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The Hodge structure on the singularity category

of a complex hypersurface

Michael K. Brown and Mark E. Walker

Given a complex affine hypersurface with isolated singularity determined by a
homogeneous polynomial, we identify the noncommutative Hodge structure on
the periodic cyclic homology of its singularity category with the classical Hodge
structure on the primitive cohomology of the associated projective hypersurface.
As a consequence, we show that the Hodge conjecture for the projective hyper-
surface is equivalent to a dg-categorical analogue of the Hodge conjecture for the
singularity category.

1. Introduction

Katzarkov, Kontsevich and Pantev conjecture in [Katzarkov et al. 2008] that the
periodic cyclic homology of any smooth and proper C-linear differential Z-graded
category C may be equipped with a “noncommutative (nc) Hodge structure”, gen-
eralizing the pure Hodge structure on the cohomology of a smooth and proper
complex variety. More precisely, the proposed nc Hodge structure on the 0-th
periodic cyclic homology of C, denoted HP0.C/, is given by analogues of the
Hodge filtration and rational structure on the cohomology of a smooth and proper
complex variety: the former is the filtration of HP0.C/ arising from the negative
cyclic homology of C, and the latter is the image of the rationalized topological
Chern character map K

top
0 .C/Q! HP0.C/. The statement of the classical Hodge

conjecture generalizes to dg-categories equipped with an nc Hodge structure: we
say such a dg-category C satisfies the “nc Hodge condition” provided the image
of the rationalized algebraic Chern character map K

alg
0 .C/Q! HP0.C/ coincides

with the space of Hodge classes. We refer the reader to Section 2.2 for more details
(see also [Perry 2022, Section 5.2]). It is known that the Hodge conjecture holds
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102 MICHAEL K. BROWN AND MARK E. WALKER

for a smooth projective complex variety Y if and only if the Hodge condition holds
for the dg-enhancement of its derived category Db.Y /; see Example 2.16 or [Lin
2023].

The past two decades have seen a flurry of work focused on developing the
Hodge theory of singularity categories of hypersurfaces (i.e., matrix factorization
categories); see, e.g., [Brown and Dyckerhoff 2020; Ballard et al. 2014a; 2014b;
Beraldo and Pippi 2025; Blanc et al. 2018; Brown and Walker 2020a; 2020b; 2022;
Căldăraru and Tu 2013; Dyckerhoff 2011; Efimov 2018; Halpern-Leistner and
Pomerleano 2020; Kim and Polishchuk 2022; Kim and Kim 2024; Pippi 2022;
Polishchuk and Vaintrob 2012; Segal 2013; Shklyarov 2014; 2016]. In this paper,
we show that the singularity category of a complex hypersurface with isolated
singularity determined by a homogeneous polynomial may be equipped with an
nc Hodge structure, and we describe it in terms of invariants arising in classical
Hodge theory. More specifically, our main goal is to prove Theorem 1.2 below (see
Theorem 2.23 for a more precise statement). Before stating it, we fix some notation
that will be used throughout the paper:

Notation 1.1. Let f 2 CŒx0; : : : ;xnC1ç be a nonzero homogeneous polynomial,
R the associated affine hypersurface CŒx0; : : : ;xnC1ç=.f / of dimension nC1, and
m WD .x0; : : : ;xnC1/ its homogeneous maximal ideal. Set X WD Proj.R/✓ PnC1,
a projective hypersurface of dimension n. We assume n is even; otherwise, X has
no interesting Hodge theory. We assume also that R has an isolated singularity, i.e.,
that X is smooth. Let Dsg.R/ denote a dg-enhancement of the singularity category
of R (we specify in Section 2 which dg-enhancement we use). We write H

n
prim.X /

for the n-th primitive cohomology of X with rational coefficients. That is, for n� 2,

H
n
prim.X /D ker

�
H

n.X IQ/ L�!H
nC2.X IQ/

�
;

where L is the Lefschetz operator; and for n D 0, H
0
prim.X / WD eH 0

.X IQ/, the
0-th reduced rational cohomology group of X . Since X is a smooth hypersur-
face, H

n
prim.X / may be identified with coker.H n.PnC1IQ/! H

n.X IQ//; see
Example 2.5 for more details.

Theorem 1.2. There is an isomorphism

HP0.Dsg.R//äH
n
prim.X IC/

that identifies the noncommutative Hodge structure associated to Dsg.R/ with

the pure Hodge structure on H
n
prim.X /. This isomorphism is compatible with the

Chern character maps from topological K-theory, and hence the classical Hodge

conjecture holds for X if and only if Dsg.R/ satisfies the nc Hodge condition

(Definition 2.15).
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 103

We note that it is a consequence of [Orlov 2009, Theorem 2.5] that the Hodge
conjecture for X is also equivalent to the nc Hodge condition for the graded

singularity category of R; see Remark 2.26 for more details.

The dg-category Dsg.R/ is smooth over C; this follows by combining [Lunts
2010, Theorem 6.3] and [Keller 2011, Proposition 3.10(c)]. However, it is not proper
as a differential Z-graded category. By results of Buchweitz and Eisenbud, Dsg.R/

is quasi-equivalent to the category mf.f / of matrix factorizations of f , and so it
may be equipped canonically with the structure of a proper differential Z=2-graded
category (see Section 3.1); but in this theorem, HP0.Dsg.R// refers to the periodic
cyclic homology of Dsg.R/ viewed as a Z-graded category. Nevertheless, as we
prove below, the Hochschild invariants of Dsg.R/ have the necessary features (see
Properties 2.8) to make sense of an nc Hodge structure on HP0.Dsg.R// and to
formulate an nc Hodge condition.

The Hodge conjecture is known to hold for a projective hypersurface X in the
following cases [Shioda 1983, §2]:

(1) dim.X / odd, trivially.

(2) dim.X /D 2 (by the Lefschetz 1-1 theorem).

(3) dim.X / D 4 and deg.X /  5 [Zucker 1977; Murre 1977; Conte and Murre
1978].

(4) X a Fermat hypersurface, under certain arithmetic conditions on the dimension
and degree of X [Ran 1980; Shioda 1979].

We therefore conclude that Dsg.R/ satisfies the nc Hodge condition in all of the
above cases. In Example 6.4, we explicitly compute the Hodge classes for Dsg.R/

when X is the 2-dimensional Fermat hypersurface of degree 3.
As mentioned above, since R is a hypersurface, we may replace Dsg.R/ by the

quasi-equivalent dg-category mf.f / of matrix factorizations of f ; see Section 3.1
for the definition. Thus, our main theorem may be recast as an isomorphism

HP0.mf.f //äH
n
prim.X IC/ (1.3)

that preserves Hodge structures and is compatible with Chern character maps.

Let us give an overview of the paper. We collect in Section 2 the neces-
sary background and terminology in order to state our main result precisely;
see Theorem 2.23. This includes constructing an explicit map from H

n
prim.X /

to HP0.Dsg.R//ä HP0.mf.f //; see (2.22). In Section 3, we recall (and extend)
several results necessary for the proof of Theorem 1.2. More precisely, we describe
the quasi-equivalence relating Dsg.R/ and mf.f /, and we establish important de-
tails regarding “de Rham models” for the Hochschild, negative cyclic, and periodic
homology complex of mf.f / and related dg-categories. We also recall from [Brown
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104 MICHAEL K. BROWN AND MARK E. WALKER

and Walker 2024] an explicit description of the boundary map in a certain dévissage
long exact sequence; this map plays a crucial role in relating the nc Hodge filtration
on HP0.Dsg.R//ä HP0.mf.f // with the classical Hodge filtration on H

n
prim.X /.

In Section 4, we establish the following analogue of the Wang exact sequence
of a fibration over a circle (see Theorem 4.1 below for a more precise statement,
and see Remark 4.2 for an explanation of how this result relates to the Wang exact
sequence):

Theorem 1.4. Let k be a field of characteristic 0, Q a smooth k-algebra, and

f 2Q a non-zero-divisor. There is a distinguished triangle

HN.mf.f //! HN
Z=2.mf.f //! HN

Z=2.mf.f //!

of complexes of k-vector spaces, where HN.mf.f // (resp. HN
Z=2.mf.f //) denotes

the negative cyclic complex of mf.f / considered as a differential Z-graded (resp.

Z=2-graded) category.

The map HN
Z=2.mf.f //!HN

Z=2.mf.f // in Theorem 1.4 is an analogue of the
endomorphism T � id on the cohomology of the Milnor fiber, where T is induced
by monodromy (see Remark 4.2). Theorem 1.4 thus closely resembles a result of
Blanc, Robalo, Toën and Vezzosi [Blanc et al. 2018, Main Theorem] concerning
the `-adic realization of singularity categories.

Section 5 contains the proof of Theorem 1.2. A summary of the content of Sec-
tions 2–4 that is necessary for the proof of Theorem 1.2 is provided in Theorem 5.1;
readers who are already familiar with noncommutative Hodge theory and singularity
categories may wish to skip directly to Theorem 5.1 and refer back to Sections 2–4
as needed. The most technical aspect of the proof of our main result is verifying
that the isomorphism HP0.Dsg.R//äH

n
prim.X / identifies the nc Hodge filtration

on HP0.Dsg.R// with the classical Hodge filtration on H
n
prim.X /. Our approach is

to identify both with an intermediate object: the “polar filtration” on H
n.U /, where

U is the complement of X in PnC1. In Section 6, we discuss some examples in
the setting of Fermat hypersurfaces, applying [Shioda 1979].

2. Background

2.1. Hodge structures. The following definition is nonstandard, but it will be useful
in this paper.

Definition 2.1. A pre-Hodge structure is a pair V D .VQ;F
✏
VC/, where VQ is a

finite-dimensional Q-vector space, and F
✏
VC is a filtration of VC WD VQ˝Q C that

is decreasing, complete, and exhaustive: F
p

VC ✓ F
p�1

VC for all p, F
p

VC D 0

for p�0, and F
p

VCDVC for p⌧0. A morphism of pre-Hodge structures V !V
0

is a Q-linear map VQ! V
0

Q whose complexification respects the filtrations.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1

1
1
/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

20
1
/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

39
1
/2

40



HODGE STRUCTURE ON THE SINGULARITY CATEGORY 105

Remark 2.2. An isomorphism of pre-Hodge structures V and V
0 is determined by

an isomorphism ˛ WVC
ä�!V

0
C such that ˛.Fp

VC/DF
p
V

0
C for all p, and ˛.VQ/DV

0
Q.

The notion of a pre-Hodge structure is a weakening of the classical notion of a
pure Hodge structure, whose definition we now recall:

Definition 2.3. Let n 2 Z. A pure Hodge structure of weight n is a pre-Hodge
structure V with the property that, for all p; q with p C q D n C 1, we have
F

p
VC˚FqVCDVC, where the overline denotes complex conjugation. A morphism

of pure Hodge structures is a morphism of the underlying pre-Hodge structures.

Given a pre-Hodge structure V and m2Z, we write V .m/ for its m-th Tate twist,
which is defined by setting V .m/QDVQ, V .m/CDVC and F

p
V .m/CDF

pCm
VC.

If V is pure of weight n, then V .m/ is pure of weight n� 2m.

Example 2.4. Let X be a smooth, proper complex variety, and let VQDH
j .X IQ/,

the singular cohomology of X with rational coefficients. Equip VC DH
j .X IC/

with the filtration given by

F
p

VC WD im
�
H

j .X; ⌧�p�✏
X=C/!H

j
dR.X IC/äH

j .X IC/
�
;

where ⌧�p�✏
X=C

denotes the brutal truncation of the de Rham complex in cohomo-
logical degrees � p, and H

j
dR.X IC/ denotes the j -th hypercohomology of �✏

X=C
.

It is a classical result that .VQ;F
✏
VC/ is a pure Hodge structure of weight j . The

m-th Tate twist of this Hodge structure is written as H
j .X IQ.m//.

