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Abstract 

Friction and wear collectively account for nearly a quarter of the world’s energy consumption, resulting in over eight Gigatons of 
CO2 emissions annually. With increasing mobility and industrial activity, the adverse effects of friction and wear on energy, the 
environment, the global economy, and sustainability will undoubtedly intensify. Unless we reverse this unsustainable trend, our planet 
could face a major ecological and environmental catastrophe. Fortunately, significant strides have been made in reducing friction 
to almost undetectable levels, with friction coefficients below 0.001. These remarkable achievements have resulted from numerous 
collaborative efforts and global initiatives focused on developing novel materials, surfaces, and interfaces that exhibit minimal or near 
zero friction, even at macro or engineering scales. This paper provides a comprehensive overview of the factors that contribute to and 
hinder superlubric sliding conditions, examining the impact of both intrinsic and extrinsic factors that are integral parts of the test 
conditions and environments. Drawing from recent analytical, experimental, and computational findings, underlying mechanisms most 
responsible for superlubricity are also discussed. The paper discusses recent mechanistic studies on highly ordered 2D materials, such 
as graphene, MoS2, h-BN, MXene, etc., and thin solid coatings such as diamond-like carbon or DLCs, as well as liquids, and discusses 
their potential for the development of large-scale mechanical systems. These exciting advancements pave the way for designing and 
producing next-generation engineering systems that can minimize friction in practical applications, thus conserving energy, enhancing 
durability, and protecting the environment for a sustainable future. 
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1 Introduction 
Superlubricity in tribology, often referred to as a state in 

which friction or resistance to sliding between two solid surfaces 
essentially disappears, has been a long-standing aspiration 
for tribologists not only because of its profound scientific 
significance but also its enormous industrial implications. 
Specifically, if this state could be achieved practically across 
all moving mechanical assemblies worldwide, it would 
undeniably have a significant positive impact on our global 
energy and environmental sustainability goals, as energy losses 
due to friction and wear in such assemblies are estimated to 
contribute to nearly a quarter of the world’s total energy output 
and account for more than eight Gigatons of CO2 emissions 
annually [1]. Further reducing friction and wear is imperative 
for achieving much greater efficiency and reliability in future 
mechanical systems. Therefore, the research on superlubricity is 
critically important and has been gaining momentum over the 

years (Fig. 1). 
Since the early 1990s, scientists and engineers have been 

exploring ways to eliminate sources of friction and thus achieve 
superlubricity. Initially, there was relatively low scientific 
and industrial interest, with much of the research focused on 
understanding the atomistic origins of superlubricity. Reflecting 
on the substantial growth in superlubricity research, thousands 
of publications have since emerged on this topic in reputable 
journals, conference proceedings, review articles, and dedicated 
books [2-11]. With this increasing interest and progress, there is 
hope that we may witness the operation of moving mechanical 
assemblies with minimal friction, thus consuming significantly 
less energy and producing fewer harmful emissions. 

In several natural or artificial tribological systems, 
superlubricity or frictionless sliding already exists. For example, 
in articulated joints, journal or foil bearings, and magnetically 
levitated surfaces, the frictional energy dissipation is minimal 
and mainly restricted to the shearing of the fluid media due to 
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Fig. 1  Chronological evolution of superlubricity over length scales. Reproduced with permission from [2] Copyright (2022) Frontiers. 

 
 

their viscosity. Nanoscale levitation, driven by Casimir forces, 
may also create ideal conditions for achieving superlubricity or 
near-frictionless sliding. 

Thanks to significant advances in computational modeling 
and simulation methods in recent years, we are better equipped 
to understand the atomistic origins of superlubricity and 
use this knowledge to design tribological systems that can 
offer superlubricity across a wider range of environments 
and tribological conditions. Incommensurability between 
2D materials has long been predicted, simulated, and 
experimentally verified as a major superlubricity mechanism in 
graphite, graphene, MoS2, and other 2D materials. Researchers 
have independently demonstrated that friction vanishes by 
precisely controlling the twisting or rotating of 2D materials’ 
atomic planes from complete commensurability to complete 
incommensurability [12-14]. With total incommensurability, 
where superlubricity comes to life, surface atoms are arranged 
in a way that prevents direct registry or contact, which 
diminishes interatomic interactions and, hence, adhesion and 
friction. While these scientific discoveries are indeed exciting 
in the field of tribology, significant challenges still exist in 
achieving superlubricity at various scales in real or industrial 
systems. For example, obtaining and maintaining an extremely 
smooth surface and continuous incommensurability in real 
tribological systems poses significant difficulty. Gaseous, liquid, 
or solid contaminations are also very hard to avoid as they can 
easily interfere with the very delicate nature of superlubricity. 

