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. The Hodge structure on the singularity category
6 of a complex hypersurface

7

" Michael K. Brown and Mark E. Walker

B

10 Given a complex affine hypersurface with isolated singularity determined by a

1 homogeneous polynomial, we identify the noncommutative Hodge structure on
the periodic cyclic homology of its singularity category with the classical Hodge
structure on the primitive cohomology of the associated projective hypersurface.
As a consequence, we show that the Hodge conjecture for the projective hyper-
surface is equivalent to a dg-categorical analogue of the Hodge conjecture for the
singularity category.

15 1. Introduction

o Katzarkov, Kontsevich and Pantev conjecture in [Katzarkov et al. 2008] that the
. periodic cyclic homology of any smooth and proper C-linear differential Z-graded
. category C may be equipped with a “noncommutative (nc) Hodge structure”, gen-
-~ eralizing the pure Hodge structure on the cohomology of a smooth and proper
o complex variety. More precisely, the proposed nc Hodge structure on the 0-th
- periodic cyclic homology of €, denoted HPy(C), is given by analogues of the
— Hodge filtration and rational structure on the cohomology of a smooth and proper
26 . . . .. .
— complex variety: the former is the filtration of HPy(C) arising from the negative
27 . . . . . .
. cyclic homology of C, and the latter is the image of the rationalized topological
o Chern character map Kg)p (€)g — HPy(C). The statement of the classical Hodge
— conjecture generalizes to dg-categories equipped with an nc Hodge structure: we
30 . “ 141 ” 1 1
LS such a dg-category C satisfies the “nc Hodge condition” provided the image
o of the rationalized algebraic Chern character map Kglg(e)@ — HPy(C) coincides
— with the space of Hodge classes. We refer the reader to Section 2.2 for more details

z% (see also [Perry 2022, Section 5.2]). It is known that the Hodge conjecture holds
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; for a smooth projective complex variety Y if and only if the Hodge condition holds

v 27, for the dg-enhancement of its derived category DP(Y); see Example 2.16 or [Lin

Hodge theory of singularity categories of hypersurfaces (i.e., matrix factorization
¢ categories); see, e.g., [Brown and Dyckerhoff 2020; Ballard et al. 2014a; 2014b;
, Beraldo and Pippi 2025; Blanc et al. 2018; Brown and Walker 2020a; 2020b; 2022;
g Célddraru and Tu 2013; Dyckerhoff 2011; Efimov 2018; Halpern-Leistner and
9 Pomerleano 2020; Kim and Polishchuk 2022; Kim and Kim 2024; Pippi 2022;
10 Polishchuk and Vaintrob 2012; Segal 2013; Shklyarov 2014; 2016]. In this paper,
11 we show that the singularity category of a complex hypersurface with isolated

3
"4 The past two decades have seen a flurry of work focused on developing the
5

1» singularity determined by a homogeneous polynomial may be equipped with an
13 nc Hodge structure, and we describe it in terms of invariants arising in classical
14 Hodge theory. More specifically, our main goal is to prove Theorem 1.2 below (see
15 Theorem 2.23 for a more precise statement). Before stating it, we fix some notation
16 that will be used throughout the paper:

I’ Notation 1.1. Let f € Clxo, ... , Xn+1] be a nonzero homogeneous polynomial,

R the associated affine hypersurface C[xy, ..., Xp+1]/(f) of dimension n 4 1, and

P ome=(xo.... , Xp41) its homogeneous maximal ideal. Set X := Proj(R) € P"*+!,

201/22 a projective hypersurface of dimension n. We assume 7 is even; otherwise, X has
~ no interesting Hodge theory. We assume also that R has an isolated singularity, i.e.,
> that X is smooth. Let D€ (R) denote a dg-enhancement of the singularity category

2 of R (we specify in Section 2 which dg-enhancement we use). We write ngim (X)
> for the n-th primitive cohomology of X with rational coefficients. That is, for n > 2,

25

2 H (X)) = ker(H"(X; Q) &> H"™2 (X)),

- prim
27

28 where L is the Lefschetz operator; and for n = 0, H[?rim(X )= H O(X ; @), the

29 0-th reduced rational cohomology group of X. Since X is a smooth hypersur-
30 face, H™. (X) may be identified with coker(H"(P"*!;Q) — H"(X;Q)); see

prim
31 Example 2.5 for more details.

32
5 Theorem 1.2. There is an isomorphism

3 HPo(D2(R)) =~ H". (X:C)

rim
35 P

g that identifies the noncommutative Hodge structure associated to D%(R) with

37 the pure Hodge structure on H'. (X). This isomorphism is compatible with the

prim
38 Chern character maps from topological K-theory, and hence the classical Hodge
39 conjecture holds for X if and only if D*¢(R) satisfies the nc Hodge condition

391/ "
40 (Definition 2.15).
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1 We note that it is a consequence of [Orlov 2009, Theorem 2.5] that the Hodge
~, conjecture for X is also equivalent to the nc Hodge condition for the graded
singularity category of R; see Remark 2.26 for more details.

3

4 The dg-category D*(R) is smooth over C; this follows by combining [Lunts
5 2010, Theorem 6.3] and [Keller 2011, Proposition 3.10(c)]. However, it is not proper
6 as a differential Z-graded category. By results of Buchweitz and Eisenbud, D*¢(R)
7 is quasi-equivalent to the category mf( /') of matrix factorizations of f, and so it
8 may be equipped canonically with the structure of a proper differential Z/2-graded
9 category (see Section 3.1); but in this theorem, HP((D*¢(R)) refers to the periodic
10 cyclic homology of D*¢(R) viewed as a Z-graded category. Nevertheless, as we
11 prove below, the Hochschild invariants of D*(R) have the necessary features (see
12 Properties 2.8) to make sense of an nc Hodge structure on HPy(D*(R)) and to
13 formulate an nc Hodge condition.

14 The Hodge conjecture is known to hold for a projective hypersurface X in the
15 following cases [Shioda 1983, §2]:

(1) dim(X) odd, trivially.

17

15 (2) dim(X) = 2 (by the Lefschetz 1-1 theorem).

19 (3) dim(X) = 4 and deg(X) < 5 [Zucker 1977; Murre 1977; Conte and Murre

20 1978].

20%/,—

391/

2L (4) X aFermat hypersurface, under certain arithmetic conditions on the dimension

2 and degree of X [Ran 1980; Shioda 1979].
23

52 We therefore conclude that D*(R) satisfies the nc Hodge condition in all of the
55 above cases. In Example 6.4, we explicitly compute the Hodge classes for D*¢(R)
5 When X is the 2-dimensional Fermat hypersurface of degree 3.

5, As mentioned above, since R is a hypersurface, we may replace D*¥(R) by the
55 quasi-equivalent dg-category mf( /") of matrix factorizations of f'; see Section 3.1
o for the definition. Thus, our main theorem may be recast as an isomorphism

0 HPo(mf(f)) = H'%, (X:C) (1.3)

31
5, that preserves Hodge structures and is compatible with Chern character maps.

33 Let us give an overview of the paper. We collect in Section 2 the neces-
34 sary background and terminology in order to state our main result precisely;
35 see Theorem 2.23. This includes constructing an explicit map from H:rim(X )
36 to HPo(D*®(R)) = HPo(mf( f)); see (2.22). In Section 3, we recall (and extend)
37 several results necessary for the proof of Theorem 1.2. More precisely, we describe
38 the quasi-equivalence relating D*(R) and mf( /), and we establish important de-
2 tails regarding “de Rham models” for the Hochschild, negative cyclic, and periodic

40 homology complex of mf( /) and related dg-categories. We also recall from [Brown
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1 and Walker 2024] an explicit description of the boundary map in a certain dévissage
27, long exact sequence; this map plays a crucial role in relating the nc Hodge filtration
"3 on HPy(D%(R)) = HPy(mf( f)) with the classical Hodge filtration on Hl[’,’rim (X).
"4 In Section 4, we establish the following analogue of the Wang exact sequence
5 of a fibration over a circle (see Theorem 4.1 below for a more precise statement,
¢ and see Remark 4.2 for an explanation of how this result relates to the Wang exact
; sequence):

% Theorem 1.4. Let k be a field of characteristic 0, Q a smooth k-algebra, and

2 f € O anon-zero-divisor. There is a distinguished triangle
10

" HN(mf(f)) — HN?>(mf(f)) — HN??(mf( f)) —

% of complexes of k-vector spaces, where HN(mf( f)) (resp. HN%/2(mf( f))) denotes
— the negative cyclic complex of mf( f') considered as a differential 7-graded (resp.
. Z/2-graded) category.

16 The map HNZ/Z(mf(f)) — HNZ/2 (mf( f)) in Theorem 1.4 is an analogue of the
17 endomorphism 7" — id on the cohomology of the Milnor fiber, where T is induced
18 by monodromy (see Remark 4.2). Theorem 1.4 thus closely resembles a result of
19 Blanc, Robalo, Toén and Vezzosi [Blanc et al. 2018, Main Theorem] concerning
20 the £-adic realization of singularity categories.

20%/,—

21 Section 5 contains the proof of Theorem 1.2. A summary of the content of Sec-
2 tions 2—4 that is necessary for the proof of Theorem 1.2 is provided in Theorem 5.1;
23 readers who are already familiar with noncommutative Hodge theory and singularity
2 categories may wish to skip directly to Theorem 5.1 and refer back to Sections 2—4
25 as needed. The most technical aspect of the proof of our main result is verifying
g that the isomorphism HPy(D*¢(R)) = H;:lrim (X) identifies the nc Hodge filtration
27 _on HPy(D*®(R)) with the classical Hodge filtration on H;:lrim(X ). Our approach is
28 to identify both with an intermediate object: the “polar filtration” on H"(U), where
20 U is the complement of X in P"*!. In Section 6, we discuss some examples in
30 the setting of Fermat hypersurfaces, applying [Shioda 1979].

31

32 2. Background

33

w 2.1. Hodge structures. The following definition is nonstandard, but it will be useful

o in this paper.
g Definition 2.1. A pre-Hodge structure is a pair V = (Vg, F*V¢), where Vg is a
37 finite-dimensional Q-vector space, and F** V¢ is a filtration of V¢ := Vg ®¢ C that

38 is decreasing, complete, and exhaustive: FP Ve € FP~1 V¢ for all p, FPVe =0

301/ 39 for p>0,and FP Ve =V for p < 0. A morphism of pre-Hodge structures V. — V'’
o

40 is a Q-linear map Vg — Vé whose complexification respects the filtrations.
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. Remark 2.2. An isomorphism of pre-Hodge structures V' and V' is determined by

11/27 an isomorphism oz Ve —> V{ suchthata(F?Vg) = FPV{ forall p,and a(Vg) = V{;.

3 The notion of a pre-Hodge structure is a weakening of the classical notion of a
4

" pure Hodge structure, whose definition we now recall:
5

"o Definition 2.3. Let n € Z. A pure Hodge structure of weight n is a pre-Hodge
. structure V' with the property that, for all p,q with p + ¢ = n + 1, we have
o FPVed F4V¢ = V¢, where the overline denotes complex conjugation. A morphism
"5 of pure Hodge structures is a morphism of the underlying pre-Hodge structures.

10 Given a pre-Hodge structure V' and m € Z, we write V (m) for its m-th Tate twist,
11 which is defined by setting V(m)g = Vo, V(m)c = Ve and FPV(m)c = FPT™MV.

