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ABSTRACT
A precise dynamical characterization of quantum impurity models with multiple interacting orbitals is challenging. In quantum Monte Carlo
methods, this is embodied by sign problems. A dynamical sign problem makes it exponentially difficult to simulate long times. A multi-
orbital sign problem generally results in a prohibitive computational cost for systems with multiple impurity degrees of freedom even in static
equilibrium calculations. Here, we present a numerically exact inchworm method that simultaneously alleviates both sign problems, enabling
simulation of multi-orbital systems directly in the equilibrium or nonequilibrium steady-state. The method combines ideas from the recently
developed steady-state inchworm Monte Carlo framework [Erpenbeck et al., Phys. Rev. Lett. 130, 186301 (2023)] with other ideas from the
equilibrium multi-orbital inchworm algorithm [Eidelstein et al., Phys. Rev. Lett. 124, 206405 (2020)]. We verify our method by comparison
with analytical limits and numerical results from previous methods.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226253

I. INTRODUCTION

Quantum impurity models comprise a few strongly interacting
orbitals coupled to an extensive noninteracting environment. Origi-
nally developed in the context of magnetic impurities in materials,1
they are now commonly used to study topics ranging from quantum
phase transitions and non-Fermi liquid behavior2,3 to nonequi-
librium transport in mesoscopic quantum dots4–6 and molecular
electronics.7,8 One of their predominant usages is for embedding
theories such as the dynamical mean field theory (DMFT)9,10 and
its extensions,11–14 as well as self-energy embedding theories.15,16

These frameworks describe extensive systems like strongly corre-
lated materials by mapping them onto quantum impurity models,
which enables a detailed treatment of strong local correlations
while considering the remaining system as an environment.17,18

Finding accurate solutions for the underlying generalized impu-
rity model, which often includes multiple orbitals, is a challenging
task. Various methods have been used in this context, including

exact diagonalization,19,20 renormalization group techniques,21,22

tensor network representations,23–26 and hierarchical equations of
motion.27–29 While successful in numerous scenarios, many of
these approaches are constrained to specific parameter or energy
ranges, struggle to describe strong correlations, or resort to a
rough/specialized description of the environment, which limits their
applicability. Access to dynamical information on the real frequency
axis and at both low and high energies, especially in systems driven
away from equilibrium, is generally more limited than imaginary
time or static information at equilibrium and low energy physics.

One of the most prevalent methods used in the treatment
of multi-orbital impurity models, especially for strongly corre-
lated systems and in the context of quantum embedding methods,
is continuous-time quantum Monte Carlo (CTQMC).30–34 These
methods use Monte Carlo integration to stochastically sum up per-
turbative expansions to arbitrary order. Different formulations exist,
e.g., those based on expansions in the many-body interaction30,35

and the impurity–environment hybridization,31–33 as well as on
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auxiliary field techniques.36,37 CTQMC approaches are generally
expensive to use when high precision is required, because of the slow
convergence of Monte Carlo integration. Nevertheless, they excel in
the detailed description of a structured environment. Furthermore,
the computational expense is somewhat compensated for by their
reliable accuracy and by the fact that they are extremely well-suited
to taking advantage of massively parallel computing resources.

Advancements such as bold-line strategies38–41 use resumma-
tion techniques to achieve accurate and precise results at relatively
low orders. While each variant has its own advantages and draw-
backs,34 they are all able to efficiently describe detailed environ-
ments, allowing for the handling of general bosonic and fermionic
baths. However, CTQMC methods encounter challenges known as
sign problems that plague all Monte Carlo techniques for quantum
systems,42 resulting in an exponential growth in computational com-
plexity as a function of certain parameters. Sign problems manifest
strongly in systems away from certain symmetry points and depend
on the particular formulation.35,36 For example, the hybridization
expansion handles interactions non-perturbatively and is partic-
ularly effective in the presence of strong and complex interac-
tions.43 However, it faces multi-orbital sign problems when impurity
orbitals can be mixed by their coupling to the environment,44,45

making it difficult to approach low temperatures even in imagi-
nary time simulations. For systems out of equilibrium, which are
described by real-time CTHYB techniques,46–52 an inherent dynam-
ical sign problem limits simulations to short timescales. This makes
an accurate description of nonequilibrium situations extremely dif-
ficult, a challenge that has inspired various theoretical approaches
aimed at overcoming this limitation.52–67

The inchworm algorithm is one effective strategy for mitigat-
ing sign problems.68 The inchworm technique combines a CTQMC
method with a time-stepping scheme that iteratively propagates the
system in time, making optimal use of the information obtained
at previous times to make propagation to longer times effectively
easier. Originally developed for the hybridization expansion in
the Anderson impurity model,68 inchworm techniques have since
also been applied to two different expansions in the spin–boson
model69–71 and to spin chains.44 Their formulation within the inter-
action expansion has been applied to fermionic impurity models and
lattice models.72 The correctness and computational scaling of the
method have been assessed mathematically,73–75 supported by ongo-
ing algorithmic advancements.76–79 Inchworm algorithms have been
implemented on the Matsubara contour, the two-branch Keldysh
contour, and the three-branch Konstantinov–Perel’ contour. They
have been used to calculate observables such as Green’s functions
(GFs) and currents,80,81 as well as the full counting statistics of both
particle82,83 and energy84 transport. This facilitates the exploration
of nonequilibrium correlation effects, addressing phenomena such
as the voltage splitting of the Kondo resonance,85 nonequilibrium
full counting statistics in the Kondo regime,82,84,86 the influence
of a structured environment,82,84,86,87 and dynamical phases in the
spin–boson model.71

Furthermore, inchworm techniques have featured in studies
of extended systems based on DMFT. This includes a proof-of-
concept of a real-time equilibrium DMFT calculation,88 a study of
nonequilibrium switching between phases,89 an exploration of the
structure of the Kondo singlet out of equilibrium,90 studies of local-
ization dynamics in driven many-body systems,91,92 a description

of strongly correlated transport in nanostructures,87 simulations of
long-lived dynamics in photodoped Mott insulators,93 and a study
of the multi-orbital phases in a bilayer Hubbard model.94

Despite these successes, an inchworm approach to
nonequilibrium/real-time dynamics in multi-orbital systems
has so far been elusive. While not conceptually difficult, the
expected computational cost of a direct calculation using such an
algorithm with current implementations would require a prohibitive
amount of supercomputer-class resources, giving it relatively lim-
ited applicability. However, two breakthroughs—which have also
enabled several of the latest publications mentioned above—now
place this goal within reach. First, in Ref. 95, the inchworm method
was shown to perform well against the multi-orbital sign problem
in imaginary-time equilibrium problems. Second, in Ref. 96, an
inchworm method was introduced that can directly access the
equilibrium or nonequilibrium steady-state without the need for
expensive time propagation.

In this publication, we introduce a numerically exact inchworm
multi-orbital steady-state (InchMOSS) framework that is based on
a combination of the ideas in Refs. 95 and 96. We benchmark
the method against known data in two special but nontrivial lim-
its where analytical or established numerical methods can still be
applied, thereby validating the new framework.

The outline of this paper is as follows: We review the methodol-
ogy in Sec. II, where the multi-orbital Anderson model is introduced
in Sec. II A. In Sec. II B, we provide a comprehensive introduction to
the inchworm methodology, employing a pedagogical approach that
begins with the hybridization expansion and progressively derives
the formulation of the steady-state framework. The algorithmic
details and their implications are discussed in Sec. II C. We pro-
vide benchmarks for our multi-orbital inchworm implementation in
Sec. III, where we consider a multi-orbital system that can be decom-
posed into decoupled orbitals, allowing for a comparison with results
from single-orbital methods. Section IV summarizes our work and
provides an outlook.

