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A B S T R A C T
The accurate ab-initio simulation of molecules and periodic solids with diagrammatic perturbation theory is an important task in quantum chemistry, condensed 
matter physics, and materials science. In this article, we present the WeakCoupling module of the open-source software package Green, which implements fully 
self-consistent diagrammatic weak coupling simulations, capable of dealing with real materials in the finite-temperature formalism. The code is licensed under the 
permissive MIT license. We provide self-consistent GW (scGW) and self-consistent second-order Green’s function perturbation theory (GF2) solvers, analysis tools, 
and post-processing methods. This paper summarizes the theoretical methods implemented and provides background, tutorials and practical instructions for running 
simulations.
Program summary
Program Title: Green/WeakCoupling
CPC Library link to program files: https://doi .org /10 .17632 /2ysyhzww6t .1
Developer’s repository link: https://github .com /Green -Phys /green -mbpt
Programming language: C++17, CUDA, Python
Licensing provisions: MIT License
External routines/libraries: MPI >= 3.0, BLAS, Eigen >= 3.4.0, cmake >= 3.18, cuBLAS.
Nature of problem: The simulation of periodic solids and molecules using diagrammatic perturbation theory
Solution method: We present an open-source implementation of the fully self-consistent finite-temperature many-body perturbation theory formalism at the GW and 
second-order perturbation theory level.

1. Introduction

The accurate, ab-initio, and systematically improvable numerical simulation of realistic interacting quantum systems using methods beyond 
density functional theory (DFT) [1,2] is an active, challenging area of research in condensed matter physics, quantum chemistry, and materials 
science. These simulations o!er a route to material-specific, predictive modeling of experimentally complex systems, where an understanding of 
both physics and chemistry is necessary for gaining fundamental insights and optimizing technological advances.
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Diagrammatic perturbation theory [3–7] provides a rigorous theoretical framework for these simulations. The central object of this theory, the 
one-body Green’s function, allows for the evaluation of multiple important quantities, such as total energies [8], one-body observables, and spectral 
information such as band structures and band gaps that relate the simulation results to experiments such as angle resolved photoelectron spectroscopy 
(ARPES) [9]. The evaluation of two-body observables, other than the total energy, requires either solving the Bethe-Salpeter equation [10–12] to ob-
tain the two particle Green’s function or applying the thermodynamic Hellmann–Feynman theorem [13]. The computational access to experimentally 
relevant observables makes Green’s function methods valuable for a broad range of applications.

Self-consistent diagrammatic theories, in particular Φ- [14] or Ψ- [15] derivable methods, are particularly useful in this context since they 
guarantee thermodynamic consistency, conservation laws [16], and – in the absence of multiple stationary points in the Φ- or Ψ-functional – starting 
point independence achieved at self-consistency [17].

Traditionally the domain of applicability of Green’s function methods was limited to weak interactions or high temperatures, where low-order 
perturbative diagrammatic expansions of the self-energy were shown to provide accurate results. Green’s function methods, such as G0W0, when 
applied to semiconductors yielded band gap values in much better agreement with experiment than the local density approximation (LDA), resulting 
in popularization of various approximations to the GW method in materials science [18,19].

In recent years, the domain of applicability of Green’s functions was extended to include moderately and strongly correlated systems, due to the 
introduction of Green’s function embedding approaches [20,21]. In these methods the low order perturbative expansion is performed for orbitals 
containing itinerant electrons, where correlations are weak, while non-perturbative corrections are introduced for a handful of orbitals containing 
localized electrons displaying strong correlations. Embedding methods such as the local density approximation with dynamical mean-field theory 
(LDA+DMFT) [22] proved successful in qualitatively describing metal-to-insulator transition (MIT) in many strongly correlated perovskites.

The framework of many-body perturbation theory was developed already in the 1950s and 1960s [23,14,24] and its applications to molecules [25]
and solids started in the late 1960s [26]. However, the methods employed, such as GW [24,27–29], frequently contained severe approximations 
when applied to realistic systems or were applied without significant approximations but only to model Hamiltonians. Among the most common 
approximations employed were: performing only the first iteration of GW, thus truncating the bold diagrammatic series at G0W0; performing 
partial self-consistency schemes [30,18,31–33,19], introducing a restriction of orbital space (e.g. by excluding most of the virtual orbitals [34]); 
approximating the self-energy matrix by excluding o!-diagonal elements (quasiparticle approximation) [24,35]; restricting frequencies considered 
(by introducing plasmon-pole [36–39,19,40,41] or static approximations [42,43]).

The difficulty in executing the Green’s function framework fully ab-initio is exemplified by the fact that while initial applications to model 
Hamiltonians describing systems as complicated as oxides started in the 1970s and were in the full swing delivering approximate descriptions 
of semiconductors in the 1980s [19], the fully self-consistent GW method without any approximations for electron gas was only executed in the 
1997 [44].