Example 2.5. Let X be a smooth, projective complete intersection of codimension
c in PnCc. That is, X D Proj.R/, where R D CŒx0; : : : ;xnCc ç = .f1; : : : ; fc/ for
a regular sequence of homogeneous polynomials f1; : : : ; fc such that R has an
isolated singularity. Assume also that n is even. As with any smooth, projective
variety, the primitive cohomology of X may be equipped with a pure Hodge
structure; let us recall the definition of primitive cohomology. In the case where
n D 0 (so that X is a collection of points), we define H

0
prim.X / D eH 0

.X IQ/.
Assume n� 2. We let

L WH ⇤.X IQ/!H
⇤C2.X IQ.1//

denote the Lefschetz operator, i.e., the map given by multiplication by the class
in H

2.X IQ.1// of a generic hyperplane section of X . It is a morphism of pure
Hodge structures. For 0 j  n, the j -th primitive cohomology of X is

H
j
prim.X / WD ker

�
L

nC1�j WH j .X IQ/!H
2nC2�j .X IQ.nC 1� j //

�
:

As L is a morphism of pure Hodge structures, H
j
prim.X / acquires a pure Hodge

structure, and it is pure of weight j .
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106 MICHAEL K. BROWN AND MARK E. WALKER

Since we assume that X is a smooth complete intersection of even dimension,
the hard Lefschetz theorem gives

H
j .X IQ/D

⇢
0; j oddI
L

j=2 �H 0.X IQ.�j=2//; j even, j ¤ n.

In other words, the map i
⇤ WH j .PnCc IQ/!H

j .X IQ/ induced by the canonical
embedding i WX ,!PnCc is an isomorphism for all j¤n; in particular, H

j
prim.X /D0

unless j D n. So, the only “interesting” cohomology lies in degree n, and in that
degree we have a canonical decomposition of Hodge structures

H
n.X IQ/DH

n
prim.X IQ/˚L

n=2 �H 0.X IQ.�n=2//:

Since the summand L
n=2 �H 0.X IQ.�n=2// equals the image of the map

L
n=2 �H 0

�
PnCc IQ.�n=2/DH

n.PnCc IQ/ i⇤
�!H

n.X IQ/
�
;

we have a canonical isomorphism

H
n
prim.X IQ/ä coker.H n.PnCc IQ/ i⇤

�!H
n.X IQ//

of pure Hodge structures.

2.2. Hodge structures associated to dg-categories. Let C be a C-linear differential
Z-graded category (or dg-category, for short). As discussed in the introduction, it
follows from [Katzarkov et al. 2008] that one may associate a pre-Hodge structure
to C whenever C enjoys certain properties that resemble features of the bounded
derived category of a smooth, proper complex variety. Let us now explain this in
detail.

We write HH⇤.C/, HN⇤.C/, and HP⇤.C/ for the Hochschild, negative cyclic,
and periodic cyclic homology of C; we refer the reader to, e.g., [Brown and Walker
2020a, Section 3] for the definitions of these invariants. We recall that HN⇤.C/ is
a CŒuç-module with u an indeterminate of homological degree �2, determined by
the identification HN⇤.C/D CŒuç, and HP⇤.C/D HN⇤.C/˝CŒuç CŒu;u

�1ç. There
is a notion of topological K-theory for dg-categories, developed by Blanc [2016,
Definition 4.13]; let K

top
⇤ .C/ denote the topological K-theory groups of C, and set

K
top
⇤ .C/Q WDK

top
⇤ .C/˝Z Q. Topological K-theory and periodic cyclic homology

are related via the topological Chern character map chtop WKtop
⇤ .C/Q! HP⇤.C/

[Blanc 2016, Section 4.4].

Notation 2.6. Given a noetherian C-scheme Y with enough locally free sheaves, let
Db.Y / and Perf.Y / denote dg-enhancements of the bounded derived category of Y

and category of perfect complexes on Y , respectively; all such dg-enhancements
are unique up to a sequence of quasi-equivalences [Lunts and Orlov 2010]. We
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 107

write
K

top
⇤ .Y / WDK

top
⇤ .Perf.Y //; HP⇤.Y / WD HP⇤.Perf.Y //;

HN⇤.Y / WD HN⇤.Perf.Y //; HH⇤.Y / WD HH⇤.Perf.Y //:

We adopt the widely used notation G⇤.Y / and K⇤.Y / for the (nonconnective) alge-
braic K-theory groups of Db.Y / and Perf.Y /; see [Schlichting 2011, Section 3.2.32]
for background on algebraic K-theory of dg-categories. We also write

G
top
⇤ .Y / WDK

top
⇤ .Db.Y //; HP

BM
⇤ .Y / WD HP⇤.Db.Y //;

HN
BM
⇤ .Y / WD HN⇤.Db.Y //; HH

BM
⇤ .Y / WD HH⇤.Db.Y //I

here, “BM” stands for “Borel–Moore”. Given a commutative ring A, we write
G⇤.A/ WDG⇤.Spec.A//, and similarly for the other invariants discussed here.

We recall the notions of smoothness and properness for dg-categories:

Definition 2.7. The dg-category C is smooth if C is perfect as a C-C-bimodule, and
it is proper if dimC H

⇤HomC.C;C
0/ <1 for all objects C;C 0 of C.

When X is a separated scheme of finite type over C, it follows from (the proof
of) [Orlov 2016, Proposition 3.31] that X is smooth (resp. proper) if and only if the
dg-category Perf.X / of perfect complexes of OX -modules is smooth (resp. proper).

In this paper, the dg-categories we consider will not always be smooth and proper.
We will be interested in dg-categories that satisfy the following conditions, which
are exactly what one needs to equip a dg-category with a pre-Hodge structure.

Properties 2.8. For a dg-category C, we consider the following properties:

(1) dimC HP0.C/ <1.

(2) The filtration of HP0.C/ given by

F
p
ncHP0.C/D im

�
HN2p.C/

can��! HP2p.C/
up

�! HP0.C/
�

satisfies F
p
nc HP0.C/D 0 for p� 0 and F

p
nc HP0.C/D HP0.C/ for p⌧ 0.

(3) im.chtop/˝Q CD HP0.C/.

Proposition 2.9. Properties (1) and (2) hold for any dg-category that is smooth

and proper over C.

Proof. By [Kontsevich and Soibelman 2009, Proposition 8.2.3], we have

dimC HH⇤.C/ <1:

We also have noncanonical isomorphisms

HN⇤.C/ä HH⇤.C/Œuç and HP⇤.C/ä HH⇤.C/Œu;u�1çI

these follow from Kaledin’s noncommutative Hodge-to-de Rham degeneration
theorem [Kaledin 2017]. Properties (1) and (2) follow immediately. ⇤
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108 MICHAEL K. BROWN AND MARK E. WALKER

Property (3) is conjectured by Blanc to hold for any smooth and proper dg-
category:

Conjecture 2.10 (the lattice conjecture [Blanc 2016, Conjecture 1.7]). If C is

smooth and proper over C, then the map K
top
⇤ .C/C! HP⇤.C/ induced by chtop

is

an isomorphism.

In fact, the lattice conjecture is known to hold for many dg-categories that are
not smooth or proper: we refer the reader to [Brown and Sridhar 2025, Section 5]
for a list of known cases of the lattice conjecture.

Definition 2.11. Assume the dg-category C satisfies Properties 2.8. The nc pre-

Hodge structure for C, written pHS.C/, is the pair .VQ;F
✏
VC/, where

VQ WD im.chtop WKtop
0 .C/Q! HP0.C// and F

p
VC WD F

p
nc HP0.C/:

The filtration F
✏
nc HP0.C/ is called the noncommutative Hodge filtration, or nc Hodge

filtration for short.

Example 2.12. Let X be a smooth, proper complex variety, and take CD Db.X /.
Since Db.X / is smooth and proper, properties (1) and (2) hold for C. Property (3)
also holds for C, since the lattice conjecture holds in this case [Blanc 2016]. We
have a commutative diagram

HN2p.X /
ä
//

up

✏✏

L
j2Z H

2j .X; ⌧�jCp�✏
X=C

/

✏✏

HN0.X /
ä

//

✏✏

L
j2Z H

2j .X; ⌧�j�✏
X=C

/

✏✏

HP0.X /
ä

//

L
j2Z H

2j
dR .X IC/

K
top
⇤ .X /

chtop

OO

ä
// KU

⇤.X /

chtop

OO

where KU
⇤.X / denotes the topological K-theory of X . The first three horizontal

isomorphisms are given by combining theorems of Keller [2005, Section 5.2] and
Weibel [1997, Theorem 3.3], and the bottom isomorphism is due to Blanc [2016, The-
orem 1.1(b)]. A straightforward calculation shows that the top and middle squares
commute, and the bottom square commutes by [Blanc 2016, Proposition 4.32]. We
conclude that there is a natural isomorphism of pre-Hodge structures

pHS.Db.X //ä
M

j2Z

H
2j .X;Q.j //:
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 109

In particular, pHS.Db.X // is a pure Hodge structure of weight 0. See also [Tu
2024], where a more detailed comparison of the classical Hodge structure on the
cohomology of X and the nc Hodge structure on Db.X / is carried out.

2.3. The nc Hodge condition for a dg-category. We begin by recalling the state-
ment of the Hodge conjecture. Let X be a smooth, projective complex variety
and K⇤.X /Q WD K⇤.X /˝ Q the rationalized algebraic K-theory groups of X .
The classical Hodge conjecture proposes a description of the image of the Chern
character map

ch WK0.X /Q!
M

p2Z

H
2p.X IC/: (2.13)

We set

Hdg2p.X / WDH
2p.X IQ/\F

p
H

2p.X IC/DH
2p.X IQ.p//\F

0
H

2p.X;C.p//;

and write Hdg.X / WDL
p2Z Hdg2p.X /. Elements of Hdg.X / are called Hodge

classes. It is well-known that the Chern character map (2.13) takes values in Hdg.X /;
the Hodge conjecture predicts that the image of the Chern character map (2.13) is
precisely Hdg.X /.

The statement of the Hodge conjecture can be extended to any dg-category
C enjoying Properties 2.8. Let K0.C/ denote the Grothendieck group of C and
chHN WK0.C/!HN0.C/ the associated Chern character map; see, e.g., [Brown and
Walker 2020a, Section 4] for the definition of chHN . Composing with the natural
map HN0.C/! HP0.C/, one also obtains

chHP WK0.C/! HP0.C/:

As above, let K0.C/Q WDK0.C/˝Z Q. By [Blanc 2016, Theorem 1.1(d)], the maps
chHN and chtop are related by a commutative square

K0.C/Q
chHN

//

✏✏

HN0.C/

✏✏

K
top
0 .C/Q

chtop
// HP0.C/

(2.14)

where the vertical maps are the canonical ones.

Definition 2.15. For a dg-category C that satisfies Properties 2.8, the subspace
Hdg.C/✓ HP0.C/ of Hodge classes of C is defined to be

Hdg.C/ WD im.chtop WKtop
0 .C/Q! HP0.C//\F

0
nc HP0.C/:

In other words, Hdg.C/DHdg.pHS.C//, where for any pre-Hodge structure V , we
set Hdg.V /D VQ \F

0
VC. By the commutativity of (2.14), the Chern character
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110 MICHAEL K. BROWN AND MARK E. WALKER

map chHP, which is given by composing the top and rightmost maps in (2.14), takes
values in Hdg.C/. We say C satisfies the nc Hodge condition if im.chHP/DHdg.C/.

Example 2.16. When X is a smooth, projective complex variety, the isomor-
phism of pure Hodge structures in Example 2.12 yields a natural isomorphism
Hdg.Db.X //ä Hdg.X /. Moreover, this isomorphism makes the triangle

K0.X /Q
ch

//

chHP
&&

Hdg.X /

ä
✏✏

Hdg.Db.X //

commute. It follows that the Hodge conjecture holds for X if and only if Db.X /

satisfies the nc Hodge condition; this was also recently proven by Lin [2023].

2.4. Statement of the main theorem. To state our main result (Theorem 2.23), we
need the following two technical results.

Proposition 2.17. With R and m as in Notation 1.1, set W WD Spec.R/ n fmg. The

canonical maps

K0.W /!G0.W /; K
top
0 .W /!G

top
0 .W / and HP0.W /! HP

BM
0 .W /

are isomorphisms, and so are the maps

G0.R/!G0.W /; G
top
0 .R/!G

top
0 .W / and HP

BM
0 .R/! HP

BM
0 .W /

induced by pullback along the natural map W ,! Spec.R/.