In the following sections, we present a comprehensive 
and up-to-date review of recent exciting developments in 
superlubricity. Special emphasis is placed on the most important 
mechanisms and sliding conditions that govern superlubricity, 
how intrinsic and extrinsic factors affect adhesion and friction 
between solid surfaces, and how they can be minimized to 
achieve superlubricity. As special case studies, we delve into 

the recent mechanistic understanding of the superlubricity in 
traditional and emerging 2D materials such as graphene, MoS2, 
h-BN, MXene, black phosphorous, etc., as well as thin solid 
coatings, such as DLC coatings and sliding systems involving 
liquids. We also assess the possibility of achieving macro-scale 
superlubricity in large-scale mechanical systems. 

 
2 A brief historical perspective 

2.1 Early studies 
The word “superlubricity” was first coined by the late Prof. 

Motohisa Hirano in the early 1990s and the key underlying 
mechanisms were described by his research team in references 
[15-17]. Using mica as an atomically smooth and defect- 
free substrate, they confirmed the existence of superlubricity 
through nanoscale friction tests, where they showed that 
friction can vanish by adjusting the degree of lattice misfit or 
incommensurability. Motivated by Hirano’s original work, 
Martin et al., further confirmed the existence of superlubricity in 
MoS2 using an ultra-high-vacuum tribometer under conditions 
where incommensurability was achieved [18-20]. During the 
remainder of the 1990s, further progress was made both in the 
theoretical understanding and experimental verification of 
superlubricity by these and several other authors [21-23]. In fact, 
dedicated experimental research has shown that in addition 
to incommensurability, the specific chemistry or chemical 
composition of the test environment may also play a significant 
role in the superlubricity of MoS2 [20]. 

 
2.2 Diamond-like carbon coatings 

Superlow friction of diamond-like carbon films was 
reported in the 1990s, although these films were structurally 
disordered or amorphous, so the incommensurability 
mechanism would not apply. However, during the second half 
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of the 1990s, DLC films with friction coefficients below 0.01 
were developed. Specifically, it was found that the superlubric 
sliding behaviors of these films were very dependent on the 
chemistry of gas discharge plasmas from which they are 
extracted and the test environments or conditions under 
which they were tested. In general, superlow friction, or 
superlubricity, was only achieved in inert gas environments 
with highly hydrogenated DLCs, while hydrogen-free or non- 
hydrogenated DLCs’ friction coefficients were among the 
highest in such inert test environments [24-34]. Figure 2 shows 
the typical superlubric behavior of a highly hydrogenated DLC, 
along with its proposed lubrication mechanism. 

In other studies, it was further confirmed that the high 
hydrogen content of the DLCs or the test environment was 
critically important for attaining superlubricity [35-39]. Recent 
studies have claimed that highly hydrogenated DLC films 
can provide friction coefficients even lower than 0.001 when 
sliding against zirconia balls [40, 41]. Such a frictional behavior 
was thought to result from the formation of a polymer-like 
tribofilm, especially under extreme contact pressures (i.e., 2.6 
GPa), and by a unique catalytic effect afforded by counterface 
zirconia. Throughout the 2000s, the fundamental mechanisms 
of superlubricity of DLCs and other materials have been further 
explored using more advanced computational, experimental, 
and surface analytical tools. As a result, further insights were 
gained into what contributes to and compromises superlubricity 
in such carbon films [42-47]. 

Much of the computational efforts on the superlubric 
sliding behaviors of DLC coatings were directed toward 
the mechanistic understanding of their sliding behaviors in 
different environments. Earlier studies by Dag et al. [48] have 
confirmed diamond and DLC films’ surface termination states 
can play a major role in their frictional behaviors. Consistent 
with the proposed lubrication mechanism in Fig. 2b., they 
showed that when hydrogen atoms terminate the sliding 
surfaces of such films, the surface becomes highly positively 
charged and, due to the creation of a dipole configuration at 
the sliding contact interface, such positively charged surfaces 
can then lead to the generation of repulsive forces at the contact 
interface, thus reducing adhesion and, hence, friction. Other 
researchers have also reached similar conclusions regarding the 

effects of hydrogen termination of diamond and DLC films [49- 
52]. Specifically, they have shown that hydrogen termination 
was critically important for achieving and maintaining low 
friction and wear on sliding DLC and diamond surfaces. 

