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Abstract—Distributed energy resources (DERs) such as grid-

responsive loads and batteries can be harnessed to provide

ramping and regulation services across the grid. This paper

concerns the problem of optimal allocation of different classes

of DERs, where each class is an aggregation of similar DERs, to

balance net-demand forecasts. The resulting resource allocation

problem is solved using model-predictive control (MPC) that

utilizes a rolling sequence of finite time-horizon constrained

optimizations. This is based on the concept that we have more

accurate estimates of the load forecast in the short term, so each

optimization in the rolling sequence of optimization problems

uses more accurate short term load forecasts while ensuring

satisfaction of capacity and dynamical constraints. Simulations

demonstrate that the MPC solution can indeed reduce the

ramping required from bulk generation, while mitigating near-

real time grid disturbances.

I. INTRODUCTION

Massive renewable generation introduces volatility and un-
certainty in the grid, leading to sharp ramps and disturbances
in net demand (demand minus renewable generation). Tradi-
tionally, these ramps and disturbances have been addressed
using fossil-based generators such as coal and diesel, which
are costly, inefficient, and not environment friendly.

The grid operator can tackle these challenges by intelli-
gently allocating distributed energy resources (DERs), such as
solar photovoltaic, wind turbines, battery storage, and flexible
loads. We propose a methodology that leverages aggregate

DER models to optimally allocate DERs to meet the ramps and

disturbances in net-demand forecasts (net-demand is demand

minus renewable generation) using a model predictive control

(MPC) framework. We do so while including the dynamical
behavior and capacity constraints of the DER aggregation.

The grid operator and DER resource aggregators form the
agents in our proposed approach. Aggregators are entities
that engage with the consumers to aggregate DERs to deploy
them based on the requirements of the grid operator (e.g.,
EnergyHub, Enel X, and utility companies). The role of the
grid operator (e.g., ERCOT) is to coordinate DER aggregations
and bulk generation to procure and dispatch the resources
required to balance supply and demand. The formulation in
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this paper focuses on DER aggregations: the precise way in
which the control is designed at an individual level to achieve
tracking is beyond the scope of this paper (see [11] and the
references therein for individual-level control).

The control architectures presently used in the grid focus
primarily on short-term optimization [5]. Traditionally, eco-
nomic dispatch with the participation of large generation plants
is performed as a static optimization problem [15]. However,
the optimal dispatch of DER aggregations needs to account
for the dynamics of these aggregations, thereby requiring an
optimal control framework. In such scenarios, the solution to
short-term optimization is unlikely to be optimal in the long
term. The control actions in the grid also vary across different
time scales and information architectures: for example, day-
ahead dispatch relies on forecasts over the next day, while
ancillary services rely on near-real time estimates.

To address these challenges, we introduce an MPC frame-
work that approximates the solution to a long-run optimal
control problem by solving a sequence of finite dimensional
optimization problems. We require two key ingredients in
our framework: (a) models for the dynamical behavior of
DER aggregations; and (b) accurate short-term predictions
for the net-demand forecast. MPC has strong guarantees for
transient operations and ensures constraint satisfaction, while
also accounting for long-run optimality [14].

Related Research Finite-horizon convex optimization for-
mulations for the control of DER aggregations are discussed in
[6]: a centralized quadratic program is solved to generate dif-
ferent command signals for the different classes of DERs. The
paper [2] solves a non-linear AC optimal power flow (OPF)
with the participation of an aggregation of DERs, specifically
thermostatically controlled loads: the problem is modeled as
a Markov decision process (MDP) and is reformulated as a
finite-horizon convex program. The cost formulations in this
paper are related to [4], [12], which also consider finite horizon
convex programs to allocate load aggregations. However, all
these approaches focus solely on short-term, finite horizon
optimization. Model predictive control is used for economic
dispatch in power networks in [9]; however, the formulation
does not include DERs.

