

Tribology Online

Vol. 19, No. 4 (2024) 237-246. ISSN 1881-2198 DOI 10.2474/trol.19.237

Japanese Society of Tribologists https://www.tribologv.jp/trol/

Review

Vanishing Friction: Progress toward Mechanistic Understanding and Potential **Engineering Applications**

Diana Berman¹⁾ and Ali Erdemir (D²⁾*

Department of Materials Science & Engineering, University of North Texas, Denton, TX 76203, USA ²⁾ J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

*Corresponding author: Ali Erdemir (aerdemir@tamu.edu)

Manuscript received 07 December 2023; accepted 25 January 2024; published 07 July 2024 Plenary Talk at the 9th International Tribology Conference, Fukuoka 2023, 25-30 September, 2023

Abstract

Friction and wear collectively account for nearly a quarter of the world's energy consumption, resulting in over eight Gigatons of CO₂ emissions annually. With increasing mobility and industrial activity, the adverse effects of friction and wear on energy, the environment, the global economy, and sustainability will undoubtedly intensify. Unless we reverse this unsustainable trend, our planet could face a major ecological and environmental catastrophe. Fortunately, significant strides have been made in reducing friction to almost undetectable levels, with friction coefficients below 0.001. These remarkable achievements have resulted from numerous collaborative efforts and global initiatives focused on developing novel materials, surfaces, and interfaces that exhibit minimal or near zero friction, even at macro or engineering scales. This paper provides a comprehensive overview of the factors that contribute to and hinder superlubric sliding conditions, examining the impact of both intrinsic and extrinsic factors that are integral parts of the test conditions and environments. Drawing from recent analytical, experimental, and computational findings, underlying mechanisms most responsible for superlubricity are also discussed. The paper discusses recent mechanistic studies on highly ordered 2D materials, such as graphene, MoS2, h-BN, MXene, etc., and thin solid coatings such as diamond-like carbon or DLCs, as well as liquids, and discusses their potential for the development of large-scale mechanical systems. These exciting advancements pave the way for designing and producing next-generation engineering systems that can minimize friction in practical applications, thus conserving energy, enhancing durability, and protecting the environment for a sustainable future.

Keywords

superlubricity, 2D materials, friction, MXene, diamond-like carbon

1 Introduction

Superlubricity in tribology, often referred to as a state in which friction or resistance to sliding between two solid surfaces essentially disappears, has been a long-standing aspiration for tribologists not only because of its profound scientific significance but also its enormous industrial implications. Specifically, if this state could be achieved practically across all moving mechanical assemblies worldwide, it would undeniably have a significant positive impact on our global energy and environmental sustainability goals, as energy losses due to friction and wear in such assemblies are estimated to contribute to nearly a quarter of the world's total energy output and account for more than eight Gigatons of CO2 emissions annually [1]. Further reducing friction and wear is imperative for achieving much greater efficiency and reliability in future mechanical systems. Therefore, the research on superlubricity is critically important and has been gaining momentum over the

years (Fig. 1).

Since the early 1990s, scientists and engineers have been exploring ways to eliminate sources of friction and thus achieve superlubricity. Initially, there was relatively low scientific and industrial interest, with much of the research focused on understanding the atomistic origins of superlubricity. Reflecting on the substantial growth in superlubricity research, thousands of publications have since emerged on this topic in reputable journals, conference proceedings, review articles, and dedicated books [2-11]. With this increasing interest and progress, there is hope that we may witness the operation of moving mechanical assemblies with minimal friction, thus consuming significantly less energy and producing fewer harmful emissions.

In several natural or artificial tribological systems, superlubricity or frictionless sliding already exists. For example, in articulated joints, journal or foil bearings, and magnetically levitated surfaces, the frictional energy dissipation is minimal and mainly restricted to the shearing of the fluid media due to

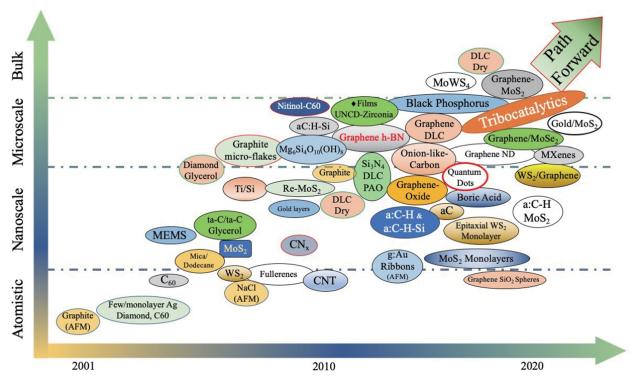


Fig. 1 Chronological evolution of superlubricity over length scales. Reproduced with permission from [2] Copyright (2022) Frontiers.

their viscosity. Nanoscale levitation, driven by Casimir forces, may also create ideal conditions for achieving superlubricity or near-frictionless sliding.

Thanks to significant advances in computational modeling and simulation methods in recent years, we are better equipped to understand the atomistic origins of superlubricity and use this knowledge to design tribological systems that can offer superlubricity across a wider range of environments and tribological conditions. Incommensurability between 2D materials has long been predicted, simulated, and experimentally verified as a major superlubricity mechanism in graphite, graphene, MoS₂, and other 2D materials. Researchers have independently demonstrated that friction vanishes by precisely controlling the twisting or rotating of 2D materials' atomic planes from complete commensurability to complete incommensurability [12-14]. With total incommensurability, where superlubricity comes to life, surface atoms are arranged in a way that prevents direct registry or contact, which diminishes interatomic interactions and, hence, adhesion and friction. While these scientific discoveries are indeed exciting in the field of tribology, significant challenges still exist in achieving superlubricity at various scales in real or industrial systems. For example, obtaining and maintaining an extremely smooth surface and continuous incommensurability in real tribological systems poses significant difficulty. Gaseous, liquid, or solid contaminations are also very hard to avoid as they can easily interfere with the very delicate nature of superlubricity.

In the following sections, we present a comprehensive and up-to-date review of recent exciting developments in superlubricity. Special emphasis is placed on the most important mechanisms and sliding conditions that govern superlubricity, how intrinsic and extrinsic factors affect adhesion and friction between solid surfaces, and how they can be minimized to achieve superlubricity. As special case studies, we delve into

the recent mechanistic understanding of the superlubricity in traditional and emerging 2D materials such as graphene, MoS₂, h-BN, MXene, black phosphorous, etc., as well as thin solid coatings, such as DLC coatings and sliding systems involving liquids. We also assess the possibility of achieving macro-scale superlubricity in large-scale mechanical systems.

