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Abstract

Friction and wear collectively account for nearly a quarter of the world’s energy consumption, resulting in over eight Gigatons of
CO: emissions annually. With increasing mobility and industrial activity, the adverse effects of friction and wear on energy, the
environment, the global economy, and sustainability will undoubtedly intensify. Unless we reverse this unsustainable trend, our planet
could face a major ecological and environmental catastrophe. Fortunately, significant strides have been made in reducing friction
to almost undetectable levels, with friction coefficients below 0.001. These remarkable achievements have resulted from numerous
collaborative efforts and global initiatives focused on developing novel materials, surfaces, and interfaces that exhibit minimal or near
zero friction, even at macro or engineering scales. This paper provides a comprehensive overview of the factors that contribute to and
hinder superlubric sliding conditions, examining the impact of both intrinsic and extrinsic factors that are integral parts of the test
conditions and environments. Drawing from recent analytical, experimental, and computational findings, underlying mechanisms most
responsible for superlubricity are also discussed. The paper discusses recent mechanistic studies on highly ordered 2D materials, such
as graphene, MoS, h-BN, MXene, etc., and thin solid coatings such as diamond-like carbon or DLCs, as well as liquids, and discusses
their potential for the development of large-scale mechanical systems. These exciting advancements pave the way for designing and
producing next-generation engineering systems that can minimize friction in practical applications, thus conserving energy, enhancing
durability, and protecting the environment for a sustainable future.
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1 Introducti years (Fig. 1).
niroduction Since the early 1990s, scientists and engineers have been

Superlubricity in tribology, often referred to as a state in
which friction or resistance to sliding between two solid surfaces
essentially disappears, has been a long-standing aspiration
for tribologists not only because of its profound scientific
significance but also its enormous industrial implications.
Specifically, if this state could be achieved practically across
all moving mechanical assemblies worldwide, it would
undeniably have a significant positive impact on our global
energy and environmental sustainability goals, as energy losses
due to friction and wear in such assemblies are estimated to
contribute to nearly a quarter of the world’s total energy output
and account for more than eight Gigatons of CO: emissions
annually [1]. Further reducing friction and wear is imperative
for achieving much greater efficiency and reliability in future
mechanical systems. Therefore, the research on superlubricity is
critically important and has been gaining momentum over the
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exploring ways to eliminate sources of friction and thus achieve
superlubricity. Initially, there was relatively low scientific
and industrial interest, with much of the research focused on
understanding the atomistic origins of superlubricity. Reflecting
on the substantial growth in superlubricity research, thousands
of publications have since emerged on this topic in reputable
journals, conference proceedings, review articles, and dedicated
books [2-11]. With this increasing interest and progress, there is
hope that we may witness the operation of moving mechanical
assemblies with minimal friction, thus consuming significantly
less energy and producing fewer harmful emissions.

In several natural or artificial tribological systems,
superlubricity or frictionless sliding already exists. For example,
in articulated joints, journal or foil bearings, and magnetically
levitated surfaces, the frictional energy dissipation is minimal
and mainly restricted to the shearing of the fluid media due to
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Fig.1 Chronological evolution of superlubricity over length scales. Reproduced with permission from [2] Copyright (2022) Frontiers.

their viscosity. Nanoscale levitation, driven by Casimir forces,
may also create ideal conditions for achieving superlubricity or
near-frictionless sliding.

Thanks to significant advances in computational modeling
and simulation methods in recent years, we are better equipped
to understand the atomistic origins of superlubricity and
use this knowledge to design tribological systems that can
offer superlubricity across a wider range of environments
and tribological conditions. Incommensurability between
2D materials has long been predicted, simulated, and
experimentally verified as a major superlubricity mechanism in
graphite, graphene, MoS,, and other 2D materials. Researchers
have independently demonstrated that friction vanishes by
precisely controlling the twisting or rotating of 2D materials’
atomic planes from complete commensurability to complete
incommensurability [12-14]. With total incommensurability,
where superlubricity comes to life, surface atoms are arranged
in a way that prevents direct registry or contact, which
diminishes interatomic interactions and, hence, adhesion and
friction. While these scientific discoveries are indeed exciting
in the field of tribology, significant challenges still exist in
achieving superlubricity at various scales in real or industrial
systems. For example, obtaining and maintaining an extremely
smooth surface and continuous incommensurability in real
tribological systems poses significant difficulty. Gaseous, liquid,
or solid contaminations are also very hard to avoid as they can
easily interfere with the very delicate nature of superlubricity.

