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Abstract—Cochlear implants (CIs) allow deaf and hard-of-
hearing individuals to use audio devices, such as phones or
voice assistants. However, the advent of increasingly sophisticated
synthetic audio (i.e., deepfakes) potentially threatens these users.
Yet, this population’s susceptibility to such attacks is unclear.
In this paper, we perform the first study of the impact of
audio deepfakes on CI populations. We examine the use of
CI-simulated audio within deepfake detectors. Based on these
results, we conduct a user study with 35 CI users and 87 hearing
persons (HPs) to determine differences in how CI users perceive
deepfake audio. We show that CI users can, similarly to HPs,
identify text-to-speech generated deepfakes. Yet, they perform
substantially worse for voice conversion deepfake generation
algorithms, achieving only 67% correct audio classification. We
also evaluate how detection models trained on a CI-simulated
audio compare to CI users and investigate if they can effectively
act as proxies for CI users. This work begins an investigation
into the intersection between adversarial audio and CI users to
identify and mitigate threats against this marginalized group.

I. INTRODUCTION

Hearing loss is a significant global issue, impacting more
than 1.5 billion people worldwide, as reported by the World
Health Organization [69]. Cochlear implants (CIs) provide
a valuable solution for individuals with severe hearing loss.
These electronic devices stimulate the auditory nerve, allowing
users to regain a modicum of hearing. With this technological
advancement, CI users can increasingly benefit from audio-
based modalities such as voice assistants [68].

However, rapid advances in audio technology and machine
learning capabilities have given rise to new threats. Audio
deepfakes, or synthetically generated audio, are based on deep
learning algorithms and are convincingly realistic. They have
been used to commit fraud [16], [60] and spread disinforma-
tion [47], [1]. A recent audio deepfake of US President Joe
Biden [44] led the US Federal Communications Commission
to outlaw robocalls that use voices synthetically generated by
artificial intelligence [31]. While these scenarios underscore
the threat of audio deepfakes to society, they do not consider
the unique threats outside hearing persons (HPs) who are
designed for by default. CI users, a group often marginalized

even within the deaf and hard-of-hearing (DHH) commu-
nity [55], may be more prone and susceptible to deepfake
audio attacks.

Our goal is to determine the susceptibility of CI users to
deepfake audio attacks. We also seek to inform the design of
future defense systems against audio deepfakes based on the
needs of this marginalized group. Therefore, in this paper, we
aim to characterize the threats posed by audio deepfakes on
CI users. We are interested in the potential differences in the
challenges that audio deepfakes pose to HPs and CI users and
in mitigating vulnerabilities disproportionately affecting the CI
user community.

To understand CI users’ perception of audio deepfakes
and their detection capabilities, we model speech utterances
and audio deepfakes using state-of-the-art CI simulators [48],
[11], [8], [27], [10]. We also evaluate results from previous
deepfake user studies [43], [34], [30], [37] and the perfor-
mance of automated deepfake detectors [72], [59], [12], [5]
against original and CI-simulated ASVspoof datasets. We
then conduct a user study involving 35 CI users and 87
HPs, analyzing differences in responses in how each group
differentiated natural from synthetic audio. Our analysis shows
the need for a tailored defense, moving beyond a one-size-
fits-all approach to deepfake detection. We hope that this
work allows researchers to evaluate emerging audio deepfake
threats without requiring significant imposition on CI users,
who already face considerable obstacles to research study
participation.

We thus make the following contributions:
• Performance of Automated Deepfake Detectors - We

evaluate a corpus of synthetic audio using two well-
established CI simulators [11], [8], [27], [10] and four
automated deepfake detectors [19], [72], [5], [12]. Our
analysis shows that deepfake detection on CI-simulated
audio often performs similarly to the original, particularly
with text-to-speech (TTS) methods, achieving an equal
error rate (EER) of around 5%. We also show that the
detection of CI-simulated audio is significantly worse
when voice conversion (VC) approaches are used.

• User Study of CI Users to Characterize Effects of
Audio Deepfakes - We present the first evaluation of
the impact of audio deepfakes on the CI population
with a user study of 35 CI users. We investigate the
deepfake detection capabilities of participants, finding
that CI users have a 70% detection accuracy. The study
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also includes questions designed to identify what auditory
features contribute to the user’s perception of the audio
authenticity. We compare their detection accuracy and
guiding auditory cues across TTS and VC-generated
deepfakes.

• Comparative Study - Additionally, we conduct a com-
parative study of deepfake audio perception between
CI users and HPs, finding that HPs have a 7% higher
detection rate across evaluated attacks. While it may
seem intuitive that CI users are more susceptible to audio
deepfakes than HPs, our findings surprisingly show that
CI users can effectively identify specific TTS-generated
deepfakes, yet are notably worse at detecting VC gener-
ated audio.

• Evaluate the Use of Deepfake Detectors as Proxies for
CI Users - Finally, we show that CI users and deepfake
detectors have similar difficulties detecting VC-generated
audio, where the accuracy of human detection is 60% for
the HP population and 48% for CI users. We compare
results from detectors trained on breathing and high-
level human-detectable feature with study participants,
showing that their detection of TTS deepfakes is similar.
Additionally, we extract the most influential detection
regions from other ML deepfake detectors and compare
them against CI users’ survey responses. We find that
when a speech sample has critical artifacts in higher
frequencies (300-700 Hz), both ML detectors trained on
CI audio and CI users struggle with correctly classifying
the audio sample.

The remainder of this paper is organized as follows: Sec-
tion II discusses the necessary background and related work;
Section III provides our research goals; Section IV outlines
the dataset used and methodology for modifying datasets with
CI simulators and training and evaluating deepfake detectors;
Section V discusses the procedures along with quantitative and
qualitative results from our user study; Section VI compares
user performance to ML detectors and assesses the feasibility
of implementing a proxy for CI users; Section VII provides
discussion and limitation; Section VIII concludes.

II. BACKGROUND & RELATED WORK

A. Speech Synthesis and Analysis

The emergence of Generative Adversarial Networks (GANs)
has spurred critical advancements in generating persuasive
“human-sounding” audio. While generative audio has many
practical applications, including voice assistants (e.g., Siri,
Alexa, and Cortana [26]), it also poses a security threat when
used to imitate human speech [21], [54], [16]. In this context,
computer-generated audio is called a “deepfake” [40].

Speech synthesis, widely known as text-to-speech (TTS),
aims to generate naturally sounding human-like audio from
written text. Despite various methods attempting to recreate
natural and expressive voice [14], [36], [35], early versions
of TTS lacked natural prosody, intonation, or emotional
depth [54]. Another synthetic audio generation method, voice

Figure 1: A typical CI system that converts captured sound to
electric impulses delivered to the cochlea’s hearing nerve [25].

conversion (VC) [57], converts an actual human audio sample
to match the target voice. This method allows the preservation
of unique audio vocal traits and linguistic content, making VC-
generated audio more challenging to detect [64].

Several ML deepfake audio detectors have been devel-
oped to differentiate human-generated and synthetic audio [1],
[28], [29], [72], [17], [67]. They typically aim to identify
artifacts absent in natural human audio or introduced during
the deepfake generation process [1]. Some simple features
found in many TTS-created deepfakes, such as the presence of
silence or variations in rhythm, intonation, and style, can help
the ML model learn shortcuts to discriminate deepfakes [41],
[42], [65], [3], [12]. An alternative approach by Blue et al.
reconstructs the physical characteristics of a speaker’s vocal
tract from their voice recordings [5]. The detector flags audio
as synthetic if estimated vocal tract structures are unlikely to
belong to a human [5].

