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Scientific Significance Statement

Temporal variation of primary production and respiration in rivers (i.e., river metabolism) is a complex response to tempera-

ture, energy inputs (light, organic carbon), nutrient supply, flow, and stream network position. Despite recent proliferation of

long-term high-resolution data on river metabolism, generalizations about the structure and controls of temporal variation

remain limited. Here we asked: what are the dominant temporal patterns of river metabolism, and how are these patterns

affected by environmental factors? Our approach to answering these questions partitions metabolism time series into signals

of different frequencies, ranging from days to years, revealing a dominant mode of seasonal variation and self-similar, or frac-

tal, patterns across all other time scales. Our results strongly implicate the role of energy availability on controlling variation

in river metabolism.

Abstract

The temporal structures of gross primary production (GPP) and ecosystem respiration (ER) vary across time

scales in response to complex interactions among dynamic drivers (e.g., flow, light, temperature, organic matter

supply). To explore emergent patterns of river metabolic variation, we applied frequency-domain analysis to

multiyear records of metabolism across 87 US rivers. We observed a dominant annual periodicity in metabolic

variation and universal fractal scaling (i.e., power spectral density inversely correlated with frequency) at sub-

annual frequencies, suggesting these are foundational temporal structures of river metabolic regimes.

Frequency-domain patterns of river metabolism aligned best with drivers related to energy inputs: benthic light

for GPP and GPP for ER. Simple river metabolism models captured frequency-domain patterns when parameter-

ized with appropriate energy inputs but neglecting temperature controls. These results imply that temporal
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variation of energy supply imprints directly on metabolic signals and that frequency-domain patterns provide

benchmark properties to predict river metabolic regimes.

The metabolic regime concept describes the temporal struc-

ture of variation in gross primary production (GPP) and eco-

system respiration (ER) in flowing waters (Bernhardt

et al. 2018). Metabolic regimes arise from interactions among

biotic and abiotic drivers (e.g., organic matter [OM] loading,

light, flow, temperature), exploration of which has only

recently been possible from advances in dissolved oxygen

(DO) sensors and models translating DO signals into meta-

bolic fluxes (Appling et al. 2018a). Emergence of multiannual

river metabolism data (Appling et al. 2018b) has yielded

insights about productivity archetypes (Savoy et al. 2019),

state transitions (Diamond et al. 2022), emergent network

behaviors (Koenig et al. 2019), and the foundational impor-

tance of light and flow for predicting annual metabolic fluxes

(Bernhardt et al. 2022). While these synthesis datasets have

largely informed time-series statistics (e.g., timing and magni-

tude of seasonality, annual mean), they can also inform the

embedded temporal structure of metabolism and discern

drivers of this variation across time scales.

River metabolism describes solar energy capture by auto-

trophs and stored energy use by heterotrophs (Odum 1956),

suggesting temporal patterns of energy flows control meta-

bolic variation. Network position and flow control light inputs

and OM loading, yielding archetypal spatiotemporal patterns

of metabolism (Vannote et al. 1980). Because insolation is

influenced by canopy and water-column attenuation (Kirk

et al. 2021; Savoy and Harvey 2021), benthic light describes

energy available to river autotrophs (Julian et al. 2011). Simi-

larly, flow affects OM availability (Uehlinger 2006; Demars

2019), controlling temporal dynamics of energy availability for

respiration. A focus on energy controls recently prompted

development of river metabolism models containing latent bio-

mass effects to predict GPP (Blaszczak et al. 2023) and multiple

OM sources (flow, GPP, litter) to predict ER (Bertuzzo

et al. 2022). Despite these advances, model skill for predicting

metabolic regime structure (i.e., variation at different time

scales) remains untested.

Time series can be converted into the frequency domain by

partitioning temporal variance into signals at different fre-

quencies, known as power spectra (Stoica and Moses 2005).