In the following sections, we present a comprehensive
and up-to-date review of recent exciting developments in
superlubricity. Special emphasis is placed on the most important
mechanisms and sliding conditions that govern superlubricity,
how intrinsic and extrinsic factors affect adhesion and friction
between solid surfaces, and how they can be minimized to
achieve superlubricity. As special case studies, we delve into
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the recent mechanistic understanding of the superlubricity in
traditional and emerging 2D materials such as graphene, MoS;,
h-BN, MXene, black phosphorous, etc., as well as thin solid
coatings, such as DLC coatings and sliding systems involving
liquids. We also assess the possibility of achieving macro-scale
superlubricity in large-scale mechanical systems.

2 A brief historical perspective

2.1 Early studies

The word “superlubricity” was first coined by the late Prof.
Motohisa Hirano in the early 1990s and the key underlying
mechanisms were described by his research team in references
[15-17]. Using mica as an atomically smooth and defect-
free substrate, they confirmed the existence of superlubricity
through nanoscale friction tests, where they showed that
friction can vanish by adjusting the degree of lattice misfit or
incommensurability. Motivated by Hirano’s original work,
Martin et al., further confirmed the existence of superlubricity in
MoS: using an ultra-high-vacuum tribometer under conditions
where incommensurability was achieved [18-20]. During the
remainder of the 1990s, further progress was made both in the
theoretical understanding and experimental verification of
superlubricity by these and several other authors [21-23]. In fact,
dedicated experimental research has shown that in addition
to incommensurability, the specific chemistry or chemical
composition of the test environment may also play a significant
role in the superlubricity of MoSz [20].

2.2 Diamond-like carbon coatings

Superlow friction of diamond-like carbon films was
reported in the 1990s, although these films were structurally
disordered or amorphous, so the incommensurability
mechanism would not apply. However, during the second half
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of the 1990s, DLC films with friction coefficients below 0.01
were developed. Specifically, it was found that the superlubric
sliding behaviors of these films were very dependent on the
chemistry of gas discharge plasmas from which they are
extracted and the test environments or conditions under
which they were tested. In general, superlow friction, or
superlubricity, was only achieved in inert gas environments
with highly hydrogenated DLCs, while hydrogen-free or non-
hydrogenated DLCs’ friction coefficients were among the
highest in such inert test environments [24-34]. Figure 2 shows
the typical superlubric behavior of a highly hydrogenated DLC,
along with its proposed lubrication mechanism.

In other studies, it was further confirmed that the high
hydrogen content of the DLCs or the test environment was
critically important for attaining superlubricity [35-39]. Recent
studies have claimed that highly hydrogenated DLC films
can provide friction coefficients even lower than 0.001 when
sliding against zirconia balls [40, 41]. Such a frictional behavior
was thought to result from the formation of a polymer-like
tribofilm, especially under extreme contact pressures (ie., 2.6
GPa), and by a unique catalytic effect afforded by counterface
zirconia. Throughout the 2000s, the fundamental mechanisms
of superlubricity of DLCs and other materials have been further
explored using more advanced computational, experimental,
and surface analytical tools. As a result, further insights were
gained into what contributes to and compromises superlubricity
in such carbon films [42-47].

Much of the computational efforts on the superlubric
sliding behaviors of DLC coatings were directed toward
the mechanistic understanding of their sliding behaviors in
different environments. Earlier studies by Dag et al. [48] have
confirmed diamond and DLC films’ surface termination states
can play a major role in their frictional behaviors. Consistent
with the proposed lubrication mechanism in Fig. 2b., they
showed that when hydrogen atoms terminate the sliding
surfaces of such films, the surface becomes highly positively
charged and, due to the creation of a dipole configuration at
the sliding contact interface, such positively charged surfaces
can then lead to the generation of repulsive forces at the contact
interface, thus reducing adhesion and, hence, friction. Other
researchers have also reached similar conclusions regarding the
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effects of hydrogen termination of diamond and DLC films [49-
52]. Specifically, they have shown that hydrogen termination
was critically important for achieving and maintaining low
friction and wear on sliding DLC and diamond surfaces.