This slow progress towards reaching fully ab-initio Green’s function results for large realistic problems can be rationalized after considering the 
challenges present in realistic periodic systems such as (i) a wide Hamiltonian spectrum resulting in large frequency (time) grids when both core 
and virtual orbitals necessitate description, (ii) the difficulty of performing self-consistent iterations (resulting in an evaluation of bold diagrammatic 
series) (iii) the high computational scaling of weakly correlated methods such as GW and second order Green’s function (GF2) scaling as (𝑝6)2 and (𝑝5), respectively, where 𝑝 is the number of orbitals in the problem, (iv) lack of numerical tools (up to 1990s) such as Cholesky decomposition [45,
46], density fitting [46–49], the pseudospectral (PS) method [50–59], tensor hypercontraction (THC) [60,61], or Tensor Network method [62]
for two-body Coulomb integrals enabling a significant reduction of computational scaling without resorting to uncontrolled diagrammatic series 
truncations or approximations.

The fully ab-initio, rigorous evaluation of the many-body Green’s function methods without any ad hoc approximations and with controllable 
accuracy for large realistic systems is only now becoming possible. This is due to the substantial method development that happened within last 15 
years ranging from adaptive grids [63–67], decompositions of Coulomb integrals that proved to be accurate enough for Green’s function methods 
while reducing the computational cost by orders of magnitude, convergence acceleration schemes [68,69], development of full self-consistency in 
finite temperature Green’s function approaches, and GPU acceleration that was necessary to enable such simulations routinely and reliably.

Almost all practical diagrammatic self-consistent methods are implemented in the finite-temperature Matsubara framework (on the imaginary 
axis) necessitating the use of analytic continuation methods to obtain spectral information such as band gap and band structure. While traditional 
methods either smooth data (such as the Maximum Entropy method [70]), or possibly violate causality (such as the Padé method [71]), recent 
theoretical progress resulting in the Nevanlinna [72,73], projection-estimation-semidefinite relaxation (PES) [74] and Prony [75–77]methods enables 
causal, accurate, and systematically improvable continuations.

While many publicly available codes evaluating weakly correlated Green’s functions such as GW are available, very few codes enable a fully 
ab-initio rigorous evaluating of Green’s function containing the newest developments described above and providing a good control of the accu-
racy while being available in readily accessible user-friendly simulation packages. Green/WeakCoupling aims to provide an implementation of 
these methodologies as a permissively licensed open-source software package, together with tutorials, documentation, and examples, to enable 
diagrammatic materials calculations with self-consistent techniques, along with additional post-processing tools.

2. Theory

Green/WeakCoupling provides an approximate solution for realistic quantum systems of interacting electrons using Green’s function based 
many-body perturbation theory methods. The interacting quantum system is described by a second quantized Hamiltonian of the form

𝑞 =
∑
𝑊𝑃,𝜋

𝑞!𝑊!𝑃 (0)
𝑊𝑃 ̂†!𝑊𝑊𝜋̂!𝑃 𝑃𝜋 +

1
2𝑋𝐴

∑
𝑊𝑃𝐴𝛼,𝜋𝜋′

𝜙!𝑊!𝑃!𝐴!𝛼
𝑊𝑃𝐴𝛼 ̂†!𝑊𝑊𝜋̂

†
!𝐴𝐴𝜋′

̂!𝛼 𝛼𝜋′̂!𝑃 𝑃𝜋 . (1)

2 GW scaling of (𝑝6) is present in the finite temperature Matsubara formalism when all the elements (diagonal and o!-diagonal) of self-energy are evaluated and 
no decomposition of two-body integrals is employed. With the density fitted or Cholesky decomposed integrals, this scaling drops to (𝑝4). A further reduction in 
scaling can be achieved when only diagonal elements of self-energy are evaluated.
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Here, the operators ̂† (̂) create (destroy) electrons with spin 𝜋, momentum !𝑊(!𝑃 , !𝐴, !𝛼) and the atomic orbital index !(", #, $) [78]. For molecular 
systems momentum index is omitted. Given a set of single-particle basis states 𝑔!𝑊

𝑊 (") with an overlap integral ,!𝑊!𝑃
𝑊𝑃 = ∫ 𝑤"𝑔!𝑊∗

𝑊 (")𝑔!𝑃
𝑃 ("), the 

one-body Hamiltonian 𝑞!𝑊!𝑃 (0)
𝑊𝑃 , in the simplest case, is defined as

𝑞!𝑊!𝑃 (0)
𝑊𝑃 = ∫ 𝑤"𝑔!𝑊∗

𝑊 (")
(
− .