12 If V is pure of weight n, then V(m) is pure of weight n — 2m.
13

. Example 2.4. Let X be a smooth, proper complex variety, and let Vg = H I(X;0Q),
5 the singular cohomology of X" with rational coefficients. Equip Ve = H J(X;0)

1o With the filtration given by

7 FPVe :=im(H/ (X, 127 Q5 ,¢) = Hf (X:C) = H (X:C)),

18

10 where =7 Q2% /¢ denotes the brutal truncation of the de Rham complex in cohomo-
20 logical degrees > p, and HC{R(X ; €) denotes the j-th hypercohomology of Q5 Jc

20%/,—

39/>

21 Itis a classical result that (Vg, F*®V¢) is a pure Hodge structure of weight j. The
2> m-th Tate twist of this Hodge structure is written as H/ (X; Q(m)).

= Example 2.5. Let X be a smooth, projective complete intersection of codimension
** ¢ in P"T¢ That is, X = Proj(R), where R = C[xq. ..., Xn+el/ (fi..... fo) for
® a regular sequence of homogeneous polynomials fi,..., f such that R has an
*° jsolated singularity. Assume also that 7 is even. As with any smooth, projective
. variety, the primitive cohomology of X may be equipped with a pure Hodge
*®_ structure; let us recall the definition of primitive cohomology. In the case where

=0 (so that X is a collection of points), we define H?. (X) = ﬁO(X; Q).

30 prim
o Assume n > 2. We let

2 L:H*(X;Q)— H*"2(Xx;0Q(1))

z% denote the Lefschetz operator, i.e., the map given by multiplication by the class
- in H?(X;Q(1)) of a generic hyperplane section of X. It is a morphism of pure
o Hodge structures. For 0 < j < n, the j-th primitive cohomology of X is

T HLL ) = ker(L T (X5Q) > (X Q0+ 1 ))).

38
g As L is a morphism of pure Hodge structures, H J (X) acquires a pure Hodge

prim
40 structure, and it is pure of weight ;.
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1 Since we assume that X is a smooth complete intersection of even dimension,

v ", the hard Lefschetz theorem gives

3 .

= i 0 j odd;
H (X;Q) =1 '

£ ( ) {LJ/Z-HO(X;@(—j/2)), j even, j # n.

5
E In other words, the map i * : H/ (P"+¢; Q) — H/ (X ; Q) induced by the canonical
7 embedding i: X — P"+¢ is an isomorphism for all j # n; in particular, prrim( X)=0
'8 unless j = n. So, the only “interesting” cohomology lies in degree 7, and in that
9 degree we have a canonical decomposition of Hodge structures

10

a0 H"(X;Q) = Hy;o(X; @) & L2 HO(X; Q(—n/2)).
2 Since the summand L"/2 . HO(X; Q(—n/2)) equals the image of the map
13

E L”/Z-HO(P”+C;@(—n/2) — Hn(lpn+c’@) i) Hn(X,@)),
15

o we have a canonical isomorphism

7 H3in(X: Q) = coker(H" (P"7¢: Q) — H"(X:;Q))

18
19 of pure Hodge structures.

201/2% 2.2. Hodge structures associated to dg-categories. Let C be a C-linear differential
g Z-graded category (or dg-category, for short). As discussed in the introduction, it
g follows from [Katzarkov et al. 2008] that one may associate a pre-Hodge structure
o o C whenever € enjoys certain properties that resemble features of the bounded
o derived category of a smooth, proper complex variety. Let us now explain this in
o detail.
P We write HH «(C), HN(C), and HP,(C) for the Hochschild, negative cyclic,
. and periodic cyclic homology of C; we refer the reader to, e.g., [Brown and Walker
o 2020a, Section 3] for the definitions of these invariants. We recall that HN «(C) is
o 2 Clu]-module with u an indeterminate of homological degree —2, determined by
. the identification HN«(C) = C[u], and HP«(C) = HN«(C) ®c[,] Clu, u~1]. There
. is a notion of topologi?al K-theory for dg-categories, developed by Blanc [2016,
. Df[:ﬁnition 4.13]t; let K,?(C) denote the topological K-theory groups of €, and set
v K’ (@)g = K *(C) ®7 Q. Topological K-theory and perioditc cyclic homology
..~ are related via the topological Chern character map ch®P : K. (C)g — HP4«(C)

o [Blanc 2016, Section 4.4].

i Notation 2.6. Given a noetherian C-scheme Y with enough locally free sheaves, let

38 DP(Y) and Perf(Y') denote dg-enhancements of the bounded derived category of Y

39 and category of perfect complexes on Y, respectively; all such dg-enhancements
o

391/ . . .
40 are unique up to a sequence of quasi-equivalences [Lunts and Orlov 2010]. We
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1, KP(Y) = KX (Perf(Y)), HP«(Y) := HPy(Perf(Y)),

HN.(Y) := HNy(Perf(Y)), HHy(Y) = HHy(Perf(Y)).

2
3
_* We adopt the widely used notation G«(Y) and K« (Y") for the (nonconnective) alge-
5 braic K-theory groups of D’(Y') and Perf(Y); see [Schlichting 2011, Section 3.2.32]
6 for background on algebraic K-theory of dg-categories. We also write

7

0

GP(Y) = K" (D°(Y)), HPPM(Y) = HP.(D"(Y)),
HNBM(Y) := HN,(D®(Y)), HHEM(Y):= HH,.(D°(Y));

0 here, “BM” stands for “Borel-Moore”. Given a commutative ring A, we write
G, (A) := G«(Spec(A)), and similarly for the other invariants discussed here.
12

13 Werecall the notions of smoothness and properness for dg-categories:
E Definition 2.7. The dg-category C is smooth if C is perfect as a C-C-bimodule, and
15 it is proper if dimg H*Home(C, C’) < oo for all objects C, C’ of C.

' When X is a separated scheme of finite type over C, it follows from (the proof

" of) [Orlov 2016, Proposition 3.31] that X is smooth (resp. proper) if and only if the
'8 dg-category Perf(X) of perfect complexes of Oy -modules is smooth (resp. proper).
9 In this paper, the dg-categories we consider will not always be smooth and proper.

201/23 We will be interested in dg-categories that satisfy the following conditions, which

391/

L are exactly what one needs to equip a dg-category with a pre-Hodge structure.

22
o Properties 2.8. For a dg-category €, we consider the following properties:

21 (1) dime HPy(C) < oo.

25 (2) The filtration of HPy(C) given by

26 . p
- F2HP,(C) = im(HN,,(€) <% HP,(C) “— HPy(C))

28 satisfies Fi HPo(C) = 0 for p > 0 and F£ HP(C) = HPy(C) for p < 0.
2 (3) im(ch®P) ®¢q C = HPy(C).

30
5, Proposition 2.9. Properties (1) and (2) hold for any dg-category that is smooth

3, and proper over C.

g Proof. By [Kontsevich and Soibelman 2009, Proposition 8.2.3], we have
34

- dime HH «(C) < o0.

36 We also have noncanonical isomorphisms
37

v HN.(C) = HH4+(C)[u] and HP4(C) = HH4(C)[u,u™];

30 these follow from Kaledin’s noncommutative Hodge-to-de Rham degeneration
Rl
40 theorem [Kaledin 2017]. Properties (1) and (2) follow immediately. O
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1 Property (3) is conjectured by Blanc to hold for any smooth and proper dg-

|
Y277 category:

Conjecture 2.10 (the lattice conjecture [Blanc 2016, Conjecture 1.7]). If C is
smooth and proper over C, then the map K;OP(G)C — HP4(C) induced by ch™P is
an isomorphism.

In fact, the lattice conjecture is known to hold for many dg-categories that are
not smooth or proper: we refer the reader to [Brown and Sridhar 2025, Section 5]
~, for alist of known cases of the lattice conjecture.

@[~ ]ofa]s]o]

E Definition 2.11. Assume the dg-category € satisfies Properties 2.8. The nc pre-
11 Hodge structure for C, written pHS(C), is the pair (Vg, F*V¢), where
12

o Vg = im(ch'P : K;P(C)g — HPo(C)) and FPVg:= FLHP,(C).

4 The filtration Fy, HP((C) is called the noncommutative Hodge filtration, or nc Hodge

C
15 filtration for short.

% Example 2.12. Let X be a smooth, proper complex variety, and take € = D°(X).
5 Since DP(X) is smooth and proper, properties (1) and (2) hold for €. Property (3)
0 also holds for €, since the lattice conjecture holds in this case [Blanc 2016]. We
—— have a commutative diagram

20%%
o HN2p(X) — Bz HZJ(X,IZJJFPQ:Y/C)
g u?
24
% HNo(X) —— Djez HZJ(XvTZJQ}/@)
26
27
o = 2j
% HPo(X) Djez Hr(X:0)
29
30 ch'p chtop
— K (X)) = KU*(X)

32
33 where KU* (X)) denotes the topological K-theory of X. The first three horizontal
34 isomorphisms are given by combining theorems of Keller [2005, Section 5.2] and
35 Weibel [1997, Theorem 3.3], and the bottom isomorphism is due to Blanc [2016, The-
36 orem 1.1(b)]. A straightforward calculation shows that the top and middle squares
37 commute, and the bottom square commutes by [Blanc 2016, Proposition 4.32]. We
38 conclude that there is a natural isomorphism of pre-Hodge structures

391/2% pHS(D®(X)) = @ HY (X, Q())).
- Jjez
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. In particular, pHS(DP(X)) is a pure Hodge structure of weight 0. See also [Tu

v/ 27, 2024], where a more detailed comparison of the classical Hodge structure on the

", cohomology of X and the nc Hodge structure on D°(X) is carried out.

% 2.3. The nc Hodge condition for a dg-category. We begin by recalling the state-
. ment of the Hodge conjecture. Let X be a smooth, projective complex variety
- and K« (X)g = K«(X) ® Q the rationalized algebraic K-theory groups of X.
. The classical Hodge conjecture proposes a description of the image of the Chern

o character map
— ch: Ko(X)o — P H?(X:0). (2.13)

10
— PEZ

1 We set
12

1 HAg?” (X) = H? (X;Q)NFPH? (X:C) = H* (X; Q(p) N FOH?? (X, C(p)).

™ and write Hdg(X) := D ,ez Hdg?” (X). Elements of Hdg(X) are called Hodge
®_ (lasses. Itis well-known that the Chern character map (2.13) takes values in Hdg(X);
* the Hodge conjecture predicts that the image of the Chern character map (2.13) is
v precisely Hdg(X).

" The statement of the Hodge conjecture can be extended to any dg-category
Pe enjoying Properties 2.8. Let Ky (C) denote the Grothendieck group of € and

201/2g chyy : Ko(€C) = HN(C) the associated Chern character map; see, e.g., [Brown and

1

2 Walker 2020a, Section 4] for the definition of chyy. Composing with the natural
2 map HNy(C) — HPy(C), one also obtains
23

24 chyp : K()(G) — HP()(@)

25

— As above, let K¢(C)g := Ko(C) ®7z Q. By [Blanc 2016, Theorem 1.1(d)], the maps

26

o, chgy and ch™P are related by a commutative square

28

ch
o Ko(@)g — HN(€)

0 l l (2.14)
31

- 0 htoP
2 K P (€)g —— HPy(C)

33 . .
— where the vertical maps are the canonical ones.
34

35 Definition 2.15. For a dg-category C that satisfies Properties 2.8, the subspace
36 HdAg(C) € HPy(C) of Hodge classes of C is defined to be

2% Hdg(€) := im(ch®P : KgP(C)a — HPo(€)) N FO.HPy(C).

g In other words, Hdg(C) = Hdg(pHS(C)), where for any pre-Hodge structure V, we

/ ..
’ 40 set Hdg(V) =VoNF OV¢. By the commutativity of (2.14), the Chern character
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1 map chyp, which is given by composing the top and rightmost maps in (2.14), takes
5 values in Hdg(C). We say C satisfies the nc Hodge condition if im(chyp) = Hdg(C).