After having their superlubricity well-demonstrated
throughout the 2000s, DLC films became the focal points of all
kinds of industrial applications, including engines, orthopedics,
optics, and various other applications [53-64]. Since these
original studies, thousands of new research papers have been
produced on the tribological properties and diverse applications
of DLC films. Thanks to these studies, DLC films are used today
in a broad spectrum of industrial applications with great success
and excellent protection against environmental and mechanical
degradations [65-71].

In addition to highly hydrogenated DLCs, some doped
DLCs were shown to provide superlubricity. Some of these
include carbon nitride (CNx) coatings, which were shown to
attain superlubricity after a brief run-in or surface conditioning
period in oxidizing environments. During the conditioning
period friction could be very high, but after switching to a dry
nitrogen environment, friction coefficients as low as 0.005 were
shown to be feasible [72]. Such a dramatic reduction in friction
has been attributed to the formation of an extremely shearable
tribolayer accommodating sliding velocity without creating
much friction. In other DLCs doped with silicon, superlow
friction was also achieved when tested under high vacuum
conditions [73, 74]. Their superlubricity mechanisms are not
yet well understood but as in CNx, they were attributed to the
formation of a highly shearable transfer layer. Fluorine doping
of DLC was also shown to provide very low friction coefficients.
Sliding tests on such DLCs could provide friction coefficients
down to 0.005 in ultra-high vacuum [75]. Other DLCs where
superlubricity was observed include fullerene-like hydrogen-
free and hydrogenated DLC films [76], as well as sulfur-doped
DLCs [77].

Despite more than three decades since the first reporting of
their superlubricity, DLC films continue to enjoy strong interest
from both the research and industrial communities for their
fascinating ultra-low friction and wear behaviors. Numerous
research and review articles have dealt with their superlubricity,
including new insights into their lubrication mechanisms [78-82].

Atomistic View of Sliding

Interface

(b)

Fig. 2 Superlow friction of a highly hydrogenated DLC film (a) and a mechanistic illustration of its superlow friction behavior.
Adapted with permission from [27] Copyright (2000) American Institute of Physics and [30] Copyright (2001) Elsevier.
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2.3 2D materials

Work on the superlubricity of bulk lamellar or 2D
materials goes back to the 1990s. The earliest reporting of
superlubric sliding behavior in such materials is attributed
to natural graphite. This credit goes to Prof. David Tabor
and his team, who demonstrated that the basal planes of
natural graphite are very slick, yielding friction coefficients
in the range of 0.005 to 0.02 under light loads [83]. Using an
AFM instrument, Mate et al. have also shown that friction
coefficients of 0.005 to 0.015 are feasible against a tungsten
tip when slid against the basal planes of a graphite surface
at low loads [84]. As mentioned earlier, another well-known
lamellar solid, MoS,, was also shown to exhibit superlubricity
by Martin et al. under incommensurability conditions in high
vacuum. More systematic studies by Dienwiebel et al. [14, 85]
showed that just like MoS;, the friction of graphite surfaces
depends very closely on structural orientation at atomic scales
[86]. Specifically, its friction coefficient changes dramatically
with the rotation angle between the top and bottom graphite
surfaces. Friction is relatively high at 0 and 60° rotation angles,
but in between, friction goes down literally to zero, suggesting
that mechanistically, the superlubricity of graphite largely
results from a state of incommensurate contact between sliding
graphite surfaces.

Intercalation of graphite layers with C60 was also shown to
provide superlubricity. Specifically, theoretical and nanoscale
experimental studies by Miura et al. confirmed that it is possible
to achieve a nearly frictionless sliding regime with graphite
sheets if C60 is used as intercalates between their alternating
layers [87-89]. C60 was thought to increase the interlayer
spacing between graphite layers and thus further diminish
interlayer bonding while acting as a molecular-scale ball
bearing.