After having their superlubricity well-demonstrated 
throughout the 2000s, DLC films became the focal points of all 
kinds of industrial applications, including engines, orthopedics, 
optics, and various other applications [53-64]. Since these 
original studies, thousands of new research papers have been 
produced on the tribological properties and diverse applications 
of DLC films. Thanks to these studies, DLC films are used today 
in a broad spectrum of industrial applications with great success 
and excellent protection against environmental and mechanical 
degradations [65-71]. 

In addition to highly hydrogenated DLCs, some doped 
DLCs were shown to provide superlubricity. Some of these 
include carbon nitride (CNx) coatings, which were shown to 
attain superlubricity after a brief run-in or surface conditioning 
period in oxidizing environments. During the conditioning 
period friction could be very high, but after switching to a dry 
nitrogen environment, friction coefficients as low as 0.005 were 
shown to be feasible [72]. Such a dramatic reduction in friction 
has been attributed to the formation of an extremely shearable 
tribolayer accommodating sliding velocity without creating 
much friction. In other DLCs doped with silicon, superlow 
friction was also achieved when tested under high vacuum 
conditions [73, 74]. Their superlubricity mechanisms are not 
yet well understood but as in CNx, they were attributed to the 
formation of a highly shearable transfer layer. Fluorine doping 
of DLC was also shown to provide very low friction coefficients. 
Sliding tests on such DLCs could provide friction coefficients 
down to 0.005 in ultra-high vacuum [75]. Other DLCs where 
superlubricity was observed include fullerene-like hydrogen- 
free and hydrogenated DLC films [76], as well as sulfur-doped 
DLCs [77]. 

Despite more than three decades since the first reporting of 
their superlubricity, DLC films continue to enjoy strong interest 
from both the research and industrial communities for their 
fascinating ultra-low friction and wear behaviors. Numerous 
research and review articles have dealt with their superlubricity, 
including new insights into their lubrication mechanisms [78-82]. 

 
 

 

  
(a) (b) 

Fig. 2  Superlow friction of a highly hydrogenated DLC film (a) and a mechanistic illustration of its superlow friction behavior. 
Adapted with permission from [27] Copyright (2000) American Institute of Physics and [30] Copyright (2001) Elsevier. 
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2.3 2D materials 

Work on the superlubricity of bulk lamellar or 2D 
materials goes back to the 1990s. The earliest reporting of 
superlubric sliding behavior in such materials is attributed 
to natural graphite. This credit goes to Prof. David Tabor 
and his team, who demonstrated that the basal planes of 
natural graphite are very slick, yielding friction coefficients 
in the range of 0.005 to 0.02 under light loads [83]. Using an 
AFM instrument, Mate et al. have also shown that friction 
coefficients of 0.005 to 0.015 are feasible against a tungsten 
tip when slid against the basal planes of a graphite surface 
at low loads [84]. As mentioned earlier, another well-known 
lamellar solid, MoS2, was also shown to exhibit superlubricity 
by Martin et al. under incommensurability conditions in high 
vacuum. More systematic studies by Dienwiebel et al. [14, 85] 
showed that just like MoS2, the friction of graphite surfaces 
depends very closely on structural orientation at atomic scales 
[86]. Specifically, its friction coefficient changes dramatically 
with the rotation angle between the top and bottom graphite 
surfaces. Friction is relatively high at 0 and 60° rotation angles, 
but in between, friction goes down literally to zero, suggesting 
that mechanistically, the superlubricity of graphite largely 
results from a state of incommensurate contact between sliding 
graphite surfaces. 

Intercalation of graphite layers with C60 was also shown to 
provide superlubricity. Specifically, theoretical and nanoscale 
experimental studies by Miura et al. confirmed that it is possible 
to achieve a nearly frictionless sliding regime with graphite 
sheets if C60 is used as intercalates between their alternating 
layers [87-89]. C60 was thought to increase the interlayer 
spacing between graphite layers and thus further diminish 
interlayer bonding while acting as a molecular-scale ball 
bearing. 

