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Abstract: This paper presents a new data-driven conflict-aware safe Linear Quadratic Regula-
tor (LQR) with dual safety measures. During design, the LQR control gain is optimized solely
from data to minimize costs and enlarge a conflict-free zone ensuring safe optimal trajectories. In
execution, a control barrier certificate (CBC) verifies the safety of controller actions. The design-
time intervention implicitly aligns LQR weights with safety constraints, preventing harmful
conflicts and reducing the need for frequent CBC interventions. To achieve this, the LQR gain
is parameterized with a A-contractive safe set. Simulation results on the vehicle steering model

demonstrate the effectiveness of this approach.
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1. INTRODUCTION

Data-driven control represents a transformative shift from
traditional methodologies, leveraging system data to in-
form control strategies amidst complex, uncertain, or vari-
able system dynamics (Hou and Wang, 2013; Markovsky
and Dorfler, 2021). Unlike conventional methods relying
solely on mathematical models, data-driven approaches
directly incorporate data to tailor control strategies for
specific performance objectives.

The data-driven Linear Quadratic Regulator (LQR) emerges
as a cornerstone in this methodology. Both indirect and
direct data-based (Krishnan and Pasqualetti, 2021; De
Persis and Tesi, 2021) methodologies are presented for
learning the LQR solutions. Indirect data-driven LQR
utilizes historical data for system identification, guiding
subsequent LQR gain design through model-based meth-
ods. In contrast, direct data-driven LQR, known as model-
free LQR, circumvents system identification, directly op-
timizing gain to minimize a cost function.

Many control systems are safety-critical systems for which
the safety guarantee of the learned controller is crucial
for their successful deployment on real-world applica-
tions (Lee, 2023). Ensuring that system states will remain
within predefined safe regions and avoiding unsafe states or
actions despite uncertainties requires robustness analysis,
uncertainty quantification, and the integration of safety
constraints.

Data-driven Safe optimal control, specifically safe LQR,
has also been considered in the literature (Zanon and
Gros, 2020; Choi et al., 2020). These approaches typically
leverage add-on methods such as control-barrier certifi-
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cates (CBC) methods (Ames et al., 2019; Agrawal and
Sreenath, 2017) to certify the safety of an unconstrained
optimal controller (e.g., the LQR controller) by correcting
its actions in real-time. If the conflict between safety con-
straints and the performance function to be optimized is
significant, this approach can lead to undesired behaviors,
such as performance deterioration, infeasibility, or even
unsafe actions. Designing conflict-aware LQR. controllers
can avoid frequent intervention requirements of CBCs,
which is key to the success of future learning-enabled
systems with safety constraints.

This paper introduces a novel data-driven conflict-aware
safe LQR featuring dual safety interventions. At a higher
level (or during design), the LQR control gain is solely
data-driven, optimizing cost while enlarging a conflict-
free zone to ensure safe trajectories. At a lower level (or
in real-time), a CBC intervenes to certify the safety of
controller actions. The higher-level intervention implicitly
aligns LQR weights with safety constraints, mitigating
destructive conflicts that would otherwise necessitate fre-
quent CBC interventions.

Moreover, the paper presents a new data-based approach
for learning the LQR control while optimizing the size
of the conflict-free zone. This method entails a closed-
loop representation of system dynamics using data and a
decision variable, ensuring robust stability and a trade-
off between optimality and safe zone size. The quality
of collected data significantly impacts the size of the
conflict-free zone and performance, as validated through
simulation results on a vehicle steering model.

Additionally, A-contractivity (Blanchini and Miani, 2008)
emerges as a fundamental principle in designing safe con-
trollers, ensuring deviations from nominal behavior in-
duced by uncertainty or disturbances remain bounded.
Integrating A-contractive properties into data-driven LQR
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controllers mitigates instability risks, ensuring robust per-
formance under uncertainty.

The paper’s primary contribution lies in integrating
safety into the LQR controller structure through the \-
contractivity principle. Parameterizing the LQR gain with
a A-contractive safe set and optimizing its volume deter-
mines the maximum safe optimal region within a given
polyhedral safe set. Both model-based and direct data-
driven safe LQR controllers are formulated in terms of
Linear Matrix Inequalities (LMIs), with the maximum
safe optimal set size heavily influenced by the quality of
collected data.

This paper is organized as follows. Section 2 defines the
safe LQR problems. Sections 3 and 4 provide the model-
based and data-driven safe LQR formalism, respectively.
In Section 5, a simulation example is conducted to show
the superiority of the proposed approach. Finally, section
6 concludes the paper.

