con-
sidering a more practical scenario where such measurements
are not accessible. This leads to Theorem 2, where the focus
shifts to designing a safe nonlinear controller under the con-
straint of having no direct information about the noise affecting
the system. To compensate for this lack of data and to ensure the
continued safety of the system, the design strategy transitions
towards an optimization objective that seeks to minimize the
variance of the closed-loop system. This approach is primar-
ily aimed at reducing the impact of noise, thereby decreasing
the risk of safety violations and enhancing the system’s re-
silience to disturbances in uncertain conditions. Additionally,
unlike Theorem 1, which considers the effects of nonlinear-
ities as needing to be completely canceled, Theorem 2 aims
to minimize their residual impact. This relaxes the restrictive
assumption of complete cancellation and allows for a more
feasible implementation of the control strategy under practical
conditions.
Theorem 2. Consider the stochastic nonlinear system (6), which
satisfies Assumptions 1–4, and is controlled by (7). Assume fur-
ther that noise measurements are unavailable. In this scenario,
the largest ellipsoid E (P,1), which fits within the polyhedral set
S (F,g), is λ -contractive for the closed-loop system if and only
if there exist a decision variable G2, non-negative matrices P,
Y , and M, and a positive scalar µ such that

min
P,Y,G2,M,µ

−β1logdet(P)+β2µ+β3V (35)

s.t. Z0Y =

[
P

0(nz−n)×n

]
, (36)

Z0G2 =

[
0n×(nz−n)
Inz−n

]
, (37)

[
P (X1Y )T

(∗) λP

]
⪰ 0, (38)

[
P PFT

j
(∗) g2j

]
⪰ 0, ∀ j = 1, . . . ,q, (39)

[
M Y
(∗) P

]
⪰ 0, (40)

P⪰ 0, (41)
∥X1G2∥ ≤ µ, (42)
µ >= 0. (43)

where V = Tr(M)+η1∥G1∥22+η2∥G2∥22 and βi for i = 1,2,3
are some user-defined weighting constants for the objective
function. Then, Problem 1 is solved, and the safe control gain
is derived by

K =U0
[
YP−1 G2

]
. (44)

Proof. The nominal value of the next state is computed as

x̄t+1 = X1G1xt +X1G2S(xt). (45)

For the random variable x̃t+1 = xt+1 − x̄t+1 = −W0G1xt −
W0G2S(xt)+w(t), its covariance satisfies
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E[x̃t+1x̃⊤t+1] = E[W0G1xtx⊤t G
⊤
1W

⊤
0 ]

+2E[W0G1xtS(xt)⊤G⊤
2W

⊤
0 ]

+E[W0G2S(xt)S(xt)⊤G⊤
2W

⊤
0 ]+Σ

⪯ E[W0G1PG⊤
1W

⊤
0 ]+2E[W0G1xtS(xt)⊤G⊤

2W
⊤
0 ]

+E[W0G2S(xt)S(xt)⊤G⊤
2W

⊤
0 ]+Σ (46)

where the inequality is derived from the observation that xtxTt ⪯
P, given that xTt P

−1 xt ≤ 1.

Now, according to Lemma 1 and leveraging the Gaussian
characteristics of W0, the expectation of the product involving
Gaussian noise matrices simplifies due to independence as
follows

E[W0H1WT
0 ] = Tr(H1)Σ (47)

where H1 =G1xS(x)TGT
2 is the deterministic part of the matrix

product. Therefore, utilizing the properties of the trace function
for matrices, it follows that

Tr(G1xS(x)TGT
2 )≤ ∥G1∥2∥xS(x)T∥F∥G⊤

2 ∥2 (48)
To find the most adverse value of ∥xS(x)T∥F over the polyhe-
dral set, one has the following optimization problem

max ∥xS(x)T∥F (49)
s.t. Fjx≤ g j (50)

Using the approach detailed in (Ahmadi, 2016), this optimiza-
tion problem can be equivalently formulated as

max η1 (51)

s.t. −∥xS(x)T∥F −η1 ≥ 0, (52)
Fjx≤ g j, ∀ j = 1, . . . ,q. (53)

The objective is to find the largest η1 such that −∥xS(x)T∥F −
η1 is nonnegative for all x satisfying the constraints Fjx ≤
g j ∀ j = 1, . . . ,q, which can be formulated as the following sum
of squares (SOS) problem

max
τ j ,η1

η1 (54)

s.t. so(x)−

(
(∥xS(x)T∥F +η1)+∑

j
τ j(g j−Fjx)

)
is SOS,

(55)
τ j ≥ 0 ∀ j = 1, . . . ,q. (56)

In this formulation, so(x) is an SOS polynomial, and τ j ∀ j =
1, . . . ,q are decision variables.