This retains overall variation, and reveals frequencies at which

variation is large and, by extension, alignment with time-

varying drivers (Cazelles et al. 2007). One common pattern

for environmental time series is fractal scaling, where variance

is equal (i.e., self-similar) at all time scales, revealed as an

inverse association between frequency and signal strength at

that frequency (Halley 1996). In catchment export signals,

frequency-domain analysis reveals fractal scaling of solute

chemistry (Kirchner and Neal 2013) and landscape filtering

between rainfall and streamflow signals (Molénat et al. 1999),

strongly implicating catchment storage in signal genesis.

Channel storage imprints multifractal signals (i.e., power spec-

tra exhibiting distinct scaling exponents) with variance damp-

ening at time scales shorter than network residence times

(Hensley et al. 2018). Frequency-domain analysis revealed var-

iance alignment of terrestrial metabolism with climate drivers

across time scales (Stoy et al. 2009), but this approach has not

been applied to riverine metabolism.

Here, we use spectral analysis to evaluate temporal struc-

tures of river metabolism, focusing on evidence for dominant

periodicities and signal alignment with hypothesized controls

(OM loading, light, temperature, discharge). We used multiyear

data across the United States to test two hypotheses: (1) meta-

bolic variance is best aligned with energy availability dynamics,

specifically benthic light for productivity and organic inputs,

including GPP, for respiration, and (2) incorporating key drivers

into metabolism models improves predictions of observed

frequency-domain patterns. By generalizing frequency-domain

patterns of river metabolism, we provide a novel tool to describe

metabolic regimes and assess model predictions.

Methods

Data

Daily metabolism data, with hourly discharge (Q) and

water temperature (T), were from Appling et al. (2018b), a

dataset containing 356 multiyear records of GPP and ER

modeled from diurnal DO variation (Odum 1956) using

streamMetabolizer (Appling et al. 2018a). Sites reporting less

than 2 yr of data or > 25% missing data were excluded. Unrealis-

tic values (negative GPP, positive ER) were omitted. We used

hourly estimates of surface and benthic irradiance (PARS, PARB)

from Savoy and Harvey (2021), who modified open-sky irradi-

ance (PARO) considering canopy and water-column (i.e., depth,

turbidity) attenuation. Requisite overlap between metabolism

and irradiance datasets yielded 87 sites (50 for GPP, 74 for ER)

(Shin 2024; Supporting Information Table S1).

Spectral analysis

Time series were translated into the frequency domain

(Fig. 1a,b) with the spectrum function in R (Core Team 2013),

yielding periodic oscillation strength (i.e., power spectral den-

sity; PSD) at each frequency (Stoica and Moses 2005). Data

processing for spectral analysis (interpolation, aliasing) is

explained in the Supporting Information (Text S1). We

focused on intra-annual frequencies (i.e., > 1=365 d�1); as

datasets mature, inter-annual frequencies will become tracta-

ble. Names of extracted variables and their meaning are sum-

marized in Table 1.

Seasonality manifests at annual frequency in the PSD

(PSDA). To standardize seasonal signal strength across sites

Shin et al. Energy input imprint on river metabolism
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Fig. 1. (a) Time series for the Delaware River at Trenton, New Jersey, of observed ER (ERObs), T, and simulated ER (ERSim) based on T using the

Arrhenius equation (Eq. 5), which sequentially converted to (b) frequency domains and (c) transfer functions between ER and T. Annual frequency is

marked by vertical dashed lines at 1/365 d�1. Thick lines are from locally estimated scatterplot smoothing (LOESS). A transfer function slope near

zero, as in the bottom graph of (c), indicates variability in T is directly imprinted on ERSim, while the rising transfer function slope at high frequency in

the upper graph of (c) indicates that T and ERObs become decoupled at these frequencies and some other less persistent driver controls fine-scale ER

variation.

Table 1. Summary of key variables and abbreviations.