II. METHODOLOGY
A. The model

We consider a quantum impurity model described by the
Hamiltonian

H = HS +HB +HSB, (1)

where HS is the Hamiltonian of the impurity system, which consists
of multiple interacting orbitals, and HB describes the noninteracting
bath. The impurity and the bath are coupled via HSB. For the scope
of this work, the impurity is described by a generalized multi-orbital
Anderson impurity model,

HS =⩀
iω

ϵiωd†
iωdiω +⩀

ijkl
ωω⌐

Uωω⌐
ijkl d†

iωd†
kω⌐dlω⌐djω. (2)

Here, d(†)iω are the creation/annihilation operators for an electron
of spin ω ∈ {↑, ↢} and i is the orbital index. The associated single-
particle energy is denoted by ϵiω . For brevity, we assume that the
single-particle part of the impurity Hamiltonian is diagonal in both
orbital and spin degrees of freedom, but this is not a requirement of
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our method. The Coulomb interaction between electrons of differ-
ent orbitals and different spins is encoded in the tensor Uωω⌐

ijkl . Unless
stated otherwise, we set h = kB = e = 1.

The bath, which can be used to describe an environment or
a set of leads coupled to the impurity, consists of noninteracting
fermionic orbitals,

HB =⩀
l
⩀
k∈l,ω

ϵkωc†kωckω. (3)

The bath orbitals can be partitioned into subsets l, each of which
may be characterized by independent thermodynamic parameters,
such as temperature or chemical potential. k then labels the orbitals
within bath l, with associated creation and annihilation operators
c(†)kω and single-particle energy ϵkω .

The coupling between the impurity and the bath is assumed to
be of the form

HSB =⩀
l
⩀

k∈l,ω,i
tkiωc†kωdiω +h.c., (4)

where tkiω is the scattering amplitude for an electron of spin ω in state
i on the impurity into state k in bath l. Given a system–bath coupling
in this form, the influence of the bath on the system can be subsumed
in the hybridization functions

ω<ijω(ϑ) =⩀
l
⊍ dϖ eiϖϑ ⌐ ϵlω

ij (ϖ) ⌐ flω(ϖ), (5)

ω>ijω(ϑ) =⩀
l
⊍ dϖ e⌐iϖϑ ⌐ ϵlω

ij (ϖ) ⌐ (1 − flω(ϖ)). (6)

Here, flω is the electronic population for spin ω in bath l, and
the bath is modeled by the coupling strength function ϵlω

ij (ϖ)= 2π⊍k ∈l tkiω t∗k jωϚ(ϖ − ϵkω). In most applications, the coupling
strength function or the hybridization function is used to define the
environment, describe an effective bath within embedding schemes,
such as DMFT,10,13,14 or account for the microscopic details from a
lattice surrounding the impurity.87

A common way to impose nonequilibrium conditions is via the
coupling of the impurity to baths with different occupation func-
tions flω . For example, a bias voltage is realized by coupling the
impurity to baths with different chemical potentials ϕlω , a thermal
gradient is realized by coupling the impurity to baths with differ-
ent temperatures Tlω , and an optically driven environment can be
realized by an appropriate nonequilibrium occupation function.93

B. Steady-state inchworm method
This section offers a pedagogical introduction to the steady-

state inchworm scheme introduced in this work, which is based on
the hybridization expansion.31 The latter is perturbative in the cou-
pling between the impurity and the bath. We begin by introducing
the main components of the standard inchworm methodology and
hybridization expansion, and then derive the corresponding steady-
state inchworm framework. We assume the reader to be familiar
with Keldysh technique.97–99

1. Restricted propagators
The central object of the method is the restricted atomic state

propagator,

↼↽
⇀(t) = TrB⌜⇁B⌜↽⌝e⌐iHt ⌝⇀⌝⌝. (7)

We also define a two-time restricted propagator spanning both
branches of the Keldysh contour,

ϑ↽⌐↽
⇀ (t⋊, t) = TrB⌝⇁B⌜⇀⌝eiHt⌐ ⌝↽⋊⌝⌜↽⌝e⌐iHt ⌝⇀⌝⌝, (8)

where t⋊ and t are times on different Keldysh branches. Here, TrB is
the trace over the bath degrees of freedom and ⇀ and ↽ are atomic
states in the Fock space of HS. In particular, ⇀ is the initial state
of the impurity (assuming a factorized initial condition between the
impurity and bath). ⇁B is the initial density matrix of the bath.

The two-branch restricted propagator ϑ↽⌐↽
⇀ (t⋊, t) is directly

related to single-time physical observables, such as the popula-
tion or the current flowing through the system (cf. Sec. II B 6).
The single-branch propagator is important for calculating two-time
observables, such as the GF, and serves as an auxiliary object for
calculating the two-branch restricted propagator (cf. Sec. II B 4). A
discussion of these propagators is given in Refs. 59 and 90.

2. Hybridization expansion and CTQMC
We introduce the methodology using the simplest object

to which it can be applied, the single-branch propagator ↼↽
⇀(t).

Expanding Eq. (7) in the impurity–bath coupling yields

↼↽
⇀(t) = ∞⩀

n=0
(−i)n⊍ t

0
dϑ1 . . .⊍ ϑn−1

0
dϑn

⋊ TrB⌜⇁B⌜↽⌝e⌐iH0tHSB(ϑ1) . . .HSB(ϑn)⌝⇀⌝⌝, (9)

where HSB(ϑ) = eiH0ϑHSBe⌐iH0ϑ for H0 = HS +HB. This HSB(ϑ) is the
impurity–bath coupling in the interaction picture with respect to
H0. Equation (9) is formally exact and sums up all orders n of the
hybridization expansion, whereby the contribution of every order is
given by an n-dimensional integral.

The integrands in Eq. (9) can be visualized by Feynman
diagrams, as illustrated in Fig. 1.

A Feynman diagram of order n contains n hybridization times
ϑi with i ∈ {1 . . .n}. As HSB is linear in the creation/annihilation
operators of the bath, particle conservation implies that each bath
operator ckω at time ϑi must be matched with its counterpart c†kω
at time ϑj (where i ≠ j) to produce a nonzero contribution. This is
represented by Feynman diagrams where all hybridization times are
paired up and connected by hybridization lines. Hence, only even
hybridization orders contribute. By using Wick’s theorem within the
noninteracting bath, all possibilities of connecting a set of hybridiza-
tion times can be expressed in terms of a determinant, enabling
inexpensive evaluation even at high orders. Nevertheless, individual
Feynman diagrams not only are valuable for compact visualization
of contributions to the hybridization expansion but also play an
important role when developing resummation schemes.

For our purposes, Feynman diagrams are composed of
thick lines representing “full” or “bold” propagators referring to
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FIG. 1. Feynman diagram representation of the hybridization expansion of the
single-branch restricted propagator ↼↽

⇀(t) according to Eq. (9). The figure shows
examples of Feynman diagrams up to order n = 4. The thick lines represent full
propagators, and the thin lines are bare propagators generated by HSB = 0. The
wiggly lines represent hybridization lines, which connect two hybridization events
at times ϑi . The text describes how specific Feynman diagram are evaluated.

