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Scientific Significance Statement

Temporal variation of primary production and respiration in rivers (i.e., river metabolism) is a complex response to tempera-
ture, energy inputs (light, organic carbon), nutrient supply, flow, and stream network position. Despite recent proliferation of
long-term high-resolution data on river metabolism, generalizations about the structure and controls of temporal variation
remain limited. Here we asked: what are the dominant temporal patterns of river metabolism, and how are these patterns
affected by environmental factors? Our approach to answering these questions partitions metabolism time series into signals
of different frequencies, ranging from days to years, revealing a dominant mode of seasonal variation and self-similar, or frac-
tal, patterns across all other time scales. Our results strongly implicate the role of energy availability on controlling variation
in river metabolism.

Abstract

The temporal structures of gross primary production (GPP) and ecosystem respiration (ER) vary across time
scales in response to complex interactions among dynamic drivers (e.g., flow, light, temperature, organic matter
supply). To explore emergent patterns of river metabolic variation, we applied frequency-domain analysis to
multiyear records of metabolism across 87 US rivers. We observed a dominant annual periodicity in metabolic
variation and universal fractal scaling (i.e., power spectral density inversely correlated with frequency) at sub-
annual frequencies, suggesting these are foundational temporal structures of river metabolic regimes.
Frequency-domain patterns of river metabolism aligned best with drivers related to energy inputs: benthic light
for GPP and GPP for ER. Simple river metabolism models captured frequency-domain patterns when parameter-
ized with appropriate energy inputs but neglecting temperature controls. These results imply that temporal
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variation of energy supply imprints directly on metabolic signals and that frequency-domain patterns provide
benchmark properties to predict river metabolic regimes.

The metabolic regime concept describes the temporal struc-
ture of variation in gross primary production (GPP) and eco-
system respiration (ER) in flowing waters (Bernhardt
et al. 2018). Metabolic regimes arise from interactions among
biotic and abiotic drivers (e.g., organic matter [OM] loading,
light, flow, temperature), exploration of which has only
recently been possible from advances in dissolved oxygen
(DO) sensors and models translating DO signals into meta-
bolic fluxes (Appling et al. 2018a). Emergence of multiannual
river metabolism data (Appling et al. 2018b) has yielded
insights about productivity archetypes (Savoy et al. 2019),
state transitions (Diamond et al. 2022), emergent network
behaviors (Koenig et al. 2019), and the foundational impor-
tance of light and flow for predicting annual metabolic fluxes
(Bernhardt et al. 2022). While these synthesis datasets have
largely informed time-series statistics (e.g., timing and magni-
tude of seasonality, annual mean), they can also inform the
embedded temporal structure of metabolism and discern
drivers of this variation across time scales.

River metabolism describes solar energy capture by auto-
trophs and stored energy use by heterotrophs (Odum 1956),
suggesting temporal patterns of energy flows control meta-
bolic variation. Network position and flow control light inputs
and OM loading, yielding archetypal spatiotemporal patterns
of metabolism (Vannote et al. 1980). Because insolation is
influenced by canopy and water-column attenuation (Kirk
et al. 2021; Savoy and Harvey 2021), benthic light describes
energy available to river autotrophs (Julian et al. 2011). Simi-
larly, flow affects OM availability (Uehlinger 2006; Demars
2019), controlling temporal dynamics of energy availability for
respiration. A focus on energy controls recently prompted
development of river metabolism models containing latent bio-
mass effects to predict GPP (Blaszczak et al. 2023) and multiple
OM sources (flow, GPP, litter) to predict ER (Bertuzzo
et al. 2022). Despite these advances, model skill for predicting
metabolic regime structure (i.e., variation at different time
scales) remains untested.

