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ABSTRACT

Audio deepfakes represent a rising threat to trust in our daily com-
munications. In response to this, the research community has de-
veloped a wide array of detection techniques aimed at preventing
such attacks from deceiving users. Unfortunately, the creation of
these defenses has generally overlooked the most important ele-
ment of the system - the user themselves. As such, it is not clear
whether current mechanisms augment, hinder, or simply contradict
human classification of deepfakes. In this paper, we perform the
first large-scale user study on deepfake detection. We recruit over
1,200 users and present them with samples from the three most
widely-cited deepfake datasets. We then quantitatively compare per-
formance and qualitatively conduct thematic analysis to motivate
and understand the reasoning behind user decisions and differences
from machine classifications. Our results show that users correctly
classify human audio at significantly higher rates than machine
learning models, and rely on linguistic features and intuition when
performing classification. However, users are also regularly mis-
led by pre-conceptions about the capabilities of generated audio
(e.g., that accents and background sounds are indicative of humans).
Finally, machine learning models suffer from significantly higher
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false positive rates, and experience false negatives that humans
correctly classify when issues of quality or robotic characteristics
are reported. By analyzing user behavior across multiple deepfake
datasets, our study demonstrates the need to more tightly compare
user and machine learning performance, and to target the latter
towards areas where humans are less likely to successfully identify
threats.

CCS CONCEPTS

« Security and privacy — Usability in security and privacy; « Gen-
eral and reference — Evaluation; Measurement; - Comput-
ing methodologies — Cross-validation.
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1 INTRODUCTION

Audio deepfakes allow nearly anyone to create human-sounding
speech without the actual existence or consent of a real person.
While such audio can have many beneficial uses [58], the potential
to use deepfakes in service of fraud [20, 25] or disinformation [59,
67] is significant. Given the early success of such efforts, it is highly


https://doi.org/10.1145/3658644.3670325
https://doi.org/10.1145/3658644.3670325

CCS’24, October 14-18, 2024, Salt Lake City, UT, USA

likely that users will be increasingly exposed to deepfake audio in
the business, social, and political parts of their lives.

As a means of spurring innovative and strong defenses against
these threats, the research community has developed multiple pub-
lic datasets for testing. Composed of a wide array of transformed
and entirely synthesized voices, these samples are designed to pro-
vide community benchmarks. However, as is common in the se-
curity community, a crucial component of detection has been left
out of the design - users. As such, because a large-scale study of
human performance against such samples has not taken place, it is
not clear to what extent the current state-of-the-art samples used
to build detectors actually fool humans. Moreover, the extent to
which detectors correctly classify attacks missed by users is also
not understood. Without this grounding in user performance, it
is unclear how currently proposed defenses can be meaningfully
incorporated into real-world systems.

We address the above issues by performing the largest multi-
dataset study of audio deepfakes. Our efforts produce the following
contributions:

o Largest user study on audio deepfake detection: We
conduct a user study with over 1,200 participants using sta-
tistically parameterized, stratified sampling from the three
most widely-cited audio deepfake datasets - Wavefake [21],

ASVspoof2021 [77], and FakeAVCeleb [35]. Across these

datasets, we show that humans exhibit a 73% accuracy, with

an elevated ability to correctly identify other humans over
deepfake audio.

Qualitative study identifying decision factors: As part

of our study, we asked users to explain their classification

decisions. We collect and manually categorize over 24,000

responses into themes, thereby providing insight into how

humans classify audio as fake or real.

e Comparative analysis on human and ML performance:
Without a clear understanding of why some samples fool
users better than others, it is challenging to design defenses
that actually help them. Having characterized the dataset
from the user perspective, we identify differences in how
models perform on the same inputs, and identify possible ar-
eas of improvement for future efforts. We also make our anno-
tated dataset publicly available such that future researchers
can see how their mechanisms perform against user classifi-
cation without the significant expense of a user study.

We aim to characterize how well people perform on discriminat-
ing deepfake datasets and how this compares to machine learning
detection models. Toward this goal, we ask the following research
questions:

RQ1 Evaluate Human Accuracy: What are the performance
metrics for humans when discriminating on the popular
datasets used in audio deepfake detection?

RQ2 Determine Human Classification Reasonings: What are
the common themes affecting how humans classify audio
deepfake samples as real or fake?

RQ3 Compare Human and ML Classification: Is there a demon-
strable difference in audio deepfake detection capability be-
tween humans and ML models? Furthermore, are there com-
mon themes amongst these differences?
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The remainder of this paper is organized as follows: Section 2
covers background material and related work; Section 3 discusses
the datasets used and our methodology for evaluating them; Sec-
tion 4 presents the quantitative results of our user study; Section 5
provides qualitative and thematic results from our user study; Sec-
tion 6 compares user performance to four benchmark ML detectors;
Section 7 provides discussion and recommendations; Section 8 of-
fers concluding remarks.

2 BACKGROUND AND RELATED WORK

Deepfake Detection vs. Speaker Verification: There is a large
overlap between deepfake detection and speaker verification tasks;
however, they are not the same. It is a fundamentally different task
to verify the generative source of audio than to verify the identity
behind the voice in an audio clip. When a deepfake is targeted
to impersonate a specific individual, the recipient may use prior
knowledge of that individual’s voice to help determine the validity
of the audio they are hearing. It is in this specific case that these
two tasks become largely the same to the end recipient.

While some deepfakes are targeted at familiar voices and largely
fall under this speaker verification task, there are instances where
the recipient is not familiar with the voice of the deepfake but still
needs to determine the validity of the voice. This is often seen in
cases such as call centers, where representatives typically have no
familiarity with the person on the other side of the phone call [53].
In these cases, the representative is tasked with a pure deepfake
detection problem and needs to appropriately determine if the per-
son on the line is human or computer-generated for the security
of their customers. Without prior knowledge of the person’s voice,
call centers must rely on other artifacts to determine if the voice is
a deepfake. While the distinction between these two tasks can be
minute, it is important to understand the differences to appropri-
ately categorize results and identify limitations and/or restrictions
available to the people doing the classification.

Audio Deepfake Detection: Research on audio deepfake detec-
tion identified many characteristics of human audio that differenti-
ate it from synthetic audio. These characteristics include the airflow
pressure or time-difference-of-arrival of phoneme sequences [73,
81], the presence of breathing [37], the pop sound made by a
breath [69], the particular attributes of the airwaves [7, 68], the
movement or structure of the human vocal anatomy [8, 80], and
even subtle spectral differences [4, 43]. Some of these techniques
require additional hardware to implement [68, 73] while others can
be implemented using the hardware that already exists on a mobile
device [69, 80]. Many researchers and organizations have synthe-
sized audio deepfake datasets [21, 35, 41, 50, 63, 77] to advance these
detection techniques, especially those relying on machine learning
models [10, 70, 79]. Additionally, recent work suggests that these
datasets can improve by considering the base rate of deepfakes in
the wild [38]. Although deepfake detection systems continue to
make advancements, significantly less research has been done on
how humans detect deepfakes.