↼↽
⇀(t), wiggly lines representing hybridizations, and thin lines

representing “bare” propagators. The latter are propagators
within the impurity subspace and, in the limit HSB → 0, given
by ⌜↽⌝e⌐iHSt ⌝⇀⌝; these are calculated by exact diagonalization of
HS. A Feynman diagram of order 2n contains 2n hybridization
times ϑi. At each such time, a vertex is present, containing a
term from HSB with one of n creation operators d†

jiωi
, where

i is in a subset comprising half the index values, or one of n
annihilation operators d jiωi with i in the complementary subset of
indices. Any particular Feynman diagram can then be evaluated
as the product of a propagator matrix in the impurity subspace, a
hybridization contribution, and a sign. The propagator matrix is
a time-ordered product of all propagators between hybridization
times and the creation and annihilation operators and is given
by ⊍↪1...↪2n

⌜↽⌝e⌐iHS(t⌐ϑ1)⌝↪1⌝ ⌐ ⌜↪1⌝d†1
j1ω1
⌝↪2⌝ ⌐ ⌜↪2⌝e⌐iHS(ϑ1⌐ϑ2)⌝↪3⌝ ⌐ ⌐ ⌐ ⌐ ⌐

⌜↪2n⌐2⌝e⌐iHS(ϑn−1⌐ϑn)⌝↪2n⌐1⌝ ⌐ ⌜↪2n⌐1⌝d†n
jnωn
⌝↪2n⌝ ⌐ ⌜↪2n⌝e⌐iHSϑn ⌝⇀⌝. The

hybridization part is the product of all hybridizations connecting
pairs of hybridization times (ϑi, ϑj) with ϑi > ϑj, ϖ(ϑi ,ϑ j)ω≶ijω(ϑi − ϑ j),
whereby the lesser(greater) component is chosen when an anni-
hilation(creation) operator acts at time ϑi. The sign is given by−1ncross , where ncross is the number of times that the hybridization
lines intersect within the Feynman diagram. These rules are then
generalized in Secs. II B 3 and II B 4, where bare propagators
between hybridization times are replaced by their bold counterparts.

Equation (9) can be evaluated using CTQMC techniques.
A Metropolis Monte Carlo algorithm is used to add or remove
hybridization vertices such that all relevant orders are sampled,
allowing for efficient evaluation of the hybridization expansion in
a wide variety of models and physical regimes (see Ref. 34 and
references therein for details). In real-time simulations, however,
this is only feasible for short times t. The oscillatory nature of the
integrands in Eq. (9) result in a dynamical sign problem, causing
the computational cost to grow exponentially with t. Apart from
the dynamical sign problem, multi-orbital impurities are prone to
multi-orbital sign problems. This sign problem, which is already
present in equilibrium formulations on the imaginary time axis,
arises when the impurity orbitals are coupled by the baths, i.e., when

the hybridization functions are off-diagonal,44,45 which is due to ω≶ijω
not being necessarily strictly positive for i ≠ j.

3. Basics of the inchworm framework
The inchworm expansion is an efficient way to apply resum-

mation to diagrammatic quantum Monte Carlo calculations and
can be used to suppress both the dynamical sign problem68–70,73,74,80

and the multi-orbital sign problem.72,79,94,95 Instead of calculating
the restricted propagator for a given time t directly, the inchworm
approach assumes that the restricted propagator is known up to a
time T < t, and from there, it constructs a more efficient expansion
for the propagator ↼↽

⇀(t), whereby tinch = t − T is referred to as the
inchworm time or the length of an inchworm step. This expansion
leverages all the information contained in the restricted propagator
at shorter times. In mathematical terms, the inchworm methodol-
ogy provides a map F↼

inch : {↼↩
ϕ(ϑ) ⌝ ϑ ≤ T; ∀ϕ, ↩}→ ↼↽

⇀(t), whereby
F↼

inch formalizes which previous propagators are necessary for cal-
culating a propagator at a specific time. The mapping is con-
structed from the hybridization expansion, but using fully dressed
propagators within the temporal region where they are available.

In Appendix A 1, we derive the lowest order expressions for
the restricted propagator from the hybridization expansion, where
Eq. (A3) represents the lowest order map F↼

inch as ↼↽
⇀(t) is calculated

from ↼↩
ϕ(ϑ) for ϑ ≤ T. While Eq. (A3) explicitly provides the low-

est two orders of the inchworm expansion, higher-order expressions
require specific consideration pertaining to the connections between
hybridization times, which leads to lengthy equations. Feynman
diagrams provide a more compact way to visualize terms in the inch-
worm expansion. This is exemplified in Fig. 2, where the first two
lines on the right correspond to the terms given in Eq. (A3). In an
inchworm step, which aims to extend the propagator from times up
to T to longer times t = T + tinch, any Feynman diagram within this
expansion must obey a simple rule: every set of hybridization lines
connected by crossing must contain at least one hybridization event
in the interval (0, T) and at least one in the interval (T, t). Diagrams
obeying this restriction are referred to as “inchworm proper.”68–70

Conversely, any cluster of hybridization lines exclusively located at
times either larger or smaller than T is already accounted for by
the restricted propagators at shorter time intervals and must, there-
fore, be excluded from the inchworm expansion. An example of an
improper diagram is given in the third line of Fig. 2.

Because each diagram in the inchworm expansion contains
an infinite set of bare diagrams, the expansion converges signifi-
cantly more rapidly than its bare counterpart. However, this effi-
ciency comes with increased computational complexity due to the
need to explicitly sum only inchworm proper diagrams. Unlike the
bare hybridization expansion, inchworm proper diagrams cannot
be summed by a determinant. They can be individually enumer-
ated using Heap’s algorithm to sum over permutations, but more
efficient algorithms have been proposed.76–78 This also leads us to
the definition of the inchworm order, which represents the highest
order of the diagrams that are included in an inchworm calcula-
tion. Since the inchworm expansion is a resummation scheme, any
contribution at a finite order in the inchworm expansion inherently
includes contributions from the bare hybridization expansion up to
infinite order. To clarify this distinction, we differentiate between
the hybridization order and the inchworm order in the following.

J. Chem. Phys. 161, 094104 (2024); doi: 10.1063/5.0226253 161, 094104-4

Published under an exclusive license by AIP Publishing

 21 July 2025 13:55:26

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 2. Feynman diagram representation of the inchworm expansion of the single-
branch restricted propagator ↼↽

⇀(t) as given in Eq. (A3). The blue arrow indicates
the time T . The red hybridization lines are already included in propagators for
shorter times—the corresponding diagrams are therefore not inchworm proper and
hence not part of the inchworm expansion.

Another important aspect of the algorithm involves storing and
evaluating the restricted propagator as a function of time. While in
the bare hybridization expansion, the bare restricted propagator can
be easily obtained for any time t, the inchworm expansion relies on
propagators evaluated at previous times. In practice, an inchworm
calculation proceeds as follows:

(i) Compute the propagator up to time T. Although inchworm
calculations can start at T = 0, propagators for short times are
typically computed using the bare hybridization expansion,
when feasible.

(ii) Compute the propagator for time t = T + tinch, whereby tinch
is a numerical parameter.

(iii) Update T = t, and then, continue with step (ii) until the
maximal time t = tmax is reached.

This iterative process, which gradually advances time until the max-
imal time tmax is reached, inspired the name of the algorithm and
results in a linear computational scaling with the number of time
steps taken to reach tmax. Notice that the parameter tinch determines
various aspects of the calculation, including the convergence of the
expansion with respect to the order of inchworm diagrams to be
considered and the number of steps necessary to reach tmax. In prin-
ciple, an inchworm calculation can provide accurate results for any
tinch; however, the inchworm order required to achieve this accu-
racy increases with the inchworm step size, impacting the numerical
cost of the calculation. We note that propagators are stored on the
resulting time grid and evaluated by interpolation (linear in current
implementations).

