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1. INTRODUCTION

Motion planning involves finding a collision-free path for
a robot or vehicle from an initial state to a target state
in a given environment (LaValle, 2006). It becomes a
daunting challenge to design efficient motion planners that
account for dynamic environments, uncertainties, and sys-
tem physical constraints (Kavraki and LaValle, 2016). Var-
ious motion planners have been presented in the literature,
including sampling-based methods like rapidly exploring
random tree (RRT)(LaValle and Kuffner, 2001), behavior-
based approaches (Mataric, 1992), potential fields(Ge and
Cui, 2002), and optimization-based techniques like MPC
(Mayne et al., 2000). Despite the efficiency of sampling-
based approaches, planners that rely exclusively on gen-
erating random waypoints often fail to consider 1) the
system’s dynamic limitations and constraints (LaValle,
2006; Karaman and Frazzoli, 2011), and 2) the perfor-
mance of the traversed trajectories between selected way-
points. More specifically, these planners typically focus
on generating kinematically feasible trajectories without
accounting for the system’s actual dynamics or control
constraints (LaValle, 2006; Karaman and Frazzoli, 2011;
Kavraki et al., 1996), and the existence of a controller
that can make the system reach to one waypoint from
another with acceptable performance. Ignoring the system
dynamics and the competence of the low-level controller to
deliver an acceptable performance can lead to frequent re-
planning and poor planning. As a result, the generated tra-
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jectories may be far from optimal or even infeasible when
executed on the real system, as they do not inherently
guarantee safety or performance (LaValle, 2006; Karaman
and Frazzoli, 2011; Kavraki et al., 1996; Schouwenaars
et al., 2001).

In sharp contrast to classic methods, selecting persistently
feasible and performance-aware reachable invariant sets of-
fers a framework to ensure safety and stability by explicitly
considering the system’s dynamics and constraints (Bor-
relli et al., 2017). These methods compute a set of states for
which the system will always remain within the set under
a given control policy, guaranteeing that the planned tra-
jectory stays within safe regions (Danielson et al., 2016).
Invariant sets can be computed offline (Rakovic et al.,
2005). Methods to find invariant sets include level sets of
optimal control Lyapunov functions (Kousik et al., 2020),
reachability analysis (Althoff and Dolan, 2014), and con-
trol barrier functions (Ames et al., 2019). However, these
existing invariant-based approaches do not guarantee any
performance of the resulting trajectory of the closed-loop
system.

This paper introduces a novel performance-aware motion
planning approach that generates collision-free paths with
some degree of performance using invariant sets. It extends
previous works by creating connected conflict-free invari-
ant sets that ensure the closed-loop system’s trajectories
respect safety and optimality. This is achieved by ran-
domly generating waypoints, forming invariant sets around
them, and connecting them to create a sequence of sets
from the initial to the target point. For each waypoint, the
optimization problem finds the largest conflict-free zone
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and its controller, ensuring safe traversal with guaranteed
performance. Unlike conventional RRT methods, SODA-RRT
accounts for the performance-reachability of connected
waypoints, avoiding those that can only be reached with
poor performance or no safety guarantee. This removes
the need for frequent re-planning and provides perfor-
mance guarantees besides safety. This paper also paves
the way for the usage of physics-informed data-driven ap-
proaches (Niknejad and Modares, 2023). The effectiveness
of SODA-RRT is demonstrated through spacecraft motion
planning to avoid debris.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, I, N, R, and 0 denote the identity
matrix, natural numbers, real numbers, and zero matrices,
respectively. Q(⪯,⪰)0 implies Q is negative or positive
semi-definite, and tr(A) represents the trace of matrix A.

Definition 1. A convex and compact set S that includes
the origin as its interior point is called a C-set. Also, for a
set S, we denote by int(S) its interior.
Definition 2. A polytope is formed by the intersection of
a finite number of half-spaces and denoted as P = {x ∈
Rn : WT (l)x ≤ G(l) for l = 1, ...,m} ⊆ Rn.

Definition 3. An ellipsoidal set is represented by E(P, c)
and is defined as

E(P, c) := {x ∈ Rn : (x− c)TP−1(x− c) ≤ 1}, (1)

where P−1 ∈ Rn×n is a symmetric positive definite matrix
and the center of the ellipsoidal set is denoted by vector
c ∈ Rn.