Studies Outside of the Audio Domain: Several studies into the
capabilities of humans to detect generated media have been per-
formed outside of the audio domain. These studies investigated how
people evaluated and interacted with deepfake videos, deepfake
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images and generated text. Studies performed for video deepfake de-
tection [22, 36] aimed to compare human accuracy with the leading
detection models [11, 19, 48] to determine if there was a difference
in the capabilites of humans and machines to identify deepfakes.
The studies performed within Natural Language Generation were
focused on addressing the variability in how machine generated
text was evaluated [66] and determine the efficacy of potential de-
tection mechanisms [16] compared to human evaluation. Mink et
al. [47] combined machine generated content from two mediums,
text and images, when they investigated how users observe fake
profiles on social media.

Studies on Audio Deepfakes: Unlike other generated media, there
have been limited studies into the way humans perceive audio
deepfakes. The majority of these studies are performed within the
context of voice impersonation attacks [49, 52, 74], where the audio
generated are voice conversion techniques [29, 56] performed on
either celebrities or participants from another user study. These
studies tested participants with a speaker verification problem by
giving them side-by-side comparisons of voices they should be
familiar with and tested them against speaker authentication sys-
tems [1, 46]. Wenger et al. [74], contextualized the problem by
demonstrating that people are more susceptible in a work setting
compared to personal time. Additionally, research suggests that
the lack of differentiable brain activity when processing real and
synthetic audio suggests that humans will inevitably lose the ability
to reliably classify synthetic audio once it reaches a high level of
quality [52].

These studies either create their own set of deepfakes [52, 74] or
perform their study on only a single dataset [42, 51]. Both of these
options limit the applicability of the results and do not fully capture
the capabilities of audio deepfakes to impact people. While these
studies are a good initial starting point for studying audio deep-
fakes, they are not expansive or comprehensive enough to make
meaningful recommendations or draw conclusions. Comparatively,
our study tests human classification across the three most popular
and cited audio deepfake datasets, which represent the state-of-the-
art for audio deepfakes in the research community. We perform
our study using a principled, statistical approach to appropriately
evaluate human detection capabilities on each dataset.

3 METHODOLOGY

To explore our research questions, we conduct an online user study
that tests the capacity of humans to act as audio deepfake detec-
tors. We use Prolific over MTurk due to MTurk responses lacking
generalizability compared to Prolific [65]. For our experiment, we
test participant detection capabilities against a subset of samples
from the three datasets described in Section 3.1.

We design a statistically principled user study to use human
classification to contextualize datasets within real-world scenarios
based on the following null hypothesis:

HO * HUMANS WILL CLASSIFY DEEPFAKE AUDIO FILES AT THE SAME
RATE THAT THEY CLASSIFY HUMAN AUDIO.

In the following sections, we describe our dataset selection deci-
sions, audio sampling methodology, experimental design, ethical
considerations, and participant recruitment.

CCS’24, October 14-18, 2024, Salt Lake City, UT, USA

3.1 Datasets

For our study, we collect samples from the three most popular au-
dio deepfake datasets: ASVspoof2021, Wavefake, and FakeAVCeleb.
These datasets together exhibit a high citation count paired with
a variety of generation techniques, sample durations, and speaker
counts. Consequently, we believe these three datasets together act
as a proxy for the corpus of English samples within the audio deep-
fake research area.

Wavefake: The Wavefake dataset represents a single speaker
saying the same sentences in both the real and deepfake samples. It
is a deepfake dataset that contains ten sets of deepfakes using six dif-
ferent generation architectures across two different languages. The
dataset is primarily developed around the LJSPEECH corpus [28]
for its English samples and the JSUT speech corpus for the Japanese
deepfakes [63]. For the purposes of our study, we only sample from
the English portion of the dataset. The LJSPEECH dataset contains
13,100 short audio clips read by a single female English speaker.
Since its release in 2021, Wavefake has been used in the develop-
ment of several detection algorithms [31-33, 72] and evaluation of
existing algorithms [64, 71].

ASVspoof2021: The deepfake dataset from the ASVspoof2021
competition [77] contains samples that represent multiple unfa-
miliar speakers saying a variety of phrases, and is split into three
tracks: physical access data, logical access data, and deepfake data.
For the purposes of our study, we focus only on the deepfake track
which uses text-to-speech (TTS) and voice conversion (VC) gener-
ation methods. We use the evaluation dataset from the deepfake
track, which contains 22,617 human samples and 589,212 deepfake
audio samples that are generated using more than 100 different au-
dio spoofing algorithms and processed using various lossy codecs.
ASVspoof2021 has enabled numerous works [5, 40, 75] to advance
the field of audio deepfakes since its inception.

FakeAVCeleb: FakeAVCeleb [35] is an audio-video deepfake
dataset that contains deepfake videos as well as lip-synced fake
audio. It represents a variety of familiar voices with samples from
celebrities saying a multitude of phrases. The dataset was formed
using YouTube videos of celebrities from four different ethnic back-
grounds sampled from the VoxCeleb2 corpus [13], a dataset con-
taining over one million YouTube videos of 6,112 celebrities. To
produce deepfake audio, the developers use the voice cloning tool
SV2TTS [30] as their sole generation algorithm. For our study,
we collect the 10,209 real audio samples and 11,335 deepfake au-
dio samples used within the dataset. Numerous studies have used
FakeAVCeleb in the audio domain to test existing models [55] or
train new models [31, 32]. Others have used it in the combined
audio and visual domains to perform similar tasks [9, 12, 14, 17, 18,
23, 26, 27, 34, 39, 61, 76, 78].

3.2 Audio Sampling

Unlike evaluating an ML classifier on a large dataset, scaling is
cost-prohibitive for human subjects. To narrow down the task, we
calculate confidence intervals [3, p. 362-365] to estimate the total
number of samples in each dataset that we need to discriminate
on to achieve a population accuracy within a desired error range.
Under the assumption that each dataset is a large population of
samples (i.e., total samples » 1000), we can formally estimate our
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Figure 1: We begin construction of our survey by performing stratified sampling on our three datasets to extract 2+ ny samples
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Each sample is listened to by at least three unique participants. We discard bad responses and provide those samples to a new
user until we receive three valid responses for every sample. We conclude our survey and store our results in a database for

analysis.
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with g as the estimated study accuracy, ME as the desired margin
of error, and z as the z-score. Under the assumption that the dataset
is balanced between the classes (i.e., there are approximately the
same number of real and deepfake samples), Eq. 1 provides a close
estimate for sample count. In reality, however, these datasets are
not always balanced and generally favor the deepfake class (e.g.,
97% deepfake samples to 3% real samples for ASVspoof2021). To
account for the imbalance, we take the original margin of error
equation

(1-9q)
ME = 2 p\Var(g).  Var(q) = T, @
used in Eq. 1, and adjust the variance to account for the different
class proportions as follows:

Var(g) =p12)F[QDF(1 - CIDF)] +P12q[qH(l - CIH)]’ 3)
no no

where gpF is the study accuracy on deepfakes, gy is the study

accuracy on real human audio, ppF is the proportion of the dataset

that is deepfakes, pp is the proportion of the dataset that is real

human audio, and ng is our subclass sample size.