Abbreviation Definition Significance

PSD Power spectral density Strength of periodic oscillation

RSS Relative strength of seasonality (log-scale PSD ratio of
annual to intra-annual frequencies)

Standardized seasonal signal strength with divergent
total variance

α Spectral slope

(log-scale slope between PSD and frequency)

Signal persistence

α¼0: random variation (white noise)

α¼1: self-similar variation (fractal or pink noise)

α¼2: random-walk variation (Brown noise)

αInter α at intermediate frequencies Persistence at 0.01–0.1 d�1 (10–100 d)

αHigh α at high frequencies Persistence at > 0.1 d�1 (< 10 d)

TF Transfer function Alteration of temporal variation from input (a driver) to
output (metabolism) functions

αTF Spectral slope of TF Variation alteration from input to output

αTF ¼0: Variation aligned (imprinted)

αTF >0: Variation damped

αTF <0: Variation amplified

αTF,Inter αTF at intermediate frequencies Variation alteration at 0.01–0.1 d�1 (10–100 d)

αTF,High αTF at high frequencies Variation alteration at > 0.1 d�1 (< 10 d)

Shin et al. Energy input imprint on river metabolism
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with divergent total variance, we quantified the relative

strength of seasonality (RSS) comparing PSDA to mean intra-

annual PSD (PSDI):

RSS¼ log
PSDA

PSDI

� �

ð1Þ

Inverse PSD variation with frequency (f ) implies systematic

variance damping at higher frequencies (Kirchner and

Neal 2013):

PSD/
1

f α
ð2Þ

where spectral slope, α, quantifies signal persistence, or the

memory of previous time steps. A flat slope (α¼0; white

noise) indicates no persistence (i.e., stochastic random varia-

tion), while a steep slope (α¼2; Brown noise) describes strong

persistence (i.e., random-walk variation). Between these

extremes is fractal scaling (α¼1; 1=f or pink noise) which is

both stochastic and persistent with equal importance of all

constituent time scales (i.e., self-similar variation).

We obtained α from linear regression of log-transformed

PSD and frequency. Power spectra were smoothed to reduce

signal noise using logarithmic binning (Thompson and

Katul 2012). Multiple PSD peaks at f < �0:01d�1 (100 d) and

a clear slope break in PSD at f ≈0:1d�1 (10 d) for most abiotic

factors, especially T, necessitated separate α estimates at inter-

mediate (0.01–0.1 d�1; αInter) and high ( > 0:1 d�1; αHigh) fre-

quencies. Low-frequency PSD ( <0:01 d�1) were confounded

by effects of annual periodicity, precluding slope estimation.

Transfer function

The convolution of two time series is expressed as their

product in frequency domain such that coupling between

metabolism and drivers is expressed as:

Mj j ¼ Dj j� Hj j ð3Þ

where Mj j, Dj j, and jH j are absolute values of PSDs of metabo-

lism, a driver, and a transfer function (TF) defined as PSD ratio

between metabolism and a driver (i.e., Hj j ¼jM j = jD jÞ. Trans-

fer functions indicate how input temporal structures are

altered in the output, revealing alignment or divergence

across frequencies (Stoy et al. 2009).

We assessed TFs for each driver independently, quantifying

the transfer function slope (αTF) for GPP in response to T, Q,

PARS, and PARB, and for ER in response to T, Q, and GPP.

Alignment of metabolism and driver spectra (i.e., αTF ¼0;

Fig. 1c, bottom) implies direct transfer of variance structure

from driver to metabolism, or minimal filtering (Molénat

et al. 1999). In contrast, αTF≠0 implies filtering effects that

damp (αTF >0) the signal by storage or response lags

(e.g., hillslope and channel storage effects on solute variation;

Hensley et al. 2018) or amplify (αTF <0) by decoupling of vari-

ance structures (Fig. 1c, top). We calculated αTF using separate

linear regressions on log-transformed TFs for intermediate

(αTF,Inter) and high frequencies (αTF,High), informing coupling at

different time scales. The 95% confidence interval of fitted αTF

values quantified departure from zero.