This paper aims to design performance-aware safe motion
planners for discrete-time linear time-invariant (LTI) sys-
tems described by

x(t+ 1) = Ax(t) +Bu(t) + d(t),

y(t) = Cx(t),
(2)

where x(t) ∈ Rn denote the state vector, u(t) ∈ Rm

represent the input vector, and y(t) ∈ Ro be the output
vector of interest, which corresponds to the space in which
the planning is performed. A ∈ Rn×n and B ∈ Rm×n are
the state and input and C ∈ Ro×n is the output matrix.
The system is under disturbance d(t) ∈ Rn with Gaussian
distribution of N (0, I). In this paper, we assume that the
planner has full knowledge of the states of the system x(t).

Assumption 1. The pair (A,B) is stabilizable.

Assumption 2. The output y(t) is subject to constraints

y(t) ∈ Y. (3)

The output set Y ⊆ Rm is typically non-convex; however,
it can be characterized as the union of convex sets

Y =
⋃

κ∈IY

Yκ, (4)

where the index set IY is finite (|IY | < ∞) and each
component set Yκ ⊆ Rm is a compact polytope defined
by a set of linear inequalities

Yκ =
{
y : WT

Yκ
(l)y ≤ GYκ

(l)for l = 1, ..., |IY |
}
. (5)

For the purpose of the tracking used by the motion
planner, for the system (2) with ȳ, an equilibrium pair
(x̄, ū) is defined as

M

[
x̄
ū

]
=

[
0
ȳ

]
, (6)

where

M :=

[
A− I B
C 0

]
. (7)

Assumption 3. The matrix M is invertible.

The equilibrium pair (x̄, ū) will change over time as the
desired output ȳ varies to guide the system from the start-
ing point to the endpoint. To ensure safety throughout the
trajectory, this paper employs the concept of λ-contractive
sets, which will be defined next.

Definition 4. (Blanchini, 1999) λ−Contractive and Posi-
tive Invariant Sets: Consider the system (2). Let λ ∈ (0, 1].
The set E(P, c) is considered λ-contractive if for any x(t) ∈
E(P, c) it holds that x(t + 1) ∈ λE(P, c). When λ = 1,
E(P, c) is positive invariant.

Finally, to connect a sequence of sets that covers the initial
and target points, the following definition of graphs is
provided.

Definition 5. A directed graph denoted as G = (V,E),
comprises a set of vertices V and a set of directed edges
E. Each directed edge (u, v) ∈ E is an ordered pair of
adjacent vertices, where u is the tail (starting vertex) and
v is the head (ending vertex). A path in a directed graph is
a sequence of vertices connected by directed edges. A graph
search algorithm aims to find a path between vertices in
the graph, satisfying given criteria.

2.1 Motion-Planning Problem

This paper presents SODA-RRT, a motion-planning algo-
rithm that steers the system output y(t) from y(0) ∈
int(Y) to yf ∈ int(Y) through a sequence of randomly gen-
erated overlapping invariant sets. Within these sets, safety
and acceptable performance are guaranteed by a learned
controller, subject to the system dynamics. Unlike clas-
sic approaches, SODA-RRT ensures safe and performance-
aware reachability of planned trajectories by replacing
the Euclidean distance metric in standard RRT with a
set membership-based criterion. The multi-step SODA-RRT
algorithm problem is formally described below.

Problem 1. Consider the system (2). Let y(0) ∈ int(Y) and
yf ∈ int(Y) be the initial and target points, respectively.
The objective is to find a sequence of equilibrium points
(x̄i, ūi), i = 1, ..., |I| in graph G = (I, E) along with low-
level controllers to traverse along them with the guarantees
of reaching the target point safely and with acceptable
performance. For a given equilibrium point (x̄(t), ū(t)), a
tracking control law for the time step t ∈ N is given by

u(t) = K(t)
(
x(t)− x̄(t)

)
+ ū(t), (8)

where K(t) is the feedback associated with an invariant
set. The steps to this problem are formulated as follows.

(1) Randomly sample the output space Y to find a
candidate waypoint yi. Take this waypoint yi as a
virtual equilibrium output from which an equilibrium
point (x̄i, ūi) is found using (6).

(2) For each candidate waypoint yi, formalize a feedback
control design problem that finds a control gain Ki
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that leads to an invariant set Si centered at the can-
didate waypoint. The invariant set will incorporate
performance and safety constraints.