With the substantial progress demonstrated in deepfake
detection capabilities and improving deepfake qualities, recent
research has sought to assess the abilities of humans to detect
deepfakes and compare human performance with automated
deepfake detectors [43], [34], [30], [37]. However, these
efforts focus on the general population without considering
potentially more susceptible groups. Therefore, we explore the
effects of audio deepfakes on CI users, whose needs have yet
to be addressed in deepfake detection literature.

B. Cochlear Implant

A CI is an electronic device surgically implanted under the
skin that directly stimulates the auditory nerve, restoring func-
tional hearing [71], [45]. Figure 1 shows the external sound
processor behind the ear, which uses a built-in microphone to
pick up various sounds, such as speech, and translate them into
digital signals. Subsequently, these signals are transformed and
encoded into radio frequency (RF) signals, which are then
sent to an antenna inside the transmitter [71], [39], [25]. The
receiver, placed under the skin behind the ear, decodes the RF
signal, converts it into electric currents, and directs it into the
cochlea [71], [39], [25]. Implant electrodes bypass damaged
cochlear hair cells and directly stimulate the auditory nerve
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with an electric current. The resulting electrical impulses in
the auditory nerve are perceived as sound.

While many CI users report notable enhancements in quality
of life, they continue to face challenges in daily activities, such
as phone communication [53]. These challenges stem from the
inability, or reduced capability, to detect pitch changes and
variations in speech prosody [15]. This results in difficulties
distinguishing between statements and questions or identifying
emotions conveyed through speech [15]. Additionally, limited
spectral information [18] and problems processing auditory
information over time affect the ability of CI users to perceive
rhythm, which further contributes to challenges involving
audio interfaces [46].

C. CI Simulation

CI users differ across various demographic and individual
factors, including age, sex, age at CI implantation, duration
and degree of deafness, hearing loss, auditory system health,
and remaining cochlear and neural function [71], [45], [53],
[56]. This variability, coupled with the inability to isolate
specific variables, the numerous choices in signal processing,
and the challenge of recruiting participants from relatively
low-incidence populations, leads to highly variable response
data in research involving CI users. Research becomes time-
consuming and expensive, underscoring the need for better
approaches and tools to control and investigate parameters
affecting CI user speech perception.

Therefore, reliable proxy models have become a crucial
tool in CI research [11], [8], [27], [10], [22]. Researchers
have developed several CI simulators to understand CI user
perception of speech and sound. One of these approaches in-
volves noise-vocoded speech, obtained by partitioning speech
signals into separate, logarithmically spaced frequency bands.
The amplitude envelope is extracted from each channel and
modulates noise in that frequency band. Afterward, these
bands are recombined to create noise-vocoded audio [56].
In the preliminary phase of assessing novel sound-processing
algorithms for CIs, vocoders play a critical role by facilitating
the evaluation of these algorithms with HPs. Findings from
these evaluations have shown a significant correlation with
the results of experiments conducted on high-performing CI
recipients [61]. Simulators are valuable tools for evaluating
device-related challenges in speech perception and assessing
CI capabilities and limitations, streamlining otherwise time-
consuming and costly research processes [61], [4], [13], [56].
Our research explores the practicality of using CI simulation
within the cybersecurity domain.

III. RESEARCH GOALS

The rise in both the prevalence and sophistication of audio
deepfakes and a surge in malicious activities they facili-
tate, including fraud and misinformation, represent a security
threat [16], [47]. CI users, a potentially more vulnerable
population, are not represented within user profiles examining
the effects of audio deepfakes. Consequently, this study aims

to investigate CI users’ perception of audio deepfakes, measure
their susceptibility, and explore their detection strategies.

To understand CI users’ potential susceptibility to audio
deepfakes, we encode deepfake audio with CI simulators and
evaluate them against ML-based deepfake detectors. Subse-
quently, we conduct a user study to compare how CI users
detect audio depfakes with HPs. Finally, we evaluate whether
future research on CI users’ deepfake detection can be stream-
lined using ML deepfake detectors as proxies.

Thus, we aim to explore the following research questions:

RQ1. Are there differences in the performance of au-
tomated deepfake detectors on original and CI-
simulated audio?

RQ2. Are CI users more susceptible to deepfake audio
attacks than HPs?

RQ3. How do CI-simulated detection models compare to
actual CI users, and can these models serve as
adequate substitutes?

IV. CI SIMULATION AND AUTOMATED DETECTION

We begin by processing audio deepfake samples using CI
simulators to simulate how CI users perceive this audio. We
seek to determine whether CI users are susceptible to all audio
deepfake attacks or whether particular types of attacks garner
additional concerns.

A. Dataset Selection

The ASVspoof challenge has emerged as the premier anti-
spoofing competition against deepfakes, introducing new it-
erations since its 2015 inception. The most recent edition,
ASVspoof2021, asks participants to design countermeasures
that shield automatic speaker verification (ASV) systems from
voice spoofing attacks, similar to previous versions [70]. This
dataset includes logical access (LA), deepfake task (DF),
and physical access (PA) scenarios. The evaluation dataset
amalgamates audio samples from previous years with many
new-generation methods employing over 100 spoofing algo-
rithms. The LA and DF tasks in the challenge concentrate on
lossy compressed audio, considering telephony encoding and
transmission in the audio generation process.

As our research emphasizes the differences between deep-
fake audio attacks, we also include the ASVspoof2019 dataset,
which focuses on spoofing attacks executed using TTS and VC
techniques [62]. This dataset covers 122,157 samples (43%
male and 57% female), featuring samples from native speakers
and 19 different audio generation techniques [38]. Table A1 in
the Appendix A presents a comprehensive overview of these
attacks and their generation methods. Regarding distribution,
the training and development sets contain samples from tech-
niques A01 to A06 (where A01-A04 are TTS deepfakes and
A05-A06 are VC). In contrast, the evaluation set includes
samples from techniques A07 to A19 (A07-A12 and A16 are
TTS, A17-A19 are VC, and A13-A15 are a mix of both) [66].
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B. CI Simulators
We use two distinct vocoder-based CI simulation tools to

mimic the auditory perception of CI users listening to deepfake
audio. The audio samples, described in Section IV-A, were
processed through both simulators.

Generic MATLAB Toolbox (GMT): The Generic MAT-
LAB Toolbox (GMT) is a collection of scripts designed to
simulate the Advanced Bionics (AB) CI [67] emulating the
current HiRes 120 processing strategy. It incorporates a noise
vocoder CI simulation, leveraging an FFT to model the cross-
talk between adjacent channels of the CI1. This toolbox has
been used to understand spectral modulation and speech and
music perception, create enjoyable music for CI users, and
predict neural responses to speech stimuli [7], [63], [22], [2].

MATLAB Vocoder: A MATLAB script uses the noise-
vocoding method to emulate the audio effects of a CI [48].
It is a popular tool used in CI research [48], [11], [8], [27],
[10]. The audio undergoes band-pass filtering, featuring a low-
frequency cutoff at 0.25 kHz and a high-frequency cutoff at 8
kHz. Following practices in CI research, we opted for a noise
vocoder that employs five channels, establishing boundaries at
0.6 kHz, 1.2 kHz, 2.3 kHz, and 4.3 kHz.