Proof. The first batch of isomorphisms hold since W is regular, by assumption.
Since G-theory satisfies dévissage, we have a right exact sequence

G0.R=m/!G0.R/!G0.W /! 0:

By [Yoshino 1990, Lemma 13.4], the pushforward map G0.R=m/!G0.R/ is 0;
this proves the result for G-theory.

We now address HP
BM; the proof involving G

top is nearly identical. By [Khan
2023, Theorem A.2] (see also [Brown and Walker 2024, Example 4.8]), there is a
dévissage quasi-isomorphism HP

BM.R=m/! HP.Db;fmg.R//, where Db;fmg.R/
denotes the subcategory of Db.R/ given by objects with support contained in fmg.
(Dévissage also holds for topological K-theory, as observed in [Halpern-Leistner
and Pomerleano 2020, Example 2.3].) There is thus a localization exact triangle

HP
BM.R=m/! HP

BM.R/! HP
BM.W /!I

see, e.g., [Brown and Walker 2024, Lemma 2.8]. Since HP
BM
�1 .R=m/äHP�1.C/D0,

it suffices to show that the pushforward map HP0.R=m/! HP
BM
0 .R/ is 0. To
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 111

prove this, we use that the Chern character map is natural for dg-functors, so that
we have a commutative square

G0.R=m/ //

chHP

✏✏

G0.R/

chHP

✏✏

HP
BM
0 .R=m/ // HP

BM
0 .R/

The left-hand map is isomorphic to chHP W K0.C/ ! HP0.C/, which induces
an isomorphism K0.C/˝Z C ä HP0.C/. Once again applying [Yoshino 1990,
Lemma 13.4], the top arrow in this square is the zero map, and so the bottom arrow
must be zero as well. ⇤

Let R be as in Notation 1.1. The singularity category of the ring R is the
dg-quotient Dsg.R/ WD Db.R/=Perf.R/. We note that the (triangulated) homotopy
category of Dsg.R/ need not have a unique dg-enhancement; see, e.g., [Antieau
2018, Example 8.24].

Proposition 2.18. There are short exact sequences

0! HP0.C/! HP
BM
0 .R/! HP0.Dsg.R//! 0

and

0!K
top
0 .C/!G

top
0 .R/!K

top
0 .Dsg.R//! 0;

where the maps are induced by the extension of scalars functor Db.C/! Db.R/

and the canonical functor Db.R/! Dsg.R/.

Proof. Let E denote either HP or K
top. In both cases, E is a localizing A1-homotopy

invariant such that E�1.C/D 0. Since R is Z�0-graded, extension of scalars along
C!R induces an isomorphism E⇤.C/

ä�!E⇤.R/. Using that E�1.C/D 0, the
exact triangle

E.R/!E.Db.R//!E.Dsg.R//!

induces an exact sequence E0.C/!E0.Db.R//!E0.Dsg.R//! 0.
Finally, we observe that E0.C/! E0.Db.R// is split injective. To see this,

choose a smooth closed point x D V .m/ 2 Spec.R/; extension of scalars along the
map R!R=mä C determines a functor Db.R/! Db.C/, yielding the desired
splitting. ⇤

We have a composition

K0.X /!K0.W /
ä�!G0.R/!K0.Dsg.R//; (2.19)

where the first map is induced by the fibration W !X with fiber C⇤, the second is
the (inverse of the) isomorphism from Proposition 2.17, and the last is induced by
the canonical map Db.R/! Dsg.R/. The composition (2.19) admits the following
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112 MICHAEL K. BROWN AND MARK E. WALKER

simpler description: given a vector bundle F on X , write F D fM for some graded
R-module M . Since M and F pull back to the same sheaf on W, the composition
(2.19) sends the class ŒF ç to ŒM ç 2K0.Dsg.R//.

We have compositions

KU
0.X /äK

top
0 .X /!K

top
0 .W /

ä�!G
top
0 .R/!K

top
0 .Dsg.R// (2.20)

and

H
even.X IC/ä HP0.X /! HP0.W /

ä�! HP
BM
0 .R/! HP0.Dsg.R// (2.21)

that are defined in the same way, except the first isomorphism in (2.20) is given
by Blanc’s comparison isomorphism [2016, Theorem 1.1(b)], and the first map
in (2.21) is induced by the HKR isomorphism [Loday 1998, Theorem 3.4.4]. By
Proposition 2.18, (2.21) induces a map on reduced cohomology; restricting to
primitive cohomology, we arrive at the map

˛ WH n
prim.X IC/! HP0.Dsg.R//: (2.22)

We may now precisely formulate our main result (Theorem 1.2) as follows:

Theorem 2.23. Let RD CŒx0; : : : ;xnC1ç = .f /, where f is a homogeneous poly-

nomial such that X D Proj.R/ is smooth. Assume n is even.

(1) The dg-category Dsg.R/ enjoys Properties 2.8. In particular, we may associate

a pre-Hodge structure to Dsg.R/.

(2) The diagram

K0.X / KU
0.X / H

even.X IC/

K0.Dsg.R// K
top
0 .Dsg.R// HP0.Dsg.R//

(2.19)

can

(2.20)

chtop

(2.21)

can chtop

(2.24)

commutes (where the maps denoted can are the canonical maps), the middle and

rightmost vertical maps are surjective as indicated, and the images of K0.X / and

K0.Dsg.R// in HP0.Dsg.R// coincide.

(3) The map ˛ defined in (2.22) is an isomorphism of complex vector spaces that

induces an isomorphism

H
n
prim

�
X;Q

�
n
2

�� ä�! pHS.Dsg.R//

of pre-Hodge structures (see Remark 2.2). In particular, the pre-Hodge structure

pHS.Dsg.R// is pure of weight 0.

As a consequence of Theorem 2.23, we have:

Corollary 2.25. The dg-category Dsg.R/ satisfies the nc Hodge condition if and

only if the Hodge conjecture holds for X .
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 113

Proof. Theorem 2.23 gives the commutative square

K0.X /Q Hdg
�
H

n
prim

�
X;Q

�
n
2

���

K0.Dsg.R//Q Hdg.HP0.Dsg.R///

ä

where the right vertical map is an isomorphism. The Hodge conjecture for X (resp.
nc Hodge condition for Dsg.R/) is the assertion that the top (resp. bottom) horizontal
map in this square is onto. Clearly, the Hodge conjecture for X implies the nc
Hodge condition for Dsg.R/. The converse holds since Theorem 2.23 also gives that
the images of K0.X /Q and K0.Dsg.R//Q in Hdg.HP0.Dsg.R///✓ HP0.Dsg.R//

coincide. ⇤
Remark 2.26. The Hodge conjecture for X is also equivalent to the nc Hodge
condition for the graded singularity category of R, i.e., the dg-quotient Dsg

gr.R/ of the
bounded derived category of Z-graded R-modules by its subcategory of perfect com-
plexes. Indeed, this is nearly immediate from [Orlov 2009, Theorem 2.5]. Orlov’s
theorem also implies that, when X is Calabi–Yau, there is an equivalence of cate-
gories Db.X /' Dsg

gr.R/ and hence an isomorphism H
even.X IC/ä HP0.D

sg
gr.R//

that preserves Hodge structures. However, while the categories Dsg.R/ and Dsg
gr.R/

are closely related, we do not see a way to deduce Theorem 2.23 from these
results concerning Dsg

gr.R/. In a bit more detail, there is a canonical functor
Dsg

gr.R/! Dsg.R/ given by forgetting the grading, and in fact, by [Tabuada 2015,
Theorem 1.5; Keller et al. 2011, Proposition A.8], there is a distinguished triangle

E.Dsg
gr.R//!E.Dsg

gr.R//!E.Dsg.R//! (2.27)

for any localizing, A1-homotopy invariant E of dg-categories taking values in a
triangulated category. The middle map in (2.27) is the canonical functor, and the
first map is induced by the endofunctor T � id of Dsg

gr.R/, where T denotes the
grading twist by 1. However, the Hodge structure on a dg-category involves negative
cyclic homology, which is not an A1-homotopy invariant; the triangle (2.27) is
therefore ultimately not useful for studying the Hodge structure of Dsg.R/.

3. Some intermediate results

Before we embark on the proof of Theorem 2.23, we need some intermediate results
of a technical nature. Throughout this section, we let k be a field of characteristic 0,
Q a smooth k-algebra, and R a hypersurface ring of the form Q=.f / for a non-
zero-divisor f 2 Q. We recall in this section the interpretation of Dsg.R/ as a
dg-category of matrix factorizations of f , and also the “de Rham models” for HH,
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114 MICHAEL K. BROWN AND MARK E. WALKER

HN and HP of the latter. We also recall an explicit description of a certain boundary
map occurring in a long exact dévissage sequence for HP.

3.1. Matrix factorizations. A matrix factorization of f is a finitely generated,
Z=2-graded projective Q-module F D F N0˚F N1 equipped with an odd degree endo-
morphism @ such that @2 coincides with multiplication by f . Matrix factorizations
were introduced by Eisenbud [1980] in his study of maximal Cohen–Macaulay
modules over hypersurface rings. Matrix factorizations of f form the objects of
a differential Z=2-graded category mf.f /, whose morphisms are the Z=2-graded
complexes Hommf..F; @/; .F

0; @0// WD HomQ.F;F
0/ with differential sending a

homogeneous map ˛ of degree Ni 2 Z=2 to @0˛ � .�1/i˛@. If F is free, then F N0
and F N1 necessarily have the same rank, so we may view @ as a block matrix

� 0
B

A
0

�
,

where A and B are square matrices such that AB D BAD f � id. In this case, we
sometimes denote matrix factorizations as pairs .A;B/.

By “unfolding” the Z=2-grading, it is also possible to interpret mf.f / as a
classical differential Z-graded category, and we use both points of view in this
paper. To keep this straight, it is useful to introduce a formal indeterminate t of
homological degree �2, and to identify Z=2-graded vector spaces with Z-graded
modules over kŒt; t�1ç: given a Z=2-graded k-vector space V D V N0 ˚ V N1, the
associated graded kŒt; t�1ç-module is

� � �˚V N0t
�1˚V N1t

�1˚V N0˚V N1˚V N0t ˚V N1t ˚ � � � ;

and the inverse procedure is given by setting t D 1 and taking degrees modulo 2.
Using this identification, the unfolding of a Z=2-graded vector space is restriction
of scalars along k ! kŒt; t�1ç. (There is also a “folding” procedure, given by
extension of scalars along this map, but it does not arise in this paper.)

From this point of view, an object of mf.f / becomes a finitely generated Z-graded
projective module over the graded ring QŒt; t�1ç, equipped with a QŒt; t�1ç-linear
differential of degree �1 whose square equals f t . When we think of mf.f / as a
Z=2-graded dg-category, we are regarding it as a kŒt; t�1ç-linear dg-category, and
its unfolding amounts to regarding it as merely a k-linear dg-category.

A key result used throughout this paper is that there is a quasi-equivalence of
Q-linear (Z-graded) dg-categories

mf.f / '�! Dsg.R/: (3.1)

This follows from a combination of [Buchweitz 2021, Theorem 4.4.1] and [Eisenbud
1980, Corollary 6.3]. Unlike mf.f /, the dg-category Dsg.R/ cannot directly be
realized as the unfolding of a Z=2-graded dg-category.

Notation 3.2. Let C be a kŒt; t�1ç-linear dg-category, where t has degree �2 (i.e.,
a k-linear differential Z=2-graded category). We write HN.C/ (resp. HN

Z=2.C//
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 115

for its Hochschild homology relative to k (resp. kŒt; t�1ç), and similarly for HP

and HH.