3 Example 2.16. When X is a smooth, projective complex variety, the isomor-
4 phism of pure Hodge structures in Example 2.12 yields a natural isomorphism
5 Hdg(D°(X)) = Hdg(X). Moreover, this isomorphism makes the triangle

Ko(X)g —=— Hdg(X)

Hdg(D"(X))

el =
N | = | O |©O |00 | N | O

commute. It follows that the Hodge conjecture holds for X if and only if D®(X)
satisfies the nc Hodge condition; this was also recently proven by Lin [2023].

13

% 2.4. Statement of the main theorem. To state our main result (Theorem 2.23), we

 need the following two technical results.
16

—~ Proposition 2.17. With R and m as in Notation 1.1, set W := Spec(R) \ {m}. The

17

s canonical maps

19 Ko(W) — Go(W), Kg’P(W)—>G(§°P(W) and HPo(W) — HPgM(W)

o, are isomorphisms, and so are the maps

2 Go(R) = Go(W), GgP(R)— GyP(W) and HPEM(R) — HPEM(W)

23
g induced by pullback along the natural map W — Spec(R).

25 Proof. The first batch of isomorphisms hold since W' is regular, by assumption.
26 Since G-theory satisfies dévissage, we have a right exact sequence

- Go(R/m) — Go(R) — Go(W) — 0.

g By [Yoshino 1990, Lemma 13.4], the pushforward map Go(R/m) — Go(R) is 0;
30 this proves the result for G-theory.

31 We now address HPBM; the proof involving G'°P is nearly identical. By [Khan
32 2023, Theorem A.2] (see also [Brown and Walker 2024, Example 4.8]), there is a
33 dévissage quasi-isomorphism HPBM(R /m) — HP(D™{™(R)), where D>{™(R)
34 denotes the subcategory of DP(R) given by objects with support contained in {m}.
35 (Dévissage also holds for topological K-theory, as observed in [Halpern-Leistner
36 and Pomerleano 2020, Example 2.3].) There is thus a localization exact triangle
2% HPBM(R /m) — HPBM(R) — HPBM(W) —;

39 see, e.g., [Brown and Walker 2024, Lemma 2.8]. Since HPPM(R/m) = HP_,(C) =0,

40 it suffices to show that the pushforward map HPo(R/m) — HPEM(R) is 0. To
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1 prove this, we use that the Chern character map is natural for dg-functors, so that
we have a commutative square

Go(R/m) ——— Go(R)

lChHP JChHP

HPM(R /m) —— HPM(R)

~Jolo|a]w|n

E The left-hand map is isomorphic to chyp : Ko(C) — HPy(C), which induces
9 an isomorphism Ky(C) ®z C = HPy(C). Once again applying [Yoshino 1990,
10 Lemma 13.4], the top arrow in this square is the zero map, and so the bottom arrow

11 must be zero as well. O

. Let R be as in Notation 1.1. The singularity category of the ring R is the

% dg-quotient D*¢(R) := D°(R)/ Perf(R). We note that the (triangulated) homotopy
. category of D% (R) need not have a unique dg-enhancement; see, e.g., [Antieau
o 2018, Example 8.24].

17 Proposition 2.18. There are short exact sequences

18 0 — HPo(C) — HP§M(R) — HPo(D*(R)) — 0
% and © o to
20 0— K,"(C) > G,"(R) > K" (D*®(R)) — 0,

21

2 where the maps are induced by the extension of scalars functor D(C) — D°(R)
23 and the canonical functor DP(R) — D*(R).

**_ Proof. Let E denote either HP or K'°P. In both cases, E is a localizing A!-homotopy
% invariant such that E_;(C) = 0. Since R is Z>(-graded, extension of scalars along
2 C — R induces an isomorphism E4(C) = E«(R). Using that E_;(C) = 0, the

2" exact triangle
28 E(R) — E(D°(R)) — E(D%(R)) —

29

S, induces an exact sequence Eo (C) = Eo(D°(R)) = E¢(D%(R)) — 0.

o Finally, we observe that Eo(C) — Eo(D°(R)) is split injective. To see this,

5, choose a smooth closed point x = V(m) € Spec(R); extension of scalars along the

5 map R— R /m == C determines a functor D’(R) — D®(C), yielding the desired

- splitting. O

35 We have a composition

= Ko(X) = Ko(W) S> Go(R) — Ko(DE(R)), (2.19)
g where the first map is induced by the fibration W — X with fiber C*, the second is
39 the (inverse of the) isomorphism from Proposition 2.17, and the last is induced by

40 the canonical map DP(R) — D*8(R). The composition (2.19) admits the following
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1 simpler description: given a vector bundle F on X, write F = M for some graded
>", R-module M. Since M and F pull back to the same sheaf on W, the composition
"3 (2.19) sends the class [F] to [M ] € Ko(D*®(R)).
We have compositions

4
5 KU°(X) = KgP(X) — KgP(W) => GyP(R) — K" (D(R)) (2.20)
o and
7 ~
% H(X;C) = HPy(X) — HPo(W) = HPSM(R) — HP((D*¢(R))  (2.21)
9

that are defined in the same way, except the first isomorphism in (2.20) is given
19 by Blanc’s comparison isomorphism [2016, Theorem 1.1(b)], and the first map
11 in (2.21) is induced by the HKR isomorphism [Loday 1998, Theorem 3.4.4]. By
12 Proposition 2.18, (2.21) induces a map on reduced cohomology; restricting to

13 primitive cohomology, we arrive at the map
14

- o H (X:C) — HPo(D¥(R)). (2.22)

1 We may now precisely formulate our main result (Theorem 1.2) as follows:

17

. Theorem 2.23. Let R = C[xy, ..., Xn+1]/ (f), where [ is a homogeneous poly-
o nomial such that X = Proj(R) is smooth. Assume n is even.

20 (1) The dg-category D*8(R) enjoys Properties 2.8. In particular, we may associate
1 a pre-Hodge structure to D%¢(R).

g (2) The diagram
23

" Ko(X) — 5 KUO(x) —  geven(x. ()

2 l(2.19) L<2.20) l(nl) (2.24)
26 o

- Ko(D¥(R)) s KP(D*2(R)) - HPo(D*(R))

28 . ;

— commutes (where the maps denoted can are the canonical maps), the middle and
29 . . . o )

= rightmost vertical maps are surjective as indicated, and the images of Ko(X) and

¥ Ko(D¥%(R)) in HPo(D*(R)) coincide.
31

32

33

. Hlo(X.0(3)) = pHS(D*(R)

(3) The map «a defined in (2.22) is an isomorphism of complex vector spaces that
induces an isomorphism

® of pre-Hodge structures (see Remark 2.2). In particular, the pre-Hodge structure

. pHS (D% (R)) is pure of weight 0.

37
35 Asaconsequence of Theorem 2.23, we have:

30 Corollary 2.25. The dg-category D*8(R) satisfies the nc Hodge condition if and
S
40 only if the Hodge conjecture holds for X .
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1 Proof. Theorem 2.23 gives the commutative square

11/27

Ko(X)o — Hdg(Hy,,(X.Q(3)))

| A

Ko(D*®(R))g — Hdg(HP(D*(R)))

~ ool ]wln

— where the right vertical map is an isomorphism. The Hodge conjecture for X (resp.
° ne Hodge condition for D8 ( R)) is the assertion that the top (resp. bottom) horizontal
2 map in this square is onto. Clearly, the Hodge conjecture for X implies the nc
0 Hodge condition for D*¢( R). The converse holds since Theorem 2.23 also gives that
Y the images of Ko(X)g and Ko(D*(R))g in Hdg(HPy(D*(R))) € HPy(D*¢(R))

12 . .
~~ coincide. O
13

14 Remark 2.26. The Hodge conjecture for X is also equivalent to the nc Hodge
15 condition for the graded singularity category of R, i.e., the dg-quotient DZ‘% (R) of the
16 bounded derived category of Z-graded R-modules by its subcategory of perfect com-
17 plexes. Indeed, this is nearly immediate from [Orlov 2009, Theorem 2.5]. Orlov’s
16 theorem also implies that, when X is Calabi—Yau, there is an equivalence of cate-
10 gories DP(X) ~ D;%(R) and hence an isomorphism H®"(X;C) =~ HP, (D;%(R))
20 that preserves Hodge structures. However, while the categories D*¢(R) and D;% (R)

20%/,—

39/>

21 are closely related, we do not see a way to deduce Theorem 2.23 from these
22 results concerning D;%(R). In a bit more detail, there is a canonical functor
23 DZ%(R) — D%(R) given by forgetting the grading, and in fact, by [Tabuada 2015,
24 Theorem 1.5; Keller et al. 2011, Proposition A.8], there is a distinguished triangle

25

. E(DE(R) ~ E(DF(R) — E(D(R)) — 2.27)

26

" for any localizing, A'-homotopy invariant E of dg-categories taking values in a
l triangulated category. The middle map in (2.27) is the canonical functor, and the
2 first map is induced by the endofunctor 7" —id of DZ,%(R), where T denotes the
il grading twist by 1. However, the Hodge structure on a dg-category involves negative
L cyclic homology, which is not an Al-homotopy invariant; the triangle (2.27) is

> therefore ultimately not useful for studying the Hodge structure of D% (R).
33

* 3. Some intermediate results

35

£ Before we embark on the proof of Theorem 2.23, we need some intermediate results
37 of a technical nature. Throughout this section, we let k& be a field of characteristic 0,
38 O a smooth k-algebra, and R a hypersurface ring of the form Q/( f) for a non-
39 zero-divisor f € Q. We recall in this section the interpretation of D*(R) as a

40 dg-category of matrix factorizations of f, and also the “de Rham models” for HH,
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1 HN and HP of the latter. We also recall an explicit description of a certain boundary

11, . . L.
/2 > Imap occurring in a 101’1g exact deV1ssage sequence for HP.

— 3.1. Matrix factorizations. A matrix factorization of f is a finitely generated,
? Z /2-graded projective Q-module F = Fj & Fj equipped with an odd degree endo-
— morphism 9 such that 3% coincides with multlphcatlon by f. Matrix factorizations
— were introduced by Eisenbud [1980] in his study of maximal Cohen—Macaulay
— modules over hypersurface rings. Matrix factorizations of f form the objects of
— a differential Z/2-graded category mf( /'), whose morphisms are the Z/2-graded
H complexes Homy,¢((F, d), (F’, 0’ 9')) == Homg(F, F ") with differential sending a
— homogeneous map « of degree i € Z/2 to d’a — (—1)'ad. If F is free, then Fy
o and Fy necessarily have the same rank, so we may view d as a block matrix (g ’3),
— where 4 and B are square matrices such that AB = BA = f -id. In this case, we

13 . . o .
" sometimes denote matrix factorizations as pairs (A4, B).
— By “unfolding” the Z/2-grading, it is also possible to interpret mf( /) as a

% classical differential Z-graded category, and we use both points of view in this
.~ paper. To keep this straight, it is useful to introduce a formal indeterminate ¢ of
. homological degree —2, and to identify Z/2-graded vector spaces with Z-graded

o modules over k[t,t~!]: given a Z/2-graded k-vector space V = Vo @ Vi, the
— associated graded k[t, ¢~ !]-module is

20

20Y/,—
"o eVyleVi leVseVie Vi e Vitd- -,

22

— and the inverse procedure is given by setting ¢ = 1 and taking degrees modulo 2.

— Using this identification, the unfolding of a Z/2-graded vector space is restriction
— of scalars along k — k[t,t7!]. (There is also a “folding” procedure, given by
— extension of scalars along this map, but it does not arise in this paper.)