Time series can be converted into the frequency domain by
partitioning temporal variance into signals at different fre-
quencies, known as power spectra (Stoica and Moses 2005).
This retains overall variation, and reveals frequencies at which
variation is large and, by extension, alignment with time-
varying drivers (Cazelles et al. 2007). One common pattern
for environmental time series is fractal scaling, where variance
is equal (i.e., self-similar) at all time scales, revealed as an
inverse association between frequency and signal strength at
that frequency (Halley 1996). In catchment export signals,
frequency-domain analysis reveals fractal scaling of solute
chemistry (Kirchner and Neal 2013) and landscape filtering
between rainfall and streamflow signals (Molénat et al. 1999),
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strongly implicating catchment storage in signal genesis.
Channel storage imprints multifractal signals (i.e., power spec-
tra exhibiting distinct scaling exponents) with variance damp-
ening at time scales shorter than network residence times
(Hensley et al. 2018). Frequency-domain analysis revealed var-
iance alignment of terrestrial metabolism with climate drivers
across time scales (Stoy et al. 2009), but this approach has not
been applied to riverine metabolism.

Here, we use spectral analysis to evaluate temporal struc-
tures of river metabolism, focusing on evidence for dominant
periodicities and signal alignment with hypothesized controls
(OM loading, light, temperature, discharge). We used multiyear
data across the United States to test two hypotheses: (1) meta-
bolic variance is best aligned with energy availability dynamics,
specifically benthic light for productivity and organic inputs,
including GPP, for respiration, and (2) incorporating key drivers
into metabolism models improves predictions of observed
frequency-domain patterns. By generalizing frequency-domain
patterns of river metabolism, we provide a novel tool to describe
metabolic regimes and assess model predictions.

Methods

Data

Daily metabolism data, with hourly discharge (Q) and
water temperature (T), were from Appling et al. (2018b), a
dataset containing 356 multiyear records of GPP and ER
modeled from diurnal DO variation (Odum 1956) using
streamMetabolizer (Appling et al. 2018a). Sites reporting less
than 2 yr of data or > 25% missing data were excluded. Unrealis-
tic values (negative GPP, positive ER) were omitted. We used
hourly estimates of surface and benthic irradiance (PARs, PARg)
from Savoy and Harvey (2021), who modified open-sky irradi-
ance (PARo) considering canopy and water-column (i.e., depth,
turbidity) attenuation. Requisite overlap between metabolism
and irradiance datasets yielded 87 sites (50 for GPP, 74 for ER)
(Shin 2024; Supporting Information Table S1).

Spectral analysis

Time series were translated into the frequency domain
(Fig. 1a,b) with the spectrum function in R (Core Team 2013),
yielding periodic oscillation strength (i.e., power spectral den-
sity; PSD) at each frequency (Stoica and Moses 2005). Data
processing for spectral analysis (interpolation, aliasing) is
explained in the Supporting Information (Text S1). We
focused on intra-annual frequencies (i.e., >1/365 d™b; as
datasets mature, inter-annual frequencies will become tracta-
ble. Names of extracted variables and their meaning are sum-
marized in Table 1.

Seasonality manifests at annual frequency in the PSD
(PSDy). To standardize seasonal signal strength across sites
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Fig. 1. (a) Time series for the Delaware River at Trenton, New Jersey, of observed ER (ERops), T, and simulated ER (ERs;y,) based on T using the
Arrhenius equation (Eq. 5), which sequentially converted to (b) frequency domains and (c) transfer functions between ER and T. Annual frequency is
marked by vertical dashed lines at 1/365 d~'. Thick lines are from locally estimated scatterplot smoothing (LOESS). A transfer function slope near
zero, as in the bottom graph of (c), indicates variability in T is directly imprinted on ERg;m, while the rising transfer function slope at high frequency in
the upper graph of (c) indicates that T and ERgps become decoupled at these frequencies and some other less persistent driver controls fine-scale ER
variation.

Table 1. Summary of key variables and abbreviations.