2

2𝛾∇2
" − 0123(")

)
𝑔!𝑃
𝑃 ("), (2)

and describes the motion of electrons in the external potential 0123("). The electron-electron repulsion3 is

𝜙!𝑊!𝑃!𝐴!𝛼
𝑊𝑃𝐴𝛼 = ∫ 𝑤"1𝑤"2𝑔

!𝑊∗
𝑊 ("1)𝑔

!𝑃
𝑃 ("1)

1
|"1 − "2|

𝑔!𝐴∗
𝐴 ("2)𝑔

!𝛼
𝛼 ("2). (3)

This rank-four Coulomb tensor is typically decomposed with the help of the density fitting [47,46,48,49] or Cholesky decomposition [46,45] tech-
niques into a product of two low-rank tensors as

𝜙!𝑊!𝑃!𝐴!𝛼
𝑊𝑃𝐴𝛼 =

∑
4
0̃!𝑊𝑊,!𝑃 𝑃 (4)0̃!𝐴𝐴,!𝛼 𝛼(4), (4)

where 4 is an auxiliary index. The current version of Green/WeakCoupling uses PySCF [79] package to prepare one- and two-body integrals and 
we assume that single-particle basis functions 𝑔!𝑊

𝑊 (") are either periodic Gaussian-type orbitals (for solids) or Gaussian-type orbitals (for molecules).
Green/WeakCoupling provides an approximate solution of system described by the Hamiltonian from Eq. (1) within the Green’s function lan-

guage, where the main objects are imaginary-time or Matsubara-frequency-dependent electron Green’s functions and electron self-energies expressed 
in terms of Feynman diagrams [80], that in Matsubara frequency space are connected via the Dyson equation

6−1
𝑊𝑃 (7𝑝) =

[
(𝑊7𝑝 + 8),𝑊𝑃 −𝑞0

𝑊𝑃

]
−Σ𝑊𝑃 (7𝑝), (5)

with non-interacting Green’s function 60
𝑊𝑃 (7𝑝) =

[
(𝑊7𝑝 + 8)#−$0]−1

𝑊𝑃 .It is convenient to split the self-energy into static and time-dependent parts:

Σ𝑊𝑃 (9) = Σ(
𝑊𝑃 :9 + Σ̃𝑊𝑃 (9), (6)

where Σ(
𝑊𝑃 corresponds to the static infinite-frequency limit of the self-energy, and the dynamical part Σ̃𝑊𝑃 (9) encapsulates the dependence on 

imaginary time 9 , 0 ≤ 9 ≤ ;, where ; = 1)𝐴<= is the inverse of the physical temperature = .
The solution of the lowest-order approximation of diagrammatic perturbation theory, Hartree-Fock, leads only to a static self-energy

Σ(,!
𝜋,𝑊𝑃 =

1
𝑋𝐴

∑

!′𝜋′
>?4

0̃𝑊!,𝑃!(4)6!′
𝜋′ ,>?(0

−)0̃?!′ ,>!′ (4)−
1
𝑋𝐴

∑

!′4
>?

0̃𝑊!,>!′ (4)6!′
𝜋,>?(0

−)0̃?!′ ,𝑃!(4), (7)

where 6!
𝜋,𝑊𝑃 (9) is the single-particle imaginary time Green’s function.

Higher order approximations yield additional dynamical corrections. Green/WeakCoupling provides an implementation of two approximations 
beyond Hartree-Fock, namely the second-order self-consistent perturbation theory (GF2) and self-consistent GW method (scGW).

2.1. GF2 approximation

GF2, also known as Second-order Born approximation [81], is a self-consistent conserving diagrammatic approximation that contains all the 
self-energy diagrams up to a second order in the interaction [82–84]. Generally, it is considered accurate whenever gaps are large and interactions 
are weak but it is known to fail for metals. Unlike GW [24] (cf. Sec. 2.2), GF2 is expanded in terms of bare Coulomb interactions, and it contains a 
second-order exchange term but does not include higher-order screening contributions.

The second-order self-energy in the imaginary time and momentum space with decomposed Coulomb interaction is

Σ̃!,(2)
𝜋,𝑊𝑃 (9) = − 1

𝑋3
!

∑
!1!2!3
𝐴𝛼𝛾𝑝@A
𝜋′ ,44′

(0̃ !1!
A𝑃 (4′)0̃ !2!3

𝛼𝑝 (4′)− 0̃ !2!
𝛼𝑃 (4′)0̃ !1!3

A𝑝 (4′):𝜋𝜋′ ) (8)

×0̃ !!1
𝑊@ (4)0̃ !3!2

𝛾𝐴 (4)6!1
𝜋,@A(9)6

!2
𝜋′ ,𝐴𝛼(9)6

!3
𝜋′ ,𝑝𝛾(−9):!+!3 ,!1+!2 ,

with imaginary time Green’s function 6!
𝜋,𝑊𝑃 (9).