2 A brief historical perspective

2.1 Early studies

The word "superlubricity" was first coined by the late Prof. Motohisa Hirano in the early 1990s and the key underlying mechanisms were described by his research team in references [15-17]. Using mica as an atomically smooth and defectfree substrate, they confirmed the existence of superlubricity through nanoscale friction tests, where they showed that friction can vanish by adjusting the degree of lattice misfit or incommensurability. Motivated by Hirano's original work, Martin et al., further confirmed the existence of superlubricity in MoS₂ using an ultra-high-vacuum tribometer under conditions where incommensurability was achieved [18-20]. During the remainder of the 1990s, further progress was made both in the theoretical understanding and experimental verification of superlubricity by these and several other authors [21-23]. In fact, dedicated experimental research has shown that in addition to incommensurability, the specific chemistry or chemical composition of the test environment may also play a significant role in the superlubricity of MoS₂ [20].

2.2 Diamond-like carbon coatings

Superlow friction of diamond-like carbon films was reported in the 1990s, although these films were structurally disordered or amorphous, so the incommensurability mechanism would not apply. However, during the second half

of the 1990s, DLC films with friction coefficients below 0.01 were developed. Specifically, it was found that the superlubric sliding behaviors of these films were very dependent on the chemistry of gas discharge plasmas from which they are extracted and the test environments or conditions under which they were tested. In general, superlow friction, or superlubricity, was only achieved in inert gas environments with highly hydrogenated DLCs, while hydrogen-free or non-hydrogenated DLCs' friction coefficients were among the highest in such inert test environments [24-34]. Figure 2 shows the typical superlubric behavior of a highly hydrogenated DLC, along with its proposed lubrication mechanism.

In other studies, it was further confirmed that the high hydrogen content of the DLCs or the test environment was critically important for attaining superlubricity [35-39]. Recent studies have claimed that highly hydrogenated DLC films can provide friction coefficients even lower than 0.001 when sliding against zirconia balls [40, 41]. Such a frictional behavior was thought to result from the formation of a polymer-like tribofilm, especially under extreme contact pressures (i.e., 2.6 GPa), and by a unique catalytic effect afforded by counterface zirconia. Throughout the 2000s, the fundamental mechanisms of superlubricity of DLCs and other materials have been further explored using more advanced computational, experimental, and surface analytical tools. As a result, further insights were gained into what contributes to and compromises superlubricity in such carbon films [42-47].

Much of the computational efforts on the superlubric sliding behaviors of DLC coatings were directed toward the mechanistic understanding of their sliding behaviors in different environments. Earlier studies by Dag et al. [48] have confirmed diamond and DLC films' surface termination states can play a major role in their frictional behaviors. Consistent with the proposed lubrication mechanism in Fig. 2b., they showed that when hydrogen atoms terminate the sliding surfaces of such films, the surface becomes highly positively charged and, due to the creation of a dipole configuration at the sliding contact interface, such positively charged surfaces can then lead to the generation of repulsive forces at the contact interface, thus reducing adhesion and, hence, friction. Other researchers have also reached similar conclusions regarding the

effects of hydrogen termination of diamond and DLC films [49-52]. Specifically, they have shown that hydrogen termination was critically important for achieving and maintaining low friction and wear on sliding DLC and diamond surfaces.

After having their superlubricity well-demonstrated throughout the 2000s, DLC films became the focal points of all kinds of industrial applications, including engines, orthopedics, optics, and various other applications [53-64]. Since these original studies, thousands of new research papers have been produced on the tribological properties and diverse applications of DLC films. Thanks to these studies, DLC films are used today in a broad spectrum of industrial applications with great success and excellent protection against environmental and mechanical degradations [65-71].

In addition to highly hydrogenated DLCs, some doped DLCs were shown to provide superlubricity. Some of these include carbon nitride (CNx) coatings, which were shown to attain superlubricity after a brief run-in or surface conditioning period in oxidizing environments. During the conditioning period friction could be very high, but after switching to a dry nitrogen environment, friction coefficients as low as 0.005 were shown to be feasible [72]. Such a dramatic reduction in friction has been attributed to the formation of an extremely shearable tribolayer accommodating sliding velocity without creating much friction. In other DLCs doped with silicon, superlow friction was also achieved when tested under high vacuum conditions [73, 74]. Their superlubricity mechanisms are not yet well understood but as in CNx, they were attributed to the formation of a highly shearable transfer layer. Fluorine doping of DLC was also shown to provide very low friction coefficients. Sliding tests on such DLCs could provide friction coefficients down to 0.005 in ultra-high vacuum [75]. Other DLCs where superlubricity was observed include fullerene-like hydrogenfree and hydrogenated DLC films [76], as well as sulfur-doped

Despite more than three decades since the first reporting of their superlubricity, DLC films continue to enjoy strong interest from both the research and industrial communities for their fascinating ultra-low friction and wear behaviors. Numerous research and review articles have dealt with their superlubricity, including new insights into their lubrication mechanisms [78-82].

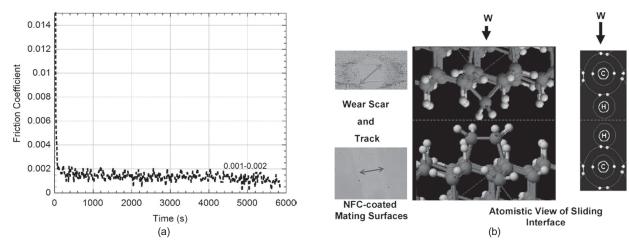


Fig. 2 Superlow friction of a highly hydrogenated DLC film (a) and a mechanistic illustration of its superlow friction behavior. Adapted with permission from [27] Copyright (2000) American Institute of Physics and [30] Copyright (2001) Elsevier.