3.2. De Rham models for Hochschild, negative cyclic, and periodic cyclic ho-

mology. We make use of explicit de Rham-type models for Hochschild, negative
cyclic, and periodic cyclic homology of mf.f / and related categories. We begin
with a technical point:

3.2.1. Adjoining a power series variable to a graded ring. For a (homologically)
Z-graded vector space W , let u be an indeterminate of degree �2, so that W Œuç,
and hence also W Œuç=um, is Z-graded. We set

W ŒŒuçç WD lim
m

W Œuç=um;

where, importantly, the inverse limit is taken in the category of Z-graded vector
spaces. Thus, W ŒŒuçç is graded, and for each d , its degree d part is the subspace

W ŒŒuççd D
⇢X

i�0

viu
i W vi 2W2iCd

�

of the collection of all power series with W coefficients. Note that if W is con-
centrated in degree 0 (or, more generally, if Wm D 0 for m� 0), then W ŒŒuçç is
really just a polynomial ring with W coefficients. For instance, if we regard k itself
as being Z-graded but concentrated in degree 0, then the above definition of kŒŒuçç

yields kŒuç. We stick with the traditional notation kŒuç in this case.
The following is easily verified:

Lemma 3.3. Suppose W is a Z-graded k-vector space with only a finite number of

nonzero degree components, and let t be a degree �2 indeterminate. We have an

identity

W Œt; t�1ç ŒŒuççDW ŒŒvçç Œt; t�1ç;

where v WD ut
�1

and W ŒŒvçç denotes all power series with W coefficients in the

degree 0 variable v.

Example 3.4. In particular, we have an identity

kŒt; t�1ç ŒŒuççD kŒŒvçç Œt; t�1ç;

with v WD ut
�1 and kŒŒvçç the usual ring of power series. In other words, kŒt; t�1ç ŒŒuçç

is a Z=2-graded ring that is 0 in odd degree and a power series ring in even degree.
We use this identity frequently in this paper.

Remark 3.5. The ring kŒt ç ŒŒuçç may be identified with the Z-graded polynomial
ring kŒu; t ç, concentrated in negative even degrees.
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116 MICHAEL K. BROWN AND MARK E. WALKER

3.2.2. De Rham models. Let A be a smooth k-algebra equipped with a Z-grading
(written homologically) such that Ai D 0 for all odd i , and suppose w 2A�2 is an
element of degree �2. We call such a pair .A; w/ a smooth curved algebra, and we
define its de Rham HN complex to be

HN
deR.A; w/ WD .�✏

A=k ŒŒuçç;ud C�dw/:

Here, u is an indeterminate of degree �2, and �✏
A D

L
p �

p
A=k

is homologically
graded by declaring ja0da1 � � � dapj WD pCP

i jai j, where j– j refers to the degree
of a homogenous element. In the formula for the differential, ud C �dw, the d

refers to the de Rham differential d W�p
A!�

pC1
A (observe that it has homological

degree C1, so that ud has degree �1) and �dw refers to left multiplication by the
degree �1 element dw 2�1

A.
We define the de Rham HP complex for the pair .A; w/ to be

HP
deR.A; w/ WD HN

deR.A; w/Œu�1çD .�✏
A=k..u//;ud C�dw/;

where, in general, W ..u// is shorthand for W ŒŒuçç Œu�1ç. The de Rham HH complex

of .A; w/ is

HH
deR.A; w/ WD HN

deR.A; w/

u �HN
deR.A; w/

D .�✏
A;�dw/:

If A is a smooth kŒt; t�1ç-algebra for a degree �2 indeterminate t (i.e., a Z=2-
graded algebra), we set

HN
deR;Z=2.A; w/ WD .�✏

A=kŒt;t�1ç
ŒŒuçç;ud C�dw/:

We also define HP
deR;Z=2.A; w/ and HH

deR;Z=2.A; w/ just as above. Observe
that the complex HN

deR;Z=2.A; w/ is a dg-module over kŒt; t�1ç ŒŒuççD kŒŒvçç Œt; t�1ç

(see Example 3.4); that is, it is a differential Z=2-graded module over the power
series ring kŒŒvçç. When A is a Z=2-graded algebra, we can, and sometimes will,
ignore kŒt; t�1ç-linearity and consider the invariants HN

deR.A; w/, HP
deR.A; w/,

and HH
deR.A; w/ defined above.

If ADA0 andwD0, we write HN
deR.A;w/ as just HN

deR.A/, and if YDSpec.A/,
we also write HN

deR.Y / WD HN
deR.A/; we use the analogous notation for HH and

HP as well. In this case, the classical Hochschild–Kostant–Rosenberg (HKR)
isomorphism [Loday 1998, Theorem 3.4.4] induces quasi-isomorphisms

HN.A/
'�! HN

deR.A/; HP.A/
'�! HP

deR.A/ and HH.A/
'�! HH

deR.A/;

thus justifying the notation. More generally, for a smooth (ungraded) k-algebra Q

and non-zero-divisor f 2Q, we may form the smooth curved algebras .QŒt ç; f t/

and .QŒt; t�1ç; f t/. For these, we have the following HKR-type isomorphisms,
which build on results in [Căldăraru and Tu 2013; Polishchuk and Positselski 2012;
Segal 2013]:
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 117

Theorem 3.6. For a field k of characteristic 0, a smooth k-algebra Q, and a non-

zero-divisor f 2Q, we have the following isomorphisms in the derived category of

dg-QŒuç-modules (in parts (2) and (3), we use Notation 3.2):

(1) HN
BM.Q=f /ä HN

deR.QŒt ç; f t/,

(2) HN.Dsg.Q=f //ä HN.mf.f //ä HN
deR.QŒt; t�1ç; f t/, and

(3) HN
Z=2.mf.f //ä HN

deR;Z=2.QŒt; t�1ç; f t/.

Remark 3.7. The third isomorphism is a map of graded QŒt; t�1ç ŒŒuççDQŒŒvçç Œt; t�1ç-
modules, or, equivalently, of Z=2-graded QŒŒvçç-modules.

Remark 3.8. The isomorphisms in this theorem imply the analogous results in-
volving both Hochschild and periodic cyclic homology upon modding out by and
inverting u, respectively.

Proof of Theorem 3.6. Part (1) follows from [Brown and Walker 2024, Proposi-
tion 2.16 and Theorem 2.17]. Parts (2) and (3) follow from [Brown and Walker
2020a, Proposition 3.25 and Theorem 3.31] and [Briggs and Walker 2024], respec-
tively. ⇤

3.3. An explicit calculation of a boundary map. Suppose Z ,! X is a closed
immersion of schemes of finite type over C. Let Db;Z.X / denote the full dg-
subcategory of Db.X / consisting of objects whose supports are contained in Z. We
set HP

BM;Z .X / WDHP.Db;Z.X //. As already noted in the proof of Proposition 2.17,
[Khan 2023, Theorem A.2] (see also [Brown and Walker 2024, Theorem 1.2])
implies that the induced map

HP
BM.Z/! HP

BM;Z.X /

is a quasi-isomorphism: that is, HP
BM satisfies the dévissage property. By a result

of Keller [1999], we have a distinguished triangle

HP
BM;Z .X /! HP

BM.X /! HP
BM.X nZ/!

of dg-kŒu;u�1ç-modules; see [Brown and Walker 2024, Section 2] for details.
Combining this with the dévissage property, we obtain a distinguished triangle

HP
BM.Z/! HP

BM.X /! HP
BM.X nZ/! : (3.9)

Remark 3.10. By a result of Blanc, topological K-theory of dg-categories is a
localizing invariant (see, e.g., [Brown and Walker 2024, Theorem 2.6]). Moreover,
topological K-theory satisfies dévissage [Halpern-Leistner and Pomerleano 2020,
Example 2.3]. Thus, we have a distinguished triangle

G
top.Z/!G

top.X /!G
top.X nZ/! (3.11)

of spectra analogous to (3.9). We will make use of this in the proof of Theorem 2.23.
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118 MICHAEL K. BROWN AND MARK E. WALKER

We apply the distinguished triangle (3.9) in the following special case: for a
smooth k-algebra Q and a non-zero-divisor f 2Q, we obtain a long exact sequence

� � �! HP1.Q/! HP1.QŒ1=f ç/
@�! HP

BM
0 .Q=f /! HP0.Q/! � � � : (3.12)

Using [Brown and Walker 2024, Theorem 5.5], one may explicitly describe the
boundary map @ in terms of the de Rham models for periodic cyclic homology
discussed in Section 3.2.2. Before recalling this result, we note that every element of
HP

deR
1 .QŒ1=f ç/ is represented by a finite sum of classes of the form .˛=f s/u.p�1/=2

for some integer s � 1 and some class ˛ 2�p
Q, with p odd, such that fd˛D sdf˛

[Brown and Walker 2024, Lemma 5.3].

Theorem 3.13 [Brown and Walker 2024, Theorem 5.5]. The boundary map

@ W HP1.QŒ1=f ç/! HP
BM
0 .Q=f /

in (3.12) corresponds, via the isomorphisms relating its source and target to their

de Rham models, to the map

@deR W HP
deR
1 .QŒ1=f ç/! HP

deR
0 .QŒt ç; f t/

given by

@deR
⇣
˛
f s u

1
2 .p�1/

⌘
D .�1/s

s!
d.˛t

s/u
1
2 .pC1/�s:

3.4. Some calculations of Hochschild invariants of matrix factorization categories.

Formulas for the Hochschild, negative cyclic, and periodic cyclic homology of
mf.f / relative to kŒt; t�1ç (as opposed to k) are well-known, due to [Dyckerhoff
2011]:

Theorem 3.14. Let k be a field of characteristic 0, Q a smooth k-algebra, and

f 2 Q a non-zero-divisor. Assume that the morphism f W Spec.Q/! A1
k

deter-

mined by f has only one singular point m 2 Spec.Q/, and it lies over the origin

(i.e., f 2m). Set d D dim.Qm/, and let �f be the finite-dimensional vector space

�d
Q

df ��d�1
Q

:

We use Notation 3.2.

(1) There is an isomorphism of Z=2-graded k-vector spaces

†d�f
ä�! HH

Z=2
⇤ .mf.f //;

where d is considered mod 2. Moreover, under the identification of HH
Z=2
⇤ .mf.f //

with HH
deR;Z=2
⇤ .mf.f // given by Theorem 3.6, the isomorphism is induced by the

canonical inclusion �d
Q ✓�✏

Q.
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 119

(2) HN
Z=2
⇤ .mf.f // is a free, finite-rank Z=2-graded kŒŒvçç-module, HP

Z=2
⇤ .mf.f //

is a finite-dimensional Z=2-graded vector space over k..v//, and both are concen-

trated in degree d .mod 2/. (Recall that v D t
�1

u, and k..v// WD kŒŒvçç Œv�1ç.)

Remark 3.15. Rephrasing in terms of kŒt; t�1ç-modules, Theorem 3.14(1) means
that we have an isomorphism

†d�f Œt; t
�1çä HH

Z=2
⇤ .mf.f //

of graded kŒt; t�1ç-modules induced by the inclusion �d
QŒt; t

�1ç ,!�✏
QŒt; t

�1ç,
and Theorem 3.14(2) says that HN

Z=2
⇤ .mf.f // is a graded free module of finite

rank over the ring kŒt; t�1ç ŒŒuçç D kŒŒvçç Œt; t�1ç (see Example 3.4), and similarly
for HP. In particular, Theorem 3.14(2) implies that HN

Z=2
⇤ .mf.f // is v-torsion

free, and thus its quotient by v may be identified with HH
Z=2
⇤ .mf.f //. A choice

of kŒt; t�1ç-linear splitting of HN
Z=2
⇤ .mf.f //⇣ HH

Z=2
⇤ .mf.f // determines an

isomorphism HN
Z=2
⇤ .mf.f //ä†d�f ŒŒvçç Œt; t

�1ç of kŒŒvçç Œt; t�1ç-modules, but such
an isomorphism is not canonical.

Proof. Part (1) is [Dyckerhoff 2011, Theorem 6.6]; it also follows from Theorem 3.6
(and Remark 3.8). It is a consequence of (1) that the Hodge-to-de Rham spectral
sequence degenerates [Dyckerhoff 2011, Section 7]. The statement in (2) con-
cerning negative cyclic homology follows: see, e.g., [Shklyarov 2016, proof of
Proposition 9]. The statement in (2) about periodic cyclic homology is then clear. ⇤

4. A Wang-type exact sequence

Let k, Q, f , and R be as in Section 3. The goal of this section is to leverage the
calculations in Theorem 3.14 to compute the negative cyclic and periodic cyclic
homology of mf.f /' Dsg.R/ relative to k rather than kŒt; t�1ç.

4.1. The distinguished triangle. A key tool is the following distinguished triangle,
whose associated long exact sequence on periodic cyclic homology is reminiscent
of the Wang exact sequence of a circle fibration (see Remark 4.2(3)). This result
implies Theorem 1.4 from the introduction.