After introducing the fundamentals of the inchworm method,
we comment on its similarities and differences with other common
approaches based on similar principles. While the inchworm algo-
rithm employs a time-stepping scheme, it is not derived from an
expression for the time derivative that is then used for propagation,
as is the case for the Kadanoff–Baym framework.98,100,101 Methods
based on time derivatives are typically accurate only for infinitesi-
mal time steps, whereas the inchworm method maintains accuracy
over a wide range of inchworm step sizes, significantly enhancing
its stability and numerical efficiency. However, larger inchworm
steps usually require higher orders for converged results. Moreover,

the inchworm method is a resummation scheme. However, in con-
trast to self-energy-based resummation schemes, which often rely
on high-order self-consistent relations between propagators and the
self-energy and which can be challenging to treat numerically, the
inchworm method utilizes propagators for previous times. As such,
each inchworm step serves as a small correction to propagators at
shorter times, thereby improving its numerical feasibility.

4. Inchworm propagation on the Keldysh contour
Having introduced the inchworm approach for the restricted

propagator on a single time branch, we extend the inchworm
methodology to the restricted propagator on two branches of the
Keldysh contour as defined in Eq. (8). The overall inchworm frame-
work is identical for single- and two-branch restricted propagators,
and the inchworm methodology can, in principle, be formulated
using contour times only such that both propagators are treated on
the same footing. Here, we distinguish between single-branch and
two-branch restricted propagators for convenience, a distinction
that has been discussed in various contexts related to the dynam-
ics of open quantum systems.102–108 This distinction leads to two
subtle yet important differences: first, ϑ↽⌐↽

⇀ (t⋊, t) has two time argu-
ments and an inchworm expansion that extends the propagator from
shorter to longer times can be formulated for either time argu-
ment; essentially, one can “inch” both forward and backward in
time. Second, as the two-branch restricted propagators incorporates
both branches of the Keldysh contour, the inchworm resummation
scheme depends not only on information from restricted prop-
agators spanning both contours but also on those confined to a
single contour. Accordingly, the map for the two-branch propagator
is Fϑ

inch : {ϑ↩⌐↩
ϕ (ϑ⋊, ϑ); ↼↩

ϕ(ϑ) ⌝ ϑ ≤ T; ϑ⋊ ≤ t⋊;∀ϕ, ↩, ↩⋊}→ ϑ↽⌐↽
⇀ (t⋊, t),

whereby Fϑ
inch formalizes which previous propagators are necessary

for calculating a two-branch propagator for specific time values.
In Appendix A 2, we derive the lowest order expressions for

ϑ↽⌐↽
⇀ (t⋊, t) for the second time argument using the hybridization

expansion, where Eq. (A8) represents the map Fϑ
inch to the lowest

order as ϑ↽⌐↽
⇀ (t⋊, t) is calculated from ϑ↩⌐↩

ϕ (ϑ⋊, ϑ) with ϑ ≤ T and
ϑ⋊ ≤ t⋊ and from ↼↩

ϕ(ϑ) with ϑ ≤ T. Equation (A8) explicitly provides
the lowest two orders of the inchworm expansion. An equivalent
formulation can be derived for the first time argument. As for the
single-branch case, higher-order expressions become lengthy due
to the combinatorics of hybridization lines, and Feynman diagrams
offer a more efficient representation of the inchworm scheme, as
exemplified in Fig. 3. The first three lines on the right of Fig. 3
correspond to the terms given in Eq. (A8). Notice that the sec-
ond order includes two contributions, reflecting the possibility of
the two hybridization times being located on the same or differ-
ent Keldysh branches. Despite this distinction and the incorporation
of both single-branch and two-branch restricted propagators into
the expression, the concept of inchworm proper Feynman diagrams
remains unchanged.

Calculating the two-branch propagator using the inchworm
framework involves incrementally advancing the two time argu-
ments by a time step of size tinch until the desired final times are
reached. Consequently, the numerical cost of this algorithm scales
at least quadratically with the number of time steps necessary to
reach the final time.68,69 This type of inchworm method is therefore
predominantly limited to intermediate timescales.
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FIG. 3. Feynman diagram representation of the inchworm expansion of the two-
branch restricted propagator ϑ↽⌐↽

⇀ (t⌐, t) as given in Eq. (A8). The blue arrow
indicates the time T , and only inchworm proper diagrams are shown. The thick line
represents full single-branch propagators, and the gray shaded areas that connect
the two branches indicate full two-branch propagators. The wiggly lines represent
hybridizations.

5. Formulation directly in the steady-state
Using the inchworm framework, we can compute steady-state

properties without the need for propagation, as recently proposed
in Ref. 96. Here, we extend this approach to impurity systems with
multiple interacting orbitals and general hybridizations. In the naive
implementation used for this work, this extension does not alter the
method’s scaling behavior beyond the increased numerical effort
associated with additional orbitals. The steady-state formulation
relies on two key assumptions:

1. The steady-state is independent of the impurity’s initial
condition ⇀.

2. The steady-state two-branch propagator only depends on the
relative time ωt = t⋊ − t rather than the explicit times t⋊ and t.

These assumptions motivate an ansatz for the two-branch propaga-
tor in the steady-state, ϑ↽⌐↽

SS (ωt). Replacing ϑ↽⌐↽
⇀ (t⋊, t)→ ϑ↽⌐↽

SS (ωt)
in the map Fϑ

inch derived in Sec. II B 4 yields a map that self-
consistently relates the steady-state propagator to itself, Fϑ

inch :
{ϑϕ↩

SS(ωϑ); ↼↩
ϕ(ϑ) ⌝∀ϑ, ωϑ;∀ϕ, ↩}→ ϑ↽⌐↽

SS (ωt). As the steady-state
propagator only depends on the relative time, the notion of
“previous times” is no longer applicable. Thus, the steady-state
propagator must be known for any given ωt to construct the map
Fϑ

inch. All other elements of the inchworm framework, such as the
definition of inchworm proper diagrams, remain unaffected by the
steady-state formulation.

Since Fϑ
inch maps ϑ↽⌐↽

SS (ωt) self-consistently onto itself, the
steady-state propagator can be calculated directly without the
need for propagation. Conceptually, the self-consistency condition
enables us to assert that within the steady-state, advancing one inch-
worm step forward in time does not alter the steady-state restricted
propagator. Algorithmically, we start from an initial guess for the
steady-state restricted propagator, which is iteratively improved
using the map Fϑ

inch until convergence is achieved. This approach
is particularly advantageous over propagation for systems exhibit-
ing long-lived transient behavior. In addition, since the steady-state
restricted propagator only depends on the relative time rather than
two explicit times, the steady-state approach scales linearly with

the coherence time tmax, which we define as the numerical cutoff
time at which the steady-state propagator can effectively be assumed
to be zero (ϑ↽⌐↽

SS (ωt) ≈ 0 for ωt > tmax). In that sense, tmax deter-
mines the “memory scale” of the calculation; an investigation of
its influence on the outcome can be found in the supplementary
material of Ref. 96. We note that because the self-consistency con-
dition is homogeneous, any self-consistent solution multiplied by
a constant also constitutes a solution to the self-consistency cycle.
Therefore, we enforce an additional physical normalization condi-
tion⊍↽ ϑ↽↽

SS(0) = 1 at each iteration. This is equivalent to forcing the
trace of the density matrix to 1, thereby imposing the conservation
of probability.

6. Green’s functions and other observables of interest
We wrap up the theory section by showing how certain com-

monly used physical observables can be evaluated given knowledge
of the restricted propagators.

An observable directly related to the two-time restricted prop-
agator is the probability for finding the impurity in state ↽ at time t,
which is given by

p↽(t) = ϑ↽↽
⇀ (t, t). (10)

Similarly, any observable within the system subspace, given that the
impurity began in state ⇀ at time t = 0, can be expressed as

⌞ÔS(t)⌞ =⩀
↽↽⌐

ϑ↽⌐↽
⇀ (t, t)⌞↽⋊⌞ÔS⌝↽⌝. (11)

In both cases, the steady-state response, which is obtained at the
limit t →⋉, is given by replacing ϑ↽⌐↽

⇀ (t, t) with ϑ↽⌐↽
SS (0).