2.3 2D materials

Work on the superlubricity of bulk lamellar or 2D materials goes back to the 1990s. The earliest reporting of superlubric sliding behavior in such materials is attributed to natural graphite. This credit goes to Prof. David Tabor and his team, who demonstrated that the basal planes of natural graphite are very slick, yielding friction coefficients in the range of 0.005 to 0.02 under light loads [83]. Using an AFM instrument, Mate et al. have also shown that friction coefficients of 0.005 to 0.015 are feasible against a tungsten tip when slid against the basal planes of a graphite surface at low loads [84]. As mentioned earlier, another well-known lamellar solid, MoS2, was also shown to exhibit superlubricity by Martin et al. under incommensurability conditions in high vacuum. More systematic studies by Dienwiebel et al. [14, 85] showed that just like MoS₂, the friction of graphite surfaces depends very closely on structural orientation at atomic scales [86]. Specifically, its friction coefficient changes dramatically with the rotation angle between the top and bottom graphite surfaces. Friction is relatively high at 0 and 60° rotation angles, but in between, friction goes down literally to zero, suggesting that mechanistically, the superlubricity of graphite largely results from a state of incommensurate contact between sliding graphite surfaces.

Intercalation of graphite layers with C60 was also shown to provide superlubricity. Specifically, theoretical and nanoscale experimental studies by Miura et al. confirmed that it is possible to achieve a nearly frictionless sliding regime with graphite sheets if C60 is used as intercalates between their alternating layers [87-89]. C60 was thought to increase the interlayer spacing between graphite layers and thus further diminish interlayer bonding while acting as a molecular-scale ball bearing.

Other researchers have also demonstrated the pivotal role of incommensurability in the superlubricity of more exotic 2D materials. With the discovery of graphene and other 2D materials, the incommensurability mechanism of superlubricity was further confirmed by both computational and dedicated experimental studies [90-93]. Besides the structural origins of superlubricity of 2D materials in nano to micro-scale experiments, researchers have shown that graphene can also achieve macro-scale superlubricity when combined with highly hydrogenated DLC and diamond nanoparticles [94]. Computer simulations and structural studies have shown that the formation of nanoscrolls achieved such a superlubric sliding regime by simply wrapping graphene sheets around nanodiamond particles of 2 to 4 nm in size. These scrolls were then able to separate the sliding surfaces and roll like nanoscale ball bearings to accommodate sliding motion and thus decrease the friction coefficient down to 0.004. Likewise, by replacing graphene with MoS2 flakes or nanodiamonds with iron nanoparticles within the same test system, superlow friction values were achieved through special tribochemical processes that converted initial carbon form into onion-like carbon structures, which were also very capable of producing similar graphene+diamond nanoscroll effects and thus achieving superlubricity [95, 96]. Successful demonstration of superlubricity with 2D materials has been further demonstrated for multiple systems enabling control of the incommensurability regime (Fig. 3).

Recent tribological research on emerging 2D materials like MXenes, black phosphorous, and other metal dichalcogenides has confirmed superlubricity when mixed or further

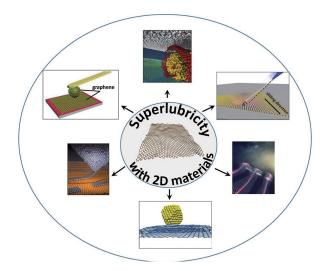


Fig. 3 Examples of observed superlubricity received with 2D materials in different systems. Adapted with permission from [86] Copyright (2018) American Institute of Physics.

functionalized with certain polar fluids in a nano-colloidal dispersion [97-99]. It seems that when such polar molecules (such as ionic liquids, various glycols, aqueous acid-based solutions, etc.) are used on certain 2D materials as additives in liquid lubricating media, a significantly higher or beneficial hydrodynamic effect is achieved through a hydration mechanism leading to liquid superlubricity [100-104]. The presence or availability of hydrogen ions is extremely important for achieving superlubricity in certain sliding systems as hydrogen in an ionized state has its positively charged core sticking out to the surface by creating a positively charged double layer, hence the hydration effect leading to ultralow friction [105-108]. Superlubricity in other liquid media, including alcohols, glycols, glycerols, ionic liquids, hydrogels, etc., was also achieved using a wide range of material pairs at macro-scales and attributed to the extent and chemical nature of tribofilms resulting from such media [109-113].

2.4 Other materials systems affording superlubricity

A host of heterostructures in combination with 2D materials were also shown to provide superlubricity under dry and lubricated conditions [114-121]. In most of these systems, superlubricity was attributed to the existence of a very favorable or enhanced state of incommensurability due to lattice misfit. The degree and distribution of such misfits were claimed to play a dominant role in the extent of superlubricity being provided by such heterostructures. These results indicate that in actual engineering applications, using or pairing two distinct or different 2D materials at the sliding contact interfaces will be highly desirable. Here, special attention should be given to the systems demonstrating superlubricity under elevated temperature conditions due to self-adaptation [122] or tribocatalysis [123] processes. Superlubricity has been observed in the presence of magnesium silicate hydrate (MSH) mixed with antimony oxide and MoS2 nanopowders and burnished on nickel superalloy or copper substrates when testing at temperatures above 200°C [124, 125].

Black phosphorous, also known as phosphorene, combines a host of unusual physical, electrochemical, electrical, and optical properties, making it attractive for various industrial

applications, including batteries, sensors, transistors, photovoltaics, and other applications. In particular, high electrical conductivity makes it an ideal candidate for electrical applications. The ease of chemical functionalization combined with a 2D structure of black phosphorous opened up the possibility of using it as a low-friction tribomaterial [126]. As with other nanomaterials, black phosphorous sheets can be functionalized and used as a colloidal lubricant additive. A systematic study compared the tribological performance of graphene oxide and MoS2 nanosheets against the black phosphorous nanosheets. Even at the lowest concentration (i.e., 0.1 ppm), favorable lubricity was achieved with black phosphorous [127]. When mixed with oleic acid, black phosphorus reduced friction from about 0.1 to 0.006 at a concentration of 0.1 mass% [128]. Recent studies have shown that the use of partially oxidized black phosphorus in an oleic acid-containing oil may favor the creation of a special tribofilm consisting of amorphous carbon, BP crystal, and phosphorus oxide, which together enables macroscale superlubricity [129].