—  From this point of view, an object of mf( /') becomes a finitely generated Z-graded

27
. projective module over the graded ring Q[t,¢~!], equipped with a Q[t, t~!]-linear

o differential of degree —1 whose square equals f7. When we think of mf( /) as a

o Z/2-graded dg-category, we are regarding it as a k[¢, t~!]-linear dg-category, and

. its unfolding amounts to regarding it as merely a k-linear dg-category.

o A key result used throughout this paper is that there is a quasi-equivalence of

- Q-linear (Z-graded) dg-categories

34 mf( /) => D¢(R). (3.1

35
6 This follows from a combination of [Buchweitz 2021, Theorem 4.4.1] and [Eisenbud

j 1980, Corollary 6.3]. Unlike mf( /), the dg-category D% (R) cannot directly be
~. realized as the unfolding of a Z/2-graded dg-category.

301/, 3 Notation 3.2. Let C be a k[t, t~']-linear dg-category, where ¢ has degree —2 (i.e.,
40 a k-linear differential Z/2-graded category). We write HN(C) (resp. HNZ/2(@))
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. for its Hochschild homology relative to k (resp. k[t,¢~!]), and similarly for HP

11/27 and HH.

20/>

1

% 3.2. De Rham models for Hochschild, negative cyclic, and periodic cyclic ho-
o mology. We make use of explicit de Rham-type models for Hochschild, negative
. cyclic, and periodic cyclic homology of mf( /) and related categories. We begin
- with a technical point:

E 3.2.1. Adjoining a power series variable to a graded ring. For a (homologically)
9 Z-graded vector space W, let u be an indeterminate of degree —2, so that W{u],

10 and hence also W{u]/u™, is Z-graded. We set
11

o Wu] := lirfln Wiul]/u™,

13 . . oL .
" where, importantly, the inverse limit is taken in the category of Z-graded vector

. spaces. Thus, Wu] is graded, and for each d, its degree d part is the subspace

16 — I S .
- Wiulag = {Z viu' 1v; € W2,+d}
K i=0

19 of the collection of all power series with W coefficients. Note that if W is con-
20 centrated in degree 0 (or, more generally, if W, = 0 for m >> 0), then W[u] is
o1 really just a polynomial ring with W coefficients. For instance, if we regard k itself
2 as being Z-graded but concentrated in degree 0, then the above definition of k[Ju]
23 yields k[u]. We stick with the traditional notation k[u] in this case.

24 The following is easily verified:

N
o

> Lemma 3.3. Suppose W is a Z-graded k-vector space with only a finite number of
*° nonzero degree components, and let t be a degree —2 indeterminate. We have an
o identity

% Wi, ™ [ul = Wlvllz, 7',

29

50 Where v := ut™! and W[v] denotes all power series with W coefficients in the

5, degree 0 variable v.
32 Example 3.4. In particular, we have an identity
33

2 kit,t~"[ul = kvl ¢ '],

2 with v:=ur~" and k[v] the usual ring of power series. In other words, k[t, t~'][u]

36
- is a Z/2-graded ring that is 0 in odd degree and a power series ring in even degree.
o We use this identity frequently in this paper.

£ Remark 3.5. The ring k[¢][u] may be identified with the Z-graded polynomial

2— . . .
40 ring k[u, t], concentrated in negative even degrees.
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1 3.2.2. De Rham models. Let A be a smooth k-algebra equipped with a Z-grading

/ >, (written homologically) such that A; = 0 for all odd i, and suppose w € A_, is an

3 element of degree —2. We call such a pair (4, w) a smooth curved algebra, and we
, define its de Rham HN complex to be

HNR(A, w) = (R [ul, ud + Agw).

11

G\‘(ﬂ

. Here, u is an indeterminate of degree —2, and Q5 = P p QZ Ik is homologically
~, graded by declaring |agday ---dap| = p +}_; |ai|, where || refers to the degree
~,_ of a homogenous element. In the formula for the differential, ud + A gy, the d

1o refers to the de Rham differential d : Q4 — Q ﬁ“ (observe that it has homological

., degree +1, so that ud has degree —1) and A4, refers to left multiplication by the
. degree —1 element dw € Qil.
. We define the de Rham HP complex for the pair (4, w) to be

14 HPYR(A, w) := AN (4, w)[u™"] = (% (), ud + ) qu),

1o Where, in general, W((u)) is shorthand for Wu][u~"]. The de Rham HH complex

- of (4,w)is
o HNR(4,

8 HHR(4, w) = dlg )
19 u-HNN (A4, w)

= (Q% Aaw)-

201,20 If A is a smooth k[, !]-algebra for a degree —2 indeterminate ¢ (i.e., a Z/2-

21 graded algebra), we set

22 .
o HNRZI2 (4, w) = (Q sl ud + daw).

24 We also define HPYR-2/2( 4 w) and HHIR-Z/2( 4, w) just as above. Observe
25 that the complex HNYR-2/2(4 w) is a dg-module over [z, 1~ '][u] = k[v][t, ¢ ]
26 (see Example 3.4); that is, it is a differential Z/2-graded module over the power
27 geries ring k[v]. When A4 is a Z/2-graded algebra, we can, and sometimes will,
28 jgnore k[t, ¢ !]-linearity and consider the invariants HNYR (A4, w), HPYR(4, w),
29 and HHY%R(A4, w) defined above.
30 If A=Agand w=0, we write HNR(4, w) as just HN¥R(4), and if Y =Spec(4),
31 we also write HNYR(Y') :== HN9R(A4); we use the analogous notation for HH and
32 HP as well. In this case, the classical Hochschild—Kostant—Rosenberg (HKR)
33 isomorphism [Loday 1998, Theorem 3.4.4] induces quasi-isomorphisms
~ HN(A) S HNR(4),  HP(4) S HP*NA) and HH(A) > HHR(4),
g thus justifying the notation. More generally, for a smooth (ungraded) k-algebra Q
37 and non-zero-divisor f € Q, we may form the smooth curved algebras (Q[t], ft)
38 and (Q[t, t=1], ft). For these, we have the following HKR-type isomorphisms,
39 which build on results in [Cdlddraru and Tu 2013; Polishchuk and Positselski 2012;
“40 Segal 2013]:

91
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1 Theorem 3.6. For a field k of characteristic 0, a smooth k-algebra Q, and a non-
» zero-divisor [ € Q, we have the following isomorphisms in the derived category of
dg-Qlu]-modules (in parts (2) and (3), we use Notation 3.2):

(1) HNBM(Q/f) = HN*R(Q[1], f1),
(2) HN(D*¢(Q/f)) = HN(mf(f)) = HN*R(Q[r,17"], 1), and
(3) HN?/2(mf(f)) = HNYRZI2(Q[t, 7], f1).

Remark 3.7. The third isomorphism is a map of graded Q[t, t ~!|[u] = O[v][t. ¢~ ']-
o modules, or, equivalently, of Z/2-graded Q[v]-modules.

e [~ o o]

10 Remark 3.8. The isomorphisms in this theorem imply the analogous results in-
11 volving both Hochschild and periodic cyclic homology upon modding out by and
12 inverting u, respectively.

=l Proof of Theorem 3.6. Part (1) follows from [Brown and Walker 2024, Proposi-
*_ tion 2.16 and Theorem 2.17]. Parts (2) and (3) follow from [Brown and Walker
B 2020a, Proposition 3.25 and Theorem 3.31] and [Briggs and Walker 2024], respec-

o tively. O
17

18 3.3. An explicit calculation of a boundary map. Suppose Z — X is a closed
E immersion of schemes of finite type over C. Let D*Z(X) denote the full dg-
20 subcategory of DP(X) consisting of objects whose supports are contained in Z. We
21 set HPBM:-Z (X'):= HP(DYZ(X)). As already noted in the proof of Proposition 2.17,
g [Khan 2023, Theorem A.2] (see also [Brown and Walker 2024, Theorem 1.2])
23 implies that the induced map

= HPPM(Z) — HPBM-Z(X)

25

26 is a quasi-isomorphism: that is, HP®M satisfies the dévissage property. By a result

27 of Keller [1999], we have a distinguished triangle

g HPBM-Z (x) o HPBM(X) - HPPM(X \ Z) —

£ of dg-k[u,u~']-modules; see [Brown and Walker 2024, Section 2] for details.
31 Combining this with the dévissage property, we obtain a distinguished triangle
% HPPM(Z) — HPPM(X) — HPPM(X \ Z) — . (3.9)
g Remark 3.10. By a result of Blanc, topological K-theory of dg-categories is a
35 localizing invariant (see, e.g., [Brown and Walker 2024, Theorem 2.6]). Moreover,
36 topological K-theory satisfies dévissage [Halpern-Leistner and Pomerleano 2020,
37 Example 2.3]. Thus, we have a distinguished triangle

38

— G*P°(Z) = G'P(X) - G'P(X \ Z) — (3.11)

E of spectra analogous to (3.9). We will make use of this in the proof of Theorem 2.23.
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1 We apply the distinguished triangle (3.9) in the following special case: for a
smooth k-algebra Q and a non-zero-divisor f € O, we obtain a long exact sequence

- HP{(Q) — HP(Q[1//]) & HPBM(Q/ /) = HPy(Q) — -+ . (3.12)

Using [Brown and Walker 2024, Theorem 5.5], one may explicitly describe the
boundary map d in terms of the de Rham models for periodic cyclic homology
discussed in Section 3.2.2. Before recalling this result, we note that every element of
8 HP‘ljeR(Q[l/f]) is represented by a finite sum of classes of the form (a/ f*)u(P—1/2

o for some integer s > 1 and some class & € Q%,, with p odd, such that fdo = sdfa
10 [Brown and Walker 2024, Lemma 5.3].

2
3
N
5
6
7

™ Theorem 3.13 [Brown and Walker 2024, Theorem 5.5]. The boundary map
12

13 d:HP (Q[1/f]) — HPEM(Q/f)

14

5 in(3.12) corresponds, via the isomorphisms relating its source and target to their

15 de Rham models, to the map

o %R HP{™® (Q[1/ 1) — HP§R(Ql1]. f1)
18
— given b
gg g deR{ @ L(p—1) (_l)s Lp+1)-s
gde (FMZ P ) = P d(ar )P,
s!
21

» 3.4. Some calculations of Hochschild invariants of matrix factorization categories.
»; Formulas for the Hochschild, negative cyclic, and periodic cyclic homology of

5, mf(f) relative to klt, t~1] (as opposed to k) are well-known, due to [Dyckerhoff

2 2011];

g Theorem 3.14. Let k be a field of characteristic 0, Q a smooth k-algebra, and
27 f € Q a non-zero-divisor. Assume that the morphism f : Spec(Q) — A}( deter-
28 mined by f has only one singular point m € Spec(Q), and it lies over the origin

2 (i.e., f €m). Set d = dim(Qnw), and let Qs be the finite-dimensional vector space
30

. o

32 df-Q‘é_l :

* We use Notation 3.2.

34
35 (1) There is an isomorphism of Z/2-graded k-vector spaces

= 27Q, = HHI (mf( /),

37

g where d is considered mod 2. Moreover, under the identification of HH Z/ 2(mf( f))
30 with HH ieR’Z/ 2(mf( 1)) given by Theorem 3.6, the isomorphism is induced by the

40 canonical inclusion Q‘é C Q'Q
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) HNf/z(mf(f)) is a free, finite-rank 7 [ 2-graded k[v]-module, HPf/z(mf(f))
5 is a finite-dimensional 7 | 2-graded vector space over k((v)), and both are concen-
5 trated in degree d (mod 2). (Recall that v =t~ 'u, and k((v)) := k[v][v™'].)