A detailed discussion on the GF2 approximation implemented in Green/WeakCoupling is presented in Ref. [83,84].

2.2. GW approximation

The GW method sums an infinite series of so-called random phase approximation (RPA) or “bubble” diagrams, thereby including screening 
e!ects but neglecting the second-order exchange diagrams [24]. Note that there are several variants of the GW approximation that correspond to 
di!erent equations and additional approximations, including non-selfconsistent [19], partially self-consistent [44], quasiparticle approximated and 
quasiparticle self-consistent variants [85]. Green/WeakCoupling implements fully self-consistent GW approximation [86,87].

3 Green/WeakCoupling uses chemists notation (see Ref. [78]) for the electron-electron repulsion, as it’s commonly used in many ab initio packages.
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Fig. 1. Schematic illustration of the self-consistency loop implemented in Green/WeakCoupling.

In scGW, the contribution to the dynamical part of the self-energy is

Σ̃(6B ),!
𝑊𝜋,𝑃𝜋 (9) = − 1

𝑋𝐴

∑
%

∑
>?
6!−%
𝜋,>?(9)B̃

!,!−%,!−%,!
𝑊>?𝑃 (9), (9)

with dynamical screened interaction expressed in the frequency space as

B̃ !,!−%,!−%,!
𝑊𝑃𝐴𝛼 (𝑊+𝑝) =

∑
44′

0̃ !,!−%
𝑊𝑃 (4)C̃ %

44′ (𝑊+𝑝)0̃
!−%,!
𝐴𝛼 (4′) (10)

where +𝑝 = 2𝑝D); (𝑝 ∈ℤ) are bosonic Matsubara frequencies. C %
44′ (+𝑝) is a renormalized auxiliary function

&̃%(𝑊+𝑝) =
(∑
𝛾=1

[&̃%
0(𝑊+𝑝)]

𝛾 = ['− &̃%
0(𝑊+𝑝)]

−1&̃%
0(𝑊+𝑝), (11)

that is obtained from a bare auxiliary function

C̃ %
0,44′ (𝑊+𝑝) =

;

∫
0

𝑤9C̃ %
0,44′ (9)1𝑊+𝑝9 , (12)

C̃ %
0,44′ (9) = − 1

𝑋𝐴

∑
!𝜋
>?̂𝑤

0̃ !,!+%
𝑤> (4)6!

𝜋,̂𝑤 (−9)6
!+%
𝜋,>?(9)0̃

!+%,!
?̂ (4′) (13)

For detailed derivation of the GW formalism implemented within Green/WeakCoupling with a non-relativistic Hamiltonian refer to Ref. [86]
A relativistic GW (X2C1e-scGW) within the exact two-component formalism (X2C1e) [88] is presented in Ref. [89].

2.3. Self-consistency loop

Green/WeakCoupling provides an implementation of the fully self-consistent many-body perturbation theory. Self-consistent iterations start 
from an initial guess for the self-energy Σ, usually either obtained from a ground-state mean-field solution, from previous calculations or set to 
zero for the non-interacting limit, and proceed as following. (0) A trial Green’s function is evaluated (Eq. (5)). (1) The static part (Eq. (7)) and the 
dynamic part (Eq. (8) or Eq. (9)) of the self-energy are evaluated. (2) To improve convergence, a convergence acceleration technique is applied. (3) 
The chemical potential is adjusted to obtain a fixed number of particles. (4) A new approximation for the Green’s function is calculated via the Dyson 
equation (Eq. (5)) and the simulation proceeds to step (1) until the desired accuracy of convergence has been reached. Fig. 1 shows a schematic 
representation of the aforementioned procedure.

2.4. Postprocessing

2.4.1. !-path interpolation
Green/WeakCoupling evaluates Green’s functions and self-energies on a relatively small Monkhorst-Pack !-grid [90]. However, a visually 

appealing presentation of quantities such as the band-structure requires a dense !-mesh.
The frequency-momentum representation of the Green’s function obtained by Green/WeakCoupling is

6!
𝑊𝑃 (7𝑝) =

[
(𝑊7𝑝 + 8)#! −$!,(() −)(,! − )̃!(7𝑝)

]−1
𝑊𝑃 , (14)
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with Matsubara frequency 7𝑝 = (2𝑝 + 1)D);, chemical potential 8, and overlap matrix ,!
𝑊𝑃 .

To obtain the Green’s function on a denser grid !̂, we perform a simple !-space interpolation similar to a Wannier interpolation [91], with the 
exception that we do not perform the transformation to a basis of maximally localized Wannier functions.