To simplify the sample size calculations, we assume that the
human participants classify deepfakes and human audio at the
same rate (i.e., our null hypothesis). We can solve the margin of
error equation with the new variance for ng to get

2
Za/z

~ ME2

We assume a 95% confidence interval (i.e., z4/5 = 1.96), a de-
sired margin of error of 2%, and an estimated gpr and qg of 0.75
based on previous similar work [51]. Solving for ng only gives us

no (5 r *apr(1 = qpF) (03 *qu(1 —qm)). (4

the number of samples needed for the survey for one of the sub-
classes, either human audio or deepfakes. We want the participants
to have an equal chance of receiving a human or deepfake sample
on each question so as not to bias the classification, thus we use
stratified sampling to match the number of deepfakes with real
human audio to get a total sample number of 2n( for each dataset.
The data distribution for the datasets are as followed: Wavefake —
89% deepfake / 11% real; ASVspoof2021 - 97% deepfake / 3% real;
FakeAVCeleb - 53% deepfake / 47% real. Solving Eq. 4 for each of
the distributions, we determine that the total number of samples
needed for each dataset are 3,400 for ASVspoof2021, 2,880 for Wave-
fake, and 1,800 for FakeAVCeleb. We refer to the sampled audio as
D(wave,asv,fake}> Where the subscript denotes the dataset.

3.3 Experimental Design

Our user study evaluates human classification of audio deepfakes.
The only control we impose on the design is the separation of the
three datasets (i.e., participants only receive samples from a single
dataset). Each participant is instructed to listen to twenty audio
samples on separate pages, and answer a set of questions. Each
audio sample is pulled from a pool of unique files for a single dataset.
We share an overview of our experimental design in Figure 1.

Study Procedure: Each Prolific user who signs up for our survey
is redirected by a link to our survey website. They start by reading
a description of the survey, a consent form, and a General Data
Protection Regulation (GDPR) addendum, and are asked to continue
if they understand and give consent. Before participants begin the
study, we confirm that they do not have any hearing difficulties
or loss and ask them to verify they are using headphones for the
survey (a requirement described in the survey description). We ask
participants to use headphones to reduce both noise and distractions
as well as to standardize the experience of each person taking the
survey.
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Then the participants are asked to do the main task of discrim-
inating audio samples. For each of the twenty samples, they are
given an audio clip to play accompanied by three questions:

(1) Was the sample Human or Computer generated?
(2) What is your confidence level with your decision? (1-5)
(3) Did you hear anything that affected your decision?

The term “deepfake” carries a certain stigma with it that can bias the
way that people think or interact with media [59]. Consequently,
we avoid using this term anywhere throughout the survey and
explicitly only use the term “Computer generated” instead. We also
give the participants two attention checks to verify that they are
fully participating in the survey.

After they complete the main task, we ask the participants some
follow-up demographic questions and if their concern level with
deepfakes changed due to their experience with the dataset.

Survey Sample Selection: We randomly split each dataset into
clusters of 20 audio samples and each participant is given a single
cluster. We run through each dataset three times and randomly
sample new clusters for each run of the survey. This means that each
audio sample is classified independently of the other audio and order
of the cluster. For example, audio sample A given to participant
P1 could be the 5% sample shown, while sample A if given to
participant P2 could be the 11t" one shown. Additionally, we do
not control the distribution of samples each participant receives
since the sampling of the audio files from the pool is not stratified.
This is done to remove the bias of participants feeling the need
to even out their classification decisions. Thus, our data follows a
binomial distribution of human and deepfake samples and has a
small likelihood that a participant receives all samples from a single
category (i.e., human or deepfake).

Survey Response: We want to determine and evaluate how the
average person would perform on each dataset. To minimize any
outliers in skill level, we recruit enough participants such that
each audio sample is heard and evaluated three times. Achieving
three participants per audio file allows us to implement a voting
scheme, where we assign a decision for each audio sample based
on a majority vote. There are several cases in which responses
are excluded and replaced (refer to Section 3.4), thus we guarantee
three independent responses for each audio file. By using a majority
vote, we get an estimation of the performance of an average person
and look at the population as a whole.

Self-Training Control: Two control elements help minimize the
opportunity participants have to “train themselves” throughout the
study: isolation of datasets and lack of feedback. By only giving the
participants samples from a single dataset, we limit the exposure
they have to other deepfakes which can influence future decisions
by comparison. Our study assesses each dataset individually and
focuses on the unique experience each dataset presents. We also
do not inform the participants at any point if their decision was
correct. This limits the impact of question ordering affecting later
accuracy in this scenario.

Attention Check and Action Verification: To verify the reliabil-
ity of the results, we implement two attention checks throughout
the survey and make sure the required actions are completed. Each
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attention check requires participants to listen to an audio clip and
pick out the appropriate transcription from a multiple-choice list.
These checks provide each participant with a trivial task to ensure
that the participant is not just randomly picking answers. We also
record the number of times each participant listens to each audio
sample. Finally, we autoplay the audio on each page and restrict
continuation until it has fully completed to ensure each participant
hears the entire sample.

3.4 Ethics and Participation

Before recruiting for our survey, we gained approval from our
Institutional Review Board (IRB) as an exempt study. Our work was
exempt because we collect no personally identifiable information
(PII) as Prolific maintains the anonymity of its users. Additionally,
any behavior requested from the subjects was in the form of benign
written responses. Each participant is shown an informed consent
page at the beginning of the survey detailing the task they are
performing, the time requirement, the security of their data, and
the ability to withdraw. With our institutional exempt approval,
there is no requirement for a documented signature, thus we ask
participants in the survey to start only if they have read and agreed
to the information shown on the consent page.

We use the following three requirements for selecting partici-
pants: users without any hearing loss or hearing difficulties, users
with English as their first language, and users located in the United
States.