Metabolism simulation

To assess how metabolism models align with observed vari-

ance structures, we simulated GPP and ER with different

drivers. We compared irradiance inputs (PARO, PARS, PARB)

on GPP predictions using a photosynthesis saturation model

(Jassby and Platt 1976) with an activation energy function

(Brown et al. 2004):

GPP¼ Pmax tanh
API

Pmax

� �

e
�

Ea,GPP
kB

1
T�

1
TC

� �

ð4Þ

where Pmax gO2m
�2 h�1

� �

is maximum GPP at reference tem-

perature TC (K), AP gO2 sμmol�1 photonh�1
� �

is the GPP vs.

irradiance I μmol photonm�2 s�1
� �

slope, Ea,GPP eVð Þ is GPP

activation energy, kB is the Boltzmann constant eVK�1
� �

, and

T Kð Þ is water temperature (Supporting Information Table S2

contains values). Although AP and Ea,GPP vary across sites, we

initially used AP ¼0:001Pmax reflecting low likelihood of light

saturation (Dodds et al. 1999), and constrained Ea,GPP to theo-

retical values (0:32eV, Allen et al. 2005). We also examined

the models with Ap and Ea,GPP varied over ranges 0:001Pmax to

0:01Pmax in 0.0001Pmax steps and 0–1.2 eV in 0.01 eV steps.

The latter range precluded implausibly large values (e.g., up to

�8.7 eV; Song et al. 2018). Simulated hourly GPP was

summed to yield daily rates.

While ER models often solely depend on T (Parkhill and

Gulliver 1999), we compared three ER model configurations

with and without OM supplies (T, T + Q, T + Q + GPP).

ERT ¼RC e
�

Ea,ER
kB

1
T�

1
TC

� �

ð5Þ

where RC g�O2m
�2 d�1

� �

is respiration at TC and Ea,ER eVð Þ is

ER activation energy (Supporting Information Table S2),

which is theoretically 0.65 eV (Allen et al. 2005). We also var-

ied Ea,ER over the same range as Ea,GPP. We added dissolved

organic carbon (DOC) supply as a function of Q to Eq. 5 based

on Fasching et al. (2016):

ERT,Q ¼
δQ þQγQ

δQ þQ
γQ
max

 !

RC e
�

Ea,ER
kB

1
T�

1
TC

� �

ð6Þ

where Q L s�1
� �

and Qmax are site daily mean and site maxi-

mum discharge. We used an empirical power-function

Shin et al. Energy input imprint on river metabolism
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( DOC½ � ¼ δQ þQγQ with δQ ¼4:7and γQ ¼0:4; Segatto et al.

2020) for DOC concentrations, implying maximum respira-

tion at Qmax . Lastly, we included GPP using a simplified ER

model with varying C sources (Bertuzzo et al. 2022):

ERT,Q,GPP ¼
δQ þQγQ

δQ þQ
γQ
max

þ
GPP

GPPmax

 !

RC e
�

Ea,ER
kB

1
T�

1
TC

� �

ð7Þ

which assumes maximum respiration at the site maximum

GPP (GPPmax ).

Frequency-domain model performance was assessed using

divergence of PSD features (RSS, αInter, αHigh) between observa-

tions and simulations (Obs�Sim). To compare model perfor-

mance across Ea and AP values, we used cross-site mean

divergence ( Obs�Sim½ �). We obtained time-domain goodness-

of-fit (normalized root-mean-square error

NRMSE½ � ¼ RMSE=observed interquartile range½ � and R2) for

each site using nonlinear least-squares regression for parame-

ter estimation (Pmax , RC, AP, Ea,GPP, Ea,ER). Model comparison

in both frequency and time domains informs whether models

can explain the timing of variation and the temporal struc-

tures of metabolic regimes.