Moreover, these prior works do not consider the near-real
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Fig. 1. Bulk generation, net-demand and the total power supplied by all classes of DER aggregations. The net-demand is from CAISO from September
1, 2023 through September 7 2023, with BPA’s BRD disturbances (for the corresponding time period) coming in at 30 minute windows during each MPC
update. The DER aggregations provide most of the ramping and regulation-type service required to balance the net load, thereby reducing the requirements
from bulk generation.

time disturbances entering the grid in their optimal control for-
mulations. We consider a general constrained MPC framework
for allocation of DER aggregations: this optimization strategy
addresses both transient grid disturbances and accounts for
net-demand forecasts over a longer horizon, without violating
capacity constraints of the DERs. A key ingredient of our set-
up is the use of convex costs on the state of charge (SoC) of
the DER aggregation with hard constraints based on power and
SoC capacity. By regularly updating the forecasts, we can use
DERs to provide both ramping and regulation-type services to
the grid. This reduces the requirement from bulk generation.
The simulations in Section IV illustrate the efficacy of the
control design in jointly extracting dispatch and regulation-
type services from the DERs.

Notation

⌧ : control time horizon for an MPC iteration indexed by t 2
{t0, t0 + 1, . . . , t0 + ⌧ � 1}.
t0: starting time for an MPC iteration.
ts: time shift for t0 between successive MPC iterations.
`(t) : forecast of net-demand at time t.
g(t) : power from bulk generation (without renewables).
M : number of DER aggregations, indexed by i 2 {1, . . . ,M}.
xi(t) : SoC for DER aggregation i (units: GWh).
pi(t) : power output of aggregator i (units: GW).

Organization The problem setup is explained in Section II;
in particular, the linear dynamical models for the DER aggre-
gations are introduced in Section II-A, while the cost functions
associated with the optimal control framework are introduced
in Section II-B. The model predictive control architecture is

introduced in Section III. Section IV provides results from
simulation experiments, illustrating the application of the
control design in realistic settings. Conclusions and directions
for future research are provided in Section V.

II. PROBLEM SETUP

We now introduce models for the control architecture,
aggregate DER dynamics, and the optimization objective.

A. Generalized linear battery models

We consider linear models for aggregate DER dynamics,
which are well studied literature (see [7], [8], [10]). Follow-
ing [7], we adopt the generalized battery models for DER
aggregations with known constraints on the power and the
state of charge. The SoC of the i-th DER aggregagation,
i 2 {1, . . . ,M}, obeys:

xi(t+ 1) = ↵ixi(t)� �pi(t), (1a)
|xi(t)|  Ci, (1b)
�⌘�i  pi(t)  ⌘+i , (1c)

where the state xi(t) 2 R models state of charge, and ↵i � 0
is a leakage parameter. For example, for aggregations of loads
such as air conditioners and water heaters, ↵i corresponds to
the thermal time constant. The nominal SoC is defined to be
0 (nominal refers the behavior of the DER aggregation when
the DERs are not participating in dispatch or regulation). The
(virtual) power supplied at time t by the i-th DER aggregation
is pi(t) 2 R: this is the nominal power consumption of the
DER aggregation minus the total power consumed by the
aggregation. The constant � is in units of time.
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Fig. 2. SoC trajectories via MPC from five classes of DER aggregations that are deployed to meet net-demand forecast for CAISO from September 1 through
September 7, 2023. Each optimization problem has a horizon ⌧ = 24 hours. The time shift between sucessive optimization problems is ts = 30 minutes. BPA’s
BRD from September 1 through September 7, 2023, are added to the net-demand forecast every 30 minutes: these comprise of “near real-time” disturbances
to the net-demand. The figure shows that some classes of DERs can charge to their maximum SoC capacity: particularly noticeable for ACs and bldgs.

The appendix provides details on the derivation of the
capacity limits for an aggregation of grid-responsive loads.

B. DER allocation: an optimal control approach

We formulate the resource allocation problem as an infinite-
horizon optimal control problem with the objective:

lim
T!1

TX

t=0

⇥
cg(g(t)) + cX(x(t))

⇤
, (2)

where the state cost cX is given by

cX(x) :=
MX

i=1

ci(xi) =
MX

i=1

1
2ix

2
i , (3)

and the generation cost cg is given by

cg(x) =
1
2g(x� `)2, (4)

with ` := T�1
PT�1

0 `(t), in which `(t) denotes the net-
demand forecast. i � 0 and g � 0 are design parameters.

The net-demand forecast `(t) satisfies

`(t) = g(t) + p�(t) , 0  t  T (5)

where p�(t) =
P

i pi(t) is the total power supplied by all the
DERs, and g(t) is the power generated by traditional resources.
The initial condition xi(0) is known for each class.