(3) If at least one of the previously accepted waypoints is
within the invariant set associated with the candidate
waypoint yi, then store the corresponding control
gain Ki, its invariant set Si, and the equilibrium pair
(x̄i, ūi) in graph G. Otherwise, reject the candidate.
The stored values will be used to construct the
controller sequence Up = {u(t), ∀t ∈ N} using (8).

(4) Repeat steps 1-3 until an acceptable waypoint is
found within the vicinity of the target point yf .

Theorem 1 provides sufficient conditions for the existence
of a path that solves Problem 1 for the general case of path
planning using invariant sets.

Theorem 1. (Danielson et al., 2016) Let a graph be formed
by connecting the equilibrium points obtained by solving
steps of Problem 1. If the graph G = (V,E) has a path
from the initial equilibrium output Vinit = y0 to a node
Vtarget within the neighborhood of the target output yf
with a radius of rf , then the Problem 1 can be solved.

3. CONTROL DESIGN FOR STEP 2 OF PROBLEM 1

To clarify the second step of Problem 1, without loss of
generality, let us first consider a regulation problem for
the system (2) with the equilibrium pair (x̄ = 0, ū = 0).
In this case, the control law (8) simplifies to

ufb(t) = K x(t), (9)

where K ∈ Rm×n. The target is to find a control feedback
gain K that balances safety and performance. To this end,
we formalize an optimization problem that leads to finding
a conflict-free set or zone that covers a given waypoint.
That is, inside this set, the system can traverse from the
waypoint to any other point safely and with an acceptable
performance. To find an ellipsoidal conflict-free zone, we
parameterize the control gain K using an ellipsoidal λ-
contractive safe set E(Ps, 0). We impose a constraint
into the LQR problem to ensure that the conflict-free
ellipsoidal set is inside the polyhedral safe set Xph. By
optimizing the LQR cost along with maximizing the size
of the conflict-free zone, a trade-off between safety (which
is respected inside the conflict-free zone) and performance
is achieved. Thus, a control goal is found that guarantees
safety and some performance level inside the conflict-free
zone.

Assumption 4. For the system (2) and the cost function
(11), the pair (A,

√
Q) is detectable.

3.1 Problem Statement

Problem 2. Consider system (2) and Assumptions 1 and
4. Find a feedback control gain K, same as in (9), and
an associated λ−contractive ellipsoidal set E(Ps, 0) =
x(t)TP−1

s x(t) ≤ 1 contained is the polyhedral safe set Xph

for the states of the system

Xph =
{
ζ ∈ Rn : WT (l)ζ ≤ 1, l = 1, · · · , nl

}
,
(10)

that ensure the stability and safety of the linear dynamical
system (2) while preserving some degree of optimality for
the following cost

J =

∞∑
t=0

E
[
x(t)TQx(t) + u(t)TRu(t)

]
, (11)

where Q ∈ Rn×n ≻ 0, R ∈ Rm×m ≻ 0.

Theorem 2. Consider the system (2) and Assumptions (1)
and (4). Then, the safety-parameterized optimal state
feedback control gain K that solves Problem 2 is given
by

K = FP−1
s , (12)

where Ps ∈ Rn×n and F ∈ Rm×n are the solutions (if they
exist) to the following optimization problem

min
γ,F,Po,L,Ps,H

α1γ − α2 log detPs (13a)

s.t.

[
Po − I APs +BF

∗ H

]
⪰ 0, (13b)

Po ⪰ I, (13c)[
λPs APs +BF
∗ Ps

]
⪰ 0, (13d)

[
H Ps

∗ Po

]
⪰ 0, (13e)

[
L F
∗ H

]
⪰ 0, (13f)

WT (l)PsW (l) ≤ 1, l = 1, · · · , nl, (13g)

Ps ⪰ 0, (13h)

tr(QPo) + tr(RL) ≤ γ, (13i)

where α1, α2 > 0 are design parameters to tune the safety-
optimality balance. Besides, the set associated with Ps is
a conflict-free and performance-aware ellipsoid.

Proof. Consider the following LQR optimization problem
(De Oliveira et al., 2002) for the system (2)

min
γ,K,Po,L

γ (14)

s.t. (A+BK)Po(A+BK)T − Po + I ⪯ 0,

Po ⪰ I,

L−KPoK
T ⪰ 0,

tr(QPo) + tr(RL) ≤ γ.