Abbreviation Definition Significance
PSD Power spectral density Strength of periodic oscillation
RSS Relative strength of seasonality (log-scale PSD ratio of Standardized seasonal signal strength with divergent
annual to intra-annual frequencies) total variance
a Spectral slope Signal persistence
(log-scale slope between PSD and frequency) a=0: random variation (white noise)

a=1: self-similar variation (fractal or pink noise)
a=2: random-walk variation (Brown noise)

Qnter a at intermediate frequencies Persistence at 0.01-0.1 d' (10-100 d)

QHigh a at high frequencies Persistence at > 0.1 d~' (< 10 d)

TF Transfer function Alteration of temporal variation from input (a driver) to
output (metabolism) functions

arr Spectral slope of TF Variation alteration from input to output

arr = 0: Variation aligned (imprinted)

arr > 0: Variation damped

arr <0: Variation amplified
QTE,Inter arr at intermediate frequencies Variation alteration at 0.01-0.1 d™' (10-100 d)
OTF High atr at high frequencies Variation alteration at > 0.1 d™' (< 10 d)
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with divergent total variance, we quantified the relative
strength of seasonality (RSS) comparing PSD, to mean intra-
annual PSD (PSDy):

RSS = log (PSDA) (1)

PSD;

Inverse PSD variation with frequency (f) implies systematic
variance damping at higher frequencies (Kirchner and
Neal 2013):

PSDocl

7 (2)
where spectral slope, a, quantifies signal persistence, or the
memory of previous time steps. A flat slope (a=0; white
noise) indicates no persistence (i.e., stochastic random varia-
tion), while a steep slope (a=2; Brown noise) describes strong
persistence (i.e., random-walk variation). Between these
extremes is fractal scaling (a=1; 1/f or pink noise) which is
both stochastic and persistent with equal importance of all
constituent time scales (i.e., self-similar variation).

We obtained a from linear regression of log-transformed
PSD and frequency. Power spectra were smoothed to reduce
signal noise using logarithmic binning (Thompson and
Katul 2012). Multiple PSD peaks at f< ~0.01d™" (100d) and
a clear slope break in PSD at f ~0.1 d~! (10d) for most abiotic
factors, especially T, necessitated separate o estimates at inter-
mediate (0.01-0.1d™% apner) and high (>0.1 dt igh) fre-
quencies. Low-frequency PSD (<0.01 d™') were confounded
by effects of annual periodicity, precluding slope estimation.

Transfer function

The convolution of two time series is expressed as their
product in frequency domain such that coupling between
metabolism and drivers is expressed as:

M| = |D| x |H]| (3)
where |M|, |D|, and | H | are absolute values of PSDs of metabo-
lism, a driver, and a transfer function (TF) defined as PSD ratio
between metabolism and a driver (i.e., |[H|=|M|/|D]|). Trans-
fer functions indicate how input temporal structures are
altered in the output, revealing alignment or divergence
across frequencies (Stoy et al. 2009).

We assessed TFs for each driver independently, quantifying
the transfer function slope (arr) for GPP in response to T, Q,
PARg, and PARg, and for ER in response to T, Q, and GPP.
Alignment of metabolism and driver spectra (i.e., arp=0;
Fig. 1c, bottom) implies direct transfer of variance structure
from driver to metabolism, or minimal filtering (Molénat
et al. 1999). In contrast, arr # 0 implies filtering effects that
damp (err>0) the signal by storage or response lags
(e.g., hillslope and channel storage effects on solute variation;
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Hensley et al. 2018) or amplify (ar <0) by decoupling of vari-
ance structures (Fig. 1c, top). We calculated arr using separate
linear regressions on log-transformed TFs for intermediate
(atrnter) and high frequencies (ary mign), informing coupling at
different time scales. The 95% confidence interval of fitted arr
values quantified departure from zero.