_* Remark 3.15. Rephrasing in terms of k[t,#~!]-modules, Theorem 3.14(1) means

_°_that we have an isomorphism
6

- 291,171 = HHZ? (mf( 1))

? of graded k¢, ~']-modules induced by the inclusion % [t 71— Q° [t =1,
o and Theorem 3.14(2) says that HN z/ 2 (mf( f)isa graded free module of finite
. rank over the ring k[t, 1 '|[u] = k|[v]][l t~1] (see Example 3.4), and similarly
o for HP. In particular, Theorem 3.14(2) implies that HN z/ 2(mf(f)) is v-torsion
; free, and thus its quotient by v may be identified with HH z/ 2(mf(f)). A choice
— of k[t,t™']-linear splitting of HNZ/Z(mf(f)) —> HHZ/Z(mf(f)) determines an
— 1som0rphlsm HNZ/Z(mf(f)) ~ Ede[[v]][t t~1] of k[v][t, t~']-modules, but such
E an isomorphism is not canonical.

17 Proof. Part (1) is [Dyckerhoff 2011, Theorem 6.6]; it also follows from Theorem 3.6
18 (and Remark 3.8). It is a consequence of (1) that the Hodge-to-de Rham spectral
; sequence degenerates [Dyckerhoff 2011, Section 7]. The statement in (2) con-
20 cerning negative cyclic homology follows: see, e.g., [Shklyarov 2016, proof of
21 Proposition 9]. The statement in (2) about periodic cyclic homology is then clear. [
22

23 4. A Wang-type exact sequence

24
o Let k, O, f, and R be as in Section 3. The goal of this section is to leverage the
o calculations in Theorem 3.14 to compute the negative cyclic and periodic cyclic
P homology of mf( /) ~ D% (R) relative to k rather than k[t~ !].

2 4.1. The distinguished triangle. A key tool is the following distinguished triangle,
2 whose associated long exact sequence on periodic cyclic homology is reminiscent
30 of the Wang exact sequence of a circle fibration (see Remark 4.2(3)). This result
3 implies Theorem 1.4 from the introduction.

32
53 Theorem 4.1. Let k be a field of characteristic 0, Q a smooth k-algebra, and

2 | € O anon-zero-divisor.

35 (1) There is a distinguished triangle
30 z/2 h z/2
37 HN(mf(f)) — HN™'“(mf(f)) = HN""*(mf(f)) —

*_in the derived category of dg-k[ul-modules, where h is a map satisfying

40 h(g(t)-a) =ug'(a +g(t)h(w)
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L on the level of homology for any cycle o and g € k[t,t~']. In more detail, in
5 terms of the equivalent de Rham models, h is given by the endomorphism u aa—t +Af

5 of Qe [ul.
4 (2) Assume that the morphism f : Spec(Q) — A}c determined by f has only one
5 singular point, m € Spec(Q), and it lies over the origin (i.e., f € m). We have, for

6 all j € Z such that j = dim(Qy,) (mod 2), an exact sequence
7

50— HN;(mf(f)) - HNZ2(mf(f)) 2> HN?2(mf(f)) — HN;_1 (mf(f)) — 0.
% (3) Parts (1) and (2) hold with HN replaced with HP throughout.

11 Proof. We have a canonical isomorphism

g . — . — (a,p)—~a+pdt °
5 Qplt. i@ Qplt, 17— QY 1),

14

. under which the differential for HN dR(Q[t,t~1], ft) corresponds to

16
16 dop 0 A 0
17 u|:3Q :|+|:)idf)\ j|;
o 3 do f o Addf
9 here, dg denotes the de Rham differential on Q%, extended klt, t~]-linearly
to Qplt, t~1]. It is thus immediate that HN9R(Q[¢, 1], ft) is isomorphic, as a

21 dg-k[u]-module, to the homotopy fiber of the map
22

23 HNdeR’Z/Z(Q[t,t_l]vﬂ)

9
Uy Hhr HNdeR,Z/Z(Q[Z’ =1, f1).
— Lettmg h=ux at + Ay, part (1) therefore follows from (2) and (3) of Theorem 3.6.
— Part (2) is immediate from (1) and Theorem 3.14(2), and part (3) follows by the
; exactness of inverting u. O

; Remark 4.2. (1) As is evident from the relation /(g (¢) -a) = ug’(t)a + g(t)h(a),
29 the map / is not k[¢, ! ]-linear, although its source and target are both complexes
30 of k[t,7~]-modules. Put differently, HN z/ 2(mf( 1)) is two-periodic, but the map
31 J is not.

2 ) Suppose Q = Cl[xo, . . . , X,+1] and that the hypersurface Q/( f) has an isolated
ﬁ singularity at the origin. Denote by ¢ : E — S the Milnor fibration associated
~ to f; see [Dimca 1992, Chapter 3] for background on the Milnor fibration. Milnor
» [1968 Theorem 6.5] proves that the fiber F' of this fibration is homotopy equivalent
2 to a wedge sum of copies of S”T1; F is called the Milnor fiber. The Serre spectral

1 sequence associated to the Mllnor fibration collapses to a long exact sequence,

* called the Wang exact sequence, of the form

40 - HU(E)— H'(F) 2% gi(F) > HTY(E) > -, 4.3)
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. where the maps H(E) — H'(F) are the natural ones, and T’ denotes the automor-

/2~ phism of H*(F) induced by monodromy.

On the other hand, by [Efimov 2020, Theorem 1.1], there is a canonical isomor-

phism 2/2 o
HP{/*(mf(f)) = @ H/ T+ (F:C)
ieZ

for all j (see [Beraldo and Pippi 2025] for an £-adic version of this result); we note
that [Efimov 2020, Theorem 1.1] identifies periodic cyclic homology with vanishing
cohomology, but the latter is isomorphic to the cohomology of the Milnor fiber
10 since the singularity of Q/(f) is isolated. It is therefore reasonable to consider the
11 ]Jong exact sequence in Theorem 4.1(3) as an analogue of the Wang exact sequence.
12 Theorem 4.1 also suggests that one should consider HP,(mf( f)) = HP+(D%*(R))
13 as an analogue of the cohomology of the total space E of the Milnor fibration.
14
15 4.2. The homogeneous case. Now let Q be the polynomial ring k[xo, ..., Xs+1],
16 equipped with its standard internal grading given by deg(x;) = 1 for all /. Assume
17 also that f is homogeneous, say of internal degree deg( /) = e¢. Henceforth, we
15 will use the notation | —| for homological degree and deg(—) for internal degree.
? The main goal of this subsection is to prove Corollary 4.7, which provides an
20 important link between the Z-graded and Z/2-graded negative cyclic homology of
o1 the singularity category of a homogeneous isolated hypersurface singularity.
»  Recall that Q’Q[Z t~1] has a homological grading, where |f| = —2 and |§2 | = p;
; we may also equip Qlé [z, z 1] with an internal grading by declaring deg(¢) = —e and
24 deg(godg;---dgj) = o deg(g;i). With these conventions, we have | /7| = —
25 and deg( f1) = 0, and the de Rham differential d is an operator of homolog1cal
g degree +1 and internal degree 0.

[efe|~fofe]s]w]

— Remark 4.4. Itis tempting to extend the internal grading to 237, t~1][u] by declar-
~ ing deg(u) = 0, so that, for instance, the differential on HN deR ZI2(Qlt, t71, f1),
2

— namely udg + tAq4y, has internal degree 0. But, this does not entirely make sense,
30 . . . —1 .

— for observe that this would require setting deg(v) = deg(ut™"') = e, and, since
31 o —1 (] —1 s 13 . ’” .
o Qolt, 17 ][u] = Qp[v][z,77"], this would mean we are “grading” the power series
— ring k[[v] with deg(v) # 0, which is nonsensical.

33

37 Remark 4.4 notwithstanding, we may define a grading-like operator I' on
35 QY [[v]][t 1= Q° [t t~1[u] by setting T (wt'u’/) = (deg(w) —i - e)wt'u’ for
36 W e Q% and extendmg along infinite sums. Equivalently, and more explicitly, we
37 define the operator I" on Q7 [[v]][t t~1] by declaring T'(v) = ev and extending
38 along infinite sums as follows a typical element of Qg [v][z, t~!] has the form
O A=) D p @jm,pV m¢J, where j ranges over a ﬁmte subset of Z, m ranges
40 over all nonnegative integers, p ranges over a finite subset of N, and w; m, p is a
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1 homogeneous element of 2 0 of internal degree p. We set

2 . m.i
o INa) = Z(p—i—em—e])a)j,m,pv .
e Jjm,p

5 Since deg(u) = 0, the operator I' is a k[u]-linear derivation: I'(ua) = uI'(«), and
6 T'(af) =T'(a)B +al'(B). Note that the homological grading is ignored, and there
7 are no signs.

8
. Notation 4.5. For any integer /i and operator I" on a k-vector space W, define
o ;W :=ker(I" — i), the eigenspace of I" with eigenvalue i.

11 For an honest Z-graded vector space W, with I" taken to be the grading operator,
12 T';(W) coincides with the i-th graded piece of W, which we typically write as [W];;
13 we thus have W = @, I'i(W) = @,;[W];. Such a decomposition does not hold
1 for W = Qf [[v]][l 71, even if we take Q = k. For instance, ['jk[v][z, t—11=0

15 whene t j, and Tiek[v][t, =1 = k[u]t—. We therefore have
16

- P riklolle. e = ko]l '] < k][ 7).
18 J

18
19 More generally, for each integer 7,

20 j
W LRI = @ @D Ticemtes ™ = [Qplv.1.171]];.

39/>

#_ The differential tdf + ud o on HN 4R (Q[t,t71],1f) commutes with T' (Ioosely
2% speaking, the differential “has degree zero”); it follows that I" induces an operator
* on HN*(mfZ/z(f)), which we also write as I'. As with Qp[v][z, t~1], T does
% not induce a Z-grading on HN(mfZ/2( f)), but ToHN(mfZ/2( f)) is a module
2" over kf[u] = Toklt, =] [u].

28

29 Theorem 4.6. Let Q = k[xy, ..., Xn+1], equipped with the internal grading given
30 by deg(x;) = 1, and let [ be a homogeneous form of degree e > 1. The k|u]-
31 linear endomorphism h = u% +As of HNYRZI2(Q[t,t=1], f1) is homotopic to
5 the endomorphism —T.

Proof Define e : Q' — Q to be the map induced by the Euler derivation on Q

* sending g € Q to deg(g)g, 1 €., £g maps Qp to Qp ! by the formula
35

36 . —

p eo(godg -+ dgp) = Z(—l)l—1 deg(gi)gogidg1 -+~ dgi - dgp.

— i=1

i

39 The map £p has homological degree —1 and internal degree 0. We also de-

40 note by g¢ its k[t, t~1[u]-linear extension (i.e., its k[v][¢, t~']-linear extension)
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) SZ'Q[I t[u] = 'Q[[v]][t, t~1]. We have relations
[SQ, l)»df] = deg(df)tkf = elkf and [SQ, udQ] =ul'g,

where [, 8] .= a o 8 + B o« for operators of odd homological degree, and

\@\m\#\w\w

Lo : Qplvllr, ™' — Qplvllr ]

" denotes the k[v][t,#~!]-linear map determined by I'g(w) = deg(w)w for w € Q'Q
% Since the differential on HN%R(mf%/2( f)) = Q* [[v]][t t~1is udg +thyr, we
— may interpret g /et as a homotopy exhibiting that Ar and —2T'¢ are homotopic
 endomorphisms of HN deR(mfZ/ 2(f)), and hence that /1 and vt aat — 2Tg are ho-
11

~~ motopic.