2. PROBLEM FORMULATION

Consider a time-invariant stochastic linear discrete-time
system of the form

xk+1:A:Ek+Buk+wk, (1)
where k € N, x;, € R" is the system’s state, and ug; € R™
is the control input. Moreover, A and B are unknown
transition and input matrices of appropriate dimensions
respectively. Furthermore, wy € R™ represents the system
noise.

Assumption 1. The system noise wy is governed by the
Gaussian distribution N'(0, W) where W = 0 € R"*™ is

its covariance matrix.

Assumption 2. The pair (A, B) is unknown but stabiliz-
able.

The goal is to design a linear controller that stabilizes the
system while respecting safety constraints despite uncer-
tainties in A and B matrices. Since stability and safety
are bare minimum requirements, optimal performance of
the controller is typically achieved by optimizing a perfor-
mance or cost function. Before formalizing the safe optimal
control problem, the controller form, the cost function, and
the safe set are defined next.

In this paper, the control input has the following form

up = K xp, (2)
where K € K is the control gain and the set of stabilizing
control gains is defined as K = {K € R™*" : p(A 4+
BK) < 1}.
The cost function that is used to assess the system perfor-
mance is given by

(oo}
J(K,xo) = nykIE (2} Qi + uf Ruy] (3)
k=0
where @Q € R"*™ = 0, R € R™*™ » (. Also, v € (0,1) is
the discount factor.

Assumption 3. For the system (1) and the cost function
(3), the pair (4,+/Q) is detectable.

Finally, the safe set is assumed to be a polyhedral set P
defined as

7):{:13672" | oz <1, s:l,---7q}, (4)
specifies the safe operational region of states.
Now, let us consider the following problems.

Problem 1. Consider the system (1). Design a controller
(2) that optimizes the cost function (3) while respecting
the safety constraints (4).

A significant challenge is that designing a feedback con-
troller that solves Problem 1 is computationally in-
tractable. Therefore, it is a common practice to learn a
linear controller in the form of (2) without accounting
for the safety constraints (i.e., to solve a standard LQR
problem) and use CBCs (Ames et al., 2019) to myopically
intervene with the actions of the LQR controller to correct
their unsafe actions. That is, given wuj as the current
action of the LQR controller at time k&, CBC myopically
intervenes with LQR by solving the following minimally-
intervened safety-certified optimization

ui® = argmin(u — uj) T (u — u}) (5a)

u

st h(zpe1) — (1 —n)h(zg) > 0. (5b)
where u;° is the safe optimal control signal to be applied,
0 <n <1, and h(xg) > 0 represents the safety region. We
can have multiple hy(xy) =1 —alz, > 0,s =1,---,q for
the safe set in (4).

Unfortunately, when the conflict between the performance
function and the safety constraints is huge, the low-level
intervention step must be performed frequently, which can
ruin the performance or even cause infeasibility or unsafe
actions under uncertainties. To resolve this issue, which is
a significant impediment in the realization of safe leaning-
enabled controllers, a new safe-optimal control design is
presented that learns a control gain that not only optimizes
the LQR cost but also leads to a reasonable conflict with
safety requirements, which can be resolved using CBC
without the need for frequent intervention. To this end, the
following problem is formalized. The following definition is
required.

Definition 1. A\— Contractive and Positive Invariant Sets
Consider the system (1). Let A € (0,1]. The set P is
considered A-contractive if for any zj € P it holds that
Zrp41 € AP. When A = 1, P is positive invariant (Blanchini
and Miani, 2008).

Problem 2. Consider the system (1). Suppose we have
collected the following N sequences of data

Up = [ug uy -+ un—1], (6a)
X() = [1’0 T, - J?N_l], (6b)
X, =[z1 22 -+ zN], (6¢)

where Uy € R™*N X, and X; € R™*¥N. The correspond-
ing noise sequences Qg € R"*N are

Qo = [wo w1 -+ wN-1], (7)
in which we have no access to it.

e The Design time Phase: Given the available data,
learn a control gain K for (1) to optimize a weighted
sum of the cost function (3) and the size of the largest
A—contractive ellipsoidal set fo;lxk < 1 contained
in the safe set (4) (i.e, a conflict-free zone). This
ensures performance guarantees over a conflict-free
zone of reasonable size. We call this a conflict-aware
controller.
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e The Real-time Phase: Solve the optimization (5) to
correct possible unsafe actions of the learned conflict-
aware controller.