C. Model Selection
We compare the original and CI-simulated datasets across

distinct machine learning-based detectors: FastAudio, AIR-
ASVspoof, BTS-E, and vocal tract reconstruction (VTR) [72],
[59], [12], [5]. We evaluate their overall detection rates and
analyze the outcomes of each spoofing attack to determine
if specific techniques pose more significant challenges for
CI users. Additionally, we use VTR to distinguish between
original and CI-simulated samples [5].

AIR-ASVspoof: Zhang et al. introduced a voice spoofing
detection system that detects unknown voice spoofing attacks
using one-class learning [73], [72]. This detection model is
based on the ResNet-18 framework, whose deep architecture
enables it to capture and learn low-level features (e.g., simple
frequency patterns) and high-level features (e.g., complex
temporal changes). The authors developed a one-class soft-
max (OC-Softmax) function incorporating attentive temporal
pooling, outperforming most single-system classifiers without
data augmentation techniques [24].

FastAudio: FastAudio was designed to select features from
an audio dataset intended for processing by a detector that
determines whether the audio is synthetic. This preprocessing
aims to preserve the maximum amount of relevant features
while minimizing file size. We selected FastAudio because
it was a top-performing entry in the ASVspoof 2019 chal-
lenge and demonstrated strong performance in the 2021 chal-
lenge [59], [19].

Breathing-Talking-Silence Encoder: The BTS-E frame-
work detects deepfakes by analyzing the correlation between
breathing, speech, and silence within an audio sample [12].
The authors argue that synthetically generating natural human

1https://github.com/jabeim/AB-Generic-Python-Toolbox
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Figure 2: Detection training and evaluation pipelines for origi-
nal and CI-simulated audio representing each testing scenario.

sounds, such as breathing, poses significant challenges for text-
to-speech (TTS) deepfakes, making it a valuable feature for
detection. Unlike other methods, we exclusively trained and
evaluated the BTS-E model on TTS-generated audio using
the most effective variation: a transformer encoder with a
concatenation fusion strategy and 32 output channels.

Vocal Tract Reconstruction (VTR): Blue et al. employed
a fluid dynamic technique to estimate the physical parameters
of a vocal tract from a voice recording [5]. The authors
discovered that deepfake audio frequently produced unrealistic
vocal tracts, prompting them to develop a deepfake audio
detector based on this observation. This detector isolates
speech segments during data extraction, ideally distinguishing
between fake and real audio samples. Subsequently, these
optimal speech segments differentiate the two audio types
during an evaluation phase. In our research, we executed the
data extraction and evaluation phases for this detector in each
test case, consistent with the original authors’ design.

D. Testing

Metrics: We assess the effectiveness of different synthetic
audio detectors by employing metrics such as recall, precision,
and Equal Error Rate (EER). Precision indicates the proportion
of correctly identified positives to all positives, whereas recall
measures the number of labeled attacks that are actual attacks.
The EER metric measures the performance of the anti-spoofing
systems by analyzing the countermeasure (CM) score. CM
score reflects how closely a given speech sample resembles
actual speech. To determine the EER, the algorithm establishes
threshold values at the point where the rates of false positives
and false negatives are equal. A low EER value signifies a
high level of detector reliability, making it a key benchmark
in the ASVspoof challenges [62].

We comprehensively evaluate similarities and differences
between the original and CI-simulated audio by following
the pipeline process shown in Figure 2. The first test (HP
simulation) establishes our baseline and aims to mimic the
performance of HPs. In the second test(CI user simulation),
we preprocess the audio dataset using CI simulators and then
train and evaluate deepfake detectors on these preprocessed
files.

For the VTR detector, we conduct four tests on combina-
tions of real and deepfake audio samples across original and
CI-simulated datasets. Given the high computational demand
of the detection via vocal tract reconstruction, we randomly
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Table I: EERs for ASVspoof2019 and 2021 challenge across
two detectors tested on original and CI-simulated (GMT,
MVC) audio. Overall, detectors show performance degradation
when evaluated on CI-simulated files (Test 2).

Dataset Detector Test 1 Test 2
GMT MVC

ASVspoof2019 AIR-ASV 2.84% 9.42% 9.25%
FastAudio 5.36% 8.42% 8.82%

ASVspoof2021 AIR-ASV 9.54% 17.26% 16.42%
FastAudio 11.56% 15.37% 12.67%

sample between 80-100 audio files from each attack approach,
resulting in 2,300 actual and deepfake audio samples. We com-
pute across the previously described tests to detect differences
in the approximate vocal tract configurations and core fluid
dynamics between datasets. Unlike other detectors, VTR uses
precision and recall to assess results. These two metrics allow
the evaluation of the two aspects of the model’s accuracy,
helping to prioritize the potential victims from deepfake audio
attacks rather than minimizing false alarms on genuine au-
dio. Finally, we conduct two more experiments to determine
whether this detector is sensitive to the CI simulation effects.

E. Deepfake Detectors Results and Analysis
Here, we state a summary of the key findings as follows:

1) Deepfake detection algorithms face greater challenges
when identifying deepfakes in CI-simulated audio.

2) VC deepfakes result in a higher EER in deepfake detec-
tion tasks than TTS deepfakes.

3) When detectors are tasked with identifying a specific
feature synthesized in TTS deepfakes, such as breathing,
the detection performance among HPs and CI users is
similar. However, this detection method is effective only
for TTS deepfakes.

4) The BTS-E detector, which extracts explicit audio fea-
tures using breathing sounds, can detect the original and
CI-simulated audio TTS deepfakes equally well.

5) The effectiveness of deepfake detection through vocal
tract reconstruction is comparable to original and CI-
simulated audio as the simulation does not affect under-
lying vocal tract properties.

Detection Results: AIR-ASVspoof, achieves a 2.84% EER
on the original ASVspoof2019 files for test 1 and when trained
and evaluated on the CI-simulated dataset (Test 2), its EER
rose to 9.42% with the GMT CI simulator and 9.25% using the
MVC CI simulator. Similarly, the FastAudio deepfake detector
has a baseline EER of 5.36%; in Test 2, EER gets 8.42% for
GMT and 8.82% for MVC CI-Simulator.

The FastAudio synthetic audio detector achieves the small-
est difference between Test 1 (original audio) and Test 2
(CI-simulated audio). The difference is 3.06% and 3.46%
for the GMT and MVC CI simulators, respectively, on the
ASVspoof2019 dataset. For the ASVspoof2021 data, the
slightest difference is when using the FastAudio synthetic au-
dio detector, with a 16.09% difference for both CI simulators.
This demonstrates that FastAudio learns CI-simulated features

Figure 3: EERs for AIR-ASVspoof detector on original and
CI-simulated datasets using GMT and MVC simulators. EER
for TTS deepfakes on all three datasets is low, while the
EER for VC attacks (A17-A19) significantly increases when
simulated.

better than AIR-ASVspoof and generalizes CI-simulated audio
more effectively.

This trend is also observed in the ASVspoof2021 dataset.
The AIR-ASVspoof deepfake detector has an EER of 9.54%
on the original 2021 dataset. The EER increases to 17.26%
when run on the dataset modified by the GMT simulator
and 16.42% for the MVC CI simulator. The more consistent
performance of FastAudio, increasing from 9.54% for Test 1 to
15.37% (GMT) and 12.67% (MVC), suggests that its design,
which prioritizes capturing the peak frequencies around first
and second formants, contributes to its ability to generalize
when anticipated audio characteristics are blurred or absent.