The main observables of this work, however, are the lesser,
greater, and retarded GFs, defined in the steady-state as97,98

G<iω jω⌐(t − t⋊) = i⌜d†
jω⌐(t⋊)diω(t)⌝SS, (12)

G>iω jω⌐(t − t⋊) = −i⌜diω(t)d†
jω⌐(t⋊)⌝SS, (13)

Gr
iω jω⌐(t) = Θ(t)⌞G>iω jω⌐(t) −G<iω jω⌐(t)⌞, (14)

where Θ is the Heaviside step-function and ⌜. . .⌝SS denotes the
expectation value in the steady-state. These expressions for the GFs
can be used as the starting point for the hybridization expansion.
This procedure makes it possible to express them in terms of single-
and two-branch restricted propagators. This is demonstrated in
Appendix A 3, where Eq. (A11) is the expression for the lowest two
orders for the greater GF in terms of restricted propagators. The
corresponding Feynman diagram representation is given in Fig. 4.

Expressing the GFs in terms of restricted propagators lever-
ages the resummation scheme employed in the inchworm expansion
itself. Consequently, the expressions for the GF closely resemble
those for the two-branch restricted propagator [compare Eqs. (A8)
and (A11) and their respective Feynman diagram representations
in Figs. 3 and 4]. In particular, associating the time t⋊ in the GF
with time T in the inchworm framework and incorporating the
respective fermionic creation and annihilation operators at t⋊ and
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FIG. 4. Feynman diagram representation for calculating the greater GF
G>iω jω⌐(t, t⌐) from the single- and two-branch restricted propagators as given in
Eq. (A11). Notice the similarity to the expansion of the two-time restricted propa-
gator in Fig. 3, where for the GF, the time T is replaced by the time t⌐. As before,
the thick lines are full single-branch propagators, the gray shaded areas are full
two-branch propagators, and the wiggly lines represent hybridizations.

t, GF calculations are equivalent to those of a two-branch restricted
propagator. This similarity arises from the shared underlying resum-
mation structure, and while GF calculations can be expressed using
inchworm proper diagrammatics, they do not employ an inching or
time-stepping scheme for computation.

Note that time-dependent and steady-state calculations only
differ in the usage of the two-branch restricted propagator or its
steady-state counterpart. In the steady-state scenario, GFs in the
energy representation are derived from their time-dependent coun-
terparts using the relation G≶⌜riω jω⌐(ϖ) = ∫G≶⌜riω jω⌐(t − t⋊)eiϖ(t⌐t⌐)dϖ. The
spectral function is then defined as Aiω jω⌐(ϖ) = − 1

π Im{Gr
iω jω⌐(ϖ)}.

C. Algorithm and scaling analysis
After outlining the theory of the inchworm methodology and

its formulation in the steady-state, we describe how an InchMOSS
calculation is structured while commenting on numerical scaling
and implementational aspects.

1. Phases of a steady-state calculation
Our steady-state inchworm calculation consists of three con-

secutive phases:

1. Calculation of the single-branch restricted propagator ↼↽
⇀(t):

Using the map F↼
inch, we compute ↼↽

⇀(t) employing an inch-
worm propagation scheme. Here, the time values t are incre-
mentally increased by a small time step of length tinch until
reaching the final time tmax. The scaling is linear with respect
to tmax for fixed tinch.

2. Calculation of the two-branch restricted propagator in the
steady-state ϑ↽⌐↽

SS (ωt): Using the map Fϑ
inch, we compute

ϑ↽⌐↽
SS (ωt), which requires knowledge of ↼↽

⇀(t) from the pre-
vious phase. While the map Fϑ

inch was derived from the
inchworm scheme, the computation of ϑ↽⌐↽

SS (ωt) is based on
iteration until self-consistency rather than inchworm propa-
gation. The scaling is linear with the number of time-points
used to represent ϑ↽⌐↽

SS (ωt), implying a linear scaling with
tmax. Furthermore, this phase scales linearly with the number

of iterations, typically ranging from 100 to 200 for a sin-
gle orbital, with a tendency to increase with the number of
orbitals.

3. Calculation of the GFs G≶⌜riω jω⌐(ωt): This phase relies on the

knowledge of ↼↽
⇀(t) and ϑ↽⌐↽

SS (ωt). While inchworm proper
diagrammatics is leveraged, the calculation of the GFs does
not entail inchworm propagation. The scaling is linear with
the number of time-points used to represent the GFs.

2. Details on the implementation
Our methodology requires the computation of high-

dimensional integrals. Despite recent advancements in
techniques using tensor approximations109,110 or low-discrepancy
sequences,79,111,112 which have shown improved numerical effi-
ciency, we use a Metropolis Monte Carlo algorithm113–115 to
calculate these integrals. This algorithm converges to the correct
result with a rate of 1⌟⌟N, where N is the number of Monte Carlo
samples. The relatively slow convergence of the Metropolis method
is compensated for by flexible importance sampling and a high level
of reliability as long as ergodicity is achieved.

To enable a general multi-orbital description, our approach
represents all restricted propagators as matrices in the basis of
the impurity states. We employ the ⌟ ⌐ ⌟1 matrix norm to deter-
mine the importance sampling weights within the Metropolis Monte
Carlo algorithm. Alternative matrix norms also prove efficient, with
the optimal norm depending on the system under consideration.
Employing a matrix representation reduces concatenating restricted
propagators and calculating bare propagators to matrix multipli-
cations and exponential function computations of matrices. In the
most general scenario, this scales as O(n3

states), where nstates = 2norb

represents the dimension of the impurity Fock space and norb is the
number of spin-orbitals of the impurity. Efficiency can be enhanced
by exploiting system symmetries or confining the analysis to the
single-orbital case, where various simplifications, such as the utiliza-
tion of a “segment picture,” become possible.31,34 The extension of
these concepts to multi-orbital inchworm remains a topic for future
research.

We investigated various grids for representing restricted propa-
gators. While employing Chebyshev nodes can offer advantages and
reduce numerical costs in specific cases, we observed that an equidis-
tant grid generally yields the most reliable results. In addition, we
explored convergence acceleration techniques, such as DIIS,116–118

for the iterative calculation of the steady-state two-branch propaga-
tor but did not observe any consistent improvement in convergence
behavior. Finally, we remark that we use the inclusion–exclusion
algorithm to compute inchworm proper diagrams, which scales as
O(↪n), with ↪ ≈ 1.33 and n being the inchworm order.76

Finally, we address the limitations of the InchMOSS methodol-
ogy. Although designed for multi-orbital impurities, the method’s
reliance on representing restricted propagators within the impu-
rity Fock space makes it challenging to describe impurities with
many orbitals. In addition, the numerical cost increases with the
inchworm order, which can be prohibitive for systems with strong
impurity–bath coupling. Systems with long coherence times also
present difficulties, and the number of iterations required for self-
consistently calculating two-branch propagators in the steady-state,
as well as its dependence on system parameters still, needs to be
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explored. In particular, understanding the impact of temperature
on the numerical cost and the iterations required is crucial, includ-
ing assessing whether the temperature independence observed in
real-time calculations extends to the steady-state framework.

III. RESULTS
In this section, we showcase the feasibility of the InchMOSS

method to accurately describe multi-orbital quantum impurity mod-
els. Thereby, we distinguish between cases where the orbitals effec-
tively decouple and a description in terms of single orbital methods
is, in principle, straightforward, and cases where the orbitals of the
impurity are coupled via interactions on the impurity itself and via
the coupling to the baths.