Other researchers have also demonstrated the pivotal role
of incommensurability in the superlubricity of more exotic
2D materials. With the discovery of graphene and other 2D
materials, the incommensurability mechanism of superlubricity
was further confirmed by both computational and dedicated
experimental studies [90-93]. Besides the structural origins
of superlubricity of 2D materials in nano to micro-scale
experiments, researchers have shown that graphene can also
achieve macro-scale superlubricity when combined with
highly hydrogenated DLC and diamond nanoparticles [94].
Computer simulations and structural studies have shown
that the formation of nanoscrolls achieved such a superlubric
sliding regime by simply wrapping graphene sheets around
nanodiamond particles of 2 to 4 nm in size. These scrolls
were then able to separate the sliding surfaces and roll like
nanoscale ball bearings to accommodate sliding motion and
thus decrease the friction coefficient down to 0.004. Likewise,
by replacing graphene with MoS: flakes or nanodiamonds
with iron nanoparticles within the same test system, superlow
friction values were achieved through special tribochemical
processes that converted initial carbon form into onion-like
carbon structures, which were also very capable of producing
similar graphene+diamond nanoscroll effects and thus
achieving superlubricity [95, 96]. Successful demonstration of
superlubricity with 2D materials has been further demonstrated
for multiple systems enabling control of the incommensurability
regime (Fig. 3).

Recent tribological research on emerging 2D materials like
MXenes, black phosphorous, and other metal dichalcogenides
has confirmed superlubricity when mixed or further
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Fig. 3 Examples of observed superlubricity received with 2D
materials in different systems. Adapted with permission
from [86] Copyright (2018) American Institute of
Physics.

functionalized with certain polar fluids in a nano-colloidal
dispersion [97-99]. It seems that when such polar molecules
(such as ionic liquids, various glycols, aqueous acid-based
solutions, etc.) are used on certain 2D materials as additives
in liquid lubricating media, a significantly higher or beneficial
hydrodynamic effect is achieved through a hydration
mechanism leading to liquid superlubricity [100-104]. The
presence or availability of hydrogen ions is extremely important
for achieving superlubricity in certain sliding systems as
hydrogen in an ionized state has its positively charged core
sticking out to the surface by creating a positively charged
double layer, hence the hydration effect leading to ultralow
friction [105-108]. Superlubricity in other liquid media,
including alcohols, glycols, glycerols, ionic liquids, hydrogels,
etc., was also achieved using a wide range of material pairs at
macro-scales and attributed to the extent and chemical nature of
tribofilms resulting from such media [109-113].

2.4 Other materials systems affording superlubricity

A host of heterostructures in combination with 2D
materials were also shown to provide superlubricity under
dry and lubricated conditions [114-121]. In most of these
systems, superlubricity was attributed to the existence of a
very favorable or enhanced state of incommensurability due to
lattice misfit. The degree and distribution of such misfits were
claimed to play a dominant role in the extent of superlubricity
being provided by such heterostructures. These results indicate
that in actual engineering applications, using or pairing two
distinct or different 2D materials at the sliding contact interfaces
will be highly desirable. Here, special attention should be
given to the systems demonstrating superlubricity under
elevated temperature conditions due to self-adaptation [122] or
tribocatalysis [123] processes. Superlubricity has been observed
in the presence of magnesium silicate hydrate (MSH) mixed
with antimony oxide and MoS: nanopowders and burnished
on nickel superalloy or copper substrates when testing at
temperatures above 200°C [124, 125].

Black phosphorous, also known as phosphorene, combines
a host of unusual physical, electrochemical, electrical, and
optical properties, making it attractive for various industrial
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applications, including batteries, sensors, transistors,
photovoltaics, and other applications. In particular, high
electrical conductivity makes it an ideal candidate for electrical
applications. The ease of chemical functionalization combined
with a 2D structure of black phosphorous opened up the
possibility of using it as a low-friction tribomaterial [126].
As with other nanomaterials, black phosphorous sheets can
be functionalized and used as a colloidal lubricant additive.
A systematic study compared the tribological performance
of graphene oxide and MoS: nanosheets against the black
phosphorous nanosheets. Even at the lowest concentration
(i.e., 0.1 ppm), favorable lubricity was achieved with black
phosphorous [127]. When mixed with oleic acid, black
phosphorus reduced friction from about 0.1 to 0.006 at a
concentration of 0.1 mass% [128]. Recent studies have shown
that the use of partially oxidized black phosphorus in an oleic
acid-containing oil may favor the creation of a special tribofilm
consisting of amorphous carbon, BP crystal, and phosphorus
oxide, which together enables macroscale superlubricity [129].