2 It remains to show vt— — —FQ = gF. We first note that, since v = %, we have

13

14 v’ . jvj

» o ¢

16 Thus, for @ = wv’¢*, we have

17

18 (vt% — SI‘Q)(a) = (,‘ —j+ dege(a)))a)vj-i-lti
19

o :_g(deg(w)-l-(j—i)e)wvjli Z_SF(O{)’

L and this extends along all infinite sums. O
22

o3 Corollary 4.7. Let Q and [ be as in Theorem 4.6. Assume also that n is even, and
s that Proj(Q/f) € P**1 is smooth. The canonical map

% HNYR(Q[t, 17", f1) — HNRZI2(0[1,17"], f1).

26

27 induced by the surjection Q° olri—11/k Q° Olrt—11/k[r.r—1] that sets dt =0, induces
28 a klu]-linear isomorphism

29

0 HNG(Qlt.171,1f) = ToHNE™ 2 (Qlt. 171 11).

1 Proof. By Theorem 3.14(2), we have HN; z/ 2(mf(f)) = 0 for i odd. It therefore

— follows from Theorem 4.6 that, for each J € Z, there is an exact sequence of

¥ k-vector spaces
34

50— HNSR(Q[. "), f1) - HNS 2 (0l 171], f1)
36

o 5 HNERI(Qle 7, fi).

38
39 Again by Theorem 3. 14(2) the k[v]-module HNieR’Z/ 2(Q[l, t~1], ft) is v-torsion
w0 free, and hence ker(—v L) =ker(T). O
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L1 5. Proof of Theorem 2.23
14/0—
> We start with the following theorem, which is a consequence of the results in
2 Sections 3 and 4; it encapsulates exactly what we will need from these sections for

* the proof of Theorem 2.23:

5
"¢ Theorem 5.1. Let Q be the standard graded polynomial ring k[xy, ..., Xp41] with

" neven, and let [ be a nonzero, homogeneous element of degree e > 1. Assume that
5 Proj(Q/f) € P"t1 s smooth. Define Q f to be the graded k-vector space

9 n+2
i Q k
Q [x03-~~’xn+1]
10 Qf = >~ dxo---dxn+1.
- Tontl f of
1 df QQ (axo""’axn+1)

12

— (1) D,, HNapm (mf( f)) is a free (homologically) graded k[u]-module of finite rank.

— In particular, HN2y, (mf( f)) = 0 for m > 0, and multiplication by u determines
Y oan isomorphism
15

® HNap 42 (mf(f)) => HNy (mf(f))

16

— form K 0.

17
18 (2) The grading operator I" on the de Rham HN complex HN aR.Z/2(0[r, 171, f1)

19 induces an operator on HHOIR Z/2(Q[t t=Y, 1), and, for all m € Z, there is an

20 isomorphism
20%/,—

2 [27)(n/2)+1-mye —> CoHHINE2(Q[t, 71, f1)
22

23 induced by sending w € [Q"Q ]((n/2)+1—m)-e to the class wt®/D+1-m

24 (3) For each m, we have a short exact sequence
25

o 0= HNME(f))amt2 > HNam(mf(£)) L [/ (n/2)+1-mye = 0; (5.2)

2" here, the map q is the composition
28

— ~ — d _ .
2 HNyy(mf(f)) = HNg (O1.17') 1= S22 ToHN3 (01,171, f1)
- 220, Ty HHAS (0l 71, f1)
32 = 1971/ 2)+ 1-mye-

33 where the first isomorphism is from part (2) of Theorem 3.6, and the last is (the

34 inverse of ) the isomorphism in (2).

E Proof. Part (1) follows from Theorem 3.14(2) and Corollary 4.7, using that

— Fo(kﬂv]] [£,¢71]) = k[u]. Let us now prove (2) and (3). To ease notation, we
1 dR,Z/2 1 dR,Z/2 1

. write V = HN (Q[t,t™ "], ft) and W = HH (Q[t,t™ "], ft). Since the
o homologies of both V' and W vanish in odd degrees, the distinguished triangle

391/, — .
/240 V2] 2y =0

— W —
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1 (where V[2] denotes the shift of V' by 2 in homological degree) yields a short exact

11/27

> sequence >0
u- u
0— V2m+2 —> V2m E—d W2m — 0.

“ |

Since deg(u) = 0, the map V <> V commutes with I'; it follows that " in-
duces an operator on W. Moreover, this operator commutes with the differential
on W and therefore induces an operator on its homology. The isomorphism
29Q, = HH®2/2(Q[t,+™"], ft) arising from Theorem 3.14(1) induces the desired
isomorphism

[/ 2)+1-mye —> FOHHSZR’Z/Z(mf(f)),
1 which proves (2).
1

1 .

—  We evidently have an exact sequence
1
— ur>0

1 0—>FOV2m+2£'—>FOV2m—>FOW2m.

1

. . 0 . L .
5 It is straightforward to check that I'g V5, LinaN o Wa, s surjective, so in fact we

o have a short exact sequence

4
5
6
7
8
9
0
2
3
4
5

17 0—)F0V2m+2L>F0V2mﬂ)F0W2m—>O

18

1o of vector spaces. Applying Corollary 4.7 again, we obtain the short exact sequence

201,22 0= HNSR 5 (Qlt.t7'], f1) “> HNgR (Olt. 1], f1)

39
391/

21

o 29, o HHAN 2 (mf(£)) — 0.

>3 The square

e HNom 2 (mf(f)) ———— HNan (mf (/)
. HNSR ([t 17", f1) == HNSR(Q[t.t71). f1)

28
20 evidently commutes, where the vertical isomorphisms arise from Theorem 3.6. We
30 therefore arrive at the short exact sequence

3 u—>0

0= HNamaa (mf () 25 HNom(m (/) =% To HHSS /2 (mf(f)) — 0.

33 The exactness of (5.2) therefore follows from the commutativity of the triangle
34

o ur—>0

h” HNym(mf (1)) 2= To HHIR /2 (mf( )

36 q
37 =
38

— [ fl(n/2)+1-m)-e

ZE where the vertical isomorphism is given by (2). O
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1 Corollary 5.3. In the setting of Theorem 5.1, the k-vector space HPo(mf( [)) has
» dimension equal to dimc[Q2r]z.e. Moreover, setting FP = FLHPy(mf(f)), we
53 have canonical isomorphisms
n F&

o —11 =87l +1-pye
— FHC

% for each integer p.

7
— Remark 5.4. Note that we are not claiming that there is a canonical isomorphism
- HPo(mf () = [ ]zec.

10 Remark 5.5. It follows from the definition of a Hodge structure of weight O that
11 the intersection of Hdg(HPo(mf( f))) with F is 0. Thus, the composition

12

o Hdg(HPo(mf(/))) = Fue = Fue/ Foc =[]t 2)/2)

E is injective; in particular, the Hodge classes of HPo(mf( /)) may be identified with
15 a rational subspace of [€2f]((n42)/2)-e- As a consequence, we see that there is no
16 information lost when passing from the Chern character map chyy : Ko (mf(f)) —
17 HNo(mf( f')) taking values in negative cyclic homology to the a priori coarser map
18 chyy 1 Ko(mf(f)) — HHo(mf(f)) given by the composition

19 u—>0

o Ko(mf(£)) = HNo(mf(f)) “=% HHo(mf(1)).

20
20%/,—

39/>

2t 5.1. The commutative diagram. We now prove Theorem 2.23(2). This follows

22 from the existence and properties of the diagram
23

2 Ko(X) ——— Ko(X) —— Ko(D®(R))

25

. l | |

27 KU°(X) —=— KgP(X) — KyP(D¥%(R)) (5.6)
% J/ Chlop J/ Chtop J/ Chlop

30 He(X;C) —=— HPy(X) — HPo(D*(R))

31
3> The top vertical maps are the canonical ones. The map KU®(X) — K"(X) is
33 Blanc’s comparison isomorphism, and the bottom horizontal map on the left is the
3, HKR isomorphism. Letting E denote K, K'°P or HP, the horizontal maps on the
35 right side are defined by the sequence maps

= Eo(X) > Eo(W) < Eo(D*(R)) > Eq(D%(R)), (5.7)
g where W = Spec(R), p: W — X is the map given by modding out the C* action,
30 and the isomorphism is given by Proposition 2.17. (The fact that p* is indeed

40 surjective, as indicated, will be justified below.)
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1 In particular, diagram (2.24) is the “boundary” of diagram (5.6). It therefore

5, suffices to prove (5.6) commutes, the two maps Kg)p (X) —> KBOP(DSg(R)) and
"3 HPo(X) — HPy(D%*(R)) are surjective as indicated, and the images of the maps
" Ko(X) — K" (D%(R)) and Ko(D*¢(R)) — K?(D*(R)) coincide.
5 The commutativity of the top left square of (5.6) is a consequence of the con-
¢ struction of Blanc’s map, and the bottom left square commutes by [Blanc 2016,
~, Proposition 4.32]. The right side of this diagram commutes by the naturality of the
"¢ map from algebraic to topological K-theory and the topological Chern character
"5 map. Let us now justify that p* : Eq(X) — Eo(W) is onto for each of £ = K,
1o K'"P or HP. Toward this goal, let Y be the blow-up of Spec(R) at m. The fiber
11 of this blow-up is X, and the inclusion i : X < Y is the zero section of a map
1» m:Y — X making Y into a line bundle over X. Moreover, we may identify W
13 with Y\ X; let j : W — Y denote the canonical open immersion. Then we have
1w p=moj,andsince 7 is a line bundle over a smooth base, 7* : Eq(X) = Ey(Y)
15 1is an isomorphism. Since Y, W and X are all smooth, dévissage gives that j* fits
16 into the long exact sequence

o i Eg(Y) L Eq(W) = E_((X) = -+ .

18
E For each of these functors, we have E_;(X) = 0, and thus p™* is surjective,
20 as claimed. Now assume E = K'P or E = HP. Proposition 2.18 gives that

21 Eo(DP(R)) — Eo(D*¢(R)) is onto, and thus the rightmost map in (5.7) is also
22 surjective in these two cases. This proves the lower two horizontal maps on the
23 right side of (5.6) are surjections as indicated.

24 To complete the proof, it suffices to show the image of the map

25

o Ko(D*(R)) — K,F(D*(R))

" and the image of the composition
28

20 Go(R) = Ko(D*(R)) — Ko(D¥(R)) — K" (D*(R))

39 coincide.
31
5, Remark 5.8. The map Ko (DP(R)) — Ko(D*8(R)) itself need not be onto, due to

5 the fact that K_1(R) is typically nonzero; see [Cortifias et al. 2013].

{ However, the map K¢(DP(R)) — Ko(D*:(R)) is onto “up to A!-homotopy”. In
35 detail, consider the diagram

36

3 Ko(D°(R[x])) — Ko(D*®(R[x])) —— K_;(Perf(R[x])) — 0

ﬁ PR i P PR b
0 ‘1 0 ‘1 0 ‘1
39

w0 Ko(D’(R)) ——— Ko(D*(R)) —— K_;(Perf(R)) —— 0
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1 with exact rows and in which the vertical maps are given by the difference of the
~, two maps induced by setting x equal to 0 and 1. (We may model D® as bounded
3 below complexes of finitely generated projective modules with bounded homology,
~, and with this model it is clear that setting x equal to any constant determines a
5 dg-functor. This restricts to a dg-functor on Perf and hence on D%¢.) Let us write

? Ko (-) for the cokernels of the columns of this diagram, so that we have a right
exact sequence

o Ko(DP(R)) — Ko(D(R)) — K_,(Perf(R)) — 0. (5.9)

10 The result we seek follows directly from the following two claims:

-

L (1) the map Ko(D*¢(R)) — K{P(D%(R)) factors through the canonical surjection

= Ky(D%8(R)) = Ko(D%%(R)), and
13 GO
12 (2) the map Ko(DP(R)) — Ko(D%(R)) is onto.