We further analyzed metabolism predictions from two

alternative models to assess their frequency-domain align-

ment with observations. Blaszczak et al. (2023) used auto-

regressive (AR) and latent biomass (LB) models to predict GPP.

Bertuzzo et al. (2022) used multiple C sources to predict

ER. We assessed these models in time and frequency domains.

Results

Frequency-domain patterns

Across sites, we observed a metabolism annual PSD peak

(Fig. 2a,b) orders of magnitude greater than intra-annual mean

PSD (RSSGPP ¼2:52�0:34,RSSER ¼2:34�0:53). The RSS of both

PARS and PARB strongly correlated with RSSGPP

(r¼0:48and0:51, respectively), but PARB (RSSPARB ¼2:29�

0:63) matched GPP better than PARS (RSSPARS ¼2:90�0:54).

RSSER was strongly coupled with RSSGPP (r¼0:65). T and Q

(RSST ¼3:77�0:22,RSSQ ¼1:76�0:64) were more and less sea-

sonal than metabolism, respectively.

Power spectra of both GPP and ER exhibited �1=f scaling

at intra-annual frequencies (αInter andαHigh ≈1) (Fig. 2c,d;

Supporting Information Table S3). In contrast, most drivers

deviated substantially from 1=f scaling at high frequency

Fig. 2. (a) Power spectral densities (PSDs) for GPP, ER, surface and benthic PAR, T, and Q (n = 50 for GPP and PAR, n = 74 for ER, and n = 87 for T and

Q), with each site presented as a thin line, and the mean across sites indicated by thicker lines. Vertical solid line indicates annual frequency (1/365 d�1).

Vertical gray bars at 0.01 and 0.1 d�1 (100 and 10 d in time domain) separate intermediate and high-frequency ranges at which spectral slopes for abi-

otic drivers clearly depart from 1/f scaling (dashed lines). Boxplots of (b) relative strength of seasonality (RSS; log scaled ratio between PSDA vs. PSDI),

and (c) spectral slopes in intermediate (αInter) and (d) high-frequency ranges (αHigh). Spectral slope α¼1 for 1/f scaling is shown as a horizontal dashed

line in (c) and (d). These results show universally strong seasonality in total variance and �1=f scaling of GPP and ER, whose spectral attributes are differ-

ent from abiotic drivers.

Shin et al. Energy input imprint on river metabolism
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(αHigh ≥1), especially for T, suggesting greater persistence than

GPP or ER. PARS, however, showed low persistence across

intra-annual time scales (αInter andαHigh <1). Universal patterns

of seasonality and �1=f scaling suggests core features of meta-

bolic regimes, with surprisingly consistent spectral attributes

of metabolism (narrow distributions) across sites (Fig. 2b–d).

Transfer functions help discriminate among drivers by

assessing variance alignment across frequencies (Fig. 3;

Supporting Information Table S4). At intermediate frequencies,

GPP was strongly aligned with T and PARB (αTF,Inter ¼0:22�0:53

and 0:25�0:53), with most sites exhibiting αTF,Inter ≈ 0, while

alignments with PARS and Q were worse (αTF,Inter ¼0:65�0:62

and 0:45�0:67). At high frequency, light inputs (PARS, PARB;

αTF,High ¼0:40�0:42 and �0:36�0:35) aligned best with GPP

variance, with αTF,High ≈0 at half the sites, and worse with T or

Q (αTF,High ¼�1:85�0:40 and �0:46�1:00). Opposite signs of

αTF,High for PARS and PARB implies high-frequency GPP vari-

ance is less dynamic than PARS but more dynamic than PARB.

Variability of αTF,High between GPP and Q was large, with just

30% of sites exhibiting αTF,High ≈0. We note a dramatic con-

trast between GPP and T at high frequency (αTF,High �0).