2.1 LQR Formulations Without Safety Considerations

We first discuss existing semi-definite program (SDP)
based formulations for solving the LQR problem with
no safety constraints. There are two main approaches to
formulating the infinite-horizon stochastic LQR problem
(3): dynamic programming (Ricatti equation) and state
covariance approaches. The state covariance formulation
can also be interpreted as the Ho—norm minimization
problem of the cost function (3). From the optimization
theory perspective, the first approach is called the primal
problem and the second one is the dual problem. In both
formulations, K is the optimal LQR gain that minimizes
the quadratic cost (3). The primal and dual SDP optimiza-
tions for solving the LQR problem are provided next.

LQR Primal Problem
—1

max Tr(W™Y) (8a)

st. y(A+BK)'P(A+BK)—-P+Q+K'RK <0.

(8b)

Y =0, (8¢c)

In this approach, Y = P~!, and P is the solution to the
Ricatti equation.

LQR Dual Problem

min B
B,K,We=W,L

(
st. YA+ BEK)W.(A+ BK)' —W.+W =<0, (9b
L—-KW.KT »0, (9c
tr(QW,) +tr(RL) < S. (9d

In this formulation, W, represents the state covariance
matrix (or controllability Gramian).

In the subsequent sections, we first provide solutions to
the model-based safe LQR that solves Problem 2 and then
extend the results to the data-driven case. Only the design-
time step (step 1 in Problem 2) is developed as the real-
time step is similar to the existing CBC methods.

3. MODEL-BASED SAFE LQR

This section investigates different optimization problems
to design a safe optimal controller for the case where
we have a reliable knowledge of the system matrices,
hence model-based safe LQR. We have categorized safe
LQR designs into direct and indirect approaches. In the
direct approach, we directly add the safety constraints
to the LQR optimization problem. At the same time, in
the indirect method, we parameterize the control gain
K to satisfy safety constraints in addition to optimality
concerns. So, we embed safety into the controller structure.

8.1 Direct Safe LQR

To directly solve Problem 1 using a linear controller, we
add extra safety constraints to the LQR optimization

problem (8), which leads to the following optimization
problem.

max Tr(W~'Y) (10a)
Y Y MT (AY +BM)T
x —Q71 0 0
st |, S _pa 0 <0, (10b)
* * * X
Bt
Y =0, (10c)
alYa, <1, s=1,---,q, (10d)

This approach is, however, restrictive because using a
linear controller to achieve both safety and optimality can
quickly lead to infeasibility. This is because there typically
exists no controller that can achieve optimal performance
in an entire safety set while respecting safety. The conflict
between safety and optimality results in infeasibility. To
resolve the conflict, one can relax the optimality criteria to
some extent using the LQR dual formulation (9). However,
one cannot add safety constraint to the LQR dual problem
as W, is not related to the safety directly.

8.2 Indirect Safe LQR

In this approach, a controller is found that solves the first
phase of Problem 2. While there is no general solution
to it, one can find a controller that reaches a conflict-
free zone for a large subset of the safe set instead of the
entire safe set. This will resolve the infeasibility issue of
the optimization problem . To this end, we parameterize
the control gain K using safety specifications in the form
of A—contractivity. In other words, for a given polyhedral
safe set, first, we parameterize the control gain K by a
conflict-free zone ellipsoidal A—contractive set P, inside
the original safe polyhedral set, then substitute that gain
into the LQR dual problem to optimize the cost function.
The conflict-free zone is formed by imposing safety and
optimality conditions on a subset of the safe set and its
size is maximized. Finally, we redefine the optimization
objective to balance the trade-off between the conflict level
and optimality by maximizing the size of the conflict-free
set P, besides optimizing the LQR cost function. We may
lose a degree of performance to achieve some reasonable
safety.

Theorem 1. Consider the system (1) with known A and
B that is controlled by (2). Let Assumptions 1 and 3
hold and x( be a given initial condition. Then, the safety-
parameterized optimal state feedback matrix K solves the
safe LQR problem with known system matrices (Phase 1
of Problem 2) is given by

K=FP !, (11)
where P; > 0 and F' € R™*"™ are the solutions (if they
exist) to the following SDP optimization problem

a18 — aslogdet P, (12a)

min
B>0,F,Ps=0,W.=W,H,L
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(W, —W AP, + BF

L Y

(AP, (AP, + BF)T

_* P } =0, (12¢)

(H P, LF

. WC] >0, L H] =0, (12d)

CLZPgag < 1; s = 17"’7Qa (126)
tr(QW,) + tr(RL) < 5, (12f)

where a1, as > 0 are design parameters to tune the safety-
optimality balance. Moreover, the set {z : 27 P,z < 1}
provides a conflict-free zone.