In this approach, we first transform momentum dependent quantities F̂(!) into real space via Fourier transform,

F(*) = 1
𝑋!

∑
!
F̂(!)1−𝑊!*. (15)

Then, by applying the inverse transform, we project them back onto a finer ̂!-grid

F̂(!̂) =
∑
*
F(*)1𝑊!̂*. (16)

If the real-space quantity F(*) is well localized, which is usually the case when single-particle basis functions 𝑔!𝑊
𝑊 (r) are Gaussian-type orbitals, the 

resulting quantity will be approximated well. We found that the best results are obtained when only Σ(,! and Σ̃! are interpolated, and both the 
non-interacting Hamiltonian 𝑞0 and the overlap matrix , are directly evaluated on a finer ̂!-grid. Then the Green’s function is evaluated using the 
Eq. (14) on a finer ̂!-grid.

2.4.2. Analytical continuation
Standard finite-temperature perturbation theories are formulated on the imaginary axis allowing the direct access to static quantities such as 

the density matrix, free energy, or entropy. In contrast, quantities defined on real-frequency grids such as the spectral function require analytical 
continuation to the real axis of imaginary-time data [70,92] by solving the inverse problem of

6𝜋𝑊𝑃 (9) = −∫ 𝑤7
G𝜋𝑊𝑃 (7)1

−97

1 + 1−;7
. (17)

The solution of the analytical continuation problem is ill conditioned and numerically unstable in the presence of noise [70]. Green/WeakCoupling
results are free of stochastic noise and methods suitable for noise-free data can be applied. Green/WeakCoupling provides an implementation of 
analytical continuation using the Nevanlinna analytical continuation method as described in Ref. [72]. Several implementations of this method 
exist [93,94].

3. Installation

3.1. Dependencies

Green requires the following dependencies to be installed and available:

• C++17 compatible compiler.
• Eigen3 >= 3.4.0. Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms [95].
• MPI >= 3.0. Message Passing Interface (MPI) is a standardized and portable message-passing standard designed to function on parallel computing 
architectures [96].

• HDF5 >= 1.10.0. HDF5 is a high-performance data management and storage suite [97].
• BLAS. The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix 
operations [98].

• CMake >= 3.18. CMake is a tool to manage building of source code [99].
• GNU Make [100] or Ninja build system [101].

The following packages are optional and needed if certain modules of the Green software package are included:

• CUDAToolkit >= 11.1 (needed for the GPU kernel). CUDA is a parallel computing platform and programming model for general computing on 
graphical processing units (GPUs) [102].

• GMP (needed for the analytic continuation module). The GNU Multiple Precision Arithmetic Library (GMP) is a library for arbitrary-precision 
arithmetic, operating on signed integers, rational numbers, and floating-point numbers [103].

These packages are external to Green. Installation instructions are provided with these packages; many modern HPC environments provide some 
or all of these packages preinstalled for their users.

In addition, the following python dependencies are required for auxiliary scripts.

• green-mbtools. The python tool suite for Green’s-function-based many-body calculations using Green Software Package.
• PySCF. The Python-based Simulations of Chemistry Framework (PySCF) is an open-source collection of electronic structure modules powered 
by Python [79].

• numba. Numba translates Python functions to optimized machine code at runtime using the industry-standard LLVM compiler library [104].
• spglib. SPGLib is a software library for crystal symmetry search [105].
• ase. ASE is an Atomic Simulation Environment written in the Python programming language with the aim of setting up, steering, and analyzing 
atomistic simulations [106].

Python packages can typically be provisioned with the pip install or pip3 install command. pip install pyscf numba spglib ase
green-mbtools will install the required python modules on most platforms.
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3.2. Weak coupling

The following instructions will download, build and install the CPU-only version of Green/WeakCoupling solver (replace /absolute/path/-
to/install/directory with the desired installation directory path; see below for the CPU/GPU version):

$ git clone https://github.com/Green-Phys/green-mbpt
$ cmake -S green-mbpt -B green-mbpt-build -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX=/absolute/path/to/install/directory
$ cmake --build green-mbpt-build -j 4
$ cmake --build green-mbpt-build --target test install
$ rm -rf green-mbpt-build

This sequence of commands will create the installation directory and place the executable mbpt.exe under the bin directory of the installation path.
The following instructions will download, build and install the GPU version of the Green/WeakCoupling solver (replace /absolute/path/-

to/install/directory with the desired installation directory path):

$ git clone https://github.com/Green-Phys/green-mbpt
$ cmake -S green-mbpt -B green-mbpt-build -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX=/absolute/path/to/install/directory \
-DCUSTOM_KERNEL=GPU_KERNEL \
-DGREEN_KERNEL_URL="https://github.com/Green-Phys/green-gpu" \
-DGREEN_CUSTOM_KERNEL_LIB="GREEN::GPU" \
-DGREEN_CUSTOM_KERNEL_ENUM=GPU \
-DGREEN_CUSTOM_KERNEL_HEADER="<green/gpu/gpu_factory.h>"

$ cmake --build green-mbpt-build -j 4
$ cmake --build green-mbpt-build --target test install
$ rm -rf green-mbpt-build

The GPU version requires the CUDA toolkit [102] to be available.