We recruited 1,212 participants based on the number of samples
required from our sampling calculations detailed in Section 3.2.
We checked that the participants met our three requirements and
assigned 510 for ASVspoof2021, 432 for Wavefake, and 270 for
FakeAVCeleb as this sufficiently covers each audio sample three
times based on our calculations in Section 3.2. The median time for
completion for all participants was 14 minutes and each participant
received $5 in compensation regardless of if we excluded their data.
After manual inspection of their responses, we excluded data if
they failed an attention check, seemed to give automated responses
(e.g., same responses for every question), completed the survey too
quickly (< 4 minutes), or reported that they had issues hearing the
audio. For each set of excluded data, we re-ran that set of audio
files for a new participant until we successfully completed all 1,212
individual surveys. Overall, the cost of compensating participants,
hosting our website, storing data, and recruiting additional partici-
pants to compensate for poor responses exceeded $10,000. We had
participants in every age range from 18 to 55+, with the median
age group being 35-44 years old. Approximately 53% identified as
male, 44% as female, 2% as non-binary, and 1% identified as either
“other" or preferred not to answer. We provide a full list of our
demographics on our companion website!.

4 USER STUDY EVALUATION

In this section, we present the results of our user study including
individual human performance on the datasets, human performance
based on consensus voting, and model metrics from the voting
performance to address RQ1.

Uhttps://sites.google.com/view/better-be-computer/home
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Figure 2: Individual user accuracy on the 20 samples given to
each participant. Each dataset had at least one person score
a perfect accuracy, however, the average performance varied
from dataset to dataset. On average, participants performed
better on FakeAVCeleb and worse on the Wavefake dataset.

4.1 Individual User Performance

We first look at the individual performances of the survey partici-
pants by looking at their accuracies across the 20 samples given to
them. While previous work has looked at this type of performance,
they limited their results to a single dataset (e.g., a community
dataset or self-created dataset) [42, 51]. Our study provides an ex-
panded perspective on this previous work, looking at three of the
most widely used community datasets for audio deepfake detec-
tion. A summary of the individual accuracies for each dataset is
displayed in Figure 2.

While at least one individual achieved 100% accuracy on each of
the datasets, the average performance across the datasets varied.
Users performed the worst on Wavefake with a mean accuracy of
65%. Overall performance on ASVspoof2021 was slightly better with
a mean of 71%. The highest performance was on the FakeAVCeleb
dataset with an average accuracy of 81% and a minimum of only 30%
compared to the 20% minimum on the other datasets. The variation
in performance between each of the datasets reveals that not all
deepfake audio datasets are created equal. The way people process
various types of deepfakes differs, so the composition of the dataset
has an impact on how susceptible people are to misclassifications.

We additionally investigate if our study provides training to users
by plotting individual user accuracy by question number, shown
in Figure 3. This plot does not exhibit any demonstrable change in
accuracy as users progress through our survey, suggesting that we
mitigate training as desired in our experimental design.

4.2 Application of Voting Scheme

Going beyond individual performances, we also assess how the
average person would perform across the entirety of each dataset.
To accomplish this, our survey collects three responses from dif-
ferent participants for each audio sample in our subsets. Using the
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Figure 3: Plot of individual user accuracy throughout our 20
question survey. We observe no correlation between ques-
tion number and accuracy, which suggests that the presen-
tation of our survey does not train participants.
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Figure 4: User accuracy based on consensus voting by dataset
on human audio versus deepfake audio and human accu-
racy on the audio overall. Users as a group performed bet-
ter on human audio across all datasets, and performance on
FakeAVCeleb was the highest overall.

three responses, we apply a voting scheme to the classifications
to identify how the average person would classify each sample.
With only a limited subset of audio, the voting scheme reduces the
impact of outlier performance and gives us a more general view of
human performance on the samples.

The voting scheme yields two types of decisions: complete agree-
ment and split decisions (i.e., 2 of 3 agreed). The percent of decisions
that were complete agreements follows the same trend as the in-
dividual user performances; FakeAVCeleb is the highest at 61%
complete agreement, followed by ASVspoof2021 at 48%, and the
lowest is Wavefake at 39%. Additionally, we observe that the ac-
curacy of complete agreement was approximately a 35% relative
increase from the accuracy of split decisions. This demonstrates
that when samples seem clearly fake or real to people, people are
generally correct (i.e., there are not many fake samples that sound
perfectly human and there are not many real sounds that sound
demonstrably fake).
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z-score | p-value

Wavefake 8.42 3.78e-17
ASVspoof2021 | 12.33 6.57e-35
FakeAVCeleb 12.58 2.76e-36

Table 1: Results of the z-test comparing the accuracy of
user performance on real audio versus deepfake audio (Hj :

qpF = qH)-

4.3 Model Metrics on Human Performance

Using the voting scheme classifications, we can calculate the accu-
racy of a general person on the subset of samples for each dataset
and extrapolate those results using confidence intervals as described
in Section 3.2. Figure 4 shows the accuracy performance with the
voting scheme applied on both the real and deepfake audio sepa-
rately as well as their overall performance. Notably, our findings
reveal that users consistently exhibit higher accuracy on real audio
as opposed to deepfake audio (e.g., 15% better for Wavefake, 18%
better for ASVspoof2021, 21% better for FakeAVCeleb). We investi-
gate this difference further by performing a z-test using our original
null hypothesis (Hy : ¢pr = qg) [3, p- 475-476]. The results of the
z-test lead us to reject the null hypothesis for all datasets as each
corresponding p-value is below 0.0052 as shown in Table 1. The
results of the z-test are further confirmed by the lack of overlap
between the confidence intervals around the real and deepfake
audio accuracies as shown in Figure 4.

In computing the overall accuracy, we weight the real audio
accuracy and deepfake audio accuracy based on the distribution
of human and deepfake audio instances within each dataset. We
employ Eq. 3 to quantify the margin of error associated with the
overall accuracy. This equation requires that the variables repre-
senting human audio accuracy and deepfake audio accuracy are
statistically independent. We assume independence when calculat-
ing the sample size for our survey, recognizing that any departure
from this assumption would result in a margin of error larger than
anticipated.

To validate the assumption of independence, we conduct both
Spearman’s rank and Pearson’s correlation tests on the two vari-
ables. The highest absolute correlation value was the Spearman’s
rank (r = —0.11,p = 0.015) for ASVspoof2021, suggesting the
two variables are dissimilar. Given the observed negligible correla-
tion between human audio accuracy and deepfake audio accuracy
across all analyzed datasets, we conclude that these two variables
are indeed statistically independent.

We design our study to calculate an overall accuracy that could
directly compare with detection models. For comparison with de-
tectors, we treat the human responses as a “human model” and
provide a full set of model performance metrics for each dataset in
Table 2. Assessing the humans as their own model demonstrates
that people tend to lean towards believing a piece of audio is hu-
man, with FNR scores consistently higher than FPR scores across
all datasets. Additionally, we observe that all standard classification

2Classical standards for p are < 0.05 while modern standards are p < 0.005. We adopt
the latter [6].
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Human “Model” Performance

Wavefake  ASVspoof2021 FakeAVCeleb
Accuracy 63.9% + 2.2% 68.1% + 2.4% 85.8% + 1.6%
Precision 73 .82 .96
Recall .62 .67 76
F1-Score .67 74 .85
FPR 23% 15% 3%
FNR 38% 33% 24%

Table 2: Model performance metrics on the survey responses
for each dataset. The highlighted false positive rate (FPR)
and false negative rate (FNR) demonstrates that people
trend towards trusting audio as being human generated
since the FNR is consistently greater than the FPR.

performance metrics follow the same dataset trend as shown in
Figures 2 and 4: participant performance is the worst for Wavefake
and the best for FakeAVCeleb (e.g., FPR is nearly eight times as
high for Wavefake when compared to FakeAVCeleb). These quanti-
tative results address how well humans classify audio from popular
deepfake datasets (RQ1) and motivate further analysis into why
humans conclude that audio is trustworthy or not.