Proof. Let us start by parameterizing the policy gain
K considering the A—contractivity of the ellipsmdal safe
set (in expectation) characterized by V(zy) = zf P71y,
inside the given polyhedral safe set P (4) as

E[V(zg11)zr] < AV (2)

(A+ BK)"'P;'(A+ BK) —AP;' =20

(APs + BF)"P7Y (AP, + BF) — AP, < 0, (13)
where A € (0,1) is the contractivity factor of the safe set
defined by P and F' = KPs. The inequality (13) can be
written as (12c) using the Schur-complement lemma (Boyd
et al., 1994). We can find the maximum A—contractive set

identified by Py inside the given safe set P by solving the
following optimization problem

mliDn —log det P (14)
T
ot |MPs (AP, + BF) =0,
* Ps
aZPsasglv 5:17"'7(]

Now, consider the LQR dual problem (9) and substitute
the safety-parameterized policy gain (11) in (9b) and (9¢)
as

Y(AP, + BF)P;'W.P; Y (AP, + BF)T —W,.+ W =0,
(15)
L—-FP'W.P7'FT »~0. (16)
Define a new matrix H such that
Pw. Pt = HTL (17)

This matrix shows the connection between the optimal
state covariance matrix (controllability Gramian) W, and
the A—contractive safe set defined by P;"'. The optimality
criteria (9) tends to minimize the welghted trace of W,
and hence the trace of W,.. On the other hand, the safety
criteria (14) increases the determinant of Ps and hence the
size of Ps. So, the H matrix shows the conflict between
safety and optimality. Also, it reveals that safety is more
dominant than optimality in this method. As a result, we
introduced two positive weight parameters o; and as to let
the designer balance optimality and safety. Since the safety
is dominant, as should be chosen as small as possible.

4. DATE-DRIVEN SAFE LQR

This section extends the previous results to the data-
driven scenarios. Safety is of paramount importance espe-

cially when we are designing a direct data-driven (model-
free) LQR.

Assumption 4. The collected data matrix Dy = [UJ X{ | g
has full row rank, i.e. rank(Dy) = m + n.

Consider the following parameterization of the closed-
loop system (De Persis and Tesi, 2021) described by the
collected data, safety matrix, and a matrix M € RN*"»

A+ BK = (X, — Qo) MP; !, (18a)
XoM = P, (18b)
K =UMP;* . (18¢)

The above equations show how the safety set depends on
the collected data and its quality. The following theorem,
which is the data-driven counterpart of Theorem 1, high-
lights the necessary conditions to design a safe optimal
control that solves the first phase of Problem 2.

Theorem 2. Consider the system (1) with closed-loop
data-based safety-aware parameterization (18). Let As-
sumptions 1-4 hold and zy be a given initial condition.
Then, the safety-parameterized optimal state feedback
matrix K that solves the safe LQR problem (phase 1 of
Problem 2) can be computed through the following SDP
optimization problem

i — I P. 1
B>O,6>0,1VI,IID?IE%,WC>WHL o ff —azlogdet ;- (19a)
—W W X

s.t. ¥ } 0, (19b)

(AP, (X1 M) o MT
* * 0 | =0, (19¢)

* * )

tr(P,W™1) — 6n? > 0, (19d)

L F
‘ol H} o0
alPias <1, s= (19f)
XoM = P, (19g)
tr(QW,.) + tr(RL) < 3, (19h)

where a1, as > 0 are design parameters to tune the safety-
optimality balance.

Proof. Let us consider the data-driven A—contractivity
in expectation of the ellipsoidal safe set defined by P;
inside the given polyhedral safety constraint (4) using the
representation outlined in (18) as

E[V(@ri1ler] < AV (2k)

E[P; M7 (Xy — Qo) P (X — Qo) MPT = AP <0
PIMTXTP ' X MP Y + B[P MTQI P IQoM P

— APt =<0
PAMTXT P X MPY + PO M tr(PIW) M P!

— APt <0 (20)
By multiplying the inequality (20) from left and right by
P;, using the Schur-complement twice, and the following
inequalities

1 - tr(P71W)
tr(W-1P) nz

1
tT(P371W) S g

the data-driven A—contractivity LMI (19¢) and inequality
(19d) will be resulted, where 6 > 0 is a decision variable.