MXenes are another class of novel 2D materials based on transition-metal carbides, nitrides, or carbonitrides built up based on MAX-phases [130]. Their potential for chemical, electrochemical, and electrical applications has been wellrecognized and exploited in recent years [131]. Their 2D architectures can also make them a prime candidate for tribological applications. The friction and wear performance of fine powders of MXene were either comparable or slightly better than graphite when tested under the same conditions [132]. In other studies, the friction-induced graphitization of Ti₃C₂-based MXene led to much-reduced friction and wear [133]. These and other recent studies have confirmed that MXene alone or combined with other lubricious materials offer great potential as a solid lubricant [134-136]. However, achieving superlubricity with MXenes required using DLC, MoS2, or polar molecules like glycerol. When tested against DLC, Ti₃C₂ MXene deposited on Si substrates could afford friction coefficients down to 0.006 in dry nitrogen [137]. Likewise, when the same type of MXene was mixed with glycerol, friction coefficients of 0.002 were achieved [138]. In both cases, the roughness of the substrate materials was very low, ensuring precise control of the sliding interfaces. This challenge has been overcome recently by mixing MXene with MoS₂ and spray-coating the mixture on rough steel surfaces (Fig. 4). During sliding against the steel counter body under high load and sliding speed conditions, the coating transformed into the robust tribofilm with reoriented MoS2 and MXene basal planes, creating local incommensurability states leading to vanishing friction and wear [139].

3 Summary and prospects for real engineering applications

Superlubricity remains an area of active research and development requiring innovative materials and interdisciplinary collaboration to overcome the existing barriers to its practical implementation across various industrial and technological sectors. In a world where energy conservation is paramount, minimizing friction losses could lead to substantial energy savings, lower operational costs, and reduced carbon emissions. Minimized friction means less mechanical stress and often less wear, translating to longer equipment lifespans and decreased maintenance requirements. At the same time, superlubricity opens new opportunities for designing high-performance systems that were previously unattainable due to

friction-related limitations.

Through intensified research efforts in recent years, significant progress has been made in gaining a fundamental understanding of superlubricity and translating this knowledge for its experimental demonstration. The discovery of graphene and other 2D materials, with their atomically smooth surfaces, created an ideal platform for precise design and nano to macroscale demonstrations of superlubricity in various systems, configurations, and operating conditions.

However, while these scientific outputs and the prospects of implementing superlubricity are highly promising, several challenges remain. Achieving superlubricity at the laboratory level is one thing, but scaling up the technology to produce millions of mechanical assemblies is another. Consistency of the performance and durability over the lifespan of the assembly, which can reach millions of hours of operation or several hundred thousand miles, is a major concern.

The successful research examples are based on highly idealized smooth, clean, and defect-free surfaces; however, most real surfaces in industrial machinery are rarely perfect. Moreover, contamination or wear debris can easily disrupt superlubricity. At the same time, the variety of practical temperature and humidity settings creates another challenge and requires adapting the superlubricity to sustain transitions between a broader range of environmental conditions.

New sustainable transportation needs, such as electric vehicles (EVs), create additional exciting challenges for tribologists. As the world rapidly transitions from internal combustion engines to electric propulsion, realizing superlubricity in such systems could lead to significant reductions in friction within electric motors and drivetrains. This achievement can undoubtedly result in lower energy consumption, extending the vehicle's range on a single charge and making electric vehicles (EVs) the greenest and most appealing form of transportation for consumers. However, in the case of EVs, the lubricants and mechanical stresses often experience electrified conditions and high-temperature variations while in operation. Therefore, the existing knowledge about superlubricity requires further advancements to accommodate such electrified environments and the harsher operating conditions of such EVs.

Acknowledgments

D.B. acknowledges the support of this work by the National Science Foundation (NSF) (Award No. 2323452). AE acknowledges the Texas A&M Engineering Experiment Station startup funds and the Governor's University Research Initiative. The authors are also grateful to Megan Simison of the J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, for editorial help.

Financial interest statement

The authors declare no competing financial interest.

References

- Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction. 2017;5: 263-284.
- [2] Ayyagari A, Alam KI, Berman D, Erdemir A. Progress in superlubricity across different media and material systems—A review. Frontiers in Mechanical Engineering. 2022;8: 908497.

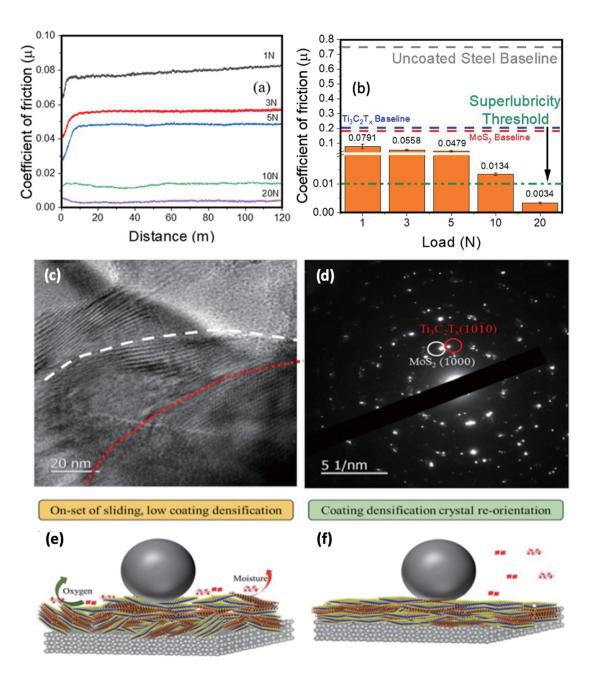


Fig. 4 Superlubricity with MXene. (a) Coefficient of friction behavior showing the performance of MoS₂-Ti₃C₂Tx solid lubricant coatings under unidirectional sliding at 0.1 m/s under various contact loads as a function of sliding distance. (b) Summary of steady-state friction values juxtaposed with steel-on-steel reference. Bright field TEM images of tribolayer at (c) at the end of the long-term test and (d) electron diffraction image. Schematic of an in-operando mechanism consisting of coating densification and reorientation from (e) the original mixture to (f) the state that resulted in superlubricity. Adapted with permission from [139] Copyright (2023) American Chemical Society.