5 THEMATIC ANALYSIS

We perform a qualitative thematic analysis by developing a code-
book and coding the text response of our participants to gain further
insight into RQ2. We describe our codebook-generating process,
explain the themes that emerge from our coding, and examine the
qualitative breakdown that response reasoning had on performance.

5.1 Coding Process

We perform a thematic analysis of the users’ open-text responses
to the question “Did you hear anything that affects your decision?”
to characterize how humans approach classification of deepfake
audio. A codebook is developed by a group of raters through a
discussion of common ideas observed during an initial pass of the
responses. Keywords from the first pass are grouped together by
likeness and eight unique codes are given to represent each group.
Note that the codes reflect the general idea behind the group of
keywords and do not necessarily follow strict definitions. All codes
along with their associated keywords and descriptions are shown in
Table 3. Two raters independently code all responses using the eight
codes and inter-rater agreement is measured via the Cohen’s Kappa
coefficient. Each rater also had the option to mark a response as a
“Bad Response” or “No Reason” if they believed the response did not
appropriately answer the question or indicated a lack of reasoning.
We removed all responses in which at least one rater indicated either
a “Bad Response” or “No Reason”. Finally, if responses included
multiple clauses that represent different codes, we only consider
the first clause as it represents the participant’s initial reaction.
When strong agreement (k >= 0.8) [45] is not initially reached,
a third rater re-codes a portion of the responses. Responses for
re-coding are selected based on a count of codes where the two
original raters differ. Because Rater 1 uses the “Human-Like” and
“Robotic” categories at a much higher amount than Rater 2, we first
re-code all of the responses where Rater 1 uses “Human-Like” but
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Theme Code Keywords
Speaking Style Accent, List, Articulation,
Specific Word Choice
Linguistic Prosod Tone, Inflections, Cadence, Pitch,
Elements y Monotone, Raspy, Emotion
Disfluency Pauses, Filler Words

Speed Fast, Slow, Rushed
Background Noise, Microphone,

External Quality Recording, Clipping
Liveliness Breathing, Mouth Noises, Nasal
Intuition Human-Like Natural, Human
Robotic Robotic, Glitchy, Mechanical

Table 3: Our codebook for categorizing responses from par-
ticipants in our user study. We analyze each response us-
ing eight unique codes with corresponding keywords, then
group those codes into three major themes.

Rater 2 does not, then move to the responses where Rater 1 uses
“Robotic”. During the re-coding process, Rater 3 chooses between
the two codes used by the original raters and changes the code
that was not chosen to match. The re-coding continues until a
strong agreement is met. In total we manually code all n = 24, 240
responses, remove n = 3, 237 bad responses, and achieve a resulting
Cohen’s Kappa coefficient of k = 0.82 on the n = 21, 003 remaining.
We label each response with 1-2 codes (1 for rater agreement; 2 for
disagreement) totaling n = 24, 987 codes. We use this number as
the denominator in our descriptive statistical tests.

5.2 Reasoning Themes

While manually coding the n = 24, 240 responses, three themes
emerged in the codes for participant reasoning. We separated the
themes based on whether the participants referred to a Linguistic
Element, talked about an External Feature outside of the speech, or
seemed like they were relying on Intuition (e.g., experience, feeling,
or guessing). The distribution of codes and appearance rates can
be seen in Figure 5.

Linguistic Elements. The largest theme is Linguistic Elements,
which is comprised of the Prosody, Speaking Style, Speed, and
Disfluency codes. The majority of participants try to find some
kind of fault in the voice and choose to believe the sample is human
if they do not find any faults.

Prosody (n = 5,553; 22%) is the most commonly referenced
topic among all of the responses. This is primarily when people
identify problems or naturalness in tone and varying degrees of
cadence (e.g., ‘It has a dull tone.” (P697), “The speech felt like it was
too “perfect” with the timing between words to be natural” (P439)).
Participants also state that emotion is a key factor within Prosody
in believing a sample is human-generated (e.g., “The speech is very
enthusiastic, emotion is more of a human trait” (P1202)).

Disfluency (n = 924; 4%) and Speed (n = 560; 2%) are the two
least present codes among the responses. These generally focus on
the existence of pausing and the speech being too fast or too slow.
For example, P1056 states that in one of the samples “the pausing
was very jerky and unnatural” and P1078 believes that one of their
samples was “a human that speaks really fast.”

Speaking Style (n = 4,518; 18%) contains some of the most
unique and detailed responses of the Linguistic Element codes.
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Speaking Style

. Robotic
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Figure 5: Appearance rate of the eight codes used in the the-
matic analysis. We designate codes contained within each
theme with similarity in color. It demonstrates that Prosody
is the most common factor that contributes to classification
decisions by people, while Speed is the least common.

These responses contained many reasonings based on things that
the participants do not believe computer-generated voices are ca-
pable of. For example, many participants do not believe computers
can generate accents (e.g., ‘I do not believe I've ever heard a computer
generated voice with a proper English accent” (P877), “The accent in
her voice was distinct making her seem human. I would say when
someone has a heavy accent or impediment it makes it seem more
human”(P525)). One participant (P626) states, “The accent gives it
away. I have never heard a quality [computer-generated] voice with
a believable accent,” and later reconsiders their stance, commenting
“The Irish accent makes me think it’s human, although I'm beginning
to think my stance on accents (meaning human) might be incorrect.”
Another participant also states that T don’t think a computer can
mimic a speech disorder” (P610). We note that these preconceptions
persist despite the multitude of accent options in popular voice
assistant programs [44, 62].

Another trend in Speaking Style is trying to dissect the way
the phrase or parts of the phrase are stated. For example, P556
comments that “People do not say, on November twenty-two” and
P1132 believes that the way the person in the sample was speaking
“sounded like a snarky answer which is human.”

Overall, when people are reasoning using Linguistic Elements,
they are pulling from their experiences interacting in various types
of conversations. They look for deviations from their experiences
or their perceived capabilities in computer voice generation and
use that as the basis for determining if a sample was human or
computer-generated.

Finding 1. Participants have pre-conceived ideas of what computer
voice generation is capable of which impacts how they reason about
detecting deepfake audio.