A. Interacting and non-interacting physics
in decoupled orbitals

With our first benchmark, we establish that the InchMOSS for-
malism (i) is consistent with the previous single-orbital framework
from Ref. 96, (ii) is capable of reproducing analytic results as well as
numerical results from other methods on the same footing, and (iii)
recovers the symmetries in multi-orbital systems. Moreover, we use
this benchmark to showcase the connection between convergence
behavior with respect to inchworm order and the number of orbitals.

We consider the spinfull two-orbital Anderson impurity model,
described by the Hamiltonian

HS = ϵ1⩀
ω

n1ω − U
2⩀ω n2ω +Un2↑n2↢. (15)

The first orbital i = 1 is noninteracting, and without loss of gen-
erality, we set ϵ1 = 0. The second orbital i = 2 is interacting and
particle-hole symmetric, with U = 8v. Our unit of energy is v,
which is related to the impurity–bath coupling through the coupling
strength function ϵij(ϖ) = Ϛij(v2Ϛi1 + 0.5 ⌐ v2Ϛi2)D(ϖ), where D(ϖ)
= 1

v ⌐ ⌟(1 + e⌐↩(ϖ⌐ϖc))(1 + e⌐↩(ϖ+ϖc))⌟⌐1
describes a wide band with

a smooth cutoff. We set ↩ = 10⌟v and ϖc = 25v. As ϵij(ϖ) ∼ Ϛij is
diagonal in the orbital degree of freedom, the two orbitals are effec-
tively decoupled and can, in principle, be studied independently of
each other. We will exploit this fact to compare results from the
InchMOSS scheme to results from previous formulations that were
limited to single orbitals. The system is illustrated at the top of Fig. 5.
For this benchmark, we consider the system at equilibrium, with
inverse temperature ↽ = 0.1⌟v.

The bottom panel of Fig. 5 shows the retarded GF of the
first orbital (top panels) and the second orbital (bottom pan-
els) for different hybridization orders. The left panels showcase
results obtained by treating the two orbitals separately, exploiting
the fact that they decouple. Consequently, these results reflect a
single-orbital perspective, illustrating the extent of previous method-
ological approaches.96 The right panels show the results from the
multi-orbital scheme, which treats both orbitals in the system simul-
taneously (see the yellow dashed line in the top panel of Fig. 5) and
is agnostic to the fact that the two orbitals decouple. As orbital 1
is noninteracting, it is analytically solvable;97,119 its analytic solution
is shown as a red dashed line in each of the two top panels at the
bottom of Fig. 5. For orbital two, which is interacting, there is no

FIG. 5. First benchmark for a two-orbital system. Top: sketch of the system that
can be decomposed into two decoupled orbitals. The blue circles depict the impu-
rity orbitals, the gray regions represent the leads, and the red arrows indicate the
presence of impurity–lead hybridization. Bottom: convergence of the retarded GF
with inchworm order n for the first orbital (top panels) and the second orbital (bot-
tom panels). Results from the separate solution of the two single-orbital problems
are presented in the left panels, and results from the multi-orbital implementation
treating both orbitals simultaneously are presented in the right panels. The system
parameters are ϵ1 = 0 and U = ⌐2ϵ2 = 8v. The leads are described in the wide-
band limit with a smooth cutoff with maximum coupling strength ϵ11 = 2ϵ22 = v2.
The inverse temperature is ↽ = 0.1⌜v. The calculations were performed using an
inchworm step-size of tinch = 0.02⌜v. The reference in each case is given by a red
dashed line. An analytic result is used for orbital one, and the converged numerical
result from the single-orbital calculation (n = 12 case in the left bottom panel) is
used as the reference for the multi-orbital treatment of orbital two (the right bottom
panel).

analytic result available. Here, we use the converged and numeri-
cally exact result from the single-orbital treatment (lower left panel)
as the reference for the multi-orbital framework (red dashed line in
lower right panel).

The bottom panel of Fig. 5 shows how the retarded GF con-
verges to its respective reference with increasing inchworm order,
for both the single-orbital and the multi-orbital treatment. In par-
ticular, the multi-orbital treatment recovers both the analytical
reference for orbital 1 and the numerical reference for orbital 2
simultaneously, without taking advantage of the fact that the two
orbitals are decoupled. The convergence behavior with respect to
the inchworm order, however, is different for the separated single-
orbital treatment and the multi-orbital treatment. While for the
single-orbital treatment, the results converge at inchworm order
n ≈ 6 for orbital one and order n ≈ 2 for orbital two, the results from
the multi-orbital framework converge at inchworm order n ≈ 12
for both orbitals. This difference in convergence can be attributed
to the fact that we limit the total number of hybridization lines
per inchworm diagram to n, rather than limiting the number of
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hybridization lines per orbital to n. The two-orbital expansion is
therefore different at finite order and contains fewer contributions.
The work on the imaginary time multi-orbital algorithm95 showed
that this can be fully rectified by setting a maximum number of
hybridizations per orbital as a numerical parameter instead, but this
requires implementing fast diagram summations that take advan-
tage of the block structure.76 This optimization has not yet been
introduced into the steady-state framework.

B. Mixing of orbitals through interactions
and hybridizations

With our second benchmark, we establish the applicability
of our methodology to general systems with intricate interactions
between different orbitals and off-diagonal couplings to the environ-
ment. To this end, we consider a more general spinfull two-orbital
impurity model,

HS = ϵ0⩀
iω

niω + ↪⩀
ω
(d†

1ωd2ω + d†
2ωd1ω)

+U⩀
ij

ni↑nj↢ +V⩀
iω

niω(d†
1ωd2ω + d†

2ωd1ω)
+W⩀

ω
d†

1ωd1ωd†
2ωd2ω + ↪⋊(d†

1↑d†
1↢d2↑d2↢ + h.c.). (16)

Here, ϵ0 is the single-particle energy and U is the Coulomb repul-
sion between electrons in different orbitals. ↪ is the bare hopping
between the two orbitals, V is a population mediated hopping
between the two orbitals, and ↪⋊ is the pair-hopping between
the two orbitals. The spin-flip energy is W. As in the previous
benchmark, we model the leads in the wide band with a smooth
cutoff, D(ϖ) = 1

v ⌐ ⌟(1 + e⌐↩(ϖ⌐ϖc))(1 + e⌐↩(ϖ+ϖc))⌟⌐1
, with ↩ = 10⌟v

and ϖc = 25v. The coupling strength function is chosen as ϵij(ϖ)= ⌞Ϛij3v2 + (1 − Ϛij)v2⌞D(ϖ), where v is our unit of energy. An illus-
tration of the system is shown at the top of Fig. 6, where we consider
the environment to consist of two leads, for consistency with the
setup of the previous benchmark.

The system considered for this benchmark has different mech-
anisms that intertwine the two orbitals, either through interaction
terms in the impurity as defined Eq. (16) or via the off-diagonal
coupling to the leads. In order to benchmark this general scenario,
we consider a high-symmetry case, which can be numerically diago-
nalized into two decoupled single-orbital problems. These can then
be solved individually with the single-orbital steady-state inchworm
method, providing a numerically exact reference value; notice that
this is also the reason why we consider several complex interactions
simultaneously rather than focusing on the effect of individual inter-
action terms. In particular, we consider the case that all interaction
energies in the impurity are identical up to a sign, with U = ↪ = ↪⋊= 2v and ϵ = V =W = −2v. As before, the inverse temperature is
↽ = 0.1⌟v.