- [3] Erdemir A, Martin JM, Luo J. Superlubricity, 2nd ed. Elsevier, Amsterdam-The Netherlands. 2021.
- [4] Erdemir A, Martin JM. Superlubricity. Elsevier, Amsterdam. 2007.
- [5] Baykara MZ, Vazirisereshk MR, Martini A. Emerging superlubricity: A review of the state of the art and perspectives on future research. Applied Physics Reviews. 2018;5: 041102.
- [6] Zhai W, Zhou K. Nanomaterials in superlubricity. Adv Funct Mater. 2019;29: 1806395.
- [7] Hod O, Meyer E, Zheng Q, Urbakh M. Structural superlubricity and ultralow friction across the length scales. Nature. 2018;563:

- 485-492.
- [8] Chen X, Li J. Superlubricity of carbon nanostructures. Carbon. 2020;158: 1-23.
- Zheng Z, Guo Z, Liu W, Luo J. Low friction of superslippery and superlubricity: A review. Friction. 2023;11: 1121-1137.
- [10] Sang X, Liang D, Xia L, Li Y. A review of recent advances in superlubricity. Tribology Online. 2023;18: 42-52.
- [11] Song Y, Qu C, Ma M, Zheng Q. Structural superlubricity based on crystalline materials. Small. 2020;16: 1903018.
- [12] Hirano M, Shinjo K. Atomistic locking and friction. Physical

- Review B. 1990;41: 11837-11851.
- [13] Urbakh M. Friction: Towards macroscale superlubricity. Nat Nano. 2013:8:893-894.
- [14] Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HW. Superlubricity of graphite. Phys Rev Lett. 2004;92: 126101.
- [15] Shinjo K, Hirano M. Dynamics of friction: Superlubric state. Surf Sci. 1993;283: 473-478.
- [16] Hirano M, Shinjo K. Superlubricity and frictional anisotropy. Wear. 1993;168: 121-125.
- [17] Hirano M, Shinjo K. Origin of friction: Superlubricity. Journal of Japanese Society of Tribologists. 1994;39: 393-400 (in Japanese).
- [18] Martin JM, Donnet C, Le Mogne T, Epicier T. Superlubricity of molybdenum disulphide. Physical Review B. 1993;48: 10583-10586.
- [19] Martin JM, Pascal H, Donnet C, Le Mogne T, Loubet JL, Epicier T. Superlubricity of MoS₂: Crystal orientation mechanisms. Surf Coat Technol. 1994;68-69: 427-432.
- [20] Donnet C, Martin JM, Le Mogne T, Belin M. Super-low friction of MoS₂ coatings in various environments. Tribology International. 1996;29: 123-128.
- [21] Hirano M, Kuwano H, Weijtmans JW. Superlubricity mechanism for micro electro mechanical systems. Proceedings IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE. 1997: 436-441.
- [22] Hirano M, Shinjo K, Kaneko R, Murata Y. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett. 1997;78: 1448.
- [23] Consoli L, Fasolino A, Knops HJF, Janssen T. Can aperiodicity cause superlubricity?. Ferroelectrics. 2001;250: 111-114.
- [24] Erdemir A, Fenske GR, Terry J, Wilbur P. Effect of source gas and deposition method on friction and wear performance of diamondlike carbon films. Surf Coat Technol. 1997:94-95: 525-530.
- [25] Liu Y, Erdemir A, Meletis EI. Influence of environmental parameters on the frictional behavior of DLC coatings. Surf Coat Technol. 1997;94-95: 463-468.
- [26] Erdemir A, Nilufer IB, Eryilmaz OL, Beschliesser M, Fenske GR. Friction and wear performance of diamond-like carbon films grown in various source gas plasmas. Surf Coat Technol. 1999;120-121: 589-593.
- [27] Erdemir A, Eryilmaz OL, Fenske G. Synthesis of diamondlike carbon films with superlow friction and wear properties. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2000;18: 1987-1992.
- [28] Erdemir A, Eryilmaz O, Nilufer I, Fenske G. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf Coat Technol. 2000;133-134: 448-454.
- [29] Erdemir A, Eryilmaz O, Nilufer I, Fenske G. Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diamond Relat Mater. 2000:9: 632-637.
- [30] Erdemir A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf Coat Technol. 2001;146: 292-297.
- [31] Erdemir A. Superlubricity and wearless sliding in diamondlike carbon films. MRS Online Proceedings Library (OPL). 2001;697: 9.1.
- [32] Erdemir A. Design criteria for superlubricity in carbon films and related microstructures. Tribology International. 2004;37: 577-583.
- [33] Erdemir A. Genesis of superlow friction and wear in diamondlike carbon films. Tribology International. 2004;37: 1005-1012.
- [34] Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D: Appl Phys. 2006;39: R311.
- [35] Donnet C, Grill A. Friction control of diamond-like carbon coatings. Surf Coat Technol. 1997;94: 456-462.

- [36] Donnet C, Belin M, Auge J, Martin J, Grill A, Patel V. Tribochemistry of diamond-like carbon coatings in various environments. Surf Coat Technol. 1994;68-69: 626-631.
- [37] Fontaine J, Donnet C, Grill A, Le Mogne T. Tribochemistry between hydrogen and diamond-like carbon films. Surf Coat Technol. 2001;146-147: 286-291.
- [38] Andersson J, Erck RA, Erdemir A. Friction of diamond-like carbon films in different atmospheres. Wear. 2003;254: 1070-1075.
- [39] Andersson J, Erck RA, Erdemir A. Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf Coat Technol. 2003;163-164: 535-540.
- [40] Nosaka M, Mifune A, Kawaguchi M, Shiiba T, Kato T. Friction fade-out at polymer-like carbon films slid by ZrO₂ pins under hydrogen environment. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2015;229: 1030-1038.
- [41] Nosaka M, Morisaki Y, Fujiwara T, Tokai H, Kawaguchi M, Kato T. The run-in process for stable friction fade-out and tribofilm analyses by SEM and nano-indenter. Tribology Online. 2017;12: 274-280.
- [42] Sanchez-Lopez JC, Erdemir A, Donnet C, Rojas TC. Frictioninduced structural transformations of diamondlike carbon coatings under various atmospheres. Surf Coat Technol. 2003;163-164: 444-450.
- [43] Eryilmaz OL, Erdemir A. On the hydrogen lubrication mechanism(s) of DLC films: An imaging TOF-SIMS study. Surf Coat Technol. 2008;203: 750-755.
- [44] Eryilmaz OL, Erdemir A. TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments. Wear. 2008;265: 244-254.
- [45] Heimberg JA, Wahl KJ, Singer IL, Erdemir A. Superlow friction behavior of diamond-like carbon coatings: Time and speed effects. Appl Phys Lett. 2001;78: 2449-2451.
- [46] Eryilmaz OL, Erdemir A. Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf Coat Technol. 2007;201: 7401-7407.
- [47] Eryilmaz OL, Erdemir A. Investigation of initial and steady-state sliding behavior of a nearly frictionless carbon film by imaging 2-and 3-D TOF-SIMS. Tribology Letters. 2007;28: 241-249.
- [48] Dag S, Ciraci S. Atomic scale study of superlow friction between hydrogenated diamond surfaces. Physical Review B. 2004;70: 241401.
- [49] Qi Y, Konca E, Alpas AT. Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum–A first principles investigation. Surf Sci. 2006;600: 2955-2965.
- [50] Wang Y, Xu J, Ootani Y, Bai S, Higuchi Y, Ozawa N, Adachi K, Martin JM, Kubo M. Tight-binding quantum chemical molecular dynamics study on the friction and wear processes of diamondlike carbon coatings: Effect of tensile stress. ACS Applied Materials & Interfaces. 2017:9: 34396-34404.
- [51] Schall JD, Gao G, Harrison JA. Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. The Journal of Physical Chemistry C. 2010;114: 5321-5330.
- [52] Hayashi K, Tezuka K, Ozawa N, Shimazaki T, Adachi K, Kubo M. Tribochemical reaction dynamics simulation of hydrogen on a diamond-like carbon surface based on tight-binding quantum chemical molecular dynamics. The Journal of Physical Chemistry C. 2011;115: 22981-22986.
- [53] Eryilmaz OL, Johnson JA, Ajayi OO, Erdemir A. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. J Phys: Condens Matter. 2006;18: S1751.

