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Abstract—This work extends a recently introduced type-based
clustering algorithm (TCA) [1] for identifying line-of-sight (LOS)
paths in multipath environments with multiple passive targets.
In particular, while [1] assumes that the number of targets is
known, we consider herein a more practical scenario without the
assumption. The system consists of several spatially dispersed
sensors, each emitting a unique waveform. These sensors exploit
the returned echoes to measure both LOS and non-line-of-sight
(NLOS) time delays (or equivalently, ranges) of targets within
the observation area. For ease of exposition, we consider a 2-
dimensional (2D) localization scenario. In this context, every
range estimate represents a circle, and combining measurements
from different sensors produces intersection points on the plane.
By applying TCA and examining the structural properties of
points created by LOS paths, we categorize the clustered point
sets into six possible cases. To estimate the number of targets in
presence, we analyze these cases and formulate a discriminant
function to identify the sets associated with the targets, thereby
enabling us to jointly determine the number of targets and the
associated LOS measurements. We present numerical results to
showcase the performance of the proposed scheme under various
configurations.

I. INTRODUCTION

Localization problems are pivotal in numerous applica-
tions, ranging from mobile communication to surveillance
and navigation, where there usually exist multiple targets to
be located. These problems can broadly be categorized into
two main types: active and passive localization. In active
localization, each target (e.g. a cellphone) emits a distinct
waveform, which is then received by sensors [2]. In such
scenarios, unique waveforms produced by different targets
serve as identifying signatures, allowing the active localization
system to distinguish among multiple targets as effectively as it
does with a single target. The ability of sensors to detect these
unique waveforms provides an estimate of the target count
within the environment, mitigating the complexity typically
associated with multi-target localization. In contrast, passive
localization relies on an external radio transmitter to illuminate
targets (e.g. people), and the ensuing reflected echoes are
used for the target localization. Passive settings present added
complexities, notably in multipath settings with several targets
[3], [4]. One significant challenge arises due to all targets
reflecting an identical waveform upon the same illumination.
This can lead to scenarios where a non-line-of-sight (NLOS)
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echo from one target might be mistaken for a line-of-sight
(LOS) echo from another, complicating the task of determining
the accurate location of targets and the number of targets
present.

A linchpin in the localization problem is the reliance on
LOS paths to discern target locations [5]. In the absence of
prior knowledge on NLOS measurements, such as the potential
scatterers’ positions, NLOS paths introduce inevitable positive
biases in localization estimates [2], [5]. The research com-
munity has delved deep into LOS detection methodologies
for both active and passive localization cases [5], spanning
hypothesis testing [6], [7] and nonparametric techniques [8],
[9]. However, a majority of these methods were tailored
predominantly for active single-target localization in multipath
environments, rendering them suboptimal for passive multi-
target settings. The LOS identification problem for passive
multi-target localization was recently addressed in [1], where
a type-based clustering algorithm (TCA) was proposed. How-
ever, this method requires the prior knowledge of the number
of targets to be detected, a prerequisite that may limit its
applicability in practice.

This work extends the original TCA algorithm by leveraging
the inherent characteristics to classify and screen the search re-
sults, thereby eliminating the dependence on prior knowledge
of the number of targets. Specifically, the LOS identification
process is integrated with a joint estimation process for the
target number, which exploits some inherent properties related
to the intersection points, such as uniqueness and spread of
point sets. Simulation results indicate that the extended TCA
is capable of reliably identifying the number of targets as well
as their associated LOS measurements, especially when the
range measurements are relatively accurate. We further discuss
the influence of different setups on the performance of the
extended TCA. Numerical simulations show that the extended
TCA leads to accurate location estimates for the passive multi-
target localization problem.