ER was best aligned with GPP across frequencies, though

mean αTF between ER and GPP was slightly negative,

suggesting weak signal dampening (αTF,Inter ¼�0:21�0:42,

αTF,High ¼�0:25�0:38; Fig. 3; Supporting Information

Table S4). ER was aligned with T and Q at intermediate fre-

quency (αTF,Inter ¼0:09�0:45 and 0:22�0:54) but divergent at

high frequency (αTF,High ¼�2:14�0:54 and �0:82�0:83).

While TFs helped discriminate among drivers of GPP and

ER, temporal correlation analysis did not (Supporting Infor-

mation Fig. S4). All drivers were weakly correlated with

observed metabolism (cross-site mean correlation < 0:5),

implying time-domain patterns of metabolism are poorly

constrained.

Frequency-domain model assessment

Simple metabolism simulations (Eqs. 4–7) performed

poorly in the time domain (meanR2 <0:3), precluding differ-

entiation among key drivers (Supporting Information Figs. S5,

S6). Across sites, time-domain goodness-of-fit (NRMSE, R2) for

the GPP model (Eq. 4) varied minimally among irradiance

inputs. The models in Blaszczak et al. (2023) performed better

but were variable 0:0<R2 <0:6
�

, mean R2 ¼0:36; Supporting

Information Table S5), though the datasets do not overlap.

For ER, our simple models (Eqs. 5–7) were less accurate than

the model in Bertuzzo et al. (2022) (Supporting Information

Table S6).

In contrast, frequency-domain attributes (RSS, αInter, αHigh)

clearly differentiated among drivers. For GPP, the best match

(Obs�Sim≈0) was using PARB for irradiance (Eq. 4), whereas

using PARO and PARS overestimated seasonality (RSS) and

underestimated intra-annual persistence (Fig. 4a). While RSS

alignment varied over Ea,GPP values, RSS was best simulated

( Obs�Sim½ �≈0) with PARB and the expected Ea,GPP ≈0:32eV

(Fig. 5, top row). Simulated spectral slopes αInterð , αHigh) were

insensitive to Ea,GPP using PARB, implying a negligible role of

T on GPP variance given PARB. Spectral slopes were more sen-

sitive to Ea,GPP using PARO and PARS but these outperformed

PARB only at anomalously high Ea,GPP (�0.6 and �0.9 eV,

respectively). GPP simulations were similarly insensitive to AP

using PARB but sensitive using PARO and PARS (Supporting

Information Fig. S7).

Fig. 3. Spectral slopes of transfer functions (αTF) at intermediate and high-frequency ranges (n=50 for GPP and n=74 for ER). Vertical dashed line indi-

cates αTF ¼0, where the metabolic variance aligns perfectly with that of a driver. The result suggests different time-scale effect of each driver on

GPP and ER.
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All ER models (Eqs. 5–7) overestimated (i.e., Obs�Sim�0)

seasonality and high-frequency persistence (αHigh) (Fig. 4(B)).

However, neglective temperature sensitivity (Ea,ER ≈0)

improved RSS and αHigh simulations when including Q and

GPP (Fig. 5, bottom row). Even at intermediate frequency,

where all models reasonably predicted αInter, the effect of Ea,ER

variation was not significant, underscoring minimal impacts

of T and core importance of C sources for ER regimes.

Models considering complementary pathways and biomass

memory yielded comparable frequency-domain model fit with

simpler models (Eqs. 4–7). For GPP, the LB model of Blaszczak

et al. (2023) captured frequency-domain patterns as well as

our GPP model (Eq. 4) using PARB, outperforming their AR

model, which severely overestimated persistence across fre-

quencies (Fig. 5, top row). Frequency-domain performance of

the more complex ER model of Bertuzzo et al. (2022) matched

our simpler T + Q + GPP model (Eq. 7) with minimal temper-

ature sensitivity (Ea,ER ≈0) (Fig. 5, bottom row).