Other researchers have also demonstrated the pivotal role 
of incommensurability in the superlubricity of more exotic 
2D materials. With the discovery of graphene and other 2D 
materials, the incommensurability mechanism of superlubricity 
was further confirmed by both computational and dedicated 
experimental studies [90-93]. Besides the structural origins 
of superlubricity of 2D materials in nano to micro-scale 
experiments, researchers have shown that graphene can also 
achieve macro-scale superlubricity when combined with 
highly hydrogenated DLC and diamond nanoparticles [94]. 
Computer simulations and structural studies have shown 
that the formation of nanoscrolls achieved such a superlubric 
sliding regime by simply wrapping graphene sheets around 
nanodiamond particles of 2 to 4 nm in size. These scrolls 
were then able to separate the sliding surfaces and roll like 
nanoscale ball bearings to accommodate sliding motion and 
thus decrease the friction coefficient down to 0.004. Likewise, 
by replacing graphene with MoS2 flakes or nanodiamonds 
with iron nanoparticles within the same test system, superlow 
friction values were achieved through special tribochemical 
processes that converted initial carbon form into onion-like 
carbon structures, which were also very capable of producing 
similar graphene+diamond nanoscroll effects and thus 
achieving superlubricity [95, 96]. Successful demonstration of 
superlubricity with 2D materials has been further demonstrated 
for multiple systems enabling control of the incommensurability 
regime (Fig. 3). 

Recent tribological research on emerging 2D materials like 
MXenes, black phosphorous, and other metal dichalcogenides 
has confirmed superlubricity when mixed or further  

 

 
Fig. 3 Examples of observed superlubricity received with 2D 

materials in different systems. Adapted with permission 
from [86] Copyright (2018) American Institute of 
Physics. 

 
functionalized with certain polar fluids in a nano-colloidal 
dispersion [97-99]. It seems that when such polar molecules 
(such as ionic liquids, various glycols, aqueous acid-based 
solutions, etc.) are used on certain 2D materials as additives 
in liquid lubricating media, a significantly higher or beneficial 
hydrodynamic effect is achieved through a hydration 
mechanism leading to liquid superlubricity [100-104]. The 
presence or availability of hydrogen ions is extremely important 
for achieving superlubricity in certain sliding systems as 
hydrogen in an ionized state has its positively charged core 
sticking out to the surface by creating a positively charged 
double layer, hence the hydration effect leading to ultralow 
friction [105-108]. Superlubricity in other liquid media, 
including alcohols, glycols, glycerols, ionic liquids, hydrogels, 
etc., was also achieved using a wide range of material pairs at 
macro-scales and attributed to the extent and chemical nature of 
tribofilms resulting from such media [109-113]. 

 
2.4 Other materials systems affording superlubricity 

A host of heterostructures in combination with 2D 
materials were also shown to provide superlubricity under 
dry and lubricated conditions [114-121]. In most of these 
systems, superlubricity was attributed to the existence of a 
very favorable or enhanced state of incommensurability due to 
lattice misfit. The degree and distribution of such misfits were 
claimed to play a dominant role in the extent of superlubricity 
being provided by such heterostructures. These results indicate 
that in actual engineering applications, using or pairing two 
distinct or different 2D materials at the sliding contact interfaces 
will be highly desirable. Here, special attention should be 
given to the systems demonstrating superlubricity under 
elevated temperature conditions due to self-adaptation [122] or 
tribocatalysis [123] processes. Superlubricity has been observed 
in the presence of magnesium silicate hydrate (MSH) mixed 
with antimony oxide and MoS2 nanopowders and burnished 
on nickel superalloy or copper substrates when testing at 
temperatures above 200°C [124, 125]. 

Black phosphorous, also known as phosphorene, combines 
a host of unusual physical, electrochemical, electrical, and 
optical properties, making it attractive for various industrial 
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applications, including batteries, sensors, transistors, 
photovoltaics, and other applications. In particular, high 
electrical conductivity makes it an ideal candidate for electrical 
applications. The ease of chemical functionalization combined 
with a 2D structure of black phosphorous opened up the 
possibility of using it as a low-friction tribomaterial [126]. 
As with other nanomaterials, black phosphorous sheets can 
be functionalized and used as a colloidal lubricant additive. 
A systematic study compared the tribological performance 
of graphene oxide and MoS2 nanosheets against the black 
phosphorous nanosheets. Even at the lowest concentration 
(i.e., 0.1 ppm), favorable lubricity was achieved with black 
phosphorous [127]. When mixed with oleic acid, black 
phosphorus reduced friction from about 0.1 to 0.006 at a 
concentration of 0.1 mass% [128]. Recent studies have shown 
that the use of partially oxidized black phosphorus in an oleic 
acid-containing oil may favor the creation of a special tribofilm 
consisting of amorphous carbon, BP crystal, and phosphorus 
oxide, which together enables macroscale superlubricity [129]. 