External Features. Outside of the voice, some people look for
faults in features of the audio sample or look for sounds outside of
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the speech to influence their decision. External Features, containing
the Liveliness and Quality codes, is the smallest of the themes but
gives insight into some artifacts that people key in on when making
discriminations on audio samples.

Liveliness (n = 1,121; 5%) indicates that something in the au-
dio suggests to the participant the presence of a person. The most
common liveliness feature was the appearance of breathing, which
overwhelmingly convinces people that the audio is human gen-
erated. For example, P254 indicates that breathing means human,
saying, ‘T could hear breathing and that made it sound human,” while
P1203 looks for lack of breathing saying, “They sound like they could
be robotic or human. If I could hear him breathe it would be obvious
it was a man.” Note that both participants were incorrect in their
choices based on these reasonings.

Quality (n = 3,556; 14%) refers to various issues associated
with the sample that alert the participant to problems. The most
common term that participants use with this code is “background
noise” (e.g., “The background noise felt like a static computer noise
and I think it may be a computer” (P641), “there is distortion and
some sort of high frequency noise in the background” (P757)). Some
participants reference the recording equipment, such as P605 saying,
“It sounds slightly robotic, but it’s hard to tell if it’s a computer or just
microphone feedback.” Others reference distortion or audio clipping
saying things such as, “there was a lot of stutter and audio clipping at
the end that made her sound very robotic” (P892). Some participants
also use background sounds to make their decisions, such as P856
saying, “This was easy. I clearly hear laughing in the background, so
that tells me this is being recorded live and is a human voice” and
P64 saying, “There was someone else talking in the background.”

The External Features theme demonstrates that just generating
quality speech is not enough for deepfakes since people look at all
parts of the audio sample when making decisions. The presence of
additional artifacts can help humans accurately discriminate, while
also giving deepfake generators a way to influence recipients by
adding artifacts that they look for when deciding an audio sample
is human generated.

Finding 2. Audio artifacts play a key role in how participants dis-
criminate on deepfake audio which could easily be manipulated by
deepfake generators.

Intuition. While the other two themes are more straightforward,
some responses were more difficult to label since the reasonings
were not detailed. The Intuition theme, containing the codes for
Human-Like and Robotic, represents reasons that the participants
either could not articulate or narrow down.

Robotic (n = 4, 437; 18%) is the code given to responses that insin-
uate the participants believe the sample was computer-generated.
These responses use terms such as robot, machine-like, and unnatu-
ral. Generally, the participants do not identify specific traits, saying
things like, “it has a very robot and computer-generated sound” (P74).

Human-Like (n = 4, 318; 17%) conversely references the belief
that the sample is human without specifics. Responses with this
code refer to things such as “natural”, “real”, or “human-like”. For
example, P275 claims that the sample “sounded like how a real
person would talk” while P7 says, “Just basic instinct. Seemed pretty
natural”.

CCS’24, October 14-18, 2024, Salt Lake City, UT, USA

We see that over a third of the codes come from people making
instinctive responses in their decisions. Not everyone knows what
they are keying in on, but it is important to know how often people
determine the audio source based on general impressions.

Finding 3. While not as prevalent as linguistic features, participants
still heavily rely on intuition when discriminating on deepfake audio.

Knowing the frequency of certain types of responses and the
general themes is just the start in understanding how people dis-
criminate audio samples and begins to answer RQ2. A further
dive into how these mindsets affect performance and how different
types of deepfakes perform will give a better understanding and
contextualize the performance of our study participants.

5.3 Thematic Reasoning by Data Type

We now split the codes by their true classification value (i.e., real
audio vs deepfakes) and share our results in Figure 6. This figure
exhibits three trends to explore, based on three groupings of codes.
The first are the codes (e.g., Human-Like, Robotic, Liveness) which
exhibit unbalanced results based on data type. For example, the
Robotic code represents a unique case in which false positives
outweigh true negatives for real samples, suggesting that while the
code is a strong factor in detecting fake samples, it can also lead
to heavy false positives if relied upon too heavily. The other two
imbalanced cases, namely Human-Like and Liveliness, represent
the only cases in which false negatives outweigh true positives.
Since the goal of a deepfake adversary is to produce a false negative
sample, this result suggests that they are incentivized to focus on
these two qualities during the generation phase.

The next group, consisting of Disfluency, Speed, and Quality,
represents the case in which humans exhibited their strongest av-
erage performance for both data types (i.e., correct classifications
heavily outweigh incorrect classifications). This grouping provides
evidence that humans perform well on samples primarily exhibiting
sentence mistakes, odd speed, and quality issues.

The final group (e.g., Prosody, Speaking Style) represents cases
where results are more balanced, mainly for fake samples. Humans
identifying these codes perform closer to random guessing when
the sample is fake, signaling that how the sentence is spoken can
be a strong factor for adversaries to focus on, albeit not as reliable
as Human-Like or Liveliness.

Finding 4. Humans missclassify fake samples which exhibit organic
features and real samples that sound robotic at high rates. Also, hu-
mans perform well on real and fake samples that primarily feature
sentence mistakes, odd speed, and quality issues.

5.4 Confounding Variables

During our study, we observe participant behavior that could have a
minor effect on the results. Since the participants received the audio
in a survey setting, a small number of participants insinuated that
their decision was based on the belief that they were intentionally
being tricked. For example, P131 stated that they were “not sure.
Sounded human but I'm expecting to be tricked ” and P308 felt as if
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Figure 6: The percentage of code distributions for each sam-
ple type (e.g., fake, real), both adding up to 100%. Real sam-
ples are represented as true negatives (TN) and false posi-
tives (FP) while fake samples are represented as true pos-
itives (TP) and false negatives (FN). While Prosody is the
most balanced of the codes between the data types (i.e., both
real and fake audio have a high number of classifications us-
ing Prosody), people perform the best on samples they clas-
sify using Disfluency, Speed and Quality.

“the oddities I hear are less because of AI and more because of inten-
tionally manipulated audio”. This mindset could be a byproduct of
the survey setup that does not translate to real-world applications.

While our survey setup is designed to have each audio sample
be discriminated on separately, factors between samples sometimes
influenced the participants’ decisions. This was particularly notice-
able with the Wavefake dataset when participants used the repeated
voice to make their decision since it consists of only one speaker
(e.g., “T'm basing my decision solely on the fact that in the previous
examples, the voice is the same” (P452) and ‘Tt sounded similar to the
last one, now I'm second guessing myself” (P1113)).

Additionally, we noticed participants often explain away the
artifacts inside the deepfake audio. In some cases, people thought
that the deepfakes were human with a filter or bad recording, (e.g.,
“sounds like it could have been read by a human, but with a filter
placed over top of the recording” (P1092) and “there were issues with
the sample like someone recorded it” (P1142)). In both cases, the par-
ticipants mislabeled deepfakes as human-generated. Some people
also explained monotone, unemotional speech in a context that they
were familiar with (e.g., “everything except ‘immediately’ sounds
exactly what I'd expect a news reporter to say” (P930)).