If one parameterizes the feedback gain K considering the
λ−contractivity of the maximum size ellipsoidal safe set
characterized by E(Ps, 0) = x(t)TP−1

s x(t) inside the given
polyhedral safe set Xph (10) as

min
F,Ps

− log detPs (15)

s.t.

[
λPs (APs +BF )T

∗ Ps

]
⪰ 0,

Ps ≻ 0,

W (l)TPsW (l) ≤ 1, l = 1, · · · , nl.

where λ ∈ (0, 1) is the contractivity factor of the safe set
defined by Ps and F = KPs. Combining (14) and (15)
leads to (13) with tuning parameters for the costs (α1

and α2) to balance safety and optimality. Also, the matrix
H represents the relation between the Lyapunov stability
matrix Ps and the controllability Gramian Po. □

4. MOTION-PLANNING METHODOLOGY
AND ALGORITHM

Invariant sets around equilibrium pairs (x̄i, ūi), i =
1, 2, ..., |I|, decompose motion planning problem into regu-
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lation subproblems (Problem 2), each steering the system
between invariant sets while ensuring safety and perfor-
mance. Solving these subproblems sequentially simplifies
motion planning into components focusing on specific tra-
jectory segments. This section introduces tools and meth-
ods to address all steps of Problem 1 combined.

4.1 General Properties of SODA-RRT Graph

At the execution step, the idea is for the control input
u(t) as in (8) at each time step t to be selected from a set
of previously computed controllers satisfying safety and
optimality locally. For i ∈ I, where I is the index set
of the local controllers, one has (x̄i, ūi) as an equilibrium
pair. The equilibrium pair relates to a selected desired
output ȳi ∈ Y with (7). In the vicinity of each equilibrium
state x̄i, one can describe an associated ellipsoidal positive
invariant set as E(Pi, x̄i) in (1). A control feedback gain Ki

associated with each Pi guarantees the invariance of the
ellipsoidal set E(Pi, x̄i) when applying ui(t) = Ki(x(t) −
x̄i) + ūi. The method in Section 3 generates an ellipsoid
with an associated control gain around each equilibrium
pair. The graph generation rule connects a tail to a
head if the control ellipsoid at the center of the head
contains the tail, ensuring that the system’s states stay
within the ellipsoids during the transitions, as shown in
Fig. 1. This rule allows us to find a series of invariant

Fig. 1. System trajectory from tail (A) to head (B) while
staying inside the control gain’s blue ellipsoid.

ellipsoids, overlapping with each other, by which one can
perform a gain scheduling that results in a safe and optimal
transition from a starting point to a target through the
invariant sets. Specifically, the motion-planning algorithm
picks a control input in the form of (8) at each step. A
graph search constructs this set. For all edges of the graph
G(I, E), the indices I determine the control gains to be
used. If there is an ellipsoid containing two vertices (i, j),
there can be an edge between the two vertices and it is
possible to transition between vertices. One can switch
the controller from the one active around vertex i once
the states enter the ellipsoid of the next vertex j.

4.2 Graph Generation

Below is the Algorithm used to generate the graph G =
(I, E) based on the general specifications that are brought
in Subsection 4.1. If this algorithm is run successfully all
aspects of Problem 1 are answered.

In Algorithm 1, A,B are the system (2) matrices, rf
is the radius of the circle around the target point, P
is the probability of sampling from the target area or
the rest of the output space, and o is the output space
dimension. Nodes are specified with q, including qinit,
qsamp, qapp, and qnearest as the initial, sampled, approved,

Algorithm 1:
G = (I, E) ← SODA-RRT(qinit, qtarget, λ, A,B,R,P)
qapp ← qinit
G ← InitGraph()
G ← AddNode(̸0, qinit,G)
G ← AddCtrl(̸0, ̸0, qinit,G)
while EucDist(qapp, qtarget) ≤ rf do

qsamp ← RandSamp(qinit, qtarget,P, o)
bsamp ← FindBorder(qsamp,Y1, . . . ,Yj)
Psamp,Ksamp ← GenEl(A,B, λ, qsamp, bsamp)
InsideEl, qnearest ← ChParent(qsamp, Psamp,G)
if InsideEl == True then

qapp ← qsamp

G ← AddNode(qnearest, qapp,G)
G ← AddCtrl(Ksamp, Psamp, qapp,G)

end
end

and the nearest node selected for parent, respectively.
EucDist finds the Euclidean distance between its inputs.
GenEl(A,B, λ, qsamp, bsamp) generates a positive invariant
ellipsoidal set with qsamp at its center. After finding the
convex polyhedral set around each sampled location using
Algorithm 3 (outputting bsamp), LMIs (13) are solved by
transferring the coordinates of qsamp to the origin to find
the largest conflict-free ellipsoidal set Psamp and feedback
gain Ksamp.