(21)

(22)
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The term M7Ttr(P;'W)M in (20) brings robustness into
the design of the data-driven controller. Now, consider the
LQR dual problem (9) and substitute the approximate
data-driven safety-parameterized closed-loop

A+ BK ~ X;MP; !, (23)
in (9b) which results in
YX MH*MTXE - W.+W <0. (24)

This inequality is called certainty-equivalent data-driven
condition (De Persis and Tesi, 2021) since we have no
access to the noise matrix €y and ignore it. The data-
driven LQR LMI (24) suffers the robustness feature
since we disregarded the noise data, but the data-driven
A—contractivity LMI in expectation (20) compensates for
the conscious ignorance of robustness in the optimality
LMI. The rest of the proof is similar to the first theorem.

In the data-driven situation, since we have no accurate
information about the system, we can choose a bigger value
for as compared to the model-based design to encourage
safety while preserving the notion of optimality. Also, the
maximum safe zone P; depends on the quality of the
collected data and .

5. SIMULATION RESULTS

This section compares the presented A—Contractive LQR
(A—CLQR) (both model-based (12) and data-driven (19)
derivatives) with the model-based LQR (8), the direct
data-driven approach (Low Complexity LQR (LCLQR)
and robust LCLQR) proposed in (De Persis and Tesi,
2021), and the A—Contractive Control (A—CC) (14).
Specifically, we will compare their costs and safety vi-
olations. We used CVXPY (Diamond and Boyd, 2016;
Agrawal et al., 2018) for modeling the convex optimization
problems and MOSEK (ApS, 2022) as the solver.

Consider the vehicle steering model (Kishida and Cetinkaya,

2022)

102 0.06 0.01 0.003
A= b 1]’13: {&2]’Wf: b1m3 002]

which describes the lateral deviation dynamics with
and zo being the lateral position and heading angle,
respectively. The LQR matrices are chosen as @ = 101,
and R = 1, and the contractivity factor is A = 0.91. Fig. 1
shows the trajectories obtained from the model-based LQR
and A\—CC designs. On the one hand, the LQR violates the
safety presented as the dash-dotted green rectangle, while
A—CC preserves the safety. On the other hand, the cost of
LQR is much less than the A—CC. Fig. 2 represents the
trajectories obtained by the A—CLQR. Safety violations
using the presented approach are significantly decreased
compared to the LQR. This is because the presented
approach accounts for conflict awareness in the design
time, which can be leveraged to significantly decrease the
CBC interventions in the real-time. This is shown in the
next two figures. Figs. 3 and 4 show the trajectories of the
data-driven A—CLQR and LCLQR for two sets of collected
data. In Fig. 3, there is no CBC mechanism, so LCLQR has
no safety awareness and its trajectories violate the safety
region. At the same time, A—CLQR preserves safety with a
small increase in cost. Another feature of A—CLQR is that
it provides an estimate of the safe region for the system’s
operation based on the collected data, as it is obvious

State Trajectories

- Safe set

X2
o
o

—-02 00 02z 04 0.6

Fig. 1. Model-based controllers, LQR: cost= 0.0115, \-CC:
cost=0.1200.
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Fig. 2. Model-based controller, A\-CLQR: cost=0.0217,
a1 = 4000, ag = 0.00005.

from the red ellipsoidal in Figs. 3 and 4. In Fig. 4, the
CBC component is used with system matrices estimated
from the collected data (which are not exact). Therefore,
even with the CBC mechanism, LCLQR can not provide
safety, while A—CLQR, which has the safety-awareness
feature, can maintain the system’s safety with a slight
increase in cost due to the CBC interventions. This clearly
shows the advantage of the presented conflict-aware safe
LQR. Fig. 5 shows the performance and safety awareness
of the robust version of LCLQR with a« = 0.01 and
A—CLQR with the CBC interventions. The performance
of A—CLQR is better than the LCLQR as it requires 51
CBC interventions compared to 152 CBC interventions of
the LCLQR. It shows how the controller’s safety awareness
can help reduce costs while maintaining safety.

6. CONCLUSION

In conclusion, this paper has presented a novel approach
to integrating safety considerations into the design of LQR
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Fig. 3. Data-driven controllers, A-CLQR: a7 = 4000, ais =
5, cost=0.024, LCLQR: cost=0.0132
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Fig. 4. Data-driven controllers with CBC, quality of data
and its effect on the maximum achievable safe set,
A-CLQR: a7 = 4000, a3 = 5, cost=0.029, LCLQR:
cost=0.026

controllers within the framework of direct data-driven con-
trol by leveraging the A-contractivity principle. Extending
the proposed framework to incorporate more sophisticated
safety constraints and nonlinear system dynamics would
be an interesting direction for future research.
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