II. SIGNAL MODEL

Consider there are N sensor nodes located at coordinates
a, € R?, with n ranging from 1 to N. The network is tasked
with finding the positions of K unknown targets at locations
Pr € R2, where k varies from 1 to K. Additionally, the
environment contains L non-target scattering objects situated
at coordinates s; € R?, with [ ranging from 1 to L. Each



sensor in the network performs a scan of its surroundings by
emitting a unique waveform. It then calculates the time delays
of echoes returned from targets and scatterers using a matched
filter [2]. These time-delay measurements are converted into
range observations. The distinction among the two types of
measurements, LOS and NLOS, is in general unknown a
priori. Mathematically, these observations can be represented
as follows:
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where e signifies zero-mean range measurement noise with a
variance of ¢2, and T,k denotes the LOS range measurement
from sensor n to target k. y,,; represents NLOS range
observation from sensor n to target k, scattered via scatterer
l. Considering the reversibility of light paths, the NLOS
path measurements remain identical whether the signal first
encounters the scatterer or the target. Therefore, we only
consider one of these scenarios for our range measurements.
One critical challenge faced by such a multi-sensor local-
ization system is its inability to differentiate between LOS
measurements 7, 3, and NLOS measurements ¥, ;. It also
struggles with attributing each measurement to its correspond-
ing target, especially when an unknown number of targets
is present. Therefore, the primary focus of this work is
the development of a computational algorithm capable of
determining the number of targets in the environment and
identifying the LOS measurements 7, ; for each individual
target by leveraging the inherent geometric patterns present in
the collected data.

III. PROPOSED ALGORITHM
A. Overview of TCA

TCA originates from a fact that any specific range mea-
surement obtained by a sensor can be represented as a circle
centered at that sensor, with the measured range as its radius.
The circles corresponding to LOS range measurements are
called LOS circles, while the NLOS ones are called NLOS
circles.

In practice, although measurement noise affects the accu-
racy and causes the LOS circles to deviate from the perfect
intersection at the target, a distinct geometric pattern still
emerges. Fig. 1 illustrates the geometric representation of
range measurements with noise. In the example, three LOS
circles produce three intersection points, pi 2, p1,3 and pa s,
spread around the target in the center. These points are called
target intersection points (TIPs). Such a collection of points
consisting of intersections of the LOS circles is called a TIP
set of the target in the center.

The fundamental LOS identification problem of interest
is to identify the TIP set of each target from numerous
intersection points produced by LOS and NLOS circles, which
is challenging in practice. In [1], TCA was proposed for
the TIP set identification problem by exploiting the inherent
properties of TIP sets. It assumes that the number of targets
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Figure 1. TIllustration of N = 3 LOS circles respectively centered at 3
sensors (denoted by red, blue, and green squares). A TIP set is produced by
these LOS circles around the true target location. Points p1 2, p1,3 and p2 3
are TIPs.

K is known in advance, while prior knowledge about the
number of targets is usually lacking in practice. In this work,
we address this problem by extending TCA to incorporate the
joint estimation of the number of targets.

B. Extending TCA with Joint Estimation of K

The extended TCA builds upon a foundational two-stage
search process of its predecessor by introducing an improved
final screening phase. The 2-stage search is developed from
several concepts explained next. The set of circles centered at
the n-th sensor is called a circle set, denoted by C,, and the
set of intersection points produced by two different circle sets
is defined as a type set of type (ni,ns):

T na =S {re RQ‘x =Cny NCny}

(2)
n=1...N—1nys=2...,N,ny <ns.

The 2-stage search process aims to search for a number of
structured candidate sets. Each structured candidate set given
by the 2-stage search, denoted as U/ N(N=D/2 Tpe subscript of
such a notation means that the set contains N (/N —1)/2 points
from N (NN — 1)/2 different types. These structured candidate
sets can be classified into 6 cases, as illustrated in Fig. 2
assuming N = 3 sensors. Note that the classification holds for
arbitrary NV > 3, and the illustration uses /N = 3 for simplicity.
Specifically, Case (i) represents a TIP set, while Cases (ii)-(vi)
represent the five possible cases of non-TIP sets. Cases (ii) and
(iii) are the structured candidate sets that contain at least one
TIP but not all TIPs. The difference between Cases (ii) and
(iii) is that (ii) is produced by only LOS circles while (iii)
by both LOS and NLOS circles. Cases (iv), (v), and (vi) are
the three possible cases that do not contain any TIPs, among
which (iv) is produced by only LOS circles, (v) by both LOS
and NLOS circles, and (vi) by only NLOS circles. Since each
point on the plane is produced by a pair of intersecting circles,
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Figure 2. Illustration of the six possible cases of structured candidate sets

when NV = 3. Solid arcs represent LOS circles and dashed arcs NLOS circles.