- [54] Gao F, Erdemir A, Tysoe WT. The tribological properties of low-friction hydrogenated diamond-like carbon measured in ultrahigh vacuum. Tribology Letters. 2005;20: 221-227.
- [55] Ajayi OO, Soppet M, Erdemir A, Fenske GR. Assessment of amorphous carbon coating for artificial joints application©. Tribology & Lubrication Technology. 2005;61: 40.
- [56] Hershberger J, Woodford JB, Erdemir A, Fenske GR. Friction and wear behavior of near-frictionless carbon coatings in formulated gasolines. Surf Coat Technol. 2004;183: 111-117.
- [57] Hershberger J, Öztürk O, Ajayi OO, Woodford JB, Erdemir A, Erck RA, Fenske GR. Evaluation of DLC coatings for spark-ignited, direct-injected fuel systems. Surf Coat Technol. 2004;179: 237-244.
- [58] Dickrell PL, Sawyer WG, Erdemir A. Fractional coverage model for the adsorption and removal of gas species and application to superlow friction diamond-like carbon. J Tribol. 2004;126: 615-619.
- [59] Shi B, Ajayi OO, Fenske GR, Erdemir A, Liang H. Tribological performance of some alternative bearing materials for artificial joints. Wear. 2003;255: 1015-1021.
- [60] Kovalchenko A, Ajayi OO, Erdemir A, Fenske GR. Friction and wear performance of low-friction carbon coatings under oil lubrication. SAE Transactions. 2002: 902-910.
- [61] Ajayi OO, Kovalchenko A, Erdemir A, Fenske GR. Effect of carbon coating on scuffing of steel surfaces during oil lubrication. SAE Transactions, 2002: 211-218.
- [62] Ajayi OO, Alzoubi MF, Erdemir A, Fenske GR. Effect of carbon coating on scuffing performance in diesel fuels. Tribology Transactions. 2001:44: 298-304.
- [63] Alzoubi MF, Ajayi OO, Woodford JB, Erdemir A, Fenske GR. Scuffing performance of amorphous carbon during dry-sliding contact. Tribology Transactions. 2001;44: 591-596.
- [64] Erdemir A, Kavich J, Woodford J, Ajayi L, Fenske G. Superlow-friction carbon films for fuel system components operating in low-sulfur diesel fuels. SAE Transactions. 2001:110: 1724-1729.
- [65] Kano M. Overview of DLC-coated engine components. Coating Technology for Vehicle Applications. 2015: 37-62.
- [66] Kano M. Diamond-like carbon coating applied to automotive engine components. Tribology Online. 2014;9: 135-142.
- [67] Mabuchi Y, Hamada T, Izumi H, Yasuda Y, Kano M. The development of hydrogen-free DLC-coated valve-lifter. SAE Transactions. 2007;116: 788-794.
- [68] Kano M. Super low friction of DLC applied to engine cam follower lubricated with ester-containing oil. Tribology International. 2006;39: 1682-1685.
- [69] Ogihara H, Mihara Y, Kano M. Seizure and friction properties of the DLC coated journal and aluminum alloy bearing. Tribology Online. 2020;15: 241-250.
- [70] Cao L, Liu J, Wan Y, Pu J. Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater. Diamond Relat Mater. 2020;109: 108019.
- [71] Vetter J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf Coat Technol. 2014;257: 213-240.
- [72] Kato K, Adachi K. Superlubricity of CNx-coatings in nitrogen gas atmosphere. Superlubricity. Elsevier. 2007: 341-364.
- [73] Yi S, Chen X, Li J, Liu Y, Ding S, Luo J. Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon. 2021:176: 358-366.
- [74] Sugimoto I, Miyake S. Oriented hydrocarbons transferred from a high performance lubricative amorphous C:H:Si film during sliding in a vacuum. Appl Phys Lett. 1990;56: 1868-1870.
- [75] Fontaine J, Loubet JL, Le Mogne T, Grill A. Superlow friction of diamond-like carbon films: A relation to viscoplastic properties.