Metabolism simulation

To assess how metabolism models align with observed vari-
ance structures, we simulated GPP and ER with different
drivers. We compared irradiance inputs (PARo, PARs, PARg)
on GPP predictions using a photosynthesis saturation model
(Jassby and Platt 1976) with an activation energy function
(Brown et al. 2004):

_Fagep (1 1
GPP = Py, tanh ( Arl )e % ( )

max

where P ax (g O, m2 h’1> is maximum GPP at reference tem-

perature Tc (K), Ap (g O, sumol ™ photonh’1> is the GPP vs.
irradiance I (umol photonm~2s-1) slope, E,gpp(eV) is GPP
activation energy, ks is the Boltzmann constant (eVK!), and
T (K) is water temperature (Supporting Information Table S2
contains values). Although Ap and E, gpp vary across sites, we
initially used Ap =0.001P pax reflecting low likelihood of light
saturation (Dodds et al. 1999), and constrained E, gpp to theo-
retical values (0.32eV, Allen et al. 2005). We also examined
the models with A, and E, gpp varied over ranges 0.001P yax to
0.01Ppax in 0.0001Ppax steps and 0-1.2eV in 0.01eV steps.
The latter range precluded implausibly large values (e.g., up to
~8.7¢eV; Song et al. 2018). Simulated hourly GPP was
summed to yield daily rates.

While ER models often solely depend on T (Parkhill and
Gulliver 1999), we compared three ER model configurations
with and without OM supplies (T, T + Q, T + Q + GPP).

Eag
ERr =Rc 67# (%fﬁ> (5)

where Rc (g —0,m™2 d‘l) is respiration at Tc and E, g (V) is
ER activation energy (Supporting Information Table S2),
which is theoretically 0.65eV (Allen et al. 2005). We also var-
ied E,yr over the same range as E,cpp. We added dissolved
organic carbon (DOC) supply as a function of Q to Eq. 5 based
on Fasching et al. (2016):

5Q + Qggax

Fagr(1_ 1
e kg T Tc

7Q
ERr o = (M Re

where Q (Ls™!) and Q,,,, are site daily mean and site maxi-
mum discharge. We wused an empirical power-function
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([DOC]=6q+Q"ewithdq =4.7andy, =0.4; Segatto et al
2020) for DOC concentrations, implying maximum respira-
tion at Q.. Lastly, we included GPP using a simplified ER

model with varying C sources (Bertuzzo et al. 2022):

)RC o B (++) 7)

GPP
GPPax

5Q -+ QYQ
5Q + Qi‘gax

ER7,q,Gpp = (

which assumes maximum respiration at the site maximum
GPP (GPP max).

Frequency-domain model performance was assessed using
divergence of PSD features (RSS, amter, @nigh) between observa-
tions and simulations (Obs —Sim). To compare model perfor-
mance across E, and Ap values, we used cross-site mean
divergence ([Obs — Sim]). We obtained time-domain goodness-
of-fit (normalized root-mean-square error
[NRMSE] = [RMSE/observed interquartile range] and R?) for
each site using nonlinear least-squares regression for parame-
ter estimation (Pmax, Rc, Ap, Eacrr, Earr). Model comparison
in both frequency and time domains informs whether models
can explain the timing of variation and the temporal struc-
tures of metabolic regimes.

Energy input imprint on river metabolism

We further analyzed metabolism predictions from two
alternative models to assess their frequency-domain align-
ment with observations. Blaszczak et al. (2023) used auto-
regressive (AR) and latent biomass (LB) models to predict GPP.
Bertuzzo et al. (2022) used multiple C sources to predict
ER. We assessed these models in time and frequency domains.

Results

Frequency-domain patterns

Across sites, we observed a metabolism annual PSD peak
(Fig. 2a,b) orders of magnitude greater than intra-annual mean
PSD (RSSgpp =2.52+£0.34,RSSgr = 2.34 £0.53). The RSS of both
PARs and PARg strongly correlated with  RSSgpp
(r=0.48and0.51, respectively), but PARp (RSSparg=2.29+
0.63) matched GPP better than PARs (RSSpars =2.90+0.54).
RSSgr was strongly coupled with RSSgpp (r=0.65). T and Q
(RSS7=3.77£0.22,RSSq = 1.76 - 0.64) were more and less sea-
sonal than metabolism, respectively.