15 The first claim follows from the fact that K'P is A'-homotopy invariant. For
16 the second claim, since the functor K_;(—) is Al-homotopy invariant and R is
17 standard graded, we have K_{(R) =~ K_;(k) = 0. The second claim therefore
18 follows from (5.9).

19
20 S5.2. An alternative description of the map a. We next establish in Lemma 5.13 an
a1 alternative description of the map « : prlm (X) = HPy(D*8(R)) defined in (2.22).
2 This description will be used to show that it is an isomorphism that preserves Hodge
23 filtrations.

22 We begin with some setup. Let U denote the affine variety P"T1\ X. Applying
25 the distinguished triangle (3.9), we obtain a dévissage long exact sequence

2

-

l .= HP{(P"*Y) = HP, (U) 225, HPy(X) — HPy(P"™* 1) — - (5.10)

27

g (the subscript U, X on the boundary map is included to distinguish it from the other

29 boundary maps we consider). We set

30 .
o HPY"™ (X) := ker(HPo(X) — HPo(P"11)).

32 . . . . .
“~ Since X is a smooth hypersurface in P"*1 of even dimension, we have
33

4 H". (X:C) = HPY™ (X).
35

2 As HP{(P"*1) = 0, it follows that there is an isomorphism

i du,x : HP1(U) => HPY"™ (X). (5.11)
38

39 Let V' = Spec(Q[1/f]) be the open complement of Spec(R) = Spec(Q/f) in

40 A"*+2 = Spec(Q). There is a canonical surjection p : V — U given by modding
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1 out the action of C*, and it induces a map

1/27

— p* :HPy(U) — HP{ (V).

Z We also have the dévissage long exact sequence

é . = HPy(A"2) > HP, (V) 228, gpBY(R)

% — HPo(A"12) > HPy(V) = --- . (5.12)
z Since HP{(A"12) = 0, and HP((C) = HPy(A"*2) — HPy (V) is injective, the

10 boundary map dy, g is an isomorphism.
11
., Lemma 5.13. The composition

. 91 *
EOE (X,C) = HPY™(X) —25 HP(U) 2> HP{ (V)

. VR, HPBM(R) — HPo(D*(R))

% coincides with the map o defined in (2.22).

g Proof. This is a diagram chase involving the long exact sequences (5.10) and (5.12),
19 as well as the dévissage long exact sequence

20
22— HP(V) 2 HPG (W) — HP(A" 2\ {0}) — HP(V) — -+, (5.14)

39%/—

2— where, as above, W = Spec(R) \ {m}. In a bit more detail, the naturality of these
— dev1ssage sequences, along with the fact that (5.14) maps to both (5.10) and (5.12),
- yields the commutative diagrams

% HP(U) —2— HP, (V) HP(V)

7 v, R

28 lau.x laV,X and oy.w

2 HPo(X) —L— HPy(W) HPo(W) +—— HPBM(R)

30 =

31 The statement follows. O

32
5, Proposition 5.15. The map o is an isomorphism.

**_ Proof. By Theorem 3.6 and Lemma 5.13, it suffices to prove that the composition
35

% HPERU) L5 HPIR (V) 22, "R, HPSR (Ol 1)~ HPER(Qlr 171, 1) (5.16)

37

g is an isomorphism, where BdVe & 1s the de Rham version of the boundary map dy, g
39 in (5.12). By Proposition 2.18, the last map in this composition is surjective, and
40 its kernel is given by the image of C => HP§R(R) — HPR(Ql1], f1); we begin



PROOFS - PAGE NUMBERS ARE TEMPORARY

130 MICHAEL K. BROWN AND MARK E. WALKER

1 by identifying this image. We have a commutative diagram

1/27

—= 4 Ko(R) ———— Go(R)

3 0 1~[R]
4 l lChHP lChHP
5
6
2

C —=— HPIR(R) —— HPIR(Q[1],tf)

; where the rightmost horizontal maps are induced by the inclusion Perf(R) < DP(R),
o and the leftmost vertical map is the inclusion. The image of 1 € C under the
-, composition C = HP§R(R) — HP§R(QI1], f1) is therefore chyp([R]), which is
0 equal to [dfdt] by [Brown and Walker 2020a, Example 6.4].

o The formula for adc v g given in Theorem 3.13 implies that 8‘1% (df/f) =[dfdt].
. We thus need only show that the map

14 HP¢RU) e C G0N

15

o Where [df/f]€ HP‘ljeR(V), is an isomorphism. This appears to be well-known (see,

—e.g., [Dimca 1992, Chapter 6, Section 1]), but we sketch a proof.

17

— Set A:=C[xy,...,xn+1][1/f], and recall that V' = Spec(A4) and U = Spec(Ay).

18
1o The Euler derivation gives a contracting homotopy on the internal degree j part of

5 the de Rham complex (£27, d) for all j # 0, and thus we may identify the de Rham

HPR(V), (5.17)

201/2; cohomology of V' with the cohomology of the complex ([Q2%]o. d). Moreover, we

39
39/>

5, have an isomorphism
. Qjo <) Qjo = [Q%]o (5.18)

23

24 given by (a, B) = a + (df/f)B. This gives an isomorphism

25 — =

b (p*.1df/f1p*) : Hygr(U) ® Hig ' (U) => Hig (V)

27 for each m. The isomorphism (5.17) thus follows from the HKR isomorphisms
2% HP{R(V) = HYR(V) and HPYR(U) = HS"(U), along with the fact that, since
29 U is the complement of a smooth projective hypersurface of even dimension, we
30 have HIR"(U) = deR(U) = O
31

2 5.3. Spanning set for HNS<X(Q[t, t~11, f1). Fix m € Z. We next exhibit an
3 explicit spanning set for HNJR(Q[t, ™, ft) as a complex vector space. This is
34 the content of Lemma 5.24, which plays a key role in the identification of the “polar
35 filtration” on HP{(U) and the nc Hodge filtration on HPy(D%(R)) (Lemma 5.27).
£ Ifj< % —m, then given w € [Q”QJrz]j.deg(f), we define

37

B Y () = (_]flv)]d(sg(w)zf)ué("“)—m—f € HN'R(Q[t, 171, f1), (5.19)

40 where ¢ is as defined in the proof of Theorem 4.6. Observe that ¥, ;(w) has
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1 homological degree 2m and internal degree 0. We have

2 .
oy do(eg(w)) =dg(eg(w)) +eg(dg(w)) = deg(w)w = j deg(f)w,
Z where the first equality holds since dg(w) = 0, and the second follows from the
5 proof of Theorem 4.6. We may therefore equivalently write
6 .
= —1Jd : :
T Ymw) = U—eg(f)(wzf £0(®) ;- ldt)u2(”+2) m=i_(520)
5 (j=D! deg(f)
9 Using (5.20) along with Euler’s formula
10
- n+1
1 of
& deg(f)- f = Z el
13
14 one sees that Y, j () is acycle, and so it determines a class in HN, SRQ[t, 171, f1).

15 We write ¥, for the induced map
16

I Um: B (% jaes(r) = HNa (Ol 1), f1). (5.21)

18 %(n+2) m

19 Setting m = 0, and replacing HN with HP, we obtain the map

20

201/, — _
2 YR e = DIRY ey = HPER(QLE 7' /1) (5.22)
22 jez

39/>

23

24

25

given by the same formula: if w € [Q”Q"'z] j-deg(f)» then ¥ (w) is the class of

=2 —1)/ . .

2% ey _') d(eg(@)t)uz D=7,

7 g

28 Remark 5.23. The composition of ¥, with

29 m

o HNy 2 (Ol 171, f1) =5 HPys X (Ol 171, f1) == HPGR(Q[r. 171, f1)
31 coincides with the restriction of i to

32

3 D 1257wt

34 j<im+2)—-m

% Lemma 5.24. The map Yy, in (5.21) is a surjection for all m, and the map  in
- (5.22) is a surjection.

g Proof. To ease notation, we write HN, for HNSR(Q[t,t71], f1). Let e = deg(f)
39 and p = ’“ZLZ, and consider the following diagram, in which the right column is

40 given by Theorem 5.1(2), and the map y will be defined shortly:
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0 0
11/27

2
i - n+2 Ym+1 Y

4 S5 [QQ lje —— HNamy2
— 0<j=p—m-—1

5
6 can u
= D (25 je — " HNam
8 0<j<p—m
i can q

10 e ~
o 4
o [QnQJrz](p—m)-e —_— [Qf](p—m) e
12
E ~ hd
1 0 0
15
16 The formula for ¥, and the description of g in Theorem 5.1 imply that
v (=DP™"deg(f) _ .
" o if lo] = (p—m)deg(f),
. qWYm(@) =1 (p—m—1)
19 0 otherwise.

20! 2 i
/2 o Setting

. ey = e ()

2 (p—m—1)!
23

-4 thus makes the diagram commute, and it is clear that y is a surjection. Since
o5 HNjyp = 0 for m > 0 by Theorem 5.1(1), it follows by descending induction that
26 Wm is surjective for all m. It follows from Remark 5.23 that the map v is therefore
,7 also surjective. O

28

o 5.4. Relating filtrations. The goal of this section is to relate the “polar filtration”
S on HP, (U) (defined below) with the nc Hodge filtration on HPy(D%(R)); this
5, leads quickly to a proof that the isomorphism & preserves filtrations. Recall that

2 X =Proj(Q/f) < P"t!,

33
34 and U denotes the affine variety P"+1\ X. As above, we also set V = Spec(Q[1/ f]).
35 The map p : V' — U given by modding out by the C*-action on V" induces a map
36 Qy, — Q7 via pullback. As explained in [Dimca 1992, Chapter 6, Section 1], p*
37_induces a chain isomorphism from 27, to a subcomplex of 27,; in more detail, we
38 have

39 i =~
391/ — Q=
40 v

eg(a)
fS

€Q):5>0,ae [szfQ“]sdeg(f)} (5.25)
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1 for all j, where &g is as defined in the proof of Theorem 4.6. Given w € Q7 we
> let ord(w) denote the minimum s such that there is a representation of w of the
3 form eg(a)/ f* as above.

_* Definition 5.26 [Dimca 1992, Chapter 6, Definition 1.28]. The polar filtration on
> QY is given by
psQi {a)eQ’iJ:ord(a))Si—s—i-l}, i—s4+1>0,

v o, i—s+1<0.

The polar filtration induces a filtration P*HP%R(U) on homology in the evident

6
7
)
o
10 way.

1

-

—  Let ¢ denote the composition

-

13 [R5 ] zaeg(r) = HP{™ (V) > HP{™ (U)

14 .
15 given by sending o € [Q "+2]J deg(f) tO (sQ(a))/f/)u”/2 € HP‘lieR(V) and then
T applying the 1somorph1sm (5.25). Define

16

i B : HP{**(U) — HP{™ (D°(R))

¥ to be the composition

19 deR

0 HPYRU) L PSRy AR, gpdeR (0fr], fr) 05 HPER (O, 171, f1),

21 . . . P
— where 8‘%,?RR is the de Rham version of the boundary map dy, g in the dévissage

22 iy . .
— long exact sequence (5.12), and can is the canonical map.
23

,s Lemma 5.27. The diagram

® [R5 1zae8()

. @y &»
2 HPSR(U) > HPER(Q[r. 171, f1)

29
30 commutes, ¢ and  are surjective, and B is an isomorphism. Moreover, B induces
31 an isomorphism

32

32 Ps+(n/2)+1HP§ieR(U) = FS HPdeR(Q[ ]’ ft)

33

32 Remark 5.28. It follows from [Griffiths 1969, (8.6)] (see also [Dimca 1992, Chap-
35 ter 6, Section 1]) that ¢ is surjective; our argument in the proof of Lemma 5.27
36 gives a new proof of this fact.