The bottom panel of Fig. 6 shows the retarded GF (left panels)
and the associated spectral functions (right panels) for the general
two-orbital impurity system. Due to the general setup, the GF and
the spectral function not only have non-zero diagonal elements (top
and bottom panels) associated with the two orbitals but have also
non-zero off-diagonal elements (middle panels). We observe that
the GF and the spectral function converge to the correct result with

FIG. 6. Second benchmark for a two-orbital system. Top: sketch of the system. For
high symmetry cases, this system can be decomposed into two decoupled orbitals.
Bottom: convergence of the retarded GF (left) and the spectral function (right) with
inchworm order n. The inverse temperature is ↽ = 0.1⌜v, the single-particle ener-
gies are ϵ0 = ⌐↪ = ⌐2v, and the two-particle interaction energies are U = ⌐W= ⌐V = ↪⌐ = 2v. The leads are described in the wide-band limit with a smooth
cutoff with maximum coupling strength ϵ11 = ϵ22 = 3v2

4 and off-diagonal coupling

strength ϵ12 = ϵ21 = v2

4 . The calculations were performed using an inchworm
step-size of tinch = 0.02⌜v.

increasing inchworm order, whereby accurate results are obtained at
order n ≈ 10. Note that the data presented here not only demonstrate
that our methodology effectively treats general interacting multi-
orbital systems but also represent the first application of a real-time
inchworm scheme to multi-orbital impurity systems. Moreover, this
opens up the possibility to explicitly investigate the impact of spin-
flip and pair hopping terms on the impurity system, representing an
interesting avenue for future research.

IV. CONCLUSION
In this work, we have developed a numerically exact CTQMC

method for accurately characterizing quantum impurity models
with multiple orbitals in the steady-state, both in and out of equi-
librium. The method, derived from the inchworm approach to
quantum impurity models and based on the hybridization expan-
sion, can account for arbitrary interactions between orbitals and
general couplings between the impurity and its environment. Con-
ceptually, the approach leverages the inchworm scheme’s capabil-
ity to overcome the multi-orbital sign problem,95 a hallmark of
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general impurity–environment couplings, and exploits the time-
translational invariance of the steady-state to directly compute
steady-state properties without propagation.96 We benchmarked the
method against Anderson impurity models with two interacting
spinfull orbitals, recovering analytical limits and results from pre-
vious methods. In addition, we assessed the numerical cost and
its dependence on the number of impurity orbitals required for
obtaining converged results.

The method presented in this work not only enabled the first
account of multi-orbital data obtained by a real-time inchworm
scheme but also lays the groundwork for the numerically exact
treatment of a broad range of challenges. Aside from transport sce-
narios, near term applications include quantum embedding theories,
such as multi-orbital DMFT. Such theories often involve effective
impurity models where hybridization with the environment mixes
orbitals, giving rise to multi-orbital sign problems. Calculations
with more than one or two orbitals remain rather prohibitively
expensive at this time, but a few additional algorithmic improve-
ments, as well as scaling up to leadership computing facilities, will
soon make even larger multi-orbital systems possible to address.
Exploring techniques such as fast update schemes for Monte Carlo
sampling, exploiting system symmetries, and using a block-structure
for the restricted propagator are promising ways to improve the
method’s scaling behavior and extend its applicability to systems
with more orbitals. Furthermore, recent work has explored promis-
ing alternatives to Monte Carlo integration that may significantly cut
down the computational expense, such as tensor cross-interpolation
schemes109,110 and quasi-Monte Carlo algorithms.79,111,112
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APPENDIX: LOWEST ORDER EXPRESSIONS
OF THE INCHWORM EXPANSION

In the following, we outline how the lowest order inchworm
expressions for the restricted propagators and the GF can be derived
starting from their respective definitions in Eqs. (7), (8), and (13).

1. Single-branch propagator
We start by considering the restricted propagator on a sin-

gle branch of the Keldysh-contour as defined in Eq. (7). In order
to derive explicit expressions for the inchworm expansion, which
is equivalent to constructing the map F↼

inch, we assume that the
restricted single-branch propagator is known up to time T < t. We
rewrite Eq. (9) by splitting all integrals into two parts at time T,

↼↽
⇀(t) = ∞⩀

n=0

n⩀
m=0
(−i)n

⋊⊍ t

T
dϑ1 . . .⊍ ϑm−1

T
dϑm ⋊⊍ T

0
dϑm+1 . . .⊍ ϑn−1

0
dϑn

⋊⩀
↪

TrB⌝⇁B⌜↽⌝e⌐iH0tHSB(ϑ1) . . .HSB(ϑm)eiH0T ⌝↪⌝
⋊ ⌜↪⌝e⌐iH0THSB(ϑm+1) . . .HSB(ϑn)⌝⇀⌝⌝. (A1)

This expression is formally equivalent to Eq. (9), whereby m enu-
merates the hybridization times ϑi > T. Reordering the individual
integrals and identifying restricted propagators at shorter times,
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Eq. (A1) can be rewritten as

↼↽
⇀(t) =⩀

↪
TrB⌝⇁B⌜↽⌝e⌐iH0(t⌐T)⌝↪⌝⌜↪⌝e⌐iH0T ⌝⇀⌝⌝

+⊍ t

T
dϑ1⊍ T

0
dϑ2⩀

↪
TrB⌝⇁B⌜↽⌝e⌐iH0tHSB(ϑ1)eiH0T ⌝↪⌝

⋊ ⌜↪⌝e⌐iH0THSB(ϑ2)⌝⇀⌝⌝ + ⌐ ⌐ ⌐ (A2)

=⩀
↪

↼↽
↪(t − T)↼↪

⇀(T) +⊍ t

T
dϑ1⊍ T

0
dϑ2 ⩀

↪↩1↩2↩3↩4

↼↽
↩1(t − ϑ1)↼↩2

↪

⋊ (ϑ1 − T) ⌐ Ϛ↩1↩3
↩2↩4(ϑ1, ϑ2) ⌐ ↼↪

↩3(T − ϑ2)↼⇀
↩4(ϑ2) + ⌐ ⌐ ⌐ , (A3)

where we have introduced the shorthand

Ϛ↩1↩3
↩2↩4(ϑ1, ϑ2) = TrB{⇁B⌜↩1⌝HSB(ϑ1)⌝↩2⌝⌜↩3⌝HSB(ϑ2)⌝↩4⌝}

=⩀
ijω
(ω<ijω(ϑ1 − ϑ2)⌜↩1⌝diω ⌝↩2⌝⌜↩3⌝d†

jω ⌝↩4⌝
+ ω>jiω(ϑ1 − ϑ2)⌜↩1⌝d†

iω ⌝↩2⌝⌜↩3⌝djω ⌝↩4⌝), (A4)

which encodes hybridizations between times larger and smaller than
T. Equation (A3) explicitly provides the first two lowest orders of the
inchworm expansion, which incorporate restricted propagators over
shorter time intervals. Consequently, even the second order inch-
worm expansion already accounts for a subset of the hybridization
expansion up to infinite order. Note that we identify restricted prop-
agators for time intervals both larger and smaller than T, which is
possible due to the time-translational invariance of the steady-state
that we are ultimately interested in. In time-dependent scenarios,
however, only restricted propagators at earlier time intervals are
known, constraining the identification of restricted propagators to
times strictly smaller than T. This scheme was proposed in the
original work Ref. 68.

2. Two-branch propagator
Next, we consider the restricted propagator spanning both

branches of the Keldysh-contour, which is defined in Eq. (8). As
the two-time propagator involves two time arguments, an inchworm
expansion can be formulated for each of the time arguments. Here,
we outline the derivation of the inchworm expansion for the sec-
ond time argument, noting that deriving equations for the first time
argument proceeds analogously.