CostE ← ElCost(q, qc, P ) = (q − qc)
TP−1(q − qc). (16)

The matrix Psamp obtained from (13) can be used as
a measure of proximity. The GenEl(A,B, λ, qsamp, bsamp)
function generates an ellipsoidal set E(Psamp, qsamp) in
the state space Rn. However, since the motion planning
is performed in the output space Ro, it is necessary to
project this ellipsoidal set onto the lower-dimensional out-
put space. The PProj ← Proj(P ) function accomplishes
this task by mapping the ellipsoidal set from the state
space to the output space.

Algorithm 2:
InsideEl, qnearest ← ChParent(qapp, Psamp,G)
CostG ← ∞
Pproj ← Proj(Psamp)
InsideEl ← False
qnearest ↚0
for q ∈ G do

CostE = ElCost(q, qapp, Pproj) if
CostE < CostG and CostE ≤ 1 then

CostG ← CostE
qnearest ← q
InsideEl ← True

end
end
return InsideEl, qnearest

Algorithm 2 proposes a novel method for selecting the
parent node based on the ellipsoidal cost (16). It iterates
through all vertices of G and identifies the vertex with the
minimum cost of traversing to qsamp. Unlike RRT, which
connects vertices based on proximity, our approach estab-
lishes connections based on set invariance and optimality
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criteria derived from the system dynamics, ensuring a safe
and optimized trajectory.

4.3 Finding Border

We construct a convex polyhedral set at each step after
sampling the output space. In our paper, we focus on find-
ing a convex set around each sampled point by leveraging
prior knowledge of the convex sets inside the nonconvex
set, as shown in Fig. 2, where Y = Y1 ∪ . . . ∪ Y4. After
sampling, the location is tagged based on its polyhedron,
and its boundary is defined by determining the distance
to the polyhedron’s borders. To ensure that the constraint
sets overlap, the tag may change with a user-defined prob-
ability among the convex sets into which the location falls.

Algorithm 3:
bsamp ← FindBorder(qsamp,Y1, . . . ,Yϕ)

Check which constraint set Yi for i = 1, ..., ϕ sampled
location qsamp falls into
if qsamp has multiple tags then

ρ = rand {1, ..., τ}
Assign the boundaries of Yρ to sampled location
qsamp

else
Assign the boundaries of the found Y to
sampled location qsamp

In Algorithm 3, ϕ and τ denote the number of constraint
sets in the nonconvex output space and those containing
a sampled location, respectively.

4.4 Execution

After sampling the space, performing a graph search, and
finding a viable path from the initial state xinit to the
target state xtarget, our algorithm will run Algorithm 4.
For each invariant ellipsoid Ei, we define Pi,Ki, x̄i, ūi

as the set parameter, feedback gain, equilibrium state,
and feedforward term, respectively. Algorithm 4 searches
for path in the graph G = (I, E) for a sequence of
invariant sets E0, ..., EN ∈ I, where E0 contains the initial
state xinit and EN , xtarget which corresponds to the final
output ytarget. At each time step t ∈ N, Algorithm 4
uses the control input u(t) = KEt

�
x(t)− x̄Et


+ ūEt

where

x̄Et
= [qEt

0]
T
. The control parameters are updated when

the state x(t) enters a new ellipsoid Et = Enext. It should
be mentioned that the new ellipsoid is not necessarily
the next invariant set after Ei and thus at each step we
need to check all the future possible invariant sets in
Sfuture := {Ei+1, ..., EN}.