- Tribology Letters. 2004;17: 709-714.
- [76] Wang Z, Wang CB, Zhang B, Zhang JY. Ultralow friction behaviors of hydrogenated fullerene-like carbon films: Effect of normal load and surface tribochemistry. Tribology Letters. 2011;41: 607-615.
- [77] Freyman CA, Chen Y, Chung YW. Synthesis of carbon films with ultra-low friction in dry and humid air. Surf Coat Technol. 2006;201:164-167.
- [78] Erdemir A. Diamond-like carbon films and their superlubricity. Superlubricity. Elsevier. 2021: 215-230.
- [79] Yu Q, Chen X, Zhang C, Luo J. Influence factors on mechanisms of superlubricity in DLC films: A review. Frontiers in Mechanical Engineering. 2020;6: 65.
- [80] Erdemir A, Fontaine J, Donnet C. An overview of superlubricity in diamond-like carbon films. Tribology of Diamond-Like Carbon Films: Fundamentals and Applications. 2008: 237-262.
- [81] Wang K, Zhang J, Ma T, Liu Y, Song A, Chen X, Hu Y, Carpick RW, Luo J. Unraveling the friction evolution mechanism of diamondlike carbon film during nanoscale running-in process toward superlubricity. Small. 2021;17: 2005607.
- [82] Kim JI, Lee WY, Tokoroyama T, Umehara N. Superlubricity with graphitization in Ti-doped DLC/Steel tribopair: Response on humidity and temperature. ACS Applied Materials & Interfaces. 2023;15: 19715-19729.
- [83] Skinner J, Gane N, Tabor D. Micro-friction of graphite. Nature Physical Science. 1971;232: 195-196.
- [84] Mate CM, McClelland GM, Erlandsson R, Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface. Scanning Tunneling Microscopy. 1993: 226-229.
- [85] Dienwiebel M, Pradeep N, Verhoeven GS, Zandbergen HW, Frenken JWM. Model experiments of superlubricity of graphite. Surf Sci. 2005;576: 197-211.
- [86] Martin JM, Erdemir A. Superlubricity: Friction's vanishing act. Phys Today. 2018;71: 40-46.
- [87] Miura K, Tsuda D, Sasaki N. Superlubricity of C₆₀ intercalated graphite films. e-Journal of Surface Science and Nanotechnology. 2005;3: 21-23.
- [88] Miura K, Sasaki N. Superlubricity of fullerene intercalated graphite composite. Superlubricity. Elsevier. 2007: 161-177.
- [89] Sasaki N, Itamura N, Asawa H, Tsuda D, Miura K. Superlubricity of graphene/C₆₀/graphene interface-experiment and simulation. Tribology Online. 2012;7: 96-106.
- [90] Berman D, Erdemir A, Sumant AV. Graphene: A new emerging lubricant. Mater Today. 2014;17: 31-42.
- [91] Berman D, Erdemir A, Sumant AV. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano. 2018;12: 2122-2137.
- [92] Zhang S, Ma T, Erdemir A, Li Q. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater Today. 2019;26: 67-86.
- [93] Berman D, Erdemir A, Zinovev AV, Sumant AV. Nanoscale friction properties of graphene and graphene oxide. Diamond Relat Mater. 2015;54: 91-96.
- [94] Berman D, Deshmukh SA, Sankaranarayanan SKRS, Erdemir A, Sumant AV. Macroscale superlubricity enabled by graphene nanoscroll formation. Science. 2015;348: 1118-1122.
- [95] Berman D, Narayanan B, Cherukara MJ, Sankaranarayanan SKRS, Erdemir A, Zinovev A, Sumant AV. Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity. Nature Communications. 2018;9: 1164.
- [96] Berman D, Mutyala KC, Srinivasan S, Sankaranarayanan SKRS, Erdemir A, Shevchenko EV, Sumant AV. Iron-nanoparticle driven tribochemistry leading to superlubric sliding interfaces. Advanced Materials Interfaces. 2019;6: 1901416.

- [97] Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13: 8491-8494.
- [98] Ling X, Wang H, Huang S, Xia F, Dresselhaus MS. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences. 2015;112: 4523-4530.
- [99] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nature Reviews Materials. 2017;2: 17033.
- [100] Han T, Zhang S, Zhang C. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction. 2022;10: 1137-1165.
- [101] Luo J, Liu M, Ma L. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy. 2021;86: 106092.
- [102] Wang H, Liu Y. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction. 2020;8: 1007-1024.
- [103] Wang H, Li J, Liu Y, Luo J. Liquid superlubricity with 2D material additives. Superlubricity. Elsevier. 2021: 167-187.
- [104] Chen H, Cai T, Li H, Ruan X, Jiao C, Atkin R, Wang Y, Gong P, Zhou X, Yu J, Jiang N. Macroscale superlubricity of steel by polymer-based ionic liquids without a running-in period. Tribology International. 2023;182: 108349.
- [105] Li J, Zhang C, Luo J. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir. 2011;27: 9413-9417
- [106] Li J, Zhang C, Sun L, Lu X, Luo J. Tribochemistry and superlubricity induced by hydrogen ions. Langmuir. 2012;28: 15816-15823.
- [107] Dhanola A, Khanna N, Gajrani KK. A critical review on liquid superlubricitive technology for attaining ultra-low friction. Renewable and Sustainable Energy Reviews. 2022;165: 112626.
- [108] Wang H, Liu Y, Li J, Luo J. Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions. Advanced Materials Interfaces. 2016;3: 1600531.
- [109] Li J, Ma L, Zhang S, Zhang C, Liu Y, Luo J. Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation. J Appl Phys. 2013;114: 114901.
- [110] Han T, Zhang C, Li J, Yuan S, Chen X, Zhang J, Luo J. Origins of superlubricity promoted by hydrated multivalent ions. The Journal of Physical Chemistry Letters. 2020;11: 184-190.
- [111] Han T, Zhang C, Luo J. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir. 2018;34: 11281-11291.
- [112] Hua J, Björling M, Larsson R, Shi Y. Controllable superlubricity achieved with mixtures of green ionic liquid and glycerol aqueous solution via humidity. J Mol Liq. 2022;345: 117860.
- [113] Zhang Y, Rutland MW, Luo J, Atkin R, Li H. Potential-dependent superlubricity of ionic liquids on a graphite surface. The Journal of Physical Chemistry C. 2021;125: 3940-3947.
- [114] Wang LF, Ma TB, Hu YZ, Zheng Q, Wang H, Luo J. Superlubricity of two-dimensional fluorographene/MoS₂ heterostructure: A firstprinciples study. Nanotechnology. 2014;25: 385701.
- [115] Li R, Yang X, Zhao J, Yue C, Wang Y, Li J, Meyer E, Zhang J, Shi Y. Operando formation of van der Waals heterostructures for achieving macroscale superlubricity on engineering rough and worn surfaces. Adv Funct Mater. 2022;32: 2111365.
- [116] Wang L, Zhou X, Ma T, Liu D, Gao L, Li X, Zhang J, Hu Y, Wang H, Dai Y, Luo J. Superlubricity of a graphene / MoS₂ heterostructure: A combined experimental and DFT study. Nanoscale. 2017;9: 10846-10853
- [117] Zhao Y, Mei H, Chang P, Yang Y, Huang W, Liu Y, Cheng L, Zhang L. 3D-printed topological MoS₂/MoSe₂ heterostructures for macroscale superlubricity. ACS Applied Materials & Interfaces. 2021;13: 34984-34995.