III. MODEL PREDICTIVE CONTROL ARCHITECTURE

Solving the infinite horizon optimization problem described
by (2) in the previous section is not feasible for the following
reasons: (i) we may not have accurate long-term estimates
of DER models (e.g., ↵i) and constraints (e.g., Ci) and net-
demand forecasts (`(t)), but have accurate estimates in the

short term; and (ii) the capacity-constrained infinite-horizon
optimization problem is not computationally tractable. Model
predictive control is a well-established control architecture in
this setting to convert the infinite-horizon problem to a finite-
horizon problem with regular updated forecast `(t) [14].

Model predictive control is an iterative technique that re-
quires a look-ahead time horizon ⌧ and a time shift ts. For
an MPC iteration with starting time t0 � 0, the input p(t0) is
obtained through the following methodology.
Step (i): First, given a starting state x(t0) 2 RM , we solve
the following convex optimization problem for the finite time
horizon [t0, t0 + ⌧ ]:

minimize
g, x, p

t0+⌧�1X

t=t0

⇥
cg(g(t)) + cX(x(t))

⇤
(6a)

subject to `(t) = g(t) + p�(t) , (6b)
xi(t+ 1) = ↵ixi(t)� �pi(t), (6c)

�Ci  xi(t)  Ci , (6d)
�⌘�i  pi(t)  ⌘+i . (6e)

Step (ii): The optimal power (input) for an MPC iteration
starting at t0 is the solution pi(t) for t 2 {t0, t0+1, . . . , t0+ts}
and i 2 {1, . . . ,M}.

Step (iii): Successive MPC iterations are solved by peri-
odically updating the starting time t0 at intervals of ts, with
0 < ts  ⌧ . That is, for an MPC iteration with starting time
t0, the starting time for the next MPC iteration is t0 + ts.

IV. SIMULATIONS

The simulations detailed here include a single class of bulk
generation and five classes of DERs, each aggregating millions
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Fig. 3. Power trajectories for the five classes of DER aggregations obtained via the MPC solution. The DER aggregations provide both ramping and regulation-
type service to the grid. The faster fluctuations are due the need to cancel the near-real time (forecast) disturbances because of the BPA BRD signal.

of DERs. The DER classes are as follows: air condition-
ers (ACs), electric water heaters (E-WHs), building HVACs
(bldgs), refrigerators (RFGs), and electric vehicles with 100
kWh lithium ion batteries (EVs). Tab. I provides details about
the type and number of DERs as well as the model parameters
for each aggregation. The number of DERs in each aggregation
are extrapolated based on the population of California. We
compute ↵ values and the capacity limits for the different
DER aggregations using data from the following papers: for
ACs, E-WHs, and RFGs [13], for bldgs [8], and for EVs [10].
See appendix for the precise formulae.

The net load trajectory considered in our experiments is
from publicly available California Independent System Oper-
ator (CAISO) dataset for September 2023 [3]. Furthermore, we
model additive (forecast) disturbances to this net load using
the balancing reserves deployed (BRD) in September 2023
by the Bonneville Power Administration (BPA) [1]. BRD is
considered a type of regulation signal. Both these datasets have
a 5-minute resolution.

Par. Unit DER1 DER2 DER3 DER4 DER5
Type — ACs E-WHs bldgs RFGs EVs
N million 10 10 1 10 1
↵i — 0.98 0.99 0.97 0.96 0.99
Ci GWh 8 5 2.3 5 50
⌘+i GW 20 4 103 2 3.6
⌘�i GW 30 50 3 3 3.6
i — 1 2 5 5 2
� s 300 300 300 300 300

TABLE I
PARAMETERS FOR EACH CLASS OF DER AGGREGATION, CORRESPONDING

TO THE DISCRETE-TIME LINEAR DYNAMICAL MODEL IN EQUATION (1).

Fig. 1 shows the net load, the output from traditional
generation, and the cumulative power supplied by the DERs
over a seven day duration following MPC (with net-demand
data corresponding to September 1 through September 7,
2023). The finite time horizon for each MPC iteration (⌧ )
is 24 hours, while the time shift between the starting time
of successive MPC iterations (ts) is 30 minutes. This implies
that forecast disturbances (taken from BPA’s BRD signal) are
added to the CAISO’s day-ahead net-demand forecast every
30 minutes (in 30 minute rolling windows). Observe that the
bulk generation is smooth without any sharp ramps. The total
power supplied by the DER aggregations provides most of the
balancing required to smooth the ramps as well as the additive
disturbances (from BPA’s BRD) in the net-demand trajectory.