Some of the decisions that were made by participants were based
on content, which is unique to the dataset. For example, P686 said
they “think the fact that the voice was giving biographical informa-
tion made it seem more human than computer”. While we did not
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have control over this variable of the deepfakes, it demonstrates
that what is being said can be just as important to the success of a
deepfake as the quality.

Finding 5. Many additional factors impact the way humans classify
including a distrusting environment, recently heard audio for compar-
ison, audio content, alternative reasoning for faults and audio sample
construction (e.g., length)

These distributions in codes, overall (Figure 5), by data type
(Figure 6) and the confounding variables, help us understand why
people are making certain classifications and the emerging themes
behind them. The combination of these analyses addresses RQ2.

6 COMPARISON WITH ML DETECTORS

We train several models in order to compare our user study results
to model performance. In this section, we describe our model train-
ing process and compare the results of the average human to the
average model to answer our RQ3.

6.1 Model Training Process

We train four widely used baseline audio deepfake detectors: three
baseline models (RawNet2, LFCC-LCNN, CQCC-GMM (15, 77]) and
the SSL-wav2vec2.0 XLS-R-based detection model [60] which is,
to our knowledge, the best-performing model on ASVspoof2021.
Each model is retrained exclusively using one of the three datasets
defined in Section 3.1 while the other two datasets are untouched
in training and testing. We repeat this process for all three datasets
and models creating a total of 12 models. For the ASVspoof2021 data,
we train with the training set exclusively, to not overlap with the
evaluation data we selected for the user study. For WaveFake and
FakeAVCeleb, the datasets do not provide a train/test split, therefore
we remove the audio files (x) that we use in the survey and retrain
the models with the remaining data (D;;4; — x). Each model trains
for the default 100 epochs and follows the training pipeline detailed
in their associated GitHub repositories. Since previous work [2]
shows that there exists randomness in training models, we provide
all 12 models in our Zenodo for reproducibility of our results.3

6.2 Detection Models vs. Human Performance

While the extrapolated accuracy calculated in Section 4.3 explains
how well the users classify on each dataset, we now focus on the
human’s performance on the sampled audio, D, to perform a deeper
comparison against the models’ performance using a sample to
sample direct comparison. Specifically, we identify whether models
and humans are misclassifying the same audio samples or different
ones, how this varies between real and deepfake audio, and whether
the trend is consistent across all of the datasets. Across the four
models, we calculate the average performance on D, the average
model, to compare against the humans.

Of the 3,400 samples in D5, humans attain 76% accuracy com-
pared to the average models’ accuracy of 78%. Figure 7 shows the
classification breakdown as sets between the human model and
the average model (e.g., a set would be the group of audio samples
that both the human model and average model correctly named as

Shttps://zenodo.org/doi/10.5281/zenodo. 11044486
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Figure 7: The classification breakdown for the average hu-
man and average model performance on the ASVspoof2021
samples D,s,,. We show that the average human is more
prone to false negatives while the average model is more
prone to false positives.

real known as the TN/TN set). Interestingly, humans and models
correctly agree approximately 60% of the time with 28% agreed
true positive and 32% agreed true negative, and both humans and
models missed approximately 6% of D45, evenly balanced between
false positives and false negatives. We see that humans are more
prone to false negatives while models are more prone to false posi-
tives. For Dyyq0e, humans classify with a 70% accuracy and models
classify at 74%. The humans and models correctly agree 51% of the
time with an even split between true negatives and true positives.
Both the models and humans misclassify 8% of the dataset. In con-
trast to Dgso and Dy ggpe, humans outperform the models in D, p
with 86% accuracy compared to the models accuracy of 74%. The
models and humans agree 64% of the time, and both misclassify 3%
of D_ejep- Classification breakdown for Dy gpe and D.jep can be
seen on our companion website.

Additionally, we use a y? test to see whether there is a significant
difference in the way that humans and models classify real and
deepfake audio. Table 4 shows the results of the y? tests for each of
the real and fake portions of D for each of the datasets. Except for
the fake portion of D.j.p, we observe that there is a significant
difference in the way that people and models classify samples for
each data type. This contradicts the notion that models simply
classify better than people, but rather there is a difference in the
way that each classify audio sample, which needs to be considered
when characterizing defense strategies against deepfakes.

Regardless of the detection mechanism, there are on average 6%
of the total sampled audio per dataset that both the humans and
models misclassify. This is evenly split between real and deepfake
audio samples. Humans are more susceptible to false negatives and
deepfake models are more susceptible to false positives, showing
that improvements are required in mechanisms to be applicable in
real-world scenarios.
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Real Fake
x? p-value | y? | p-value
Wavefake 33.67 | <0.001 | 121.63 | <0.001
ASVspoof2021 | 96.24 | <0.001 | 122.40 | <0.001
FakeAVCeleb | 208.58 | <0.001 0.05 0.25

Table 4: x? test comparing the accuracy of the average per-
son to the ML model accuracy for real and deepfake au-
dio samples. We see that there is a significant difference in
the way that humans and models classify audio samples for
each dataset except for the FakeAVCeleb fake audio.

Finding 6. Models do not strictly perform better than humans, but
rather there is a significant difference in the way that humans and
models classify audio samples. Humans are prone to false negatives
while models are prone to false positives.

6.3 Thematic Analysis in Models

With measuring the difference between humans and models, we
can contextualize the performance of the models using the thematic
analysis. We focus on three specific cases to understand what mod-
els are missing that humans are not and what both humans and
models are collectively missing. We show the three cases that we
analyze in Figure 8. We provide the full list of code distributions
for each scenario across all datasets on our companion website.

Case (1) We find that of the samples that humans accurately classify

as deepfakes and models classify as humans (Human TP,
Model FN) the two biggest themes are Robotic and Qual-
ity. The largest theme is Robotic, and we see that in both
cases ASVSpoof had larger proportions of the two themes.
Thus, often humans are more likely to identify deepfakes
that sound robotic or of poor quality, and models are often
missing deepfake samples.

Case (2) Liveliness had the biggest differences between datasets for

agreed false negatives. Liveliness accounts for only 0.9% of
the themes in FakeAVCeleb where as Wavefake and ASVSpoof
are 4.0% and 8.5%, respectively. Comparing within ASVSpoof,

we look at Liveliness between the agreed false negative (Hu-
man FN, Model FN) and when only humans misclassify the

deepfakes (Human FN, Model TP). We see that Liveliness

accounts for only 4% of a Human FN and Model TP. Thus,

models are more likely to struggle with deepfakes that ex-
hibit Liveliness.