Unlike previously evaluated deepfake detectors, BTS-E
bases detection on breathing sounds, which is helpful when
this feature is entirely synthetically generated (e.g., in TTS
deepfakes). As represented in Figure 5, the average EER
across all attacks (including VC audio) is 16.4% for original
audio, slightly increasing to 17.6% and 16.6% when subjected
to GMT and MVC simulators, respectively. However, when
evaluated only on TTS deepfakes, the EER of the original
dataset is 0.394%, and CI-simulated EER reaches 0.326% and
0.491% for GMT and MVC, respectively.

Comparison between deepfake generation methods: We
evaluate all deepfake generation approaches (Table A1) in-
cluded in the ASVspoof2019 dataset. As represented in Fig-
ures 3 and 4, the most challenging attack on the original
dataset to discern for both deepfake detectors is VC waveform
filtering (A17). The EER of the AIR-ASVspoof detector rises
significantly to 13.82%, and for FastAudio, the EER goes up to
13.48%. Another complex attack for FastAudio to differentiate
real from fake audio is A18, resulting in 22.84% EER.

The varied EERs observed with different deepfake genera-
tion techniques indicate these techniques’ inherent complexity
and variability. The VC deepfake generation approach is
incredibly challenging for both detectors [62]. This might be
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Figure 4: EERs for FastAudio detector on original and CI-
simulated datasets using GMT and MVC simulators. CI users
demonstrate a better EER for TTS than the HPs group while
continuing to have large EER increases on VC attacks.
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Figure 5: EER rates for the BTS-E detector on original and
CI-simulated datasets using GMT and MVC simulators. The
panel chart, with a top panel showing all the data (left y-axis)
and a bottom panel highlighting the first 1.5% of EER (right
y-axis). It demonstrates that all groups have low EER for TTS
deepfakes (A07-A16) and high EER for VC deepfakes (A17-
A19).

due to the generation technique of VC, which introduces subtle
nuances that closely mimic actual audio features, making
differentiation challenging. For both CI-simulated datasets,
detectors struggle with correctly classifying VC deepfake
attacks (A17-A19).

AIR-ASVspoof and FastAudio detectors achieve relatively
low EER on the original dataset, but their performance deteri-
orates significantly under CI simulation, whereas the BTS-
E detector has a minimal increase. Its design focuses on
inconsistencies in breathing, talking, and silence, which are
particularly effective. This suggests that relying on unnatural
breathing, talking, or silence features may offer an advantage
in TTS-generated deepfake detection.

When focusing on TTS-based attacks (A07-A16), the BTS-
E detector performs similarly across original files and simula-

Figure 6: Comparison of max and min checks for recall
and precision evaluated with detector relying on vocal tract
reconstruction.

tors, with only minor fluctuations in EER. For specific attacks
such as the A09 (vocoder generation), there is a difference
in performance between original and CI-simulated files, as
the EER drops under simulated conditions. This suggests that
such simulation may, in some cases, make detection easier or
more complex depending on the nature of the attack. For VC
deepfakes, BTS-E detection EER rises significantly, reaching
47.6% for A17 using the MVC CI-simulator. As the VC
systems convert original audio to sound like a target speaker
and use non-speech frames in the training phase, the detector
cannot distinguish between real and VC-generated deepfake
audio, as anticipated by the authors [12].

AIR-ASVspoof and FastAudio detectors achieve relatively
low EER on the original dataset, but their performance deteri-
orates significantly under CI simulation, whereas the BTS-
E detector has a minimal increase. Its design focuses on
inconsistencies in breathing, talking, and silence, which are
particularly effective. This suggests that relying on unnatural
breathing, talking, or silence features may offer an advantage
in TTS-generated deepfake detection.

Detection by Vocal Tract Reconstruction: The detection
of the vocal tract reconstruction detector attains 100% pre-
cision on the original real and fake audio datasets. When
testing the CI-simulated dataset, this detection method can
differentiate between real and deepfake audio with a precision
and recall of 100% and 93%, respectively. The drop in the
recall comes from the increased noise and overall lower audio
quality caused by the CI simulator.

The relatively unchanged performance of the detector in-
dicates that the core fluid dynamics principles in the speech
remain intact despite the additional noise and distortion caused
by the CI simulator. Although this method yields a high
precision-recall score, the system makes a trade-off with a
relatively high false positive rate. This could potentially lead
to significant numbers of false alarms, subsequently increasing
the threat-alert fatigue of users and reducing reliance caused
by mistranscription during the preprocessing stage.

Figure 6 shows the comparison between the original organic
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audio with the CI-simulated audio and the original synthetic
audio with the simulated synthetic audio. The detector could
differentiate the non-simulated and simulated organic audio
with a precision and recall of 100% and 50%, respectively.
Similarly, the detector differentiated the non-simulated and
simulated synthetic audio with a precision and recall of 100%
and 30%, respectively. In both cases, the detector’s overall
performance drops considerably, highlighting that the detector
is struggling to differentiate the non-simulated and simulated
samples. This further indicates that the CI simulator’s under-
lying vocal tract properties leveraged by the Who Are You
detector are unaffected.

The performance of detectors declines when evaluated on
CI-simulated audio compared to the original audio, which
addresses the RQ1 This is especially apparent for AIR-
ASVspoof and FastAudio detectors, where the EER on CI-
simulated audio is elevated, especially on VC deepfakes,
which include natural human audio features. The FastAudio,
by evaluating peak frequencies, shows some adaptability to
CI-simulated audio. BTS-E remains relatively robust for TTS
deepfakes because it relies on anomalies synthetically gen-
erated by breathing and silence cues. Similarly, vocal tract
reconstruction-based detections result in high precision scores,
as the core fluid dynamic properties are preserved during CI
simulation.

V. USER STUDY

We conduct a user study to characterize the detection
capabilities of CI users. Our approach involves assessing
participants’ ability to distinguish whether provided audio
samples are generated by humans or synthetically. We also
gather participant insights on the rationale behind their deci-
sions, including cues they use to determine audio authenticity.
We then perform a comparative analysis between CI users
and HPs to identify any differences in the detection between
these groups. We structure our survey around the central null
hypothesis as follows:

H0: There is no difference in deepfake detection between HPs
and CI users.

We aim to identify variations in detection approaches, key
auditory cues used in detection, and other factors that influence
the accuracy of audio detection.

A. Dataset
Based on results from automated deepfake detectors, we

consider deepfake generation techniques where detectors do
poorly or well based on EER scores (e.g., as shown in Fig-
ures 3-5). We base our experiments on the evaluation split of
the ASVspoof2019 dataset and examine five deepfake genera-
tion approaches to generating audio deepfakes. Two techniques
employ TTS synthesis models (neural waveform-A08 and
vocoder-A09), and three use VC methods for deepfake creation
(waveform filtering-A17, vocode-A18, and spectral filtering-
A19). We aim to examine deepfake generation approaches,
TTS, and VC to assess how they impact the CI population.

Due to the limited number of CI participants, we selected a
pool of 660 samples and used stratified sampling to choose
equal numbers of real and deepfake audio samples. Within the
deepfake group, we choose an equal amount of audio samples
from each of the five spoofing systems. The selection of 20
audio samples for each participant is randomized from a total
pool of samples for each group, where each audio sample is
repeated three times for HPs and two times for the CI group.
We presented the same speech samples to HPs and CI users
to compare the group results.

B. Ethical Considerations

Before working with human subjects, we acquired approval
from our Institutional Review Board (IRB). Each survey
began with a Participant Informed Consent page, in which
we outlined the survey’s purpose and procedure. We informed
participants that they could withdraw from the study at any
point. We described the data collection process, highlighting
that any collected data will be deidentified and anonymized.
We then asked users to proceed only if they consent to
participate in the study. Additionally, to ensure compliance
with European and UK laws, we provide a separate consent
form under the General Data Protection Regulation (GDPR)
supplement.