3.3. Analytical continuation

In addition to the Green/WeakCoupling dependencies, the analytical continuation code requires the GNU multiprecision arithmetics li-
brary [103]. The following instructions will download and build the analytical continuation package (replace /absolute/path/to/install/directory 
with the desired installation directory):

$ git clone https://github.com/Green-Phys/green-ac
$ cmake -S green-ac -B green-ac-build \

-DCMAKE_INSTALL_PREFIX=/absolute/path/to/install/directory \
-DCMAKE_BUILD_TYPE=Release

$ cmake --build green-ac-build -j 4
$ cmake --build green-ac-build -j 4 --target test install
$ rm -rf green-ac-build

4. Usage

4.1. Input preparation

The first step of any simulation with Green/WeakCoupling is the preparation of the input data for the diagrammatic calculation. This entails the 
calculation of the one-body integrals, the calculation of the (decomposed or density fitted) Coulomb integrals, and the determination of a starting 
density matrix. These components are generated from unit-cell geometry information, atom positions, the k-point discretization grid, as well as 
information about the basis.

We provide a convenient interface to the PySCF package [79] to prepare this input by calling the python script python/init_data_df.py, 
located in the installation path (for a simple example see section 6). The following parameters are mandatory:

• --a – path to a file containing the translation vectors of the primitive unit cell, in angstrom.
• --atom – path to a file containing the atom species and position of atoms in the unit cell in the standard xyz format, in angstrom.
• --nk – number of !-points in each direction. Assumed to be the same for all directions.
• --basis – Gaussian basis set description.

The Green/WeakCoupling interface to pySCF employs Gaussian-type orbitals as evaluated by PySCF [79] as single-particle states. Two options 
for choosing a basis set are provided: a) using a built-in molecular [107] or periodic [108] basis; b) providing a file that contains desired basis set 
in the NWChem [109] format. Users can either select a single basis set for all atoms in the calculation (--basis <basis set>) or provide an 
individual basis for each atom species separately:

--basis <first atom> <first basis set> <second atom> <second basis>....
Basis sets with pseudopotential require the user to provide a pseudopotential for core electrons using the option --pseudo. Users can either 

choose a built-in PySCF pseudopotential [110] or provide a file containing pseudopotentials in the NWChem format.
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Users can use an external MolSSI BSE tool [111] for basis set conversions from other formats.
By default the script init_data_df.py will generate a file input.h5 containing all necessary parameters and an initial mean-field solution 

of the system, as well as the one-body integrals. In addition, the script will generate a directory named df_hf_int which contains the decomposed 
Coulomb integrals of the system with integrable divergence at (% ++) = 0 explicitly removed. If parameter --finite_size_kind set to ewald
script will generate an additional directory named df_intwhich contains the decomposed Coulomb integrals with integrable divergence at (% ++) =
0 replaced with an estimate using Madelung constant (see Sec. 4.2.1 for more details on finite-size corrections).

After the simulation is performed, some of the results, such as the single particle spectral function, are displayed along a high-symmetry path. 
To obtain a high-symmetry path, high-symmetry points on the path and the total number of points along the path are provided using the two 
parameters --high_symmetry_path and --high_symmetry_path_points. The option --print_high_symmetry_points lists all available 
high-symmetry points for a system. The interpolation along the desired high-symmetry paths will perform a basic !-path interpolation (see Sec. 2.4.1) 
for those points not on the momentum mesh of the calculation.

All Green programs list their available options with the --help option.

4.2. Solution of the many-body perturbation theory equations

The many-body perturbation theory equations are solved by the program mbpt.exe located in the bin directory of the installation path. It is 
advantageous to perform this simulation on a machine with multiple cores or nodes (using the CPU MPI implementation) or on GPUs (using the GPU 
implementation), rather than on a local workstation or laptop. Minimal parameters needed to run weak-coupling simulations are as follows:

• --BETA – The inverse temperature, in inverse energy units
• --scf_type – The type of the diagrammatic approximation, either HF (for Hartree Fock), GF2 (for fully self-consistent second-order perturba-
tion theory), or GW (for fully self-consistent GW)

• --grid_file – the path to a file containing the non-uniform grid information. The program will automatically check three possible locations 
in the following order:
– current directory or absolute path
– <installation directory>/share
– the build directory of mbpt code
As a default, we provide intermediate representation (IR [66], ir subdirectory) and Chebyshev ([65], cheb subdirectory) grids for nonuniform 
imaginary time representation.