Theorem 4.1. Let k be a field of characteristic 0, Q a smooth k-algebra, and

f 2Q a non-zero-divisor.

(1) There is a distinguished triangle

HN.mf.f //! HN
Z=2.mf.f // h�! HN

Z=2.mf.f //!

in the derived category of dg-kŒuç-modules, where h is a map satisfying

h.g.t/ �˛/D ug
0.t/˛Cg.t/h.˛/
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120 MICHAEL K. BROWN AND MARK E. WALKER

on the level of homology for any cycle ˛ and g 2 kŒt; t�1ç. In more detail, in

terms of the equivalent de Rham models, h is given by the endomorphism u
@
@t
C�f

of �✏
QŒt; t

�1ç ŒŒuçç.

(2) Assume that the morphism f W Spec.Q/! A1
k

determined by f has only one

singular point, m 2 Spec.Q/, and it lies over the origin (i.e., f 2m). We have, for

all j 2 Z such that j ⌘ dim.Qm/ .mod 2/, an exact sequence

0! HNj .mf.f //! HN
Z=2
j .mf.f // h�! HN

Z=2
j .mf.f //! HNj�1.mf.f //! 0:

(3) Parts (1) and (2) hold with HN replaced with HP throughout.

Proof. We have a canonical isomorphism

�✏
QŒt; t

�1ç˚�✏
QŒt; t

�1ç
.˛;ˇ/7!˛Cˇdt����������!ä �✏

QŒt;t�1ç
;

under which the differential for HN
deR.QŒt; t�1ç; f t/ corresponds to

u

"
dQ 0

@
@t

dQ

#
C


�tdf 0

�f �tdf

�
I

here, dQ denotes the de Rham differential on �✏
Q, extended kŒt; t�1ç-linearly

to �✏
QŒt; t

�1ç. It is thus immediate that HN
deR.QŒt; t�1ç; f t/ is isomorphic, as a

dg-kŒŒuçç-module, to the homotopy fiber of the map

HN
deR;Z=2.QŒt; t�1ç; f t/

u @
@t C�f������! HN

deR;Z=2.QŒt; t�1ç; f t/:

Letting h WD u
@
@t
C�f , part (1) therefore follows from (2) and (3) of Theorem 3.6.

Part (2) is immediate from (1) and Theorem 3.14(2), and part (3) follows by the
exactness of inverting u. ⇤
Remark 4.2. (1) As is evident from the relation h.g.t/ �˛/D ug

0.t/˛Cg.t/h.˛/,
the map h is not kŒt; t�1ç-linear, although its source and target are both complexes
of kŒt; t�1ç-modules. Put differently, HN

Z=2.mf.f // is two-periodic, but the map
h is not.

(2) Suppose QDCŒx0; : : : ;xnC1ç and that the hypersurface Q=.f / has an isolated
singularity at the origin. Denote by ' W E! S

1 the Milnor fibration associated
to f ; see [Dimca 1992, Chapter 3] for background on the Milnor fibration. Milnor
[1968, Theorem 6.5] proves that the fiber F of this fibration is homotopy equivalent
to a wedge sum of copies of S

nC1; F is called the Milnor fiber. The Serre spectral
sequence associated to the Milnor fibration collapses to a long exact sequence,
called the Wang exact sequence, of the form

� � �!H
i.E/!H

i.F /
T �id���!H

i.F /!H
iC1.E/! � � � ; (4.3)
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 121

where the maps H
i.E/!H

i.F / are the natural ones, and T denotes the automor-
phism of H

⇤.F / induced by monodromy.
On the other hand, by [Efimov 2020, Theorem 1.1], there is a canonical isomor-

phism
HP

Z=2
j .mf.f //ä

M

i2Z

H
jC2iC1.F IC/

for all j (see [Beraldo and Pippi 2025] for an `-adic version of this result); we note
that [Efimov 2020, Theorem 1.1] identifies periodic cyclic homology with vanishing
cohomology, but the latter is isomorphic to the cohomology of the Milnor fiber
since the singularity of Q=.f / is isolated. It is therefore reasonable to consider the
long exact sequence in Theorem 4.1(3) as an analogue of the Wang exact sequence.
Theorem 4.1 also suggests that one should consider HP⇤.mf.f //ä HP⇤.Dsg.R//

as an analogue of the cohomology of the total space E of the Milnor fibration.

4.2. The homogeneous case. Now let Q be the polynomial ring kŒx0; : : : ;xnC1ç,
equipped with its standard internal grading given by deg.xi/D 1 for all i . Assume
also that f is homogeneous, say of internal degree deg.f /D e. Henceforth, we
will use the notation j – j for homological degree and deg. – / for internal degree.
The main goal of this subsection is to prove Corollary 4.7, which provides an
important link between the Z-graded and Z=2-graded negative cyclic homology of
the singularity category of a homogeneous isolated hypersurface singularity.

Recall that�✏
QŒt; t

�1ç has a homological grading, where jt j D�2 and j�p
Qj Dp;

we may also equip�p
QŒt; t

�1çwith an internal grading by declaring deg.t/D�e and
deg.g0dg1 � � � dgj /D

Pj
iD0 deg.gi/. With these conventions, we have jf t j D �2

and deg.f t/D 0, and the de Rham differential dQ is an operator of homological
degree C1 and internal degree 0.

Remark 4.4. It is tempting to extend the internal grading to�✏
QŒt; t

�1ç ŒŒuçç by declar-
ing deg.u/D 0, so that, for instance, the differential on HN deR;Z=2.QŒt; t�1ç; f t/,
namely udQC t�df , has internal degree 0. But, this does not entirely make sense,
for observe that this would require setting deg.v/ D deg.ut

�1/ D e, and, since
�✏

QŒt; t
�1ç ŒŒuççD�✏

QŒŒvçç Œt; t
�1ç, this would mean we are “grading” the power series

ring kŒŒvçç with deg.v/¤ 0, which is nonsensical.

Remark 4.4 notwithstanding, we may define a grading-like operator Ä on
�✏

QŒŒvçç Œt; t
�1ç D �✏

QŒt; t
�1ç ŒŒuçç by setting Ä.!t

i
u

j / D .deg.!/� i � e/!t
i
u

j for
! 2�✏

Q and extending along infinite sums. Equivalently, and more explicitly, we
define the operator Ä on �✏

QŒŒvçç Œt; t
�1ç by declaring Ä.v/ D ev and extending

along infinite sums as follows: a typical element of �✏
QŒŒvçç Œt; t

�1ç has the form
˛ DP

j

P
m

P
p !j ;m;pv

m
t
j , where j ranges over a finite subset of Z, m ranges

over all nonnegative integers, p ranges over a finite subset of N, and !j ;m;p is a
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122 MICHAEL K. BROWN AND MARK E. WALKER

homogeneous element of �✏
Q of internal degree p. We set

Ä.˛/D
X

j ;m;p

.pC em� ej /!j ;m;pv
m

t
j :

Since deg.u/D 0, the operator Ä is a kŒuç-linear derivation: Ä.u˛/D uÄ.˛/, and
Ä.˛ˇ/D Ä.˛/ˇC˛Ä.ˇ/. Note that the homological grading is ignored, and there
are no signs.

Notation 4.5. For any integer i and operator Ä on a k-vector space W , define
ÄiW WD ker.Ä � i/, the eigenspace of Ä with eigenvalue i .

For an honest Z-graded vector space W , with Ä taken to be the grading operator,
Äi.W / coincides with the i -th graded piece of W , which we typically write as ŒW çi ;
we thus have W DL

i Äi.W / DL
i ŒW çi . Such a decomposition does not hold

for W D�✏
QŒŒvçç Œt; t

�1ç, even if we take QD k. For instance, Äj kŒŒvçç Œt; t�1çD 0

when e ≠ j , and Äi�ekŒŒvçç Œt; t�1çD kŒuçt�i . We therefore have
M

j

Äj kŒŒvçç Œt; t�1çD kŒvçŒt; t�1ç¨ kŒŒvçç Œt; t�1ç:

More generally, for each integer i ,

Äi�
✏
QŒŒvçç Œt; t

�1çD
M

j2Z

M

m�0

Äi�emCej�
✏
Qv

m
t
j D

⇥
�✏

QŒv; t; t
�1ç

⇤
i
:

The differential tdf CudQ on HN
deR.QŒt; t�1ç; tf / commutes with Ä (loosely

speaking, the differential “has degree zero”); it follows that Ä induces an operator
on HN⇤.mfZ=2.f //, which we also write as Ä . As with �✏

QŒŒvçç Œt; t
�1ç, Ä does

not induce a Z-grading on HN⇤.mfZ=2.f //, but Ä0HN⇤.mfZ=2.f // is a module
over kŒuçD Ä0kŒt; t�1ç ŒŒuçç.

Theorem 4.6. Let QD kŒx0; : : : ;xnC1ç, equipped with the internal grading given

by deg.xi/ D 1, and let f be a homogeneous form of degree e � 1. The kŒuç-

linear endomorphism h D u
@
@t
C �f of HN

deR;Z=2.QŒt; t�1ç; f t/ is homotopic to

the endomorphism �veÄ .

Proof. Define "Q W�✏
Q!�✏

Q to be the map induced by the Euler derivation on Q

sending g 2Q to deg.g/g; i.e., "Q maps �p
Q to �p�1

Q by the formula

"Q.g0dg1 � � � dgp/ WD
pX

iD1

.�1/i�1 deg.gi/g0gidg1 � � �bdgi � � � dgp:

The map "Q has homological degree �1 and internal degree 0. We also de-
note by "Q its kŒt; t�1ç ŒŒuçç-linear extension (i.e., its kŒŒvçç Œt; t�1ç-linear extension)
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 123

to �✏
QŒt; t

�1ç ŒŒuççD�✏
QŒŒvçç Œt; t

�1ç. We have relations

Œ"Q; t�df çD deg.df /t�f D et�f and Œ"Q;udQçD uÄQ;

where Œ˛; ˇç WD ˛ ıˇCˇ ı˛ for operators of odd homological degree, and

ÄQ W�✏
QŒŒvçç Œt; t

�1ç!�✏
QŒŒvçç Œt; t

�1ç

denotes the kŒŒvçç Œt; t�1ç-linear map determined by ÄQ.!/D deg.!/! for ! 2�✏
Q.

Since the differential on HN
deR.mfZ=2.f // D �✏

QŒŒvçç Œt; t
�1ç is udQC t�df , we

may interpret "Q=et as a homotopy exhibiting that �f and �veÄQ are homotopic
endomorphisms of HN

deR.mfZ=2.f //, and hence that h and vt
@
@t
� v

eÄQ are ho-
motopic.

It remains to show vt
@
@t
� veÄQD�veÄ . We first note that, since vD u

t , we have

@vj

@t
D �j vj

t
:

Thus, for ˛ D !vj
t
i , we have

⇣
vt
@
@t
� v

e
ÄQ

⌘
.˛/D

⇣
i � j C deg.!/

e

⌘
!vjC1

t
i

D �v
e
.deg.!/C .j � i/e/!vj

t
i D �v

e
Ä.˛/;

and this extends along all infinite sums. ⇤
Corollary 4.7. Let Q and f be as in Theorem 4.6. Assume also that n is even, and

that Proj.Q=f /✓ PnC1
is smooth. The canonical map

HN
deR.QŒt; t�1ç; f t/! HN

deR;Z=2.QŒt; t�1ç; f t/;

induced by the surjection�✏
QŒt;t�1ç=k

⇣�✏
QŒt;t�1ç=kŒt;t�1ç

that sets dtD0, induces

a kŒuç-linear isomorphism

HN
deR
even.QŒt; t

�1ç; tf /ä Ä0HN
deR;Z=2
⇤ .QŒt; t�1ç; tf /:

Proof. By Theorem 3.14(2), we have HN
Z=2
i .mf.f //D 0 for i odd. It therefore

follows from Theorem 4.6 that, for each j 2 Z, there is an exact sequence of
k-vector spaces

0! HN
deR
2j .QŒt; t�1ç; f t/! HN

deR;Z=2
2j .QŒt; t�1ç; f t/

�vÄ
e���! HN

deR;Z=2
2j .QŒt; t�1ç; f t/:

Again by Theorem 3.14(2), the kŒŒvçç-module HN
deR;Z=2
⇤ .QŒt; t�1ç; f t/ is v-torsion

free, and hence ker
�
�vÄe

�
D ker.Ä/. ⇤
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124 MICHAEL K. BROWN AND MARK E. WALKER

5. Proof of Theorem 2.23

We start with the following theorem, which is a consequence of the results in
Sections 3 and 4; it encapsulates exactly what we will need from these sections for
the proof of Theorem 2.23:

Theorem 5.1. Let Q be the standard graded polynomial ring kŒx0; : : : ;xnC1ç with

n even, and let f be a nonzero, homogeneous element of degree e � 1. Assume that

Proj.Q=f /✓ PnC1
is smooth. Define �f to be the graded k-vector space

�f WD
�nC2

Q

df ��nC1
Q

ä kŒx0; : : : ;xnC1ç� @f
@x0
; : : : ; @f

@xnC1

� dx0 � � � dxnC1:

(1)
L

m HN2m.mf.f // is a free (homologically) graded kŒuç-module of finite rank.