Discussion

Dominant seasonality and fractal scaling

Seasonality (i.e., annual periodicity) is clearly revealed by

frequency-domain analysis as the dominant structure of river

metabolic regimes. While seasonality can be obscured in

time series by canopy and water-column light attenuation

effects on GPP (Savoy et al. 2019) and episodic allo-

chthonous input effects on fine-scale variation of ER

(Roberts et al. 2007), these intra-annual interactions yield

no clear periodicity other than annual (Fig. 2).

At sub-annual time scales, we observed universal �1=f (i.

e., fractal) scaling of metabolic temporal variation (Fig. 2).

Spectral slopes were steeper than white noise (i.e., α�0) but

shallower than random-walk variation (i.e., α�2) (Halley

1996; Vasseur and Yodzis 2004). Consistent persistence (i.e.,

α�1) across frequencies implies memory effects on metabolic

variation at intra-annual time scales, possibly indicating

metabolic resilience arising from biomass effects (Blaszczak

et al. 2023).

Drivers of metabolic regimes

Benthic light (PARB) was the primary driver of GPP vari-

ance patterns, aligning with all spectral properties (RSS, αInter,

αHigh) of GPP (Figs. 2, 3), consistent with PARB performance

predicting GPP (Kirk et al. 2021; Savoy and Harvey 2021).

However, at high frequency, αTF was often negative,

suggesting more variable, or less persistent GPP than PARB,

Fig. 4. Model performances for (a) GPP and (b) ER evaluated by difference between the observation and simulation (Obs�Sim) of relative strength of

seasonality (RSS; left) and spectral slope at intermediate (αInter; middle) and high (αHigh; right) frequency ranges. Difference of 0 between observation and

simulation (Obs�Sim¼0; vertical dashed line) indicates perfect prediction. While GPP model (Eq. 4) using PARB showed impressive prediction, all ER

models (Eqs. 5–7) over-imposed seasonality strength and high-frequency persistence.
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implying processes that amplify short-term GPP variability,

such as high-flow benthic disturbance (Uehlinger 2006).

Seasonality of PARS was greater than GPP (Fig. 2a), over-

estimating RSSGPP when using PARS in Eq. 4 (Fig. 4a, left). At

high frequency, PARS variance aligned with GPP (Fig. 3) with

more sites showing αTF,High ≈0 than PARB (Supporting Infor-

mation Table S4). However, αTF,High was underestimated using

PARS (Fig. 4a, right), suggesting PARS may not control high-

frequency GPP variance. Across AP values (GPP vs. irradiance

slope), simulations using PARS consistently overestimated RSS

and were highly sensitive to AP, while simulations using PARB

were insensitive (Supporting Information Fig. S7), supporting

weak PARS association with GPP variance.

ER spectral properties consistently aligned with GPP across

frequencies (Figs. 2, 3), supporting recent modeling showing

GPP controls ER variance despite multiple C sources (Bertuzzo

et al. 2022). Notably, ER is always more variable than GPP

across frequencies (negative αTF between ER and GPP; Fig. 3),

converse to presumed temporal stability of ER relative to GPP

(O’Donnell and Hotchkiss 2022), implying high-frequency

effects on ER variance from external forcings (Roberts

et al. 2007; Demars 2019). Regardless of mechanisms, how-

ever, ER variation is clearly coupled to productivity regimes.

Temperature was a negligible driver of metabolic variation,

with far stronger seasonality than GPP (RSST �RSSGPP)

(Fig. 2b), and dramatic divergence in high-frequency persis-

tence (αTF,High �0) (Fig. 3) due to thermal inertia (Grbi�c

et al. 2013). Better alignment was observed at intermediate

frequency (αTF,Inter ≈0), potentially implying T effects on met-

abolic variation within certain frequencies but more likely

reflecting spectral alignment of T and PARB. Limited T impact

was reinforced by GPP model insensitivity to Ea,GPP when

using PARB (Fig. 5, top row). Our model results also suggest

minimal T control on respiration regimes given elevated ER

model performance when neglecting T (Ea,ER ≈0) (Fig. 5,

bottom row).