- [118] Xu P, Yu K, Zhang X, Lang H, Li H, Peng Y. A first-principles study on the superlubricity of two-dimensional graphene/ZrS₂ heterostructure. Tribology International. 2022;174: 107727.
- [119] Ru G, Qi W, Wei Y, Tang K, Xue T. Superlubricity in bilayer isomeric tellurene and graphene/tellurene van der Waals heterostructures. Tribology International. 2021;159: 106974.
- [120] Li H, Wang Q, Xu P, Si L, Dou Z, Yan H, Yang Y, Zhou G, Qing T, Zhang S. Structural superlubricity in graphene/GaSe van der Waals heterostructure. Phys Lett A. 2022;452: 128435.
- [121] Büch H, Rossi A, Forti S, Convertino D, Tozzini V, Coletti C. Superlubricity of epitaxial monolayer WS₂ on graphene. Nano Research. 2018;11: 5946-5956.
- [122] Shirani A, Joy T, Rogov A, Lin M, Yerokhin A, Mogonye JE, Korenyi-Both A, Aouadi SM, Voevodin AA, Berman D. PEOchameleon as a potential protective coating on cast aluminum alloys for high-temperature applications. Surf Coat Technol. 2020;397:126016.
- [123] Berman D, Erdemir A. Achieving ultralow friction and wear by tribocatalysis: Enabled by *in-operando* formation of nanocarbon films. ACS Nano. 2021;15: 18865-18879.
- [124] Gao K, Wang B, Shirani A, Chang Q, Berman D. Macroscale superlubricity accomplished by Sb_2O_3 -MSH/C under high temperature. Frontiers in Chemistry. 2021;9: 226.
- [125] Wang B, Gao K, Chang Q, Berman D, Tian Y. Magnesium silicate hydroxide–MoS₂–Sb₂O₃ coating nanomaterials for hightemperature superlubricity. ACS Applied Nano Materials. 2021;4: 7097-7106.
- [126] Sultana N, Degg A, Upadhyaya S, Nilges T, Sarma NS. Synthesis, modification, and application of black phosphorus, few-layer black phosphorus (FLBP), and phosphorene: A detailed review. Materials Advances. 2022;3: 5557-5574.
- [127] Wang W, Xie G, Luo J. Black phosphorus as a new lubricant. Friction. 2018:6: 116-142.
- [128] Tang G, Wu Z, Su F, Wang H, Xu X, Li Q, Ma G, Chu PK. Macroscale superlubricity on engineering steel in the presence of black phosphorus. Nano Lett. 2021;21: 5308-5315.
- [129] Gao K, Bin W, Berman D, Ren Y, Luo J, Xie G. Self-adaptive macroscale superlubricity based on the tribocatalytic properties of partially oxidized black phosphorus. Nano Lett. 2023;23: 6823-6830.
- [130] Anasori B, Naguib M. Two-dimensional MXenes. MRS Bull. 2023:48: 238-244.
- [131] Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim Dk, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale. 2023;15: 9891-9926.
- [132] Fenske G, Demas N, Ajayi L, Erdemir A, Lorenzo-Martin C, Eryilmaz O, Erck R, Ramirez G, Storey J, Splitter D, West B, Toops T, DeBusk M, Lewis S, Huff S, Nafziger E, Thomas J, Kaul B, Qu J, Cosimbescu L, Zigler B, Luecke J. Final report for U.S. department of energy fuels & lubricants project on lubricant technology Innovation, discovery, design, and engineering. United States. 2018: 57
- [133] Rosenkranz A, Grützmacher PG, Espinoza R, Fuenzalida VM, Blanco E, Escalona N, Gracia FJ, Villarroel R, Guo L, Kang R, Mücklich F, Suarez S, Zhang Z. Multi-layer Ti₃C₂T_x-nanoparticles (MXenes) as solid lubricants – Role of surface terminations and intercalated water. Appl Surf Sci. 2019;494: 13-21.
- [134] Macknojia AZ, Ayyagari A, Shevchenko E, Berman D. MXene/ graphene oxide nanocomposites for friction and wear reduction of rough steel surfaces. Scientific Reports. 2023;13: 11057.
- [135] Marian M, Berman D, Rota A, Jackson RL, Rosenkranz A. Layered 2D nanomaterials to tailor friction and wear in machine elements—

- A review. Advanced Materials Interfaces. 2022;9: 2101622.
- [136] Marian M, Berman D, Nečas D, Emani N, Ruggiero A, Rosenkranz A. Roadmap for 2D materials in biotribological/biomedical applications—A review. Adv Colloid Interface Sci. 2022;307: 102747.
- [137] Huang S, Mutyala KC, Sumant AV, Mochalin VN. Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances. 2021;9: 100123
- $[138] \ \ Yi \ S, \ Li \ J, \ Liu \ Y, \ Ge \ X, \ Zhang \ J, \ Luo \ J. \ In-situ formation of tribofilm$ with $Ti_3C_2T_x$ MXene nanoflakes triggers macroscale superlubricity. Tribology International. 2021;154: 106695.
- [139] Macknojia A, Ayyagari A, Zambrano D, Rosenkranz A, Shevchenko EV, Berman D. Macroscale superlubricity induced by MXene/MoS₂ nanocomposites on rough steel surfaces under high contact stresses. ACS nano. 2023;17: 2421-2430.

BY NC ND

This paper is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. This allows users to copy and distribute the paper, only upon conditions that (i) users do not copy or distribute such paper for commercial purposes, (ii) users do not change, modify or edit such paper in any way, (iii) users give

appropriate credit (with a link to the formal publication through the relevant DOI (Digital Object Identifier)) and provide a link to this license, and (iv) users acknowledge and agree that users and their use of such paper are not connected with, or sponsored, endorsed, or granted official status by the Licensor (i.e. Japanese Society of Tribologists). To view this license, go to https://creativecommons.org/licenses/by-nc-nd/4.0/. Be noted that the third-party materials in this article are not included in the Creative Commons license, if indicated on the material's credit line. The users must obtain the permission of the copyright holder and use the third-party materials in accordance with the rule specified by the copyright holder.