Given the bound on the Frobenius norm of xS(x)⊤, one gets

Tr(G1xS(x)TGT
2 )≤ ∥G1∥2η1∥G2∥2 (57)

According to this result, and owing to the fact that the objective
is to make the linear part of the system dominant, i.e., ∥G2∥ <
∥G1∥, we derive the upper bound for the expected matrix

E[W0G1xS(x)TGT
2W

T
0 ]⪯ η1∥G1∥22Σ (58)

In a similar manner, we have
E[W0G2S(x)S(x)TGT

2W
T
0 ]⪯ η2∥G2∥22Σ (59)

where η2 is the maximum value of the term ∥S(x)S(x)⊤∥F .
Hence, the inequality (46) becomes

E[x̃t+1x̃⊤t+1]⪯
(
Tr(G1PG⊤

1 )+η1∥G1∥22+η2∥G2∥22
)
Σ+Σ

(60)

Now, consider a matrix M such that

G1PG⊤
1 = YP−1Y⊤ ⪯M. (61)

which results in

Tr
(
YP−1Y⊤)≤ Tr(M). (62)

Applying the Schur complement on (61) yields (40). Also, (60)
becomes

E[x̃t+1x̃⊤t+1]⪯
(
Tr(M)+η1∥G1∥22+η2∥G2∥22

)
Σ+Σ (63)

The impact of noise on the closed-loop system is reduced by
minimizing the expression V = Tr(M)+η1∥G1∥22+η2∥G2∥22.
The remainder of the proof follows the same steps as in Theo-
rem 1 and is therefore not repeated here. �

4. SIMULATION

Simulations are carried out to demonstrate the efficiency of
the proposed safe controller. The controller is applied to a
discretized model of an inverted pendulum system, represented
by the following equations
x1,t+1 = x1,t +Tsx2,t

x2,t+1 =
Tsg
ℓ

sin(x1,t)+
(
1− Tsµ

mℓ2

)
x2,t +

Ts
mℓ2

ut +wt ,
(64)

where Ts = 0.1 s denotes the sampling time,m= 1 kg represents
the mass of the pendulum, ℓ = 1 m is the length of the string,
g= 9.8 m/s2 stands for the gravitational acceleration, µ = 0.01
is the coefficient of rotational friction, u is the control input,
and w is the White Gaussian noise term introduced to simulate
noises. The control parameter λ is selected as 0.98, and the
dictionary of functions is z(xt) =

[
x⊤t sin(x1,t)

]⊤.
The states of the system and the corresponding phase plane
trajectories are recorded. Figure 2 depicts the system states
over time, showcasing the controller’s capacity to stabilize the
pendulum in the presence of noise. Figure 3 presents the phase
plane of the system for different realizations of the Gaussian
noise, which confirms the safety and stability of the closed-loop
system under the designed nonlinear state-feedback control law.
Each trajectory in the phase plane is plotted to illustrate the
system’s response in the presence of noise, showcasing the
effectiveness of the safe controller in preserving the desired
system behavior within predefined safety margins.

5. CONCLUSION

The paper presented a data-based control design for stochastic
nonlinear systems through a double-part data-based closed-
loop control representation. This included a linear component
for λ -contractivity of the safe set to ensure its invariance,
and a nonlinear component to mitigate the effects of non-
linear dynamics. The control gains were expressed through
a closed-form data-based representation and optimized via a
semidefinite programming problem (SDP) to enhance robust-
ness against unmeasured noise and residual nonlinearities. The
efficacy of this methodology was confirmed through simula-
tions, demonstrating its ability to significantly enhance safety
and performance in complex system environments. Future work
will focus on generalizing the approach to non-input-affine
systems, incorporating input constraints, and considering other
noise distributions.
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(a)

(b)

Fig. 2. Time history of the system states for one of the realiza-
tions of the Gaussian noise with Σ = 0.00001I using the
designed nonlinear safe controller.

Fig. 3. Time history of the system trajectory for 100 different
realizations of the Gaussian noise with Σ= 0.00001I using
the designed nonlinear safe controller.
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