the parent set of a point set U™ is defined as the set of all
circles that involve producing the point set U™, denoted by
P(U™). Moreover, the spread of a point set U™, denoted by
s(U™), is defined to describe the dispersion of the set
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where x;,y; represent the z-coordinate and y—coordinate of
the i-th point in the set, and & and y are, respectively, the
means of the x-coordinates and y-coordinates of the points.

Different from [1], the final screening process integrates the
joint estimation of K and TIP set identification as elaborated
next. Since there exists a one-to-one mapping between TIP
sets and the targets to be localized in the environment, the es-
timation of K can be transformed into the estimation towards
the number of TIP sets, i.e. the number of Case (i). Note the
above classification can be leveraged to differentiate Case (i)
from the other Cases. Firstly, we explain how to differentiate
Cases (ii) and (iii) from (i). A candidate point set Z/IJN (N-1)/2
is considered unique if

UV Ay =0k =1,... K )

where V) denotes a TIP set. Otherwise, the candidate set
is considered non-unique. It is noted that (i) and (iii) are
both non-unique with respect to the corresponding TIP set.
Although the TIP set is unknown in practice, the final screen-
ing process is designed to compare all non-unique candidate
sets with each other and, in each comparison, only preserve
the candidate set with a smaller spread. The comparison is

finished if for any two different Z/{Z-N (V=172 gnd UJJ-V (N=1)/2
among the remaining candidate sets, we have
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As shown in Fig. 2, the spread of Case (i) is usually smaller
than the spread of the non-unique candidate sets of (ii) and
(iii). Therefore, Cases (ii) and (iii) can be eliminated from
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Figure 3. Average spread of the first 5 candidates given by TCA over 300
independent simulations with N =5, K = 3, and L = 4. The filled circles
represent the spread of K TIP sets and the hollow circles denote the spread
of 2 following structured candidate sets.

the candidate sets while case (i) is preserved by the above
uniqueness-based comparison.

We now discuss how to differentiate Cases (iv)-(vi) from
(i) among the remaining candidate sets. The uniqueness-
based comparison cannot eliminate Cases (iv)-(vi) since these
candidate sets are unique and thus satisfy the condition (5).
Note as shown in Fig.2, the spread of Cases (iv)-(vi) is
generally larger than that of Case (i). Considering a setup with
N = 5 sensors, K = 3 targets, and L = 4 NLOS scatterers,
Fig. 3 shows the spread of reordered structured candidate sets
(in the order of ascending spread), after removing Cases (ii)
and (iii). The figure clearly exhibits an “elbow” when the
index exceeds the target number K. The results indicate that
even with the highest noise level o = 5 dB, the average spread
of each TIP set is still significantly smaller than that of the
structured candidate sets of Cases (iv)-(vi).

Hence, we can use the elbow feature to estimate the target
number K. Specifically, the remaining structured candidate
sets, after removing Cases (ii) and (iii) as mentioned above,
are ordered based on their spread. Let S* contain the resulting
structured candidate sets in non-decreasing order of spread,
which are denoted by

S*={uf,uy ... Uk} (6)

where K, = |S*| and assume K. > K. The spread of the
k-th candidate set is expressed as s(Uj). Define the spread
difference function

Sou_y s(U)
k

We calculate d(U;) starting from k = 1. For the K-th
candidate set, if d({{}, ) is larger than 1), referred to as the elbow

dUy) = sUiyy) — k=1,... K.~ 1. (7)

threshold, then K represents an estimate of the number of
targets in the environment. Otherwise, continue the calculation
with the next candidate set.