Case (3) The biggest theme that both humans and models struggled

with (Human FN, Model FN) is Prosody. Prosody appears 52%
of the time in FakeAVCeleb under this scenario. This is the
largest single occurrence of a code regardless of classification
or agreement, and is nearly double the occurrence of Prosody
codes in Wavefake (28%) and ASVspoof2021 (19%).
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Figure 8: The major contributing codes for three cases: (1)
when humans correctly predict deepfakes that models miss,
(2) when models correctly predict deepfakes that humans
miss, and (3) when humans and models both misclassify
deepfakes.

Finding 7. Humans rely on intuition and recording quality when
correctly identifying deepfakes that models miss in Dy, Humans
and models both misclassify fake samples at higher rates when the
sample is reported to contain Prosody in D,j.;, and Liveliness in
Dgsv. When contextualized within different scenarios, we observe
significantly different distribution behavior between datasets.

7 DISCUSSION
7.1 Deploying Defensive Pipelines

While model performance is important, optimally deploying a de-
fensive pipeline that considers not only model performance but also
human contributions is a difficult problem. As we demonstrated
in Section 6, models tend to lean towards a decision of deepfake
and thus cause a large number of false positives. If the model is
the first line of defense, the recipient may be overwhelmed with
warnings leading to threat-alert fatigue [24]. Conversely, if systems
rely on people to flag samples and then lean on models for forensic
testing, our study showed that humans lead to a large amount of
false negatives meaning a larger chance to miss deepfakes. Because
both people and models classify audio in different ways and mod-
els do not simply directly improve upon human classification, the
pipeline of both mechanisms (i.e., humans and models) needs to be
considered.

For example, consider an adversary that is targeting a call center.
Note that a call center could seek to limit risk to financial crimes
for a bank or limit its exposure to automated calls that deplete
valuable resources. In the simplest scenario where an incoming
call is immediately directed to a call center employee, the model
would have to run either concurrently or after the call. Thus, the
earliest chance to detect a deepfake happens with the call center
employee either independently or with their decisions informed in
real-time by a model. In both cases, it is the person who is making
the final judgement call on audio. Another complex scenario would
include an automated directory that directs the call. A model could
be deployed at this stage to determine whether an incoming call
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is generated audio or not and terminate the call if the model de-
termines the audio to be fake. This scenario allows the model to
make the final decision on a potential deepfake. These deployment
considerations and pipeline decisions are integral to the audio deep-
fake detection system, with priorities varying based on the specific
scenario (e.g., financial crimes or resource depletion), influencing
the system’s optimal design.

Additionally, when using models, performance is often described
using singular metrics (e.g., accuracy, EER, precision). This limited
interpretation of an ML model does not fully capture the nuances
of performance and hinders the understanding of how good the
models actually perform. ML models should be tested and presented
using multiple metrics, including comparisons with human perfor-
mance, to fully understand what the model is capable of and how
best to pipeline it in conjunction with people.

The way forward is a combination of more careful training of
models to operate in the space where humans are weak, but also
better training of those users. At the current time, both components
are simply too inaccurate to form an effective pipeline. Understand-
ing the scenario that the threat of deepfake poses to a system is
important and understanding the benefits and limitations of human
interactions with deepfakes will allow people to more appropriately
deploy the models into real-world settings. Thus, we encourage fu-
ture work to analyze how systems perform in the context of human
interactions with them.

7.2 Human Training

We design our study to minimize the training of survey partici-
pants by omitting any feedback on their performance, as shown
in Section 4. This approach allows us to achieve a more accurate
representation of how humans would perform outside of a survey
environment. Therefore, based on our findings, we believe that our
qualitative results can offer insight into how humans should be
trained in real-world scenarios to more accurately detect deepfakes.

We look at specific factors that contribute to false positive and
false negative responses. We learn from Finding 1 that humans of-
ten report that they do not believe a computer can generate accents
outside of those found typically in the United States. However, we
show that this assumption is false based on cases where participants
misclassified audio due to accents and from the existence of addi-
tional deepfake audio datasets with a variety of accented audio files
[57]. Furthermore, Finding 2 suggests that the presence or lack
of breathing or external background noise can strongly influence
human responses toward real or fake, respectively. We observe in
the cases of P254 and P1203 that these lead to incorrect classifica-
tions. In fact, human-like features cause the largest percentage of
false negatives overall. As such, we suggest that training partici-
pants be made aware of the capabilities of state-of-the-art deepfake
generators and that no single factor within the audio recording be
regarded as dominant in influencing classification.

We note here that past studies [47] show that training does not
necessarily improve performance but can degrade performance
in key areas. In our banking call center scenario, for example, a
bank could desire to lower employees’ natural skew toward human
classification. To achieve this, they could train these employees
to use audio artifacts as a dominant factor in reasoning about the
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voice they communicate with. Training in this way might reduce
false negatives, but at the cost of increasing the false positives,
skewing human classification toward deepfakes. This shift limits the
availability of the call center by rejecting calls from real customers
and still damages the bank in the end. Ultimately, training people
to detect deepfakes is a new and complex problem. Our results
suggest good focal points for future research to test the best ways
to inform people about deepfake capabilities and train them to be
better deepfake detectors.

7.3 Reproducibility

Recent work has focused on identifying pathways to reproducible
research to encourage better research practices and inspire confi-
dence in results [54]. To promote open and transparent research,
we make the coded data, trained models, and code to run our figures
publicly available in our linked Zenodo. Additionally, we provide
a companion website? that centralizes our figures and contains
sample audio used in our study. We are unable to provide the di-
rect responses from each person due to the limitations from our
IRB. We encourage future work to broaden their threat model and
contextualize the performance of their model within the human
factors of our data.

8 CONCLUSION

Audio deepfakes are a growing concern not just within the security
community, but the broader community worldwide. With recent
advancements in ML detection of deepfakes, it is not clear whether
current mechanisms augment, hinder, or simply contradict human
classification of deepfakes. In this study, we analyze how well hu-
mans classify deepfake samples, why they make their classification
decisions, and how their performance compares to that of ML detec-
tors. To evaluate all of these quantitative and qualitative metrics, we
conduct an online user study in which we ask participants to clas-
sify samples from the three most cited community audio deepfake
datasets as “human” or “computer-generated”. Our findings suggest
that humans achieve an average accuracy of 73% on samples from
these datasets, with notably improved performance on real samples.
Furthermore, we identify what factors lead them to their decision
(e.g., prosody, accents, background noise) and compare how the
impact of these factors changes between data types (i.e., real or
fake). We also compare performance between humans and ML mod-
els, demonstrating that models do not strictly perform better than
people, but rather there is a significant difference in the way that
humans and models classify audio. These results provide us the be-
ginning of how best to approach training humans to become better
audio deepfake detectors and better contextualize the performance
of humans and ML models. To promote reproducibility in this field,
we provide all of our results and our survey structure online.
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