We also engaged with researchers experienced in working
with d/Deaf and Hard of Hearing (DHH) communities to
ensure our research aligns with ethical standards and cultural
norms. This included respecting the choices of individuals
who opt for CIs while also acknowledging and valuing the
perspective of those within the d/Deaf community opposed to
CIs [20], [9].

C. Recruitment and Experiment

We use Prolific [52], a crowd-sourcing platform, to facilitate
the recruitment and management of participants for our study.
The quality of data acquired through Prolific is comparable
to that from the dominant crowd-sourcing platform, Amazon
Mechanical Turk [50]. Using Prolific’s filters, we selectively
target our study to users aged 18 or above, with English as
a primary language. Additionally, for our study group, we
filter participants for those who use CIs, which yields fewer
than 100 participants for the CI group. Consequently, as a
secondary recruitment method, we advertise our study in a
Facebook group focused on CI users.

Experiment: We conduct our study through a website
form, beginning with introducing participants to the study
goal and methodology. Each participant is presented with 20
randomized audio samples from our dataset, consisting of real
and deepfake audio files. We instruct participants to listen
to each audio file, determine whether it is human (Real) or
computer-generated (Fake), and rate their decision confidence
on a 5-point Likert scale. Additionally, we ask participants to
explain what factors had influenced their decision. We monitor
how often each audio sample is played and the time spent
on each question to assess their effects on the detection task.
Participants are required to provide all responses before they
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can proceed to the next question. To prevent bias from question
sequencing, we disable participants from returning to previous
questions to change their answers. We do not provide any
feedback to participants regarding their performance, which
mimics a more authentic situation and avoids influencing their
future decisions. Within the survey, we included two attention
checks, allowing us to exclude data from participants who
were not paying full attention. Lastly, to better understand the
diversity of our participant pool, we collect demographic infor-
mation, including gender, age, the highest level of education,
the presence of hearing loss, the type and fit of hearing aids,
number of years since CI implantation, and length of daily CI
usage.

Participants: Over nine months, we received feedback from
215 participants across both groups. Despite many participants
initially claiming to use a CI on the Prolific website, further
verification through our questionnaire revealed that several
of them had not received an implant. According to Prolific
guidelines [52], we followed up with participants who pro-
vided inconsistent responses between our survey and Prolific’s
filters to clarify their answers. We compensated all participants
for their time, but within our evaluation, we included only
those participants who confirmed using a CI, either through
Prolific filters and directly in the web survey or after resolving
any discrepancies between their responses. After filtering out
participants who did not meet our research criteria, failed
to complete the study, or did not pass attention checks, we
finalized a cohort of 1,740 responses from 87 HPs and 700
responses from 35 CI users.

All participants are 18 or older, most in the 25-34 age
group. The gender distribution is 58% male, 40% female, and
2% non-binary. The most common educational level was an
undergraduate degree, with a minority of participants having
attained additional higher education. Among CI users, 61%
have a unilateral CI fitting, while 39% reported using either
bilateral fitting or CI and hearing aids. On average, participants
have had their CI for 7 years, and 92% use their implants for
more than 7 hours daily.

D. User Data Results and Analysis

Metrics: To evaluate human performance on the dataset,
we use three primary metrics: precision, recall, and accuracy.
Precision indicates the proportion of samples labeled by
participants as computer-generated that were indeed deepfakes.
Recall measures the ratio of correctly identified deepfakes
to the total number of deepfake speech samples. Accuracy
represents the ratio of correctly identified audio samples to
the total number of speech samples provided to participants.
To determine the statistical significance of our results, we
employ an independent t-test, which compares the means of
two groups to ascertain if they are significantly different. For
comparisons involving multiple groups, we utilize an ANOVA
test. We use the Pearson test to assess the likelihood of a causal
relationship between the two variables and set the threshold
for statistical significance at p < 0.05 [51].

(a) HPs group confusion matrix (b) CI users confusion matrix

Figure 7: Depiction of detection rates between (a)HPs and
(b)CI users. Both groups detected a comparable number of
audio files as real, 56.1% (11.23 files) for HPs and 60.6%
(12.12 files) for CI users, yet HPs correctly classify 1.4% more
real and 6% more fake speech samples compared to CI users.

Figure 8: Cumulative distribution function for participant ac-
curacy at or below detection rate, i.e., a detection rate of 20%
represents the percentage of study participants who accurately
detect at least 20% of audio samples. The detection rate is
generally at least 9% lower for the CI users group than for
HPs, most of whom can detect deepfakes with 77.5% accuracy
or higher.

Overall Performance: Within our study, HPs detected
deepfake audio with 78.1% detection accuracy, whereas CI
users performed significantly worse (p = 0.0002), achieving
only 67.6%. As illustrated in Figure 7, this difference is
primarily due to the higher false-negative rate among the CI
users, who could identify only 57% of deepfakes successfully.
They inaccurately labeled 22.5% of deepfake audio, which
resulted, on average, in 12.12 audio clips labeled as real,
while only ten human-generated audio samples were given.
In contrast, HPs marked, on average, 11.23 files as real. This
difference points to the challenges CI users might face during
audio authentication tasks.

The cumulative distribution function plot in Figure 8 shows
the percentage of participants capable of detecting deepfakes at
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Figure 9: Detection rate across real audio (bonafide) and
TTS (A08 & A09) and VC (A17-A19) deepfake generation
methods for HPs and CI users. HPs have a higher detection
rate than CI users for each attack. Both groups have more
difficulties discerning audio generated by VC models than
TTS.

a given detection rate or higher. Indicated by an initial steeper
slope, the detection distribution for CI users leans towards
lower accuracy ranges, where many of them cannot correctly
classify 50% of audio samples. The disparity emerging at the
50% detection mark shows that HPs consistently surpass CI
users in deepfake detection by approximately 9%. This demon-
strates a significant and systematic issue when distinguishing
between authentic and deepfake audio across the entire CI user
population.

Deepfake Generation Method Comparison: While as-
sessing users’ detection accuracy on VC-based deepfakes, we
observed a notable decrease in detection performance across
both groups. HP’s accuracy on the A17 attack was the highest
among VC-based deepfakes (71.1%), while CI users had accu-
racy below the random guessing rate at 43.4% (Figure 9). The
A18 and A19 attacks, which consistently fooled participants
in both groups, are particularly concerning as they resulted
in accuracy rates similar to random guessing. Notably, HPs
significantly (pV C = 1.186 → 10→4) outperformed CI users
across all three VC techniques. The lower detection rates in
the CI group indicate increased susceptibility across all groups
of attacks.

In TTS-generated deepfakes, HPs misclassified only 13.7%
of the fake audio, while CI users misclassified 24.8% of
fake audio, nearly doubling the error rate. For VC-generated
deepfakes, the gap was narrower, but the overall challenge of
the detection was greater across both groups: HPs misclassified
41.2% of the fake audio as real, and CI users incorrectly
labeled a majority of deepfakes (52%) as real. These find-
ings highlight the nuanced difficulties both groups face with
different deepfakes types, suggesting that they, despite their
awareness of deepfakes, are more easily deceived by the

naturalness of VC-generated audio. CI users, on the other
hand, struggle significantly across both categories, indicating
the heightened vulnerability to audio manipulation.