Power spectra of both GPP and ER exhibited ~ 1/f scaling
at intra-annual frequencies (amterandapignh~1) (Fig. 2¢,d;
Supporting Information Table S3). In contrast, most drivers
deviated substantially from 1/f scaling at high frequency

a b
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\N e r— v
» ?
\ &
—————————— mz-
ST S L LR el 11
-4\/&"‘- —
______ 0
----------------- . L ]
ol el ="t ae . |
| parg "I eeea
a R 4\ N
L S et A
0.001 0.010 0.100 GPP ER PARs PARs T  Q

Frequency (d™")

Fig. 2. (a) Power spectral densities (PSDs) for GPP, ER, surface and benthic PAR, T, and Q (n = 50 for GPP and PAR, n = 74 for ER, and n = 87 for T and
Q), with each site presented as a thin line, and the mean across sites indicated by thicker lines. Vertical solid line indicates annual frequency (1/365 d™).
Vertical gray bars at 0.01 and 0.1 d~' (100 and 10 d in time domain) separate intermediate and high-frequency ranges at which spectral slopes for abi-
otic drivers clearly depart from 1/f scaling (dashed lines). Boxplots of (b) relative strength of seasonality (RSS; log scaled ratio between PSD4 vs. PSD),
and (c) spectral slopes in intermediate (ainter) and (d) high-frequency ranges (atign). Spectral slope a =1 for 1/f scaling is shown as a horizontal dashed
line in (c) and (d). These results show universally strong seasonality in total variance and ~ 1/f scaling of GPP and ER, whose spectral attributes are differ-
ent from abiotic drivers.
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(amign 2 1), especially for T, suggesting greater persistence than
GPP or ER. PARg, however, showed low persistence across
intra-annual time scales (@t and apjgh < 1). Universal patterns
of seasonality and ~ 1/f scaling suggests core features of meta-
bolic regimes, with surprisingly consistent spectral attributes
of metabolism (narrow distributions) across sites (Fig. 2b—d).

Transfer functions help discriminate among drivers by
assessing variance alignment across frequencies (Fig. 3;
Supporting Information Table S4). At intermediate frequencies,
GPP was strongly aligned with T and PARg (e, inter =0.22£0.53
and 0.25+0.53), with most sites exhibiting arp mter # 0, while
alignments with PARs and Q were worse (ars,inter = 0.65 +0.62
and 0.45+0.67). At high frequency, light inputs (PARs, PARg;
ateHigh = 0.40£0.42 and —0.36+0.35) aligned best with GPP
variance, with arg pignh # 0 at half the sites, and worse with T or
Q (arrr,High = —1.85+£0.40 and —0.4641.00). Opposite signs of
atrHigh for PARs and PARg implies high-frequency GPP vari-
ance is less dynamic than PARg but more dynamic than PARg.
Variability of argnign between GPP and Q was large, with just
30% of sites exhibiting ary migh *0. We note a dramatic con-
trast between GPP and T at high frequency (arr nigh < 0).

ER was best aligned with GPP across frequencies, though
mean apr between ER and GPP was slightly negative,
suggesting weak signal dampening (arsmter =—0.21+£0.42,
arghigh = —0.25+0.38;  Fig. 3; Supporting Information
Table S4). ER was aligned with T and Q at intermediate fre-
quency (atg,inter =0.09 £0.45 and 0.22+0.54) but divergent at
high frequency (argnigh = —2.14+£0.54 and —0.82+0.83).

While TFs helped discriminate among drivers of GPP and
ER, temporal correlation analysis did not (Supporting Infor-
mation Fig. S4). All drivers were weakly correlated with

Energy input imprint on river metabolism

observed metabolism (cross-site mean correlation <0.5),
implying time-domain patterns of metabolism are poorly
constrained.