MXenes are another class of novel 2D materials based 
on transition-metal carbides, nitrides, or carbonitrides built 
up based on MAX-phases [130]. Their potential for chemical, 
electrochemical, and electrical applications has been well- 
recognized and exploited in recent years [131]. Their 2D 
architectures can also make them a prime candidate for 
tribological applications. The friction and wear performance of 
fine powders of MXene were either comparable or slightly better 
than graphite when tested under the same conditions [132]. In 
other studies, the friction-induced graphitization of Ti3C2-based 
MXene led to much-reduced friction and wear [133]. These 
and other recent studies have confirmed that MXene alone or 
combined with other lubricious materials offer great potential 
as a solid lubricant [134-136]. However, achieving superlubricity 
with MXenes required using DLC, MoS2, or polar molecules like 
glycerol. When tested against DLC, Ti3C2 MXene deposited on 
Si substrates could afford friction coefficients down to 0.006 in 
dry nitrogen [137]. Likewise, when the same type of MXene was 
mixed with glycerol, friction coefficients of 0.002 were achieved 
[138]. In both cases, the roughness of the substrate materials was 
very low, ensuring precise control of the sliding interfaces. This 
challenge has been overcome recently by mixing MXene with 
MoS2 and spray-coating the mixture on rough steel surfaces 
(Fig. 4). During sliding against the steel counter body under 
high load and sliding speed conditions, the coating transformed 
into the robust tribofilm with reoriented MoS2 and MXene basal 
planes, creating local incommensurability states leading to 
vanishing friction and wear [139]. 

 
3 Summary and prospects for real engineering 

applications 

Superlubricity remains an area of active research 
and development requiring innovative materials and 
interdisciplinary collaboration to overcome the existing barriers 
to its practical implementation across various industrial and 
technological sectors. In a world where energy conservation is 
paramount, minimizing friction losses could lead to substantial 
energy savings, lower operational costs, and reduced carbon 
emissions. Minimized friction means less mechanical stress 
and often less wear, translating to longer equipment lifespans 
and decreased maintenance requirements. At the same time, 
superlubricity opens new opportunities for designing high- 
performance systems that were previously unattainable due to 

friction-related limitations. 
Through intensified research efforts in recent years, 

significant progress has been made in gaining a fundamental 
understanding of superlubricity and translating this knowledge 
for its experimental demonstration. The discovery of graphene 
and other 2D materials, with their atomically smooth surfaces, 
created an ideal platform for precise design and nano to macro- 
scale demonstrations of superlubricity in various systems, 
configurations, and operating conditions. 

However, while these scientific outputs and the prospects 
of implementing superlubricity are highly promising, several 
challenges remain. Achieving superlubricity at the laboratory 
level is one thing, but scaling up the technology to produce 
millions of mechanical assemblies is another. Consistency of the 
performance and durability over the lifespan of the assembly, 
which can reach millions of hours of operation or several 
hundred thousand miles, is a major concern. 

The successful research examples are based on highly 
idealized smooth, clean, and defect-free surfaces; however, 
most real surfaces in industrial machinery are rarely perfect. 
Moreover, contamination or wear debris can easily disrupt 
superlubricity. At the same time, the variety of practical 
temperature and humidity settings creates another challenge 
and requires adapting the superlubricity to sustain transitions 
between a broader range of environmental conditions. 

New sustainable transportation needs, such as electric 
vehicles (EVs), create additional exciting challenges for 
tribologists. As the world rapidly transitions from internal 
combustion engines to electric propulsion, realizing 
superlubricity in such systems could lead to significant 
reductions in friction within electric motors and drivetrains. 
This achievement can undoubtedly result in lower energy 
consumption, extending the vehicle’s range on a single charge 
and making electric vehicles (EVs) the greenest and most 
appealing form of transportation for consumers. However, 
in the case of EVs, the lubricants and mechanical stresses 
often experience electrified conditions and high-temperature 
variations while in operation. Therefore, the existing knowledge 
about superlubricity requires further advancements to 
accommodate such electrified environments and the harsher 
operating conditions of such EVs. 
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