This disparity stems from the fundamental differences in
how these technologies generate audio and how cochlear
implants process sound. Cochlear implants rely on electrical
stimulation to simulate auditory perception, often reducing
the fidelity of subtle speech cues such as pitch variation,
prosody, and harmonic richness. VC technology, which uses
a real human speech sample (the source) and transforms it
to match the vocal characteristics of another speaker (the
target), retains many of these natural elements, making it
particularly challenging for CI users to detect manipulations.
In contrast, TTS deepfakes synthesize speech entirely and are
often easier to identify due to inherent flaws such as unnatural
prosody, robotic intonations, and a lack of emotional depth.
Additionally, TTS-generated speech lacks human subtleties
like breathing, pauses, hesitations, and irregularities in pitch
or volume - many of which CI users may use to guide their
detection.

These findings highlight the need for targeted interventions
to support CI users in detecting audio deepfakes. Strategies
could include developing assistive tools that amplify or visual-
ize subtle inconsistencies in speech or incorporating deepfake
detection training into CI rehabilitation programs. By address-
ing these perceptual challenges, we can help CI users navigate
an increasingly complex audio landscape where authentic and
manipulated speech is becoming harder to distinguish.

Audio Features Influencing Participant Judgments: In
the survey, participants were asked to classify audio as fake
or real and to specify the auditory cues influencing their
judgments. To analyze this qualitative data, we employed
thematic analysis methods outlined by Braun and Clarke [6].
Following familiarization with the data, we generated initial
codes based on notable features across participant responses
through multiple rounds of analysis. Two independent re-
viewers evaluated each response, assigning relevant subtheme
keywords or marking it as irrelevant. These keywords were
subsequently organized into subthemes, broader themes, and
major categories as detailed in Appendix C in Table C1.

The analysis (Figure 10) reveals distinct challenges HPs and
CI users face when detecting TTS and VC-generated deepfake
audio. Both groups relied on different auditory features to
varying extents, indicating a complex landscape of perceptual
factors influencing detection strategies.

Nearly half of the auditory cues provided by both HPs
and CI users (46% for HPs and 44% for CI users) were
related to speech prosody. These cues resulted in 75% accuracy
for HPs and 68% for CI users in identifying deepfakes.
The lower accuracy for CI users suggests that they strug-
gle with nuanced features such as rhythm, intonation, and
stress patterns, which are often not fully conveyed by CI
processing. Emotion detection was particularly challenging
for CI users, who achieved only a 60% accuracy compared
to higher rates for HPs. These findings align with existing
research, as discussed in Section II-B, indicating that CI users

9



Figure 10: This figure shows the performance of CI users and HPs on TTS and VC attacks arranged by theme and its proportion
(y-axis). The y-axis shows the proportion of the theme (i.e., the larger the bar, the more it appeared in our study). It then
shows the accuracy as a filled bar.

often have difficulty perceiving emotional tone and prosodic
features. Such limitations highlight a key vulnerability in CI
users’ ability to discern manipulations that rely on naturalistic
emotional expression.

Interestingly, while both groups performed similarly when
relying on the accent as a cue (between 68-70%), CI users
were more reliant on this feature (10.5% vs.6.3% for HPs).
This suggests that CI users prioritize more prominent auditory
cues, whereas HPs adopt a more distributed approach, likely
due to their ability to access a broader range of acoustic
signals.

The most reliable cue for CI users was robotic-like sounds,
with accuracy rates of 97.9% for TTS and 96.1% for VC
deepfakes. This aligns with a general familiarity with synthetic
speech, such as voice assistants, which often exhibit slightly
robotic characteristics. Interestingly, while CI users performed
well on real audio while relying on human-like features (96.3%
accuracy), they frequently misattributed these features to VC
deepfakes (12.5% of cues). HPs followed a similar pattern but
were less prone to this error (6.2%), suggesting that CI users
may overgeneralize certain cues when distinguishing real and
fake audio.

A significant gap emerged in using pitch and inflection to
identify VC deepfakes. While pitch was a reliable cue for
both groups in detecting real and TTS-generated audio (82-
92% accuracy), CI users performed poorly on VC deepfakes,
achieving only 29.2% accuracy, compared to 56.5% for HPs.
This further suggests that CI users struggle to extract subtle
pitch and inflection patterns from VC audio, which retains
much of the natural variation of real speech.

Speed proved to be a useful cue for TTS deepfakes, with
CI achieving 91.7% accuracy compared to 45.5% for VC-
generated audio. Notably, CI users relied more on speed as a
cue (4.4% of cases) than HPs (1.1%), suggesting that CI users

focus more on audio features less affected by CI processing.
However, their reliance on speed cues for VC deepfakes, which
often mimic natural speech rhythms, led to decreased accuracy.

Technical aspects such as sound quality and vocal artifacts
(e.g., breathing sounds, lip smacks, tongue movements) also
revealed important differences. While HPs can rely on back-
ground noises as a clue, CI users’ accuracy decreased by 17.9
percentage points when relying on these cues. Additionally,
vocal artifacts were detected less accurately by CI users, indi-
cating these cues are less effective for distinguishing between
deepfake and authentic audio. This finding suggests a potential
misunderstanding among CI users regarding the ability of
deepfake technology to replicate natural imperfections.

Breathing patterns emerged as a misleading cue for both
groups when identifying VC deepfakes. HPs correctly iden-
tified 96% of real audio and 75% of TTS deepfakes but
achieved only 11.4% accuracy for VC samples when relying
on breathing. CI users performed even worse, with a detection
rate of 3.3% detection rate. This reflects the sophistication
of VC models in preserving the natural breathing patterns,
which makes them particularly deceptive. Conversely, the
more artificial breathing patterns of TTS deepfakes made them
easier to detect (91% accuracy for HPs, 92% for CI users).

In summary, the findings provide critical insights into dif-
ferences between HPs and CI users in detecting deepfake
audio, addressing RQ2. CI users face heightened challenges in
detecting deepfake audio, particularly VC-generated samples,
and rely on prominent cues that suggest a strategic adaptation
to their perceptual limitations. As the approaches used to
detect deepfakes differ among the groups, including overall
performance, detection strategies, and reliance on different
acoustic features, we can reject our null hypothesis and state
that there are differences in deepfake detection between HPs
and CI users.
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Figure 11: Comparison of detection accuracy across study
participants and AIR-ASVspoof and FastAudio automated
deepfake detectors across real and deepfake (TTS & VC)
audio. The left graph displays rates for HPs and deepfake
detectors trained and evaluated on the original dataset. In
contrast, the right graph depicts the rates of CI users and
detectors on the CI-simulated dataset.

For CI users, tailored detection tools that focus on subtle au-
ditory inconsistencies could aid their detection. Additionally,
incorporating deepfake detection training into CI rehabilitation
programs may enhance users’ ability to discern manipulated
audio. As audio deepfake technologies become more sophis-
ticated, understanding the specific vulnerabilities of different
user groups and their differences in perceptual and cognitive
strategies is critical for developing inclusive and effective
countermeasures.

VI. HUMANS VS DEEPFAKE DETECTORS

Recruiting users from marginalized populations can present
significant challenges, particularly due to the limited pool of
participants willing or able to take part in user studies. To
overcome these limitations, CI researchers increasingly rely
on CI proxy models [11], [8], [27], [10], [61], [4], [13],
which streamline research processes that would otherwise
be prohibitively time-consuming and expensive. We seek to
assess the practicality of using CI proxies to detect audio
deepfakes in security contexts. Specifically, we compare the
performance of deepfake detectors using CI-simulated audio
with the responses of actual CI users, aiming to determine
whether these proxies can serve as cost-effective substitutes
for human participants and addressing RQ3.