Frequency-domain model assessment

Simple metabolism simulations (Eqs. 4-7) performed
poorly in the time domain (meanR?<0.3), precluding differ-
entiation among key drivers (Supporting Information Figs. S5,
S6). Across sites, time-domain goodness-of-fit (NRMSE, R?) for
the GPP model (Eq. 4) varied minimally among irradiance
inputs. The models in Blaszczak et al. (2023) performed better
but were variable (0.0<R?<0.6, mean R*=0.36; Supporting
Information Table S5), though the datasets do not overlap.
For ER, our simple models (Eqs. 5-7) were less accurate than
the model in Bertuzzo et al. (2022) (Supporting Information
Table S6).

In contrast, frequency-domain attributes (RSS, amter, @High)
clearly differentiated among drivers. For GPP, the best match
(Obs —Sim ~ 0) was using PARg for irradiance (Eq. 4), whereas
using PARo and PARg overestimated seasonality (RSS) and
underestimated intra-annual persistence (Fig. 4a). While RSS
alignment varied over E,gpp values, RSS was best simulated
([Obs — Sim] ~ 0) with PARy and the expected E, gpp ~0.32eV
(Fig. 5, top row). Simulated spectral slopes (@mter, @High) Were
insensitive to E, gpp using PARg, implying a negligible role of
T on GPP variance given PARg. Spectral slopes were more sen-
sitive to E, gpp using PARp and PARg but these outperformed
PARgp only at anomalously high E,gpp (~0.6 and ~0.9 eV,
respectively). GPP simulations were similarly insensitive to Ap
using PARg but sensitive using PARo and PARg (Supporting
Information Fig. S7).

Frequency [:I High |:| Intermediate

|GPP[:|PARs| |IGPP[:|PARg| |GPP[[T]| |GPPI:Q]
[ 1 1 1
1 1 1 1
1.0 1 1 1 1
| 1
i 1
0.5 !
1
1 1 1
20.01 1 1 1
g Concept |ER|:|GPP] |ER|:|T] |ER[|Q]
Q 1 1 1 ]
1 } 1 1
1.0 1 1 1
OGPRER | OGPPER 1
05 < : > 1 : ;
’ Opriver 1 Opriver 1 1
1 1 1
1 1 1 1
0041 } ; ; } - : T : - } :
=2 0 2 -2 0 2 =2 0 2 -2 0 2

OTF

Fig. 3. Spectral slopes of transfer functions (arr) at intermediate and high-frequency ranges (n= 50 for GPP and n= 74 for ER). Vertical dashed line indi-
cates arr =0, where the metabolic variance aligns perfectly with that of a driver. The result suggests different time-scale effect of each driver on

GPP and ER.
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Energy input imprint on river metabolism
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Fig. 4. Model performances for (a) GPP and (b) ER evaluated by difference between the observation and simulation (Obs — Sim) of relative strength of
seasonality (RSS; left) and spectral slope at intermediate (ainter; Middle) and high (anign; right) frequency ranges. Difference of 0 between observation and
simulation (Obs — Sim = 0; vertical dashed line) indicates perfect prediction. While GPP model (Eq. 4) using PARg showed impressive prediction, all ER
models (Egs. 5-7) over-imposed seasonality strength and high-frequency persistence.

All ER models (Egs. 5-7) overestimated (i.e., Obs — Sim <« 0)
seasonality and high-frequency persistence (anign) (Fig. 4(B)).
However, neglective temperature sensitivity (E;gr=~0)
improved RSS and apjgn simulations when including Q and
GPP (Fig. 5, bottom row). Even at intermediate frequency,
where all models reasonably predicted amter, the effect of E, gr
variation was not significant, underscoring minimal impacts
of T and core importance of C sources for ER regimes.