Q effects varied with watershed size, with high-frequency

alignment between metabolism (both GPP and ER) and Q for

smaller watersheds (Supporting Information Fig. S8). This is

likely a residence time effect, with increased high-frequency

persistence of Q (i.e., steeper αHigh) in larger watersheds

(Hensley et al. 2018). That is, discharge controls on fine-scale

metabolic variation are more prominent in smaller rivers,

where Q imposes greater variation in light regimes (Savoy and

Harvey 2021), benthic scour (Uehlinger 2006), and supply

rates of nutrients and OM (Diamond and Cohen 2018).

The drivers of metabolic regimes inferred here align with

controls on spatial variation in annual GPP (light) and ER

(GPP), including omission of T (Bernhardt et al. 2022). How-

ever, temporal correlations between metabolism and drivers

were poor (Supporting Information Fig. S4), yielding limited

discriminatory information about drivers. For example, all

light inputs were equally correlated with GPP, and GPP and

T were equally correlated with ER. This highlights the utility

Fig. 5. Frequency-domain model performance for predictions of GPP (n = 50; top) and ER (n = 74; bottom) with varying temperature sensitivity (Ea)

reflected by the cross-site mean difference between observation and simulation ( Obs�Sim½ �) for relative strength of seasonality (RSS) (left) and spectral

slopes at intermediate (αInter; middle) and high (αHigh; right) frequency ranges. Inset boxplots are the frequency-domain model performance of auto-

regressive (AR, gray) and latent biomass (LB, white) GPP models of Blaszczak et al. (2023) (n=12) and the ER model of Bertuzzo et al. (2022) using multi-

ple carbon sources (MC, dark gray; n=4). Horizontal and vertical dashed lines indicate Obs�Sim½ � ¼0 and theoretical activation energies of ecosystem

metabolism (Ea,GPP ¼0:32eV,Ea,ER ¼0:65eV), respectively. The GPP model (Eq. 4) informed by PARB performed best and was not affected by temperature

sensitivity at intra-annual scales. In contrast, RSS and αHigh for ER were best predicted with the model that included Q and GPP (Eq. 7) when Ea,ER ≈0.
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of frequency-domain analysis to examine temporal structures

and embedded controls of metabolism by revealing energy

inputs (PARB and GPP) as important controls on GPP and ER

variations.

Improving metabolism models

Frequency-domain analysis yielded novel inferences about

metabolism models. For example, the GPP model (Eq. 4) best

captured observed variance structures using PARB (Fig. 4a),

with weaker alignment using PARO and PARS, prioritizing

water-column light attenuation when predicting GPP (Kirk

et al. 2021; Savoy and Harvey 2021). Frequency-domain

results from Blaszczak et al. (2023) suggest including latent

biomass captured observed variance structures better than

autoregressive model (Fig. 5, top row), highlighting a signifi-

cant advance for replicating frequency-domain patterns.

Given our PARB model also performed well in the frequency

domain, using PARB in the LB model is likely to further

improve performance.

ER model predictions aligned better with observations

when including both Q and GPP drivers (Eq. 7), and when

neglecting T effects (i.e., low Ea, Fig. 5, bottom row). Compa-

rable frequency-domain alignment of our ER model to

Bertuzzo et al. (2022) despite stark differences in time-domain

goodness-of-fit (Supporting Information Figs. S5, S6; Table S6)

supports continued ER model refinement including time-

varying multiple C sources (Bertuzzo et al. 2022) rather than

metabolic first principles that neglect supply variation (Song

et al. 2018).

Frequency-domain analysis characterizes the metabolic

regime of rivers. Our analysis revealed regime attributes rele-

vant to predictions across time scales, including fractal scaling

and variance alignment to discriminate among drivers

(e.g., PARS vs. PARB, T vs. C supply). This complements time-

domain analyses and provides a novel benchmark for

assessing metabolism models.
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