A. Performance Comparison
1) FastAudio and AIR-ASVspoof detectors: We find that the

effectiveness of deepfake detection by HPs is similar to the rate
achieved by deepfake detectors trained on original audio across
real (bonafide), TTS, and VC-generated audio (Figure 11).
The discrepancies emerge in the performance between CI
users and their respective ML-proxy models. While both (AIR-
ASVspoof and FastAudio) deepfake detectors trained on CI-
simulated files have near-perfect accuracy on bonafide and
TTS-deepfakes, CI users only classified 82% of real audio

samples and 67.7% of TTS-generated deepfakes correctly. VC-
generated deepfakes posed a much more significant challenge
in detection tasks across study participants and ML models,
resulting in 35% (AIR-ASVspoof), 56% (FastAudio), and
42.5% (CI users evaluation) correct classification rates.

2) BTS-E detector: While study participants focused on
breathing as a cue, they achieved near-perfect detection of
real (bonafide) and TTS-generated audio. Similarly, the BTS-E
detector, which leverages the inherent complexity of syntheti-
cally generating human sounds, such as breathing, when tested
against CI-simulated audio, resulted in nearly perfect scores
for TTS detection. BTS-E evaluating VC-generated deepfakes
also closely resembled that of CI users’ FNR.

3) VTR detector: In comparison, the detection via estima-
tion of the vocal tract evaluates deepfake audio independently
of the human perceptual cues instead of focusing on the
human anatomical feasibility of the vocal tract derived from
a given audio sample. By estimating the arrangement of the
human vocal tract, the detection focuses on abnormalities that
humans cannot perceive directly. Meanwhile, cues specified
by participants, such as articulation or pitch changes, would
indirectly correlate to the vocal tract estimation, reflecting
perceptual anomalies that might coincide with inconsistencies
detected by this detector.

B. Model Explainability
Methodology: To investigate the explainability of deepfake

detection models, we first decompose audio signals into their
fundamental frequencies and amplitudes over time using the
Short-Time Fourier Transform (STFT). This method applies a
sliding window to separate signals into distinct components.
We then transform the data into a Mel-scale spectrogram
to align with the non-linear perception of human hearing.
Then, we apply saliency maps to identify the regions of the
input spectrogram that most influence the model’s prediction.
Specifically, we use the XRAI algorithm, a modified version of
the integrated gradients method [58], to identify the minimal
set of spectrogram regions whose removal would significantly
decrease the model’s confidence in its prediction [32].

To evaluate model behavior, we generate saliency maps for
audio samples with and without CI simulation. We analyze
ten randomly selected samples for each deepfake attack class,
isolating the most influential 30%

Results Figure E1 in Appendix E illustrates the average
saliency masks for representative attack types, including TTS
(A09) and VC (A17), on both original and CI-simulated audio.
For TTS deepfakes, the deepfake detection models primarily
rely on features within the 312Hz to 624Hz frequency range
(frequency bins 10 to 20) as the most influential for decision-
making (Subfigure a&b). These frequency bands correspond
to fundamental speech harmonics and energy distributions and
are often altered during synthetic speech generation.

Additionally, TTS systems often introduce distortions in
these regions, such as imprecise spectral transitions, robotic
intonation, flattened dynamics, and irregular formant patterns,
along with other simple features. The models exploit these
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synthetic artifacts, along with other simplistic features [41],
[42], [65], [3], guiding them to easier identification paths.
These spectral artifacts are prominent even in CI-simulated
datasets, enabling models to maintain reliable detection per-
formance. These same features are detectable by CI users 10,
which supports the validity of using models as proxies for TTS
deepfake detection when models and users focus on the same
auditory regions and patterns.

In contrast, VC systems transform a real human speech
sample (source) to mimic another speaker’s timbre and vocal
characteristics (target) while preserving natural speech dy-
namics like prosody, pitch variation, and harmonic structures,
resulting in audio with fewer spectral distortions. For the
original dataset (Subfigure C), the models still focus on the
312Hz to 624Hz range, capturing subtle inconsistencies intro-
duced during VC, such as distortions in pitch alignment, har-
monic coherence, or vocal transitions. However, the behavior
shifts for CI-simulated VC-generated attacks, as shown in the
saliency mask for the A17 attack (Subfigure d). The model no
longer prioritizes these upper-frequency bins that are critical in
distinguishing VC-generated audio. Instead, it relies on blurred
acoustic energy around the bottom three formants, suggesting
that the model may be influenced by constant background
noise or low-frequency hum in the CI-simulated audio. This
shift reduces the model’s ability to differentiate between real
and deepfake audio, resulting in low model performance on
VC-generated deepfakes.

The saliency masks for CI-simulated VC audio highlight a
shared limitation between proxy models and CI users: both
rely on less informative features. The challenges faced by
models on CI-simulated audio closely mirror the struggles
observed in CI users during our study. The saliency maps rely
on blurred, low-frequency energy rather than nuanced speech
patterns, reflecting the perceptual constraints imposed by
cochlear implants. When processing VC-generated audio, CI
users often depend on prominent auditory cues such as pitch,
tone, articulation, and rhythm. However, cochlear implants
prioritize lower-frequency information while reducing access
to finer spectral and temporal details. These critical features
are similarly degraded during the CI simulation process. As
a result, both the models analyzing CI-simulated data and CI
users shift their focus to less informative features, such as
background noise or formant-like artifacts, which significantly
diminishes detection performance.

The saliency masks reveal the models’ strengths and limita-
tions as proxies for CI users in audio deepfake detection. For
TTS deepfakes, the models and CI users align well, relying
on easily identifiable artifacts such as robotic intonation and
unnatural prosody. Additionally, the CI users’ reliance on
breathing as a detection cue mirrored the performance of the
BTS-E detector, which also leverages the inherent complexity
of synthetically generating human sounds, such as breathing.

However, VC-generated deepfakes present a different chal-
lenge. Unlike TTS audio, VC deepfakes retain natural prosody
and realistic acoustic features, making breathing patterns less
effective as a distinguishing cue. This is reflected in the

BTS-E detector’s performance on VC audio, where its high
FNR closely resembles that of CI users, highlighting the
shared difficulty in detecting subtle manipulations in VC-
generated speech. Saliency maps for CI-simulated VC audio
further reinforce this connection, showing that both models
and CI users must rely on blurred low-frequency formants
and background hum rather than the nuanced speech patterns
and breathing cues critical for accurate detection. While this
shared reliance reflects some overlap in perceptual limitations,
the models fail to fully capture the nuanced strategies and
challenges of CI users, especially when subtle auditory cues
are critical. These findings highlight the need to better repre-
sent fine-grained acoustic details and improve proxy models
by incorporating biologically inspired features and saliency-
driven insights. By addressing these gaps, ML models could
serve as more reliable proxies for CI users, particularly for
complex deepfake types like VC, enabling more effective and
inclusive detection strategies.

VII. DISCUSSION

A. Human Detection and System Design
Our findings reveal that CI users’ abilities to detect audio

deepfakes are not uniform across all generation techniques,
primarily due to the fundamental differences between TTS
and VC methods. This disparity also underscores the broader
vulnerability of human perception to various forms of speech
synthesis. Specifically, while CI users can reliably detect
deepfakes generated by popular TTS techniques, they are
significantly more susceptible to VC deepfake attacks [33].