The SoC trajectories of the different DER aggregations de-
ployed via MPC are shown in Fig. 2, while the corresponding
power trajectories are shown in Fig. 3. The DERs charge
during times of low net demand (i.e., they consume more
energy with respect to nominal), so that they can supply energy
(consume less than nominal) when the net demand ramps up.
The fact that the DER aggregations are providing regulation-
type services can be seen in the fast fluctuations of the power
trajectories in Fig. 3. The capacity constraints are satisfied for
all the DER classes.

V. CONCLUSIONS AND FUTURE WORK

We have shown the efficacy of MPC-based control design
for the optimal allocation of DER aggregations to meet net-
demand: the MPC design is ideal as it uses the more accurate
net-demand forecasts available in the short-term for resource
allocation, ensures constraint satisfaction, while still account-



ing for long-run optimality. The simulations demonstrate that
the DER aggregations can mitigate the ramping and regulation-
type service required from bulk generation.

Learning an accurate terminal penalty for the MPC problem
based on statistical learning approaches will be explored in
future work: a particular challenge is to incorporate accurate
long-term models for net-demand. While MPC mitigates some
of the uncertainties involved in estimates of the net-demand
and model parameters (via periodic updates), a rigorous ap-
proach to robust control design remains a topic for future work.

APPENDIX

Below we derive the formulae for the power and capacity
limits for an aggregation of N DERs. While the theory is
elucidated using the specific example of an aggregation of
heating loads (e.g., grid-responsive E-WHs), extensions to
other classes of DER aggregations are straightforward. Each
aggregation consists of similar types of DERs.

Individual load model We assume the idealized settings of
[7], which ignore disturbances. The linearized discrete-time
dynamics of the i-th (heating) load are given by:

⇥i(t+ 1) = �(⇥i(t)�⇥a
i ) + ��Mi(t)Pm. (7)

with constants (� 2 [0, 1]) proportional to the thermal time
constant of the load, � being the thermal capacitance divided
by the coefficient of performance, and � the sampling time
(see [7], [13] for details). ⇥i(t) is the internal temperature, ⇥a

i

is the ambient temperature, and Mi(t) 2 {0, 1} is the power
mode of the load (“on” is indicated by Mi(t) = 1). Pm is
the power consumed when Mi(t) = 1. ⇥(t) decreases when
the power is off (Mi(t) = 0), and increases when the power
is on (Mi(t) = 1). The on-off behavior regulates the internal
temperature (⇥i(t)) to be between the upper limit (⇥+) and
the lower limit (⇥�). The set-point is ⇥s :=

1
2 (⇥+ �⇥�).

In a stationary, nominal setting, the off-duration of the load
is denoted as Toff and the on-duration as Ton. The average
power over time is given by,

P0 = Pm
Ton

Ton + Toff

.

Power capacity Here, we explain the notion of power capac-
ity for a collection of homogeneous loads. The definition of
average power for the collection is meaningful in a stationary
setting (no disturbances): for N loads, the average power
is NP0; this is regarded as the nominal or baseline power
consumption.

The upper and lower power limits are denoted ⌘+ and ⌘�,
which are the maximum power supplied and consumed by the
aggregation (with respect to a baseline), respectively. If we
turn on all the loads, then this is analogous to a (virtual) battery
charging at rate ⌘�, while turning off all the loads implies that
the (virtual) battery is discharging at rate ⌘+. Consequently, for
a homogeneous aggregation, we have ⌘+ = NP0 and ⌘� =
N(Pm � P0).

SoC Capacity The SoC for a collection of N homogeneous
loads is the thermal energy stored in the collection, normalized
such that the nominal value is zero. The relation between the
SoC and the internal temperature is given as follows:

x(t) =
NX

i=1

1

�
(⇥i(t)�⇥s) (8)

The SoC dynamics follow the first order linear dynamical
system given in (1a), with the capacity bound |x(t)|  C
for all t. Comparing (1a) with (7) gives ↵ = �/�.

For N homogeneous loads, the limit C is reached when
the internal temperature of each load is at the maximum
limit ⇥+ (or conversely, each load is at the minimum, ⇥�).
Consequently, it follows from (8) that

C =
N

�
(⇥+ �⇥s) =

N

2�
(⇥+ �⇥�) (9)
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