In particular, HN2m.mf.f //D 0 for m� 0, and multiplication by u determines

an isomorphism

HN2mC2.mf.f // ä�! HN2m.mf.f //
for m⌧ 0.

(2) The grading operator Ä on the de Rham HN complex HN
dR;Z=2.QŒt; t�1ç; f t/

induces an operator on HH
dR;Z=2
⇤ .QŒt; t�1ç; f t/, and, for all m 2 Z, there is an

isomorphism

Œ�f ç..n=2/C1�m/�e
ä�! Ä0 HH

dR;Z=2
2m .QŒt; t�1ç; f t/

induced by sending ! 2 Œ�nC2
Q ç..n=2/C1�m/�e to the class !t

.n=2/C1�m
.

(3) For each m, we have a short exact sequence

0! HN.mf.f //2mC2
u�! HN2m.mf.f //

q�! Œ�f ç..n=2/C1�m/�e! 0I (5.2)

here, the map q is the composition

HN2m.mf.f // ä�! HN
dR
2m.QŒt; t

�1ç; f t/
dt 7!0����! Ä0 HN

dR;Z=2
2m .QŒt; t�1ç; f t/

u 7!0���! Ä0 HH
dR;Z=2
2m .QŒt; t�1ç; f t/

ä�! Œ�f ç..n=2/C1�m/�e;

where the first isomorphism is from part (2) of Theorem 3.6, and the last is (the

inverse of ) the isomorphism in (2).

Proof. Part (1) follows from Theorem 3.14(2) and Corollary 4.7, using that
Ä0.kŒŒvçç Œt; t

�1ç/ D kŒuç. Let us now prove (2) and (3). To ease notation, we
write V D HN

dR;Z=2.QŒt; t�1ç; f t/ and W D HH
dR;Z=2.QŒt; t�1ç; f t/. Since the

homologies of both V and W vanish in odd degrees, the distinguished triangle

V Œ2ç
u ��! V

u 7!0���!W !
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 125

(where V Œ2ç denotes the shift of V by 2 in homological degree) yields a short exact
sequence

0! V2mC2
u ��! V2m

u 7!0���!W2m! 0:

Since deg.u/ D 0, the map V
u ��! V commutes with Ä; it follows that Ä in-

duces an operator on W . Moreover, this operator commutes with the differential
on W and therefore induces an operator on its homology. The isomorphism
†d�f äHH

dR;Z=2.QŒt; t�1ç; f t/ arising from Theorem 3.14(1) induces the desired
isomorphism

Œ�f ç..n=2/C1�m/�e
ä�! Ä0 HH

deR;Z=2
2m .mf.f //;

which proves (2).
We evidently have an exact sequence

0! Ä0V2mC2
u ��! Ä0V2m

u 7!0���! Ä0W2m:

It is straightforward to check that Ä0V2m
u 7!0���! Ä0W2m is surjective, so in fact we

have a short exact sequence

0! Ä0V2mC2
u ��! Ä0V2m

u7!0���! Ä0W2m! 0

of vector spaces. Applying Corollary 4.7 again, we obtain the short exact sequence

0! HN
dR
2mC2.QŒt; t

�1ç; f t/
u ��! HN

dR
2m.QŒt; t

�1ç; f t/

u7!0���! Ä0 HH
dR;Z=2
2m .mf.f //! 0:

The square

HN2mC2.mf.f //

ä
✏✏

u �
// HN2m.mf.f //

ä
✏✏

HN
dR
2mC2.QŒt; t

�1ç; f t/
u �
// HN

dR
2m.QŒt; t

�1ç; f t/

evidently commutes, where the vertical isomorphisms arise from Theorem 3.6. We
therefore arrive at the short exact sequence

0! HN2mC2.mf .f //
u ��! HN2m.mf .f //

u7!0���! Ä0 HH
dR;Z=2
2m .mf.f //! 0:

The exactness of (5.2) therefore follows from the commutativity of the triangle

HN2m.mf .f //
u7!0

//

q

))

Ä0 HH
dR;Z=2
2m .mf.f //

Œ�f ç..n=2/C1�m/�e

ä
OO

where the vertical isomorphism is given by (2). ⇤
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126 MICHAEL K. BROWN AND MARK E. WALKER

Corollary 5.3. In the setting of Theorem 5.1, the k-vector space HP0.mf.f // has

dimension equal to dimCŒ�f çZ�e. Moreover, setting F
p
nc D F

p
nc HP0.mf.f //, we

have canonical isomorphisms

F
p
nc

F
pC1
nc

ä Œ�f ç..n=2/C1�p/�e

for each integer p.

Remark 5.4. Note that we are not claiming that there is a canonical isomorphism
HP0.mf.f //ä Œ�f çZ�e.

Remark 5.5. It follows from the definition of a Hodge structure of weight 0 that
the intersection of Hdg.HP0.mf.f /// with F

1
nc is 0. Thus, the composition

Hdg.HP0.mf.f /// ,! F
0
nc

can��! F
0
nc=F

1
nc ä Œ�f ç..nC2/=2/�e

is injective; in particular, the Hodge classes of HP0.mf.f // may be identified with
a rational subspace of Œ�f ç..nC2/=2/�e. As a consequence, we see that there is no
information lost when passing from the Chern character map chHN WK0.mf.f //!
HN0.mf.f // taking values in negative cyclic homology to the a priori coarser map
chHH WK0.mf.f //! HH0.mf.f // given by the composition

K0.mf.f //
chHN���! HN0.mf.f // u 7!0���! HH0.mf.f //:

5.1. The commutative diagram. We now prove Theorem 2.23(2). This follows
from the existence and properties of the diagram

K0.X /

✏✏

D
// K0.X /

✏✏

// K0.Dsg.R//

✏✏

KU
0.X /

chtop

✏✏

ä
// K

top
0 .X /

chtop

✏✏

// // K
top
0 .Dsg.R//

chtop

✏✏

H
even.X IC/ ä

// HP0.X / // // HP0.Dsg.R//

(5.6)

The top vertical maps are the canonical ones. The map KU
0.X /! K

top
0 .X / is

Blanc’s comparison isomorphism, and the bottom horizontal map on the left is the
HKR isomorphism. Letting E denote K, K

top or HP, the horizontal maps on the
right side are defined by the sequence maps

E0.X /
p⇤
⇣ E0.W /

ä �E0.Db.R//
can��!E0.Dsg.R//; (5.7)

where W D Spec.R/, p WW !X is the map given by modding out the C⇤ action,
and the isomorphism is given by Proposition 2.17. (The fact that p

⇤ is indeed
surjective, as indicated, will be justified below.)
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 127

In particular, diagram (2.24) is the “boundary” of diagram (5.6). It therefore
suffices to prove (5.6) commutes, the two maps K

top
0 .X / ! K

top
0 .Dsg.R// and

HP0.X /! HP0.Dsg.R// are surjective as indicated, and the images of the maps
K0.X /!K

top
0 .Dsg.R// and K0.Dsg.R//!K

top
0 .Dsg.R// coincide.

The commutativity of the top left square of (5.6) is a consequence of the con-
struction of Blanc’s map, and the bottom left square commutes by [Blanc 2016,
Proposition 4.32]. The right side of this diagram commutes by the naturality of the
map from algebraic to topological K-theory and the topological Chern character
map. Let us now justify that p

⇤ W E0.X /! E0.W / is onto for each of E DK,
K

top or HP. Toward this goal, let Y be the blow-up of Spec.R/ at m. The fiber
of this blow-up is X , and the inclusion i W X ,! Y is the zero section of a map
⇡ W Y ! X making Y into a line bundle over X . Moreover, we may identify W

with Y nX ; let j WW ,! Y denote the canonical open immersion. Then we have
pD ⇡ ıj , and since ⇡ is a line bundle over a smooth base, ⇡⇤ WE0.X /

ä�!E0.Y /

is an isomorphism. Since Y , W and X are all smooth, dévissage gives that j
⇤ fits

into the long exact sequence

� � �!E0.Y /
j⇤
�!E0.W /!E�1.X /! � � � :

For each of these functors, we have E�1.X / D 0, and thus p
⇤ is surjective,

as claimed. Now assume E D K
top or E D HP. Proposition 2.18 gives that

E0.Db.R//! E0.Dsg.R// is onto, and thus the rightmost map in (5.7) is also
surjective in these two cases. This proves the lower two horizontal maps on the
right side of (5.6) are surjections as indicated.

To complete the proof, it suffices to show the image of the map

K0.Dsg.R//!K
top
0 .Dsg.R//

and the image of the composition

G0.R/DK0.Db.R//!K0.Dsg.R//!K
top
0 .Dsg.R//

coincide.

Remark 5.8. The map K0.Db.R//!K0.Dsg.R// itself need not be onto, due to
the fact that K�1.R/ is typically nonzero; see [Cortiñas et al. 2013].

However, the map K0.Db.R//!K0.Dsg.R// is onto “up to A1-homotopy”. In
detail, consider the diagram

K0.Db.RŒxç// //

i⇤
0 �i⇤

1
✏✏

K0.Dsg.RŒxç// //

i⇤
0 �i⇤

1

✏✏

K�1.Perf.RŒxç//

i⇤
0 �i⇤

1

✏✏

// 0

K0.Db.R// // K0.Dsg.R// // K�1.Perf.R// // 0
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128 MICHAEL K. BROWN AND MARK E. WALKER

with exact rows and in which the vertical maps are given by the difference of the
two maps induced by setting x equal to 0 and 1. (We may model Db as bounded
below complexes of finitely generated projective modules with bounded homology,
and with this model it is clear that setting x equal to any constant determines a
dg-functor. This restricts to a dg-functor on Perf and hence on Dsg.) Let us write
K0. – / for the cokernels of the columns of this diagram, so that we have a right
exact sequence

K0.Db.R//!K0.Dsg.R//!K�1.Perf.R//! 0: (5.9)

The result we seek follows directly from the following two claims:

(1) the map K0.Dsg.R//!K
top
0 .Dsg.R// factors through the canonical surjection

K0.Dsg.R//⇣ K0.Dsg.R//, and

(2) the map K0.Db.R//!K0.Dsg.R// is onto.

The first claim follows from the fact that K
top is A1-homotopy invariant. For

the second claim, since the functor K�1. – / is A1-homotopy invariant and R is
standard graded, we have K�1.R/ ä K�1.k/ D 0. The second claim therefore
follows from (5.9).

5.2. An alternative description of the map ˛. We next establish in Lemma 5.13 an
alternative description of the map ˛ WH n

prim.X /! HP0.Dsg.R// defined in (2.22).
This description will be used to show that it is an isomorphism that preserves Hodge
filtrations.