MXenes are another class of novel 2D materials based
on transition-metal carbides, nitrides, or carbonitrides built
up based on MAX-phases [130]. Their potential for chemical,
electrochemical, and electrical applications has been well-
recognized and exploited in recent years [131]. Their 2D
architectures can also make them a prime candidate for
tribological applications. The friction and wear performance of
fine powders of MXene were either comparable or slightly better
than graphite when tested under the same conditions [132]. In
other studies, the friction-induced graphitization of TisC>-based
MXene led to much-reduced friction and wear [133]. These
and other recent studies have confirmed that MXene alone or
combined with other lubricious materials offer great potential
as a solid lubricant [134-136]. However, achieving superlubricity
with MXenes required using DLC, MoS;, or polar molecules like
glycerol. When tested against DLC, TisC2 MXene deposited on
Si substrates could afford friction coefficients down to 0.006 in
dry nitrogen [137]. Likewise, when the same type of MXene was
mixed with glycerol, friction coefficients of 0.002 were achieved
[138]. In both cases, the roughness of the substrate materials was
very low, ensuring precise control of the sliding interfaces. This
challenge has been overcome recently by mixing MXene with
MoS: and spray-coating the mixture on rough steel surfaces
(Fig. 4). During sliding against the steel counter body under
high load and sliding speed conditions, the coating transformed
into the robust tribofilm with reoriented MoS; and MXene basal
planes, creating local incommensurability states leading to
vanishing friction and wear [139].

3 Summary and prospects for real engineering
applications

Superlubricity remains an area of active research
and development requiring innovative materials and
interdisciplinary collaboration to overcome the existing barriers
to its practical implementation across various industrial and
technological sectors. In a world where energy conservation is
paramount, minimizing friction losses could lead to substantial
energy savings, lower operational costs, and reduced carbon
emissions. Minimized friction means less mechanical stress
and often less wear, translating to longer equipment lifespans
and decreased maintenance requirements. At the same time,
superlubricity opens new opportunities for designing high-
performance systems that were previously unattainable due to
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friction-related limitations.

Through intensified research efforts in recent years,
significant progress has been made in gaining a fundamental
understanding of superlubricity and translating this knowledge
for its experimental demonstration. The discovery of graphene
and other 2D materials, with their atomically smooth surfaces,
created an ideal platform for precise design and nano to macro-
scale demonstrations of superlubricity in various systems,
configurations, and operating conditions.

However, while these scientific outputs and the prospects
of implementing superlubricity are highly promising, several
challenges remain. Achieving superlubricity at the laboratory
level is one thing, but scaling up the technology to produce
millions of mechanical assemblies is another. Consistency of the
performance and durability over the lifespan of the assembly,
which can reach millions of hours of operation or several
hundred thousand miles, is a major concern.

The successful research examples are based on highly
idealized smooth, clean, and defect-free surfaces; however,
most real surfaces in industrial machinery are rarely perfect.
Moreover, contamination or wear debris can easily disrupt
superlubricity. At the same time, the variety of practical
temperature and humidity settings creates another challenge
and requires adapting the superlubricity to sustain transitions
between a broader range of environmental conditions.

New sustainable transportation needs, such as electric
vehicles (EVs), create additional exciting challenges for
tribologists. As the world rapidly transitions from internal
combustion engines to electric propulsion, realizing
superlubricity in such systems could lead to significant
reductions in friction within electric motors and drivetrains.
This achievement can undoubtedly result in lower energy
consumption, extending the vehicle’s range on a single charge
and making electric vehicles (EVs) the greenest and most
appealing form of transportation for consumers. However,
in the case of EVs, the lubricants and mechanical stresses
often experience electrified conditions and high-temperature
variations while in operation. Therefore, the existing knowledge
about superlubricity requires further advancements to
accommodate such electrified environments and the harsher
operating conditions of such EVs.
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