To derive explicit expressions for the inchworm expansion for
the two-branch restricted propagator and establish the map Fϑ

inch,
we assume that ϑ↽⌐↽

⇀ (ϑ⋊, ϑ) is known for any ϑ⋊ ≤ t⋊ and ϑ ≤ T, i.e.,
the two-branch restricted propagator is only known up to time T < t
for the second time argument. Expanding the two-branch restricted
propagator in the impurity–bath coupling and splitting all integrals
into two parts at time T, we can rewrite the two-branch restricted
propagator as

ϑ↽⌐↽
⇀ (t⋊, t) = ∞⩀

n=0

n⩀
m=0

n⌐m⩀
k=0
(−i)m+k(i)n⌐m⌐k⊍ t

T
dϑ1 . . .⊍ ϑm−1

T
dϑm

⋊⊍ T

0
dϑm+1 . . .⊍ ϑm+k−1

0
dϑm+k⊍ t⌐

0
dϑm+k+1 . . .⊍ ϑn−1

0
dϑn

⋊⩀
↪

TrB⌝⇁B⌜⇀⌝eiHtHSB(ϑn) . . .HSB(ϑm+k+1)eiH0t⌐ ⌝↽⋊⌝
⋊ ⌜↽⌝e⌐iH0tHSB(ϑ1) . . .HSB(ϑm)eiH0T ⌝↪⌝
⋊ ⌜↪⌝e⌐iH0THSB(ϑm+1) . . .HSB(ϑm+k)⌝⇀⌝⌝. (A5)

This expression is formally exact, and as before, m enumerates
the hybridization times ϑi > T, while k specifies the number of
hybridization times on the two branches. Reordering the individ-
ual integrals and identifying singe-branch and two-branch restricted
propagators at shorter time intervals, Eq. (A5) can be rewritten as

ϑ↽⌐↽
⇀ (t⋊, t) =⩀

↪
TrB⌝⇁B⌜⇀⌝eiHt⌐ ⌝↽⋊⌝ ⋊ ⌜↽⌝e⌐iH0(t⌐T)⌝↪⌝⌜↪⌝e⌐iH0T ⌝⇀⌝⌝

+⊍ t

T
dϑ1⊍ T

0
dϑ2⩀

↪
TrB⌝⇁B⌜⇀⌝eiHt⌐ ⌝↽⋊⌝⌜↽⌝e⌐iH0tHSB

⋊ (ϑ1)eiH0T ⌝↪⌝ ⋊ ⌜↪⌝e⌐iH0THSB(ϑ2)⌝⇀⌝⌝
−⊍ t

T
dϑ1⊍ t⌐

0
dϑ2⩀

↪
TrB⌝⇁B⌜⇀⌝HSB(ϑ2)eiHt⌐ ⌝↽⋊⌝

⋊ ⌜↽⌝e⌐iH0tHSB(ϑ1)eiH0T ⌝↪⌝ ⋊ ⌜↪⌝e⌐iH0T ⌝⇀⌝⌝ + ⌐ ⌐ ⌐ (A6)

=⩀
↪

↼↽
↪(t − T)ϑ↽⌐↪

⇀ (t⋊, T) (A7)

+⊍ t

T
dϑ1⊍ T

0
dϑ2 ⩀

↪↩1↩2↩3↩4

↼↽
↩1(t − ϑ1)↼↩2

↪ (ϑ1 − T) ⌐ Ϛ↩1↩3
↩2↩4

⋊ (ϑ1, ϑ2) ⌐ ↼↪
↩3(T − ϑ2)ϑ↽⌐↩4

⇀ (t⋊, ϑ2)
−⊍ t

T
dϑ1⊍ t⌐

0
dϑ2 ⩀

↪↩1↩2↩3↩4

↼↽
↩1(t − ϑ1)↼↩2

↪

⋊ (ϑ1−T) ⌐Ϛ↩1↩3
↩2↩4(ϑ1, ϑ2) ⌐ϑ↩4↪

⇀ (ϑ2, T)↼↽⌐
↩3(ϑ2−t⋊) + ⌐ ⌐ ⌐ .

(A8)

Equation (A8) explicitly provides the first two lowest orders of the
inchworm expansion, which incorporate single-branch and two-
branch restricted propagators at previous time intervals. Again, this
means that the second order inchworm expansion already incor-
porates a subset of the hybridization expansions up to infinite
order. Note that Eq. (A8) contains two distinct terms at the second
order of the inchworm expansion. These terms distinguish between
hybridization events confined to a single Keldysh branch and those
bridging the two branches. The equations for higher-order con-
tributions are more involved, as it necessitates accounting for all
hybridization events and their positions on the different Keldysh
branches. The Feynman diagrams corresponding to the three terms
given Eq. (A8) are visualized in the first three lines on the right-hand
side of Fig. 3.

3. Green’s functions
Finally, we provide the expressions for the GF in terms of

the single- and two-branch restricted propagators. We explicitly
consider the greater GF as defined in Eq. (13), and note that the
derivation for the lesser GF is equivalent, but t and t⋊ as well as
fermionic creation and annihilation operators are exchanged.
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Starting from its definition, we rewrite the greater GF as

G>iω jω⌐(t, t⋊) = −i⌜diω(t)d†
jω⌐(t⋊)⌝ (A9)

=⩀
↽↪Ϛϵ

TrB⌜⇁B⌝⇀⌝eiHt ⌝↽⌝⌝↽⌝diω ⌝↪⌝⌝↪⌝e⌐iH(t⌐t⌐)⌝Ϛ⌝⌝
× ⌝Ϛ⌝d†

jω⌐ ⌝ϵ⌝⌝ϵ⌝e⌐iHt⌐ ⌝⇀⌝⌝ (A10)

=⩀
↽↪Ϛϵ
⌜↽⌝diω ⌝↪⌝↼↪

Ϛ(t − t⋊)⌜Ϛ⌝d†
jω⌐ ⌝ϵ⌝ϑ↽ϵ

⇀ (t, t⋊)
+⩀

↽↪Ϛϵ
⩀

↩1↩2↩3↩4

⊍ t

t⌐
dϑ1⊍ t⌐

0
dϑ2⌜↽⌝diω ⌝↪⌝↼↪

↩1(t − ϑ1)↼↩2
Ϛ

⋊ (ϑ1 − t⋊)⌜Ϛ⌝d†
jω⌐ ⌝ϵ⌝↼ϵ

↩3(t⋊ − ϑ2)ϑ↽↩4
⇀ (t, ϑ2)Ϛ↩1↩3

↩2↩4(ϑ1, ϑ2)
−⩀

↽↪Ϛϵ
⩀

↩1↩2↩3↩4

⊍ t

t⌐
dϑ1⊍ t

0
dϑ2⌜↽⌝diω ⌝↪⌝↼↪

↩1(t − ϑ1)↼↩2
Ϛ

⋊ (ϑ1 − t⋊)⌜Ϛ⌝d†
jω⌐ ⌝ϵ⌝ϑ↩4ϵ

⇀ (ϑ2, t⋊)↼↽
↩3(ϑ2 − t)Ϛ↩1↩3

↩2↩4(ϑ1, ϑ2)
+ ⌐ ⌐ ⌐ , (A11)

where we have inserted the time-dependence of the creation and
annihilation operators in Eq. (A10). This time-dependence is then
subjected to the hybridization expansion, i.e., the exponential func-
tions are expanded in the impurity–bath coupling. Regrouping the
individual terms of the hybridization expansion, the GF can be
expressed in terms of the restricted propagators of the inchworm
methodology; see Eq. (A11). As the restricted propagators already
contain contributions to the hybridization expansion up to arbitrary
order, even the first term in Eq. (A11), which is a product of a single-
branch and a two-branch restricted propagator, already accounts for
an infinite subset of all contributions to the hybridization expan-
sion. Moreover, we point out the similarity between the expressions
for the two-time restricted propagator and for the GF in Eqs. (A8)
and (A11). This allows us to evaluate higher-order contributions to
the GF using inchworm proper diagrammatics, as is visualized by
Feynman diagrams in Fig. 4.
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