We begin with some setup. Let U denote the affine variety PnC1 nX . Applying
the distinguished triangle (3.9), we obtain a dévissage long exact sequence

� � �! HP1.P
nC1/! HP1.U /

@U;X���! HP0.X /! HP0.P
nC1/! � � � (5.10)

(the subscript U;X on the boundary map is included to distinguish it from the other
boundary maps we consider). We set

HP
prim
0 .X / WD ker.HP0.X /! HP0.P

nC1//:

Since X is a smooth hypersurface in PnC1 of even dimension, we have

H
n
prim.X IC/ä HP

prim
0 .X /:

As HP1.P
nC1/D 0, it follows that there is an isomorphism

@U;X W HP1.U /
ä�! HP

prim
0 .X /: (5.11)

Let V D Spec.QŒ1=f ç/ be the open complement of Spec.R/ D Spec.Q=f / in
AnC2 D Spec.Q/. There is a canonical surjection p W V ⇣ U given by modding
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 129

out the action of C⇤, and it induces a map

p
⇤ W HP1.U /! HP1.V /:

We also have the dévissage long exact sequence

� � �! HP1.A
nC2/! HP1.V /

@V;R���! HP
BM
0 .R/

! HP0.A
nC2/! HP0.V /! � � � : (5.12)

Since HP1.A
nC2/ D 0, and HP0.C/ ä HP0.A

nC2/! HP0.V / is injective, the
boundary map @V;R is an isomorphism.

Lemma 5.13. The composition

H
n
prim.X;C/ä HP

prim
0 .X /

@�1
U;X���!ä HP1.U /

p⇤
��! HP1.V /

@V;R���!ä HP
BM
0 .R/⇣ HP0.Dsg.R//

coincides with the map ˛ defined in (2.22).

Proof. This is a diagram chase involving the long exact sequences (5.10) and (5.12),
as well as the dévissage long exact sequence

� � �! HP1.V /
@V;W����! HP0.W /! HP0.A

nC2 n f0g/! HP0.V /! � � � ; (5.14)

where, as above, W D Spec.R/ n fmg. In a bit more detail, the naturality of these
dévissage sequences, along with the fact that (5.14) maps to both (5.10) and (5.12),
yields the commutative diagrams

HP1.U /
p⇤
//

@U;X

✏✏

HP1.V /

@V;X

✏✏

HP0.X /
p⇤
// HP0.W /

and

HP1.V /

@V;W

✏✏

@V;R

&&

HP0.W / HP
BM
0 .R/ä

oo

The statement follows. ⇤

Proposition 5.15. The map ˛ is an isomorphism.

Proof. By Theorem 3.6 and Lemma 5.13, it suffices to prove that the composition

HP
deR
1 .U /

p⇤
��!HP

deR
1 .V /

@deR
V;R���!ä HP

deR
0 .QŒt ç; f t/⇣ HP

deR
0 .QŒt; t�1ç; f t/ (5.16)

is an isomorphism, where @deR
V;R is the de Rham version of the boundary map @V;R

in (5.12). By Proposition 2.18, the last map in this composition is surjective, and
its kernel is given by the image of C

ä�! HP
deR
0 .R/! HP

deR
0 .QŒt ç; f t/; we begin
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130 MICHAEL K. BROWN AND MARK E. WALKER

by identifying this image. We have a commutative diagram

Z

✏✏

ä
17!ŒRç

// K0.R/

chHP

✏✏

// G0.R/

chHP

✏✏

C
ä
// HP

deR
0 .R/ // HP

deR
0 .QŒt ç; tf /

where the rightmost horizontal maps are induced by the inclusion Perf.R/ ,!Db.R/,
and the leftmost vertical map is the inclusion. The image of 1 2 C under the
composition C

ä�! HP
deR
0 .R/! HP

deR
0 .QŒt ç; f t/ is therefore chHP.ŒRç/, which is

equal to Œdfdt ç by [Brown and Walker 2020a, Example 6.4].
The formula for @deR

V;R given in Theorem 3.13 implies that @deR
V;R.Œdf=f ç/D Œdfdt ç.

We thus need only show that the map

HP
deR
1 .U /˚C

.p⇤;Œdf=f ç/��������! HP
deR
1 .V /; (5.17)

where Œdf=f ç 2HP
deR
1 .V /, is an isomorphism. This appears to be well-known (see,

e.g., [Dimca 1992, Chapter 6, Section 1]), but we sketch a proof.
Set A WDCŒx0; : : : ;xnC1ç Œ1=f ç, and recall that V DSpec.A/ and U DSpec.A0/.

The Euler derivation gives a contracting homotopy on the internal degree j part of
the de Rham complex .�⇤

A; d/ for all j ¤ 0, and thus we may identify the de Rham
cohomology of V with the cohomology of the complex .Œ�⇤

Aç0; d/. Moreover, we
have an isomorphism

�⇤
A0
˚�⇤�1

A0

ä�! Œ�⇤
Aç0 (5.18)

given by .˛; ˇ/ 7! ˛C .df=f /ˇ. This gives an isomorphism

.p⇤; Œdf=f çp⇤/ WH m
deR.U /˚H

m�1
deR .U /

ä�!H
m
deR.V /

for each m. The isomorphism (5.17) thus follows from the HKR isomorphisms
HP

deR
1 .V /äH

odd
deR.V / and HP

deR
0 .U /äH

even
deR .U /, along with the fact that, since

U is the complement of a smooth projective hypersurface of even dimension, we
have H

even
deR .U /DH

0
deR.U /D C. ⇤

5.3. Spanning set for HN
deR

2m .QŒt; t�1ç; f t/. Fix m 2 Z. We next exhibit an
explicit spanning set for HN

deR
2m .QŒt; t�1ç; f t/ as a complex vector space. This is

the content of Lemma 5.24, which plays a key role in the identification of the “polar
filtration” on HP1.U / and the nc Hodge filtration on HP0.Dsg.R// (Lemma 5.27).
If j  nC2

2 �m, then given ! 2 Œ�nC2
Q çj �deg.f /, we define

 m;j .!/ WD
.�1/j

j !
d."Q.!/t

j /u
1
2 .nC2/�m�j 2 HN

deR.QŒt; t�1ç; f t/; (5.19)

where "Q is as defined in the proof of Theorem 4.6. Observe that  m;j .!/ has
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 131

homological degree 2m and internal degree 0. We have

dQ."Q.!//D dQ."Q.!//C "Q.dQ.!//D deg.!/! D j deg.f /!;

where the first equality holds since dQ.!/D 0, and the second follows from the
proof of Theorem 4.6. We may therefore equivalently write

 m;j .!/D
.�1/j deg.f /
.j � 1/!

✓
!t

j � "Q.!/

deg.f /
t
j�1

dt

◆
u

1
2 .nC2/�m�j : (5.20)

Using (5.20) along with Euler’s formula

deg.f / �f D
nC1X

iD0

@f

@xi
xi ;

one sees that m;j .!/ is a cycle, and so it determines a class in HN
deR
2m .QŒt; t�1ç; f t/.

We write  m for the induced map

 m W
M

j 1
2 .nC2/�m

Œ�nC2
Q çj �deg.f /! HN

deR
2m .QŒt; t�1ç; f t/: (5.21)

Setting mD 0, and replacing HN with HP, we obtain the map

 W Œ�nC2
Q çZ�deg.f / WD

M

j2Z

Œ�nC2
Q çj �deg.f /! HP

deR
0 .QŒt; t�1ç; f t/ (5.22)

given by the same formula: if ! 2 Œ�nC2
Q çj �deg.f /, then  .!/ is the class of

.�1/j

j !
d."Q.!/t

j /u
1
2 .nC2/�j :

Remark 5.23. The composition of  m with

HN
deR
2m .QŒt; t�1ç; f t/

can��! HP
deR
2m .QŒt; t�1ç; f t/

um

��! HP
deR
0 .QŒt; t�1ç; f t/

coincides with the restriction of  to
M

j 1
2 .nC2/�m

Œ�nC2
Q çj �deg.f /:

Lemma 5.24. The map  m in (5.21) is a surjection for all m, and the map  in

(5.22) is a surjection.

Proof. To ease notation, we write HN⇤ for HN
deR
⇤ .QŒt; t�1ç; f t/. Let e D deg.f /

and p D nC2
2 , and consider the following diagram, in which the right column is

given by Theorem 5.1(2), and the map � will be defined shortly:
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132 MICHAEL K. BROWN AND MARK E. WALKER

0 0

L

0jp�m�1

Œ�nC2
Q çj �e HN2mC2

L

0jp�m

Œ�nC2
Q çj �e HN2m

Œ�nC2
Q ç.p�m/�e Œ�f ç.p�m/�e

0 0

can

 mC1

u�

can

 m

q

�

The formula for  m and the description of q in Theorem 5.1 imply that

q. m.!//D

8
<

:

.�1/p�m deg.f /
.p�m� 1/!

! if j!j D .p�m/ deg.f /,

0 otherwise.

Setting
� .!/D .�1/p�m deg.f /

.p�m� 1/!
!

thus makes the diagram commute, and it is clear that � is a surjection. Since
HN2m D 0 for m� 0 by Theorem 5.1(1), it follows by descending induction that
 m is surjective for all m. It follows from Remark 5.23 that the map  is therefore
also surjective. ⇤

5.4. Relating filtrations. The goal of this section is to relate the “polar filtration”
on HP1.U / (defined below) with the nc Hodge filtration on HP0.Dsg.R//; this
leads quickly to a proof that the isomorphism ˛ preserves filtrations. Recall that

X D Proj.Q=f /✓ PnC1;

and U denotes the affine variety PnC1nX . As above, we also set V DSpec.QŒ1=f ç/.
The map p W V ! U given by modding out by the C⇤-action on V induces a map
�✏

U !�✏
V via pullback. As explained in [Dimca 1992, Chapter 6, Section 1], p

⇤

induces a chain isomorphism from �✏
U to a subcomplex of �✏

V ; in more detail, we
have

�
j
U

ä�!
⇢
"Q.˛/

f s
2�j

V W s � 0; ˛ 2 Œ�jC1
Q çs deg.f /

�
(5.25)
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 133

for all j , where "Q is as defined in the proof of Theorem 4.6. Given ! 2�j
U , we

let ord.!/ denote the minimum s such that there is a representation of ! of the
form "Q.˛/=f

s as above.

Definition 5.26 [Dimca 1992, Chapter 6, Definition 1.28]. The polar filtration on
�✏

U is given by

P
s�i

U WD
⇢f! 2�i

U W ord.!/ i � sC 1g; i � sC 1� 0;

0; i � sC 1< 0:

The polar filtration induces a filtration P
✏
HP

deR
⇤ .U / on homology in the evident

way.

Let � denote the composition

Œ�nC2
Q çZ�deg.f /! HP

deR
1 .V /! HP

deR
1 .U /

given by sending ! 2 Œ�nC2
Q çj �deg.f / to ."Q.!/=f

j /un=2 2 HP
deR
1 .V / and then

applying the isomorphism (5.25). Define

ˇ W HP
deR
1 .U /! HP

deR
0 .Db.R//

to be the composition

HP
deR
1 .U /

p⇤
��! HP

deR
1 .V /

@deR
V ;R���! HP

deR
0 .QŒt ç; f t/

can��! HP
deR
0 .QŒt; t�1ç; f t/;

where @deR
V ;R is the de Rham version of the boundary map @V ;R in the dévissage

long exact sequence (5.12), and can is the canonical map.

Lemma 5.27. The diagram

Œ�nC2
Q çZ�deg.f /

HP
deR
1 .U / HP

deR
0 .QŒt; t�1ç; f t/

�  

ä
ˇ

commutes, � and  are surjective, and ˇ is an isomorphism. Moreover, ˇ induces

an isomorphism

P
sC.n=2/C1

HP
deR
1 .U /

ä�! F
s
nc HP

deR
0 .QŒt; t�1ç; f t/:

Remark 5.28. It follows from [Griffiths 1969, (8.6)] (see also [Dimca 1992, Chap-
ter 6, Section 1]) that � is surjective; our argument in the proof of Lemma 5.27
gives a new proof of this fact.