3" Proof. Let w € 9'5“1, where || = j -deg(f). We have
38

IR [ =

s(a)) n/2

Z ) ( jlg)Jd(e(wnf)u("/”“—f=w(w),
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1 where the first and third equalities follow immediately from the definitions of ¢
, and ¥, and the second is a consequence of Theorem 3.13. Thus, the diagram
3 commutes. It follows from Lemma 5.13 and Proposition 5.15 that 8 is an isomor-
4 phism. The map v is surjective by Lemma 5.24, and so ¢ is surjective as well.
5 Finally, suppose y € Ps+(”/2)+1HP‘lieR(U), so that ord(y) < 5 + 1 —s. Choose
5 WE [Q”Q+2]0rd(y).deg(f) such that ¢ (w) = y. We have

B(») =V (w) € F/DT1=od0) (gpdeR (o, 71, f1)) S FS.HPER (O, 171, f1).

8 ]efe]~

10 This shows that 8 maps

-

1

o Ps+(n/2)+1HP(lieR(U) N FrfCHpgeR(Q[l,l_l], ft),
13
" and a similar argument shows that ! maps

. FS HPSR(Q[, 171, f1) b PSTO/DT gpdR (1), O
16

"_5.5. Completion of the proof.

18

19 Proof of Theorem 2.23. The first two conditions in Properties 2.8 follow from
20 part (3) of the theorem, and the third is a consequence of [Khan 2023, Theorem B]
21 (see also [Brown and Walker 2024, Theorem 1.4]). We proved (2) in Section 5.1; it
22 therefore remains to prove (3). By Proposition 5.15, the map « is an isomorphism.
23 The commutativity of (2.24) and the surjectivity of (2.20) imply that « identifies

24 rational structures, so we need only show that o induces an isomorphism
25

2% F*H"

prim

(X; @(%)) =, FS HPy(D%(R))

27
.g forall s € Z. By [Griffiths 1969, (8.6)] (see also [Dimca 1992, Chapter 6, Section 1]),
29 there is an isomorphism

g PSH'(U;C)~ FFH'(U;C)
* foralli,s € Z. We therefore have a chain of isomorphisms
33

P (xe(5)) = Par (Uie(G )

36 =, pspn+l (U; C(% + 1)) =) Ps+(n/2)+1HP(11eR(U);
37

g the first is the boundary map in the evident long exact sequence, and the third is
39 the identification of singular and de Rham cohomology. Applying Lemma 5.27

Zﬂ therefore finishes the proof. O
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1 6. Examples
11/27
2 . .
— Let R =C[xy,...,Xxn+1]/(f), where f is a homogeneous polynomial such that

> the projective hypersurface X = Proj(R) € P"*1 is smooth, and assume 7 is even.
L By Theorem 2.23(3), the dg-category D*¢(R) satisfies the nc Hodge condition if
2 and only if the Hodge conjecture holds for X. In this section, we study the Hodge
- Classes in HP, (D*(R)) in several cases in which the Hodge conjecture holds for X

" Let us start with the simplest example:
8

"5 Example 6.1 (the n = 0 case). In this case, X is a collection of points, and so
1o the Hodge conjecture clearly holds for X'. The complexified Chern character map
11 Ko(X)ec — H®"(X; C) is surjective, and so the same is true of

- chpp : Ko(D*¥(R))c — HPo(D*(R));
13
14 in other words, HPy(D*(R)) is spanned by Hodge classes. Write f = {1 ---£,

15 with each £; homogeneous of degree 1, and let M; be the R-module C[xg, x1]/(¢;).
16 It is not hard to check that Ko(D%(R)) is generated by [M],...,[M4] mod-
17 ulo the relation Z?Zl[M,-] = 0. Tt follows that HPy(D*¢(R)) is generated by
18 chgp[M4],...,chyp[M ;] modulo the analogous relation.

19 Before we consider more complicated examples, we must discuss some back-

201,22 ground on Chern characters of matrix factorizations.
21

2 6.1. Chern characters of matrix factorizations. 1t follows from the calculations in
»3 [Brown and Walker 2020a, Example 6.1] that the Chern character map

2 chyp : Ko(mf(f)) — HPo(mf(f)) = HPSR(Q[t,t~'].tf)

25

26 sends a class of the form! [(4, B)] € Ko(mf( f)) to the class

2 213 (n+2)

1

% Fe) tr((dAdB)z"2) e HPR(Q[t, 7], 1/),

30 where dA4 and dB denote the square matrices with entries in QL obtained by
31 applying the de Rham differential d to the entries of 4 and B. We note that
32 [Brown and Walker 2020a, Example 6.1] concerns Chern characters taking values
33 in negative cyclic homology relative to k[t, t~1] rather than k, but the exact same
34 calculations yield the above formula in our setting.

35 The Chern character map is compatible with tensor products of matrix factoriza-
36 tions; let us explain what we mean by this. Suppose 4 and A’ are k-algebras, g € 4,
37

3 IWe recall that Ko (mf( f)) is, by definition, the free abelian group generated by isomorphism
— classes of objects in the idempotent completion of mf( ) modulo relations arising from exact triangles.

391/23 In particular, not every class in Kq(mf( f)) is necessarily of the form [(A4, B)], where (4, B) is a
40 matrix factorization of f.
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. and g’ € A’ If F € mf(g), and F’ € mf(g’), then we may form the tensor product

! /27 FRrFemf(f®1+1® f7); see, e.g., [Yoshino 1998] for details. Assume now

20
201/, —
2

39
39%/—

5 that A =k[yo,..., Ym+1]and A" =k[y;, ..., », . ], g and g’ are homogeneous,
~, and the hypersurfaces A/(g) and A’/(g’) both have isolated singularities. In this
5 case, we identify g ® 1 +1® g’ with g + &' € k[yo, .-, Ym+1, Vg - -+ Yy |
¢ The tensor product functor induces a map

HP{R(mf(g)) ® HP§ (mf(g')) — HP§ (mf(g + g’))

given by multiplication, which we denote by y ® ¥’ — y -y’. A straightforward
calculation shows that chyp(F) - chyp(F') = chyp(F @ F’).

—
= | O | |0 |~

6.2, Hodge classes of Fermat hypersurfaces. Assume now that n > 2, and suppose
3 S=xg 4+ X ' 1> so that X' is a Fermat hypersurface. For the remainder of
—~_this sect1on we will write X as X}.. It follows from [Shioda 1979] that the Hodge
— classes in Hé’nm (X; C) can be explicitly described in the following way. Let iy,

—~ denote the group of m-th roots of unity and G the quotient of ,u”“ by the diagonal
16

— subgroup. Let G = Hom(G, C*); we identify G with the group
17

- n+1
18

— {(ao,...,a,,+1) €@/m)"**: ) a; =o}

19
i=0

| via the isomorphism described in [Shioda 1979, Section 1]. We fix the following

2 notation:

23 o U={(ag,....ans1) €G :a; #0 forall i}.

2 e Fora € Z/m, we let {a) denote the unique representative of a between 0

2 and m — 1.

26
i For oo = (ag,...,an4+1) € U]}, we set |o| = Z:’;rol (ai)/m

2 e B={acU:|ta| =5+ 1forall s € (Z/m)*}.

29 The group G acts on X by scaling the variables, and so G acts on H”

prim
30 well. Given o € G define
31

o V() = {§ € Hyn(Xp) 1 87 (6) = (g)é forall g € G}.
g The following calculation of the Hodge classes of X} is due to Shioda:

— Theorem 6.2 [Shioda 1979, Theorem I]. Given a € G we have dimg V(a) =0

~— or1,and dim¢ V(a) = 1 if and only if @ € U. Moreover, the complexified Hodge
E classes of X, may be described as follows:
37

38 Hdg(X;) ®a C =P V(w).

oa€eB

(X;C) as

40 In particular, dimg Hdg(X}}) = | B|.
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1 Shioda [1979] applies this result to confirm a family of cases of the Hodge
~, conjecture for Fermat hypersurfaces; see also [da Silva 2021].

> Example 6.3. If m = 2, then B = {(1,..., 1)}, and so dimg Hdg(X}') = 1. On
*the other hand, by Knorrer periodicity, the dg-category D% (R) has exactly one
2 indecomposable object up to homotopy equivalence, namely the tensor product of

° the matrix factorization (x +1iy,x—iy) with itself % times. The Chern character

" of this matrix factorization is (—2i)®+2/2yx, . .. dxy+1, and so this class gives a
® basis for Hdg(D*(R)).
9

10 Example 6.4. Now suppose m = 3 and n = 2, so that /' = xg +xf + xi +x§. In
11 this case, we have

12
L B= {(1,1,2,2),(1,2,1,2),(1,2,2,1),(2,1,1,2),(2,1,2,1), (2,2, 1, 1)},

™ and so dimg Hdg(X. 32) = 6. As discussed in the introduction, the Hodge conjecture
> is known to hold for all surfaces, and so D%¢(R) satisfies the nc Hodge condition. It
1% follows that there are six classes in Ko(D%¢(R))g whose Chern characters form a
" basis of Hdg(X. 32): let us now describe these classes in terms of matrix factorizations

P oof xg +x3 + x5 +x3.
P Leta = e2mi/3, Taking tensor products of the two matrix factorizations

21 E1(xg,x1) = (xo + 1, (x0 +axy)(xo + a?x1)),

% Ej(x0,x1) = (X0 + axy, (xo + x1) (X0 + X))

24 of xg + x13 yields the following six matrix factorizations of xg + x13 + xg + x?:
25

26 E1(x0.x1)QE1(x2,Xx3), Ea(x0,X1)QE;(x2,x3), E1(x0,X1)QE(x2,x3),

2 Ea(xo,x1)®E(x2,x3),  Ei(x0, X2)®E1(x1.x3), Eq(x0,x2)®E5(x1,x3).
28
,9 Let us compute the Chern characters of these objects. We have

% chpp(E1(x0,x1)) = 3(x1 — Xo) dxo dx1,

o chpp(E2(xo, x1)) = 3a(axy — xo) dxg dxy.

* Thus, letting w := dxg dx; dx; dxs, the Chern characters of our six matrix factoriza-

3 tions of xg + xf —|—x§’ +x§ are
35

0 9(x1—x0)(x3—X2)®, 9ar(ex;—x0)(X3—X2)®. der(x;—Xo)(@X3—X2)w,
2%90!2((”1—360)(0063—)62)(0’ 9(x2—x0)(x3—x1)w, Ja(x2—xo)(x3—x1)w.

9 A straightforward calculation shows that these classes are (D-linearly independent
2—— .
40 and therefore form a basis of Hdg(D*¥(R)).
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1 Example 6.4 shows that every Hodge class of D%¢(C[xy, ..., x3]/(x3 +-- ~+x§’))

v >, can be built out of products of Hodge classes of D%(C[xq, x1]/ (xg + x13)). The

3 next example shows that this isn’t always the case for Fermat hypersurfaces, even
, in four variables.

5 Example 6.5. We now take m = 6 and n = 2. We have (2,2, 3, 5) € B in this case.
6 Notice that (2,2, 3, 5) is not the concatenation of elements of (Z/6)? corresponding
7 to Hodge classes of X, g . This implies that the Hodge class corresponding to
8 (2,2,3,5) cannot arise as the product of Hodge classes of D% (C[xg, x; ]/(xg —i—xf)).
9 Indeed, we do not know how to explicitly express this Hodge class as a C-linear
10 combination of Chern characters of matrix factorizations, even though, since the

11 Hodge conjecture holds for X2, this must be possible.
12
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