Models considering complementary pathways and biomass
memory yielded comparable frequency-domain model fit with
simpler models (Egs. 4-7). For GPP, the LB model of Blaszczak
et al. (2023) captured frequency-domain patterns as well as
our GPP model (Eq. 4) using PARg, outperforming their AR
model, which severely overestimated persistence across fre-
quencies (Fig. 5, top row). Frequency-domain performance of
the more complex ER model of Bertuzzo et al. (2022) matched
our simpler T + Q + GPP model (Eq. 7) with minimal temper-
ature sensitivity (E, gr ~ 0) (Fig. 5, bottom row).

Discussion

Dominant seasonality and fractal scaling
Seasonality (i.e., annual periodicity) is clearly revealed by
frequency-domain analysis as the dominant structure of river
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metabolic regimes. While seasonality can be obscured in
time series by canopy and water-column light attenuation
effects on GPP (Savoy et al. 2019) and episodic allo-
chthonous input effects on fine-scale variation of ER
(Roberts et al. 2007), these intra-annual interactions yield
no clear periodicity other than annual (Fig. 2).

At sub-annual time scales, we observed universal ~1/f (i.
e., fractal) scaling of metabolic temporal variation (Fig. 2).
Spectral slopes were steeper than white noise (i.e., a~0) but
shallower than random-walk variation (i.e., a~2) (Halley
1996; Vasseur and Yodzis 2004). Consistent persistence (i.e.,
a~ 1) across frequencies implies memory effects on metabolic
variation at intra-annual time scales, possibly indicating
metabolic resilience arising from biomass effects (Blaszczak
et al. 2023).

Drivers of metabolic regimes

Benthic light (PARg) was the primary driver of GPP vari-
ance patterns, aligning with all spectral properties (RSS, amter,
anigh) of GPP (Figs. 2, 3), consistent with PARg performance
predicting GPP (Kirk et al. 2021; Savoy and Harvey 2021).
However, at high frequency, oz was often negative,
suggesting more variable, or less persistent GPP than PARg,
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Fig. 5. Frequency-domain model performance for predictions of GPP (n = 50; top) and ER (n = 74; bottom) with varying temperature sensitivity (£,)
reflected by the cross-site mean difference between observation and simulation ([Obs — Sim]) for relative strength of seasonality (RSS) (left) and spectral
slopes at intermediate (ainter; mMiddle) and high (aigh; right) frequency ranges. Inset boxplots are the frequency-domain model performance of auto-
regressive (AR, gray) and latent biomass (LB, white) GPP models of Blaszczak et al. (2023) (n=12) and the ER model of Bertuzzo et al. (2022) using multi-
ple carbon sources (MC, dark gray; n=4). Horizontal and vertical dashed lines indicate [Obs — Sim] =0 and theoretical activation energies of ecosystem
metabolism (E,cpp =0.32eV, E, g = 0.65 €V), respectively. The GPP model (Eq. 4) informed by PARg performed best and was not affected by temperature
sensitivity at intra-annual scales. In contrast, RSS and ayign for ER were best predicted with the model that included Q and GPP (Eq. 7) when £, gr = 0.

implying processes that amplify short-term GPP variability,
such as high-flow benthic disturbance (Uehlinger 2006).

Seasonality of PARs was greater than GPP (Fig. 2a), over-
estimating RSSgpp when using PARs in Eq. 4 (Fig. 4a, left). At
high frequency, PAR; variance aligned with GPP (Fig. 3) with
more sites showing aryuigh *0 than PARg (Supporting Infor-
mation Table S4). However, arguign Was underestimated using
PARg (Fig. 4a, right), suggesting PARs may not control high-
frequency GPP variance. Across Ap values (GPP vs. irradiance
slope), simulations using PARg consistently overestimated RSS
and were highly sensitive to Ap, while simulations using PARg
were insensitive (Supporting Information Fig. S7), supporting
weak PARg association with GPP variance.