Proof. Let ! 2�nC1
Q , where j!j D j � deg.f /. We have

.ˇ ı�/.!/D .can ı@deR
V ;R/

✓
".!/

f j
u

n=2

◆
D .�1/j

j !
d.".!/tj /u.n=2/C1�j D  .!/;
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134 MICHAEL K. BROWN AND MARK E. WALKER

where the first and third equalities follow immediately from the definitions of �
and  , and the second is a consequence of Theorem 3.13. Thus, the diagram
commutes. It follows from Lemma 5.13 and Proposition 5.15 that ˇ is an isomor-
phism. The map  is surjective by Lemma 5.24, and so � is surjective as well.
Finally, suppose y 2 P

sC.n=2/C1
HP

deR
1 .U /, so that ord.y/  n

2 C 1� s. Choose
! 2 Œ�nC2

Q çord.y/�deg.f / such that �.!/D y. We have

ˇ.y/D .!/2F
.n=2/C1�ord.y/
nc .HP

deR
0 .QŒt; t�1ç; f t//✓F

s
nc HP

deR
0 .QŒt; t�1ç; f t/:

This shows that ˇ maps

P
sC.n=2/C1

HP
deR
1 .U / 7! F

s
nc HP

deR
0 .QŒt; t�1ç; f t/;

and a similar argument shows that ˇ�1 maps

F
s
nc HP

deR
0 .QŒt; t�1ç; f t/ 7! P

sC.n=2/C1
HP

deR
1 .U /: ⇤

5.5. Completion of the proof.

Proof of Theorem 2.23. The first two conditions in Properties 2.8 follow from
part (3) of the theorem, and the third is a consequence of [Khan 2023, Theorem B]
(see also [Brown and Walker 2024, Theorem 1.4]). We proved (2) in Section 5.1; it
therefore remains to prove (3). By Proposition 5.15, the map ˛ is an isomorphism.
The commutativity of (2.24) and the surjectivity of (2.20) imply that ˛ identifies
rational structures, so we need only show that ˛ induces an isomorphism

F
s
H

n
prim

⇣
X IC

⇣
n

2

⌘⌘ ä�! F
s
nc HP0.Dsg.R//

for all s2Z. By [Griffiths 1969, (8.6)] (see also [Dimca 1992, Chapter 6, Section 1]),
there is an isomorphism

P
s
H

i.U IC/ä F
s
H

i.U IC/

for all i; s 2 Z. We therefore have a chain of isomorphisms

F
s
H

n
prim

⇣
X IC

⇣
n

2

⌘⌘ ä � F
s
H

nC1
⇣
U IC

⇣
n

2
C 1

⌘⌘

ä�! P
s
H

nC1
⇣
U IC

⇣
n

2
C 1

⌘⌘ ä�! P
sC.n=2/C1

HP
deR
1 .U /I

the first is the boundary map in the evident long exact sequence, and the third is
the identification of singular and de Rham cohomology. Applying Lemma 5.27
therefore finishes the proof. ⇤
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 135

6. Examples

Let RD CŒx0; : : : ;xnC1ç=.f /, where f is a homogeneous polynomial such that
the projective hypersurface X D Proj.R/✓ PnC1 is smooth, and assume n is even.
By Theorem 2.23(3), the dg-category Dsg.R/ satisfies the nc Hodge condition if
and only if the Hodge conjecture holds for X . In this section, we study the Hodge
classes in HP0.Dsg.R// in several cases in which the Hodge conjecture holds for X .
Let us start with the simplest example:

Example 6.1 (the n D 0 case). In this case, X is a collection of points, and so
the Hodge conjecture clearly holds for X . The complexified Chern character map
K0.X /C!H

even.X IC/ is surjective, and so the same is true of

chHP WK0.Dsg.R//C! HP0.Dsg.R//I

in other words, HP0.Dsg.R// is spanned by Hodge classes. Write f D `1 � � � `d ,
with each `i homogeneous of degree 1, and let Mi be the R-module CŒx0;x1ç=.`i/.
It is not hard to check that K0.Dsg.R// is generated by ŒM1ç; : : : ; ŒMd ç mod-
ulo the relation

Pd
iD1ŒMi çD 0. It follows that HP0.Dsg.R// is generated by

chHPŒM1ç; : : : ; chHPŒMd ç modulo the analogous relation.

Before we consider more complicated examples, we must discuss some back-
ground on Chern characters of matrix factorizations.

6.1. Chern characters of matrix factorizations. It follows from the calculations in
[Brown and Walker 2020a, Example 6.1] that the Chern character map

chHP WK0.mf.f //! HP0.mf.f //ä HP
dR
0 .QŒt; t�1ç; tf /

sends a class of the form1 Œ.A;B/ç 2K0.mf.f // to the class

2t
1
2 .nC2/

.nC 2/!
tr
�
.dAdB/

1
2 .nC2/

�
2 HP

dR
0 .QŒt; t�1ç; tf /;

where dA and dB denote the square matrices with entries in �1
Q obtained by

applying the de Rham differential d to the entries of A and B. We note that
[Brown and Walker 2020a, Example 6.1] concerns Chern characters taking values
in negative cyclic homology relative to kŒt; t�1ç rather than k, but the exact same
calculations yield the above formula in our setting.

The Chern character map is compatible with tensor products of matrix factoriza-
tions; let us explain what we mean by this. Suppose A and A

0 are k-algebras, g 2A,

1We recall that K0.mf.f // is, by definition, the free abelian group generated by isomorphism
classes of objects in the idempotent completion of mf.f /modulo relations arising from exact triangles.
In particular, not every class in K0.mf.f // is necessarily of the form Œ.A;B/ç, where .A;B/ is a
matrix factorization of f .
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136 MICHAEL K. BROWN AND MARK E. WALKER

and g
0 2A

0. If F 2mf.g/, and F
0 2mf.g0/, then we may form the tensor product

F ˝k F
0 2mf.f ˝ 1C 1˝f 0/; see, e.g., [Yoshino 1998] for details. Assume now

that AD kŒy0; : : : ;ymC1ç and A
0 D kŒy0

0; : : : ;y
0
m0C1ç, g and g

0 are homogeneous,
and the hypersurfaces A=.g/ and A

0=.g0/ both have isolated singularities. In this
case, we identify g˝ 1C 1˝ g

0 with gC g
0 2 kŒy0; : : : ;ymC1;y

0
0; : : : ;y

0
m0C1ç.

The tensor product functor induces a map

HP
dR
0 .mf.g//˝k HP

dR
0 .mf.g0//! HP

dR
0 .mf.gCg

0//

given by multiplication, which we denote by � ˝ � 0 7! � � � 0. A straightforward
calculation shows that chHP.F / � chHP.F

0/D chHP.F ˝F
0/.

6.2. Hodge classes of Fermat hypersurfaces. Assume now that n� 2, and suppose
f D x

m
0 C � � �C x

m
nC1, so that X is a Fermat hypersurface. For the remainder of

this section, we will write X as X
n
m. It follows from [Shioda 1979] that the Hodge

classes in H
n
prim.X IC/ can be explicitly described in the following way. Let �m

denote the group of m-th roots of unity and G the quotient of �nC2
m by the diagonal

subgroup. Let bG D Hom.G;C⇤/; we identify bG with the group
⇢
.a0; : : : ; anC1/ 2 .Z=m/nC2 W

nC1X

iD0

ai D 0

�

via the isomorphism described in [Shioda 1979, Section 1]. We fix the following
notation:

✏ U D f.a0; : : : ; anC1/ 2 bG W ai ¤ 0 for all ig.
✏ For a 2 Z=m, we let hai denote the unique representative of a between 0

and m� 1.
✏ For ˛ D .a0; : : : ; anC1/ 2 U

n
m, we set j˛j DPnC1

iD0 haii=m.
✏ B D

˚
˛ 2 U W jt˛j D n

2 C 1 for all t 2 .Z=m/⇥
 
.

The group G acts on X
n
m by scaling the variables, and so G acts on H

n
prim.X IC/ as

well. Given ˛ 2 bG, define

V .˛/D f⇠ 2H
n
prim.X

n
m/ W g⇤.⇠/D ˛.g/⇠ for all g 2Gg:

The following calculation of the Hodge classes of X
n
m is due to Shioda:

Theorem 6.2 [Shioda 1979, Theorem I]. Given ˛ 2 bG, we have dimC V .˛/ D 0

or 1, and dimC V .˛/D 1 if and only if ˛ 2 U . Moreover, the complexified Hodge

classes of X
n
m may be described as follows:

Hdg.X n
m/˝Q CD

M

˛2B

V .˛/:

In particular, dimQ Hdg.X n
m/D jBj.
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HODGE STRUCTURE ON THE SINGULARITY CATEGORY 137

Shioda [1979] applies this result to confirm a family of cases of the Hodge
conjecture for Fermat hypersurfaces; see also [da Silva 2021].

Example 6.3. If m D 2, then B D f.1; : : : ; 1/g, and so dimQ Hdg.X n
2 / D 1. On

the other hand, by Knörrer periodicity, the dg-category Dsg.R/ has exactly one
indecomposable object up to homotopy equivalence, namely the tensor product of
the matrix factorization .xC iy;x� iy/ with itself nC2

2 times. The Chern character
of this matrix factorization is .�2i/.nC2/=2

dx0 � � � dxnC1, and so this class gives a
basis for Hdg.Dsg.R//.

Example 6.4. Now suppose mD 3 and nD 2, so that f D x
3
0Cx

3
1Cx

3
2Cx

3
3 . In

this case, we have

B D f.1; 1; 2; 2/; .1; 2; 1; 2/; .1; 2; 2; 1/; .2; 1; 1; 2/; .2; 1; 2; 1/; .2; 2; 1; 1/g;

and so dimQ Hdg.X 2
3 /D 6. As discussed in the introduction, the Hodge conjecture

is known to hold for all surfaces, and so Dsg.R/ satisfies the nc Hodge condition. It
follows that there are six classes in K0.Dsg.R//Q whose Chern characters form a
basis of Hdg.X 2

3 /: let us now describe these classes in terms of matrix factorizations
of x

3
0 Cx

3
1 Cx

3
2 Cx

3
3 .

Let ˛ D e
2⇡i=3. Taking tensor products of the two matrix factorizations

E1.x0;x1/D .x0Cx1; .x0C˛x1/.x0C˛2
x1//;

E2.x0;x1/D .x0C˛x1; .x0Cx1/.x0C˛2
x1//

of x
3
0 Cx

3
1 yields the following six matrix factorizations of x

3
0 Cx

3
1 Cx

3
2 Cx

3
3 :

E1.x0;x1/˝E1.x2;x3/; E2.x0;x1/˝E1.x2;x3/; E1.x0;x1/˝E2.x2;x3/;

E2.x0;x1/˝E2.x2;x3/; E1.x0;x2/˝E1.x1;x3/; E1.x0;x2/˝E2.x1;x3/:

Let us compute the Chern characters of these objects. We have

chHP.E1.x0;x1//D 3.x1�x0/ dx0 dx1;

chHP.E2.x0;x1//D 3˛.˛x1�x0/ dx0 dx1:

Thus, letting ! WD dx0 dx1 dx2 dx3, the Chern characters of our six matrix factoriza-
tions of x

3
0 Cx

3
1 Cx

3
2 Cx

3
3 are

9.x1�x0/.x3�x2/!; 9˛.˛x1�x0/.x3�x2/!; 9˛.x1�x0/.˛x3�x2/!;

9˛2.˛x1�x0/.˛x3�x2/!; 9.x2�x0/.x3�x1/!; 9˛.x2�x0/.˛x3�x1/!:

A straightforward calculation shows that these classes are Q-linearly independent
and therefore form a basis of Hdg.Dsg.R//.
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138 MICHAEL K. BROWN AND MARK E. WALKER

Example 6.4 shows that every Hodge class of Dsg.CŒx0; : : : ;x3ç=.x
3
0C� � �Cx

3
3//

can be built out of products of Hodge classes of Dsg.CŒx0;x1ç=.x
3
0 Cx

3
1//. The

next example shows that this isn’t always the case for Fermat hypersurfaces, even
in four variables.

Example 6.5. We now take mD 6 and nD 2. We have .2; 2; 3; 5/ 2B in this case.
Notice that .2; 2; 3; 5/ is not the concatenation of elements of .Z=6/2 corresponding
to Hodge classes of X

0
6 . This implies that the Hodge class corresponding to

.2; 2; 3; 5/ cannot arise as the product of Hodge classes of Dsg.CŒx0;x1ç=.x
3
0Cx

3
1//.

Indeed, we do not know how to explicitly express this Hodge class as a C-linear
combination of Chern characters of matrix factorizations, even though, since the
Hodge conjecture holds for X

2
6 , this must be possible.
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