After successful completion, results will be written to a file located at --results_file (by default set to sim.h5) Additional parameters and 
their default values are listed by calling the program with the --help option.

Provided the option --jobs WINTER is set and the input data contains information about a desired high-symmetry path, the diagonal part of the 
Green’s function is evaluated on the path, and results are stored in the G_tau_hs group in the file specified as --high_symmetry_output_file
(by default set to output_hs.h5).

4.2.1. Finite-size corrections
In periodic calculations the infinite crystal is approximated by a finite crystal with periodic boundary conditions defined on a discrete set of 

momentum points. This finite-size approximation introduces finite-size errors. Green/WeakCoupling provides the following options to control 
finite-size errors:

In Hartree-Fock calculations we compute explicit Ewald corrections using the Madelung constant following Baldereschi’s scheme [112].
In GW calculations we provide two options:

• EWALD_INT enables explicit Ewald correction using integrals with divergent part of Coulomb kernel replaced with supercell Madelung con-
stant [113,114];

• EXTRAPOLATE computes an extrapolation of the dielectric matrix to obtain the + = 0 contribution. This requires the calculation of a smooth 
interpolant for the Coulomb integral [113,114,86].

In the GF2 calculations, the divergent part of the Coulomb kernel is replaced with the supercell Madelung constant via the Ewald correction [113,
114]. The finite-size corrections will be applied if the file df_ewald.h5 is present in the integrals directory.

The finite-size corrections for the second-order and GW approximations require the generation of additional input data. In the initialization script, 
this is controlled by the --finite_size_kind parameter which takes the following values

• ewald – will generate the df_int directory which contain the additional set of integrals with explicit Ewald correction;
• gf2 – will generate the file df_ewald.h5 that contains Ewald correction for integrals in second-order diagrams.
• gw – will generate the file AqQ.h5 that contains a smooth interpolant for Coulomb integrals for the GW finite-size correction.

By default the ewald correction is applied.

4.2.2. Convergence to a desired solution and convergence acceleration
Self-consistent diagrammatic theories usually display multiple stationary points in their Φ- and Ψ-functional and very rarely have only one 

global minimum. In certain cases, the existence of these multiple stationary points may be employed to our advantage since giving a starting solution 
that lies in the vicinity of the desired stationary point (local minimum) will predispose the algorithm to converge to this solution. This is usually 
done by searching for a desired solution in the mean-field (Hartree–Fock) method that produces multiple solutions, known as broken-symmetry 
solutions [115]. Subsequently, the weakly correlated perturbative fully self-consistent diagrammatic method often preserves the qualitative structure 
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of the mean-field solution, thus, providing access to a broken-symmetry solution of the Dyson equation. We have successfully used these correlated 
solutions for accurate evaluation of magnetic properties of molecules [13] and solids [116] and even critical temperatures [117].

To enable a smooth convergence to a desired solution and minimize the number of iterations required, its convergence path may be altered 
either by a constant iteration mixing, or by convergence acceleration methods such as variants of the direct inversion in the iterative subspace 
(DIIS) [118,119,68].

In iteration mixing, the self-energy is modified as:

Σ𝑝 = HΣ
[
6𝑝−1

]
+ (1− H)Σ𝑝−1, (18)

where 6𝑝−1 and Σ𝑝−1 are Green’s function and self-energy from the previous iteration and H ∈ (0, 2) is an iteration mixing parameter (with H = 1
meaning no mixing with previous iteration).

In DIIS, the self-energy at the given iteration is computed as a linear combination of the self-energies obtained in the 𝐴 previous iterations:

Σ𝑝 =
𝐴∑
𝑊=0

̂𝐴Σ𝑝−1−𝐴+𝑊. (19)

Convergence acceleration methods often o!er faster convergence and better stability.
To choose a convergence acceleration method, the user has to specify the parameter --mixing_type which takes one of the four values 

NO_MIXING, SIGMA_MIXING, DIIS, or CDIIS. Where CDIIS corresponds to commutator version of DIIS method [119]. If static iteration mixing 
is specified, the mixing weight H has to be provided by specifying --mixing_weight. If DIIS or CDIIS are chosen, the Green/WeakCoupling
code uses static iteration mixing for the first few iterations, builds an extrapolation subspace, and continues with DIIS/CDIIS starting at the iteration 
specified by --diis_start. The maximum number of subspace vectors used is specified by --diis_size. Our implementation of DIIS and CDIIS 
is detailed in Ref. [68]

5. Post processing and analysis

The Green/WeakCoupling code provides post-processing tools such as analytical continuation to obtain spectral functions and thermodynamic 
utilities.