5. SIMULATION EXAMPLE

This section presents an application 1 of SODA-RRT to the
problem of spacecraft docking maneuvers. The relative
dynamics model of a pair of spacecraft is presented below
(Wie, 1998).

z̈1 = 3r2z1 + 2rż2 + v1
z̈2 = −2rż1 + v2

(17)

1 https://github.com/NarimanNiknejad/SODA-RRT

Algorithm 4: Execution()

initial control parameters K = KE0
, x̄ = x̄E0

, ū =
ūE0

, y(0) = Cxinit, x(0) = xinit

t = 0
while EucDist(y(t), qtarget) ≤ rf do

for Es ∈ Sfuture do
if y(t) ∈ Es then

update gain and equilibrium pair
K = KEs , x̄ = x̄Es , ū = ūEs

generate control input u(t) = K(x(t)− x̄) + ū
let x(t+ 1) = Ax(t) +Bu(t) & y(t) = Cx(t)
t = t+ 1

where the states of the system x = [z1, z2, ż1, ż2]
T has

relative radial and orbital positions and velocities, the
inputs u = [v1, v2]

T are the normalized thrusts in the
direction of radial and orbital velocities, and y(t) are the
system outputs. Linearizing the model about a circular
orbit yields r = 1.1× 10−1sec−1. One can put (17) in the
state space format. The system matrices are as follows

A =




0 0 1 0
0 0 0 1
3r2 0 0 2r
0 0 −2r 0


 , B =



0 0
0 0
1 0
0 1


 , C =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 .

(18)

The dynamics of the spacecraft (18) is discretized with
the zero-order hold technique and with a sample time of
30 sec.

We examine the following scenario concerning planning a
maneuver around a piece of debris, as depicted in Fig. 2.
The debris, a square of 16m, is positioned at [25, 25]T m.
The output set Y is derived from the difference between
the bounding box [−50, 50]×[−50, 50]m and the debris set.
To form the component sets Y1, . . . ,Y4, which constitute
the output set Y = Y1∪. . .Y4, each constraint defining the
debris set is inverted and intersected with the bounding
box. The collection of convex subsets Y1, . . . ,Y4 is also
visualized in Fig. 2.

Fig. 2. The nonconvex set Y = Y1 ∪ . . .Y4 can be covered
by four convex sets shown in different colors.

The spacecraft begins at yi = [−30, 30]T m and the des-
tination is located at yf = [30,−30]T m. The contraction
ratio is set to λ = 0.95. The LQR weightings are chosen
as R = 102 × I2 , Q = diag[10−4, 10−4, 102, 102].

The probability of sampling from the target area with
rf = 5m is set to P = 10%. We evaluate SODA-RRT
against LQR control and benchmark it against LQR-RRT,
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(a) (b)

Fig. 3. (a) SODA-RRT Algorithm; ellipsoidal sets and
trajectories (associated ones are shown with the same
color); and (b) LQR with RRT waypoints (blue) and
LQR (pink) trajectories.

which uses SODA-RRT vertices but LQR gains. Simulations
reveal that LQR fails to ensure safety, while LQR-RRT fails
to evade collisions due to relying on LQR gain lacking
inherent safety guarantees. Moreover, LQR-RRT may have a
higher trajectory cost than SODA-RRT since it sequentially
follows waypoints, unlike Algorithm 4, which selects gains
based on safe ellipsoidal sets. We conduct Ts = 200
simulations and compute the average trajectory cost using
the following quadratic cost

J̄Ts =
1

Ts

Ts∑
k=0

T∑
t=0

E
[
xk(t)

TQxk(t) + uk(t)
TRuk(t)

]
.

Table 1 shows that SODA-RRT provides safety and poten-
tially can reduce trajectory cost compared to regular RRT
with LQR gain, due to its overlapping positive invariant
sets. Fig. 3 illustrates that the trajectories remain within
the ellipsoidal sets, ensuring safety without breaching
boundaries or colliding with the obstacle.

Table 1. Different Motion Planning Algorithms
Comparison

Algorithm Safety Breach Average Cost (J̄200)

SODA-RRT 0/200 5.008× 1005

LQR-RRT 173/200 1.385× 1006

LQR 200/200 2.105× 1005

6. CONCLUSION

This paper presents a novel motion planning approach
that generates collision-free paths with guaranteed safety
and optimality using interconnected invariant sets. The
proposed algorithm, SODA-RRT, advances existing meth-
ods by constructing the largest possible conflict-free in-
variant sets through a single-shot optimization process,
balancing safety and performance. This technique effec-
tively trades off between collision avoidance and trajec-
tory optimality. The algorithm’s efficacy is demonstrated
through spacecraft motion planning scenarios involving
debris avoidance. Future research directions include real-
time implementation and the incorporation of data- and
physics-informed sets to handle uncertain systems, further
enhancing the method’s robustness and applicability to
complex, dynamic environments.
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