ER spectral properties consistently aligned with GPP across
frequencies (Figs. 2, 3), supporting recent modeling showing
GPP controls ER variance despite multiple C sources (Bertuzzo
et al. 2022). Notably, ER is always more variable than GPP
across frequencies (negative arr between ER and GPP; Fig. 3),
converse to presumed temporal stability of ER relative to GPP
(O'Donnell and Hotchkiss 2022), implying high-frequency
effects on ER variance from external forcings (Roberts
et al. 2007; Demars 2019). Regardless of mechanisms, how-
ever, ER variation is clearly coupled to productivity regimes.

Temperature was a negligible driver of metabolic variation,
with far stronger seasonality than GPP (RSSt > RSScpp)
(Fig. 2b), and dramatic divergence in high-frequency persis-
tence (arphigh <0) (Fig. 3) due to thermal inertia (Grbi¢
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et al. 2013). Better alignment was observed at intermediate
frequency (atr,mter # 0), potentially implying T effects on met-
abolic variation within certain frequencies but more likely
reflecting spectral alignment of T and PARg. Limited T impact
was reinforced by GPP model insensitivity to E,gpp When
using PARg (Fig. 5, top row). Our model results also suggest
minimal T control on respiration regimes given elevated ER
model performance when neglecting T (E,gr~0) (Fig. 5,
bottom row).

Q effects varied with watershed size, with high-frequency
alignment between metabolism (both GPP and ER) and Q for
smaller watersheds (Supporting Information Fig. S8). This is
likely a residence time effect, with increased high-frequency
persistence of Q (i.e., steeper apin) in larger watersheds
(Hensley et al. 2018). That is, discharge controls on fine-scale
metabolic variation are more prominent in smaller rivers,
where Q imposes greater variation in light regimes (Savoy and
Harvey 2021), benthic scour (Uehlinger 2006), and supply
rates of nutrients and OM (Diamond and Cohen 2018).

The drivers of metabolic regimes inferred here align with
controls on spatial variation in annual GPP (light) and ER
(GPP), including omission of T (Bernhardt et al. 2022). How-
ever, temporal correlations between metabolism and drivers
were poor (Supporting Information Fig. S4), yielding limited
discriminatory information about drivers. For example, all
light inputs were equally correlated with GPP, and GPP and
T were equally correlated with ER. This highlights the utility
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of frequency-domain analysis to examine temporal structures
and embedded controls of metabolism by revealing energy
inputs (PARg and GPP) as important controls on GPP and ER
variations.

Improving metabolism models

Frequency-domain analysis yielded novel inferences about
metabolism models. For example, the GPP model (Eq. 4) best
captured observed variance structures using PARg (Fig. 4a),
with weaker alignment using PAR, and PARg, prioritizing
water-column light attenuation when predicting GPP (Kirk
et al. 2021; Savoy and Harvey 2021). Frequency-domain
results from Blaszczak et al. (2023) suggest including latent
biomass captured observed variance structures better than
autoregressive model (Fig. 5, top row), highlighting a signifi-
cant advance for replicating frequency-domain patterns.
Given our PARg model also performed well in the frequency
domain, using PARp in the LB model is likely to further
improve performance.

ER model predictions aligned better with observations
when including both Q and GPP drivers (Eq. 7), and when
neglecting T effects (i.e., low E,, Fig. 5, bottom row). Compa-
rable frequency-domain alignment of our ER model to
Bertuzzo et al. (2022) despite stark differences in time-domain
goodness-of-fit (Supporting Information Figs. S5, S6; Table S6)
supports continued ER model refinement including time-
varying multiple C sources (Bertuzzo et al. 2022) rather than
metabolic first principles that neglect supply variation (Song
et al. 2018).

Frequency-domain analysis characterizes the metabolic
regime of rivers. Our analysis revealed regime attributes rele-
vant to predictions across time scales, including fractal scaling
and variance alignment to discriminate among drivers
(e.g., PARg vs. PARg, T vs. C supply). This complements time-
domain analyses and provides a novel benchmark for
assessing metabolism models.
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