Consequently, the extended TCA does not require any prior



knowledge of the target number to give K estimates of TIP
sets LA{f,...,Z/A{;(. For each output set U7, \73(1;{]*)| = N is
guaranteed, i.e. the parent set of Z]; consists of N circles
which are respectively centered at a specific sensor. The radii
of these circles, denoted by 7, ;,n = 1,..., N, represent
estimates of the LOS range measurements r,, j in (1).

C. Target Localization

With the obtained LOS measurements corresponding to the
K targets, the multi-target localization problem is converted
into localization problems of several single targets, which can
be solved by existing methods, such as the range-based least
squares (R-LS) estimator and the squared-range-based least
squares (SR-LS) estimator [10]

N
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where j = 1,... ,f( . R-LS provides with better localization
accuracy among the two since it is optimal in the maximum
likelihood sense. R-LS can be solved by using the iterative
Nelder-Mead method or grid search. Such methods require
an initial point to start searching for the optimal solution on
the plane. We use the SR-LS solution (9) as the initial point
since SR-LS can be solved efficiently as demonstrated in [10].
Simulation results verified that the global optimum for (8) is
always available in this way.

IV. SIMULATION RESULTS

Numerical results are presented to demonstrate the perfor-
mance of the extended TCA in various scenarios. We consider
a 400 x 400 square surveillance region with its center at the
origin (0,0). N sensors are evenly placed along a circle also
centered at the origin with a radius of 160. L = 3 scatterers are
randomly positioned along the square’s perimeter. While the
positions of both sensors and scatterers remain fixed through-
out the simulations, /i = 3 targets are randomly generated in
different trial runs. The measurement noise, being independent
across observations, follows a Gaussian distribution with a
mean of zero and a variance denoted by o2. In this work,
noise level is described in dB (10log;4(0)).

We first examine the impact of noise, N (the number
of sensors), and the elbow threshold 7 on estimating the
target number K. The stacked bar graphs in Fig.4 show the
probability of different estimations in different setups. Note
that K = 1 and K = 2 represent the cases where TCA
underestimates the true number K = 3, while K = 4 and
K >5 correspond to the cases where the extended TCA
overestimates /. Simulation results show that our proposed
algorithm provides with a reliable probability of correctly
estimating the target number by choosing a proper spread
threshold 7 under different setups. With more sensors (i.e.
larger N), a larger 7 is able to provide with better estimation

reliability. For example, when N = 4, the extended TCA with
n = 15 has higher probability (by 8% ~ 12%) of correctly
estimating K than that with n = 35. When N is increased
to 6, the extended TCA with = 35 outperforms that with
7 = 15 and has a 100% probability of correct target number
estimation for ¢ = 0dB, 99.6% for o = 2.5dB, and 97.9% for
o = 5dB.

Moreover, we demonstrate the LOS identification accuracy
of the extended TCA. Table.I and II exhibit the number of
trails (out of 1000 independent simulations) where true LOS
measurements are correctly identified by the extended TCA.
With a relatively large o = 0dB, our proposed algorithm still
provides at least a more than 71% probability of correct iden-
tification (except 67.1% with N = 4 and 1 = 35). The results
underscore the reliability of our proposed algorithm in LOS
identification across low to medium noise levels. Although
the LOS identification becomes inevitably more challenging
with the increasing noise level as shown in the tables, our
proposed algorithm still behaves well in the estimation of
the number of TIP sets on the plane, i.e. targets. This leads
to an outstanding localization accuracy by using R-LS along
with SR-LS estimates (8)(9) for such passive multi-target
localization problems [1].

V. CONCLUSION

In this work, we developed the extended TCA by leveraging
the inherent properties of the search sets from the original TCA
algorithm, classifying them into six cases. Then we design
two mechanisms, the uniqueness-based comparison and the
elbow feature, based on the distinct characteristics of these
cases to accomplish the estimation of the number of targets.
Simulation results show that in the considered range of noise
level from -10dB to 5dB, our proposed algorithm provides
a good performance on both target number estimation and
LOS identification, by setting up a proper threshold 7 in the
algorithm. Such observations verify that the proposed work
leads to a solution of the passive multi-target localization
problem with good accuracy.
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