Analytical continuation using the Nevanlinna analytic continuation method [72] is performed by executing the program ac.exe located at the 
installation path in the bin subdirectory. The following parameters are needed:

• --grid_file Sparse imaginary time/frequency grid file name
• --BETA Inverse temperature
• --input_file Name of the input file
• --output_file Name of the output file
• --group Name of the HDF5 group in the input file that contains imaginary time data. This group has to contain mesh information and data 
sets.

• --kind Type of analytical continuation, currently only NEVANLINNA is available.

The command ac.exe --help will provide additional information.

6. Example

We give step-by-step instructions on how to run Green/WeakCoupling for periodic silicon on a 6 × 6 × 6 lattice. Results for a similar system 
are shown in Ref. [86]. Both mbpt.exe and ac.exe will be used.

Create a new simulation directory, and in it create the file a.dat containing the following unit cell information (each line specifies one of the 
translation vectors in Angstroms):

0.0000, 2.7155, 2.7155
2.7155, 0.0000, 2.7155
2.7155, 2.7155, 0.0000

Then create a file atom.dat containing atom positions in cell Angstroms unit cell:

Si 0.00000 0.00000 0.00000
Si 1.35775 1.35775 1.35775

In a first step, obtain input parameters and an initial mean-field solution by running pySCF via the init_data_df.py script:

python <source root>/green-mbpt/python/init_data_df.py \
--a a.dat --atom atom.dat --nk 6 \
--basis gth-dzvp-molopt-sr --pseudo gth-pbe --xc PBE \
--high_symmetry_path WGXWLG --high_symmetry_path_points 300 \
--job init sym_path
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Fig. 2. Band structure for silicon obtained from GW calculation on 6 × 6 × 6 lattice and extrapolated along high-symmetry path.

This will employ the gth-dzvp-molopt-sr basis [120] with the gth-pbe pseudopotential, run a DFT calculation for the system with a PBE 
exchange correlation potential4 and generate Green/WeakCoupling input. The high-symmetry path, which will be used in the analysis step, is set 
to WGXWLG.

In a second step, we run the fully self-consistent GW approximation using the mbpt.exe program. It is advantageous to run this step on an MPI 
cluster or on a GPU:

mpirun -n <number of cores> <install dir>/bin/mbpt.exe --scf_type=GW --BETA 100 \
--grid_file ir/1e4.h5 --itermax 20 --results_file Si.h5 \
--mixing_type CDIIS --diis_size 5 --diis_start 2 \
--high_symmetry_output_file Si_hs.h5 --jobs SC,WINTER

This sets the inverse temperature to ; = 100 Ha−1, employs an Intermediate Representation grid [66,121] with grid parameter Λ = 104, and runs 
for 20 iterations using DIIS convergence acceleration.

The simulation results are stored into the file Si.h5, and the band-path interpolation along the high-symmetry path in Si_hs.h5.
In a third step, we use the post-processing analytic continuation to obtain the spectral function:

<install dir>/bin/ac.exe --BETA 100 --grid_file ir/1e4.h5 \
--input_file Si_hs.h5 --output_file ac.h5 --group G_tau_hs \
--e_min -10.0 --e_max 10.0 --n_omega 10000 --eta 0.01
--kind Nevanlinna

This will run analytical continuation for all momentum points along the high-symmetry path. The output will be stored in the group G_tau_hs of 
the output HDF5 file ac.h5.

Finally, a plot for the band structure can be obtained with the plot_bands.py script:

python <source root>/green-mbpt/python/plot_bands.py \
--input_file ac.h5 --output_dir bands

This will read the analytically continued data and plot it to an <output_dir>/bands.png file. In addition, it will create a plain-text data file 
containing the spectral function for every k-point along the chosen path inside the <output_dir> directory. The resulting band structure plot is 
shown in Fig. 2.

Other examples, such as calculation of ionization potentials in molecular systems [122] or using spin-orbit coupling [123], please check the
Green/WeakCoupling web-site.

7. Conclusion

We have presented an implementation of self-consistent finite-temperature many-body perturbation theory for molecules and solids, along with 
analytic continuation tools. The software provided as part of the Green project provides a way to perform diagrammatic simulations of solids and 
molecules without adjustable parameters. We have provided scripts and examples for software installation, input preparation, solution of the many-
body problem, and analytic continuation analysis. Our implementation is licensed with the permissive MIT license that allows users to use, copy, 
modify, merge, publish, distribute, sublicense, and sell copies of software.

4 If the --xc parameter is omitted, the script will run a Hartree-Fock calculation instead.
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