The challenges with VC deepfakes arise from their ability
to retain natural qualities from the original audio sample,
including prosody, rhythm, emotional depth, and subtle speech
characteristics. This preservation makes VC-generated audio
more difficult for humans - including CI users- to distinguish
from real speech. In contrast, TTS deepfakes often lack these
nuanced qualities, producing synthetic artifacts that are more
easily detectable.

The widespread familiarity with TTS-generated voices, due
to the ubiquity of voice assistants, has likely shaped a subjec-
tive bias among listeners. People often associate “deepfake”
with the synthetic qualities typical of TTS, such as monotone
speech or robotic pacing. While this bias aids in detecting TTS
deepfakes, it leaves listeners vulnerable to more sophisticated
VC deepfakes where such artifacts are less prominent. As a
result, individuals may form internal expectations of how a
deepfake “should” sound, leading them to overlook the subtler,
more realistic alterations introduced by advanced VC tech-
nology [23]. This psychological bias underscores the need to
broaden awareness about the evolving capabilities of deepfake
technologies.

The discrepancy between human listeners and ML models
in detecting deepfakes stems from the different features each
relies upon. Humans detect deepfakes based on a subjective
interpretation of natural speech, focusing on abnormalities
or deviations from expected speech patterns - high-level
perceptual features like breathing, rhythm, and articulation.
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Consequently, they may become suspicious when audio sounds
unnatural based on their prior experiences and expectations.
Many study participants relied on these perceptual cues and
familiarity to quickly determine audio authenticity. As TTS
audio often produces irregularities not found in human speech,
participants were able to detect such deepfakes quickly and
reliably.

Some deepfake detectors, such as BTS-E, mimic this human
approach by analyzing the relationship between breathing,
talking, and silence. By focusing on human-detectable fea-
tures, such models can yield comparable results to humans
on these cues. In contrast, other models like AIR-ASVspoof
or FastAudio are designed to detect inconsistencies in the
frequency domain of the generated audio—subtle anomalies
often undetectable to the human ear. While these models
can be effective, they may not align with human perceptual
strategies. Saliency maps provide a valuable method for eval-
uating how closely proxy models align with human perceptual
strategies. By identifying areas of alignment and divergence,
researchers can refine proxy models to better simulate the
auditory challenges faced by CI users, particularly for complex
deepfake types like VC.

Importantly, many current deepfake detectors are often over-
fitted to specific datasets, resulting in poor generalization to
unseen data. Detection models frequently prioritize achieving a
low EER, which can inadvertently increase false positives and
cause real audio to be misclassified as fake. An elevated false
alarm rate may lead to notification fatigue among detectors’
users, diminishing the effectivness of deployed detection sys-
tems. For CI users, who already face challenges in identifying
natural speech, such an approach could exacerbate difficulties
rather than alleviate them.

Developing user-friendly and widely available tools to iden-
tify and flag audio deepfakes is critical for mitigating potential
threats to CI users and the general population. The currently
existing audio deepfake detectors, as suggested by previous
research [1] can be easily circumvented. Additionally, some
detection methods are complex and require specific technical
expertise, limiting their practical utility. The lack of essential
resources, such as code repositories or datasets [49], further
hinders the widespread adoption of these solutions.

Understanding the specific needs and vulnerabilities of dif-
ferent user groups is crucial for developing effective detection
tools and mitigating the most severe risks. By focusing on
attacks that can cause disproportionate harm—such as VC
attacks targeting CI populations—we emphasize the necessity
of recognizing and addressing these threats. Specifically, we
recommend concentrating on features that indicate synthetic
audio in higher frequency bins, where CI users have a lower
detection rate. Gaining insights into how CI users perceive and
interact with deepfakes enables us to tailor defense strategies
more effectively, moving beyond a one-size-fits-all approach
to deepfake detection.

Our user study revealed that CI users classified more audio
as real compared to HPs, indicating a higher susceptibility to
deception. This finding underscores the necessity of educating

particularly susceptible groups about the dangers posed by
deepfakes. Raising awareness among CI users and correcting
misconceptions about the capabilities of deepfake audio can
be an initial protective measure. However, education alone is
insufficient to address the broader issue, especially as deepfake
technologies continue to advance.

Since conducting human studies is time-consuming and
cost-ineffective, using machine learning algorithms to assess
human performance offers practical solutions for analyzing
large datasets of deepfakes and evaluating effective defen-
sive strategies. Employing proxy models that recognize the
most vulnerable aspects affecting susceptible groups would
be especially advantageous. These models can facilitate the
development of more inclusive and effective detection systems,
ensuring that protective measures are attuned to the needs of
those most at risk.

Our findings thus emphasize the need for a multifaceted
approach to deepfake detection that considers both techno-
logical advancements and human perceptual biases. By inte-
grating insights into how CI users perceive and interact with
deepfakes, and by developing tools that align with human
perceptual strategies, we can create more robust defenses
against these emerging threats. This approach ensures that
protective measures are effectively tailored to those most
vulnerable, addressing the unique challenges faced by CI users
and the general population alike.

B. Limitations
Dataset: The ASVspoof2021 audio dataset and its pre-

vious iterations are commonly used for deepfake detection
evaluation [62], [70]. However, they have limitations in their
scope and realism. Most samples are short (i.e., less than 2
seconds) and do not imitate human conversation. The dataset
audio quality can also introduce bias within the user study.
While this is a good assessment of detection capabilities, it is
not necessarily a real-world scenario. It is possible that with
longer synthetic speech samples, deepfake audio susceptibility
would decrease. Also, this dataset includes more deepfake
audio samples than real audio, which may lead to false positive
results within real-world applications.

Deepfake Detectors: While we select a variety of synthetic
audio detectors for this study, some are excluded due to
practical concerns such as unclear or incorrect documentation,
or failure to perform as well as expected on the original data.
The current selection of synthetic audio detectors provides
good coverage of the various types of detectors available.

Priming Bias: Prompting participants to distinguish be-
tween deepfakes and authentic human speech may introduce a
priming bias by alerting them to the possibility of encountering
manipulated content. In real-world scenarios, individuals are
typically less aware of being specifically targeted by deepfake
audio, which could result in lower detection rates. In contrast,
our study explicitly informed participants of the existence of
deepfakes, potentially leading to heightened awareness and
inflating detection rates by increasing participants’ vigilance
or skepticism, resulting in an accuracy overestimation.
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To mitigate this priming bias, we implemented several
measures: first, we avoided showing participants any examples
of deepfake content before the task, minimizing their famil-
iarity with specific manipulations. Second, we randomized the
order of presentation for both deepfake and authentic audio
samples to prevent participants from identifying patterns in
their responses. Third, we varied the proportion of each partic-
ipant’s fake and real audio samples, ensuring an unpredictable
distribution. Lastly, we emphasized in the instructions that
authentic and manipulated audio samples were equally likely,
encouraging a neutral evaluation rather than an assumption of
deepfake prevalence.

Despite these efforts, the potential impact of priming bias
remains a limitation of our study. Future research should
consider using more neutral conditions, where participants are
unaware of the risk of deepfakes, to better approximate real-
world detection capabilities.

CI Simulation: CI simulators are not perfect representa-
tions of what CI users hear, nor can they be, as there is
significant variation in CI quality and implant techniques. As
presented in the study, the ability of a CI user to distinguish
deepfake audio speech from natural speech varies widely. Due
to the minority status of the CI user population, not as many
subjects were found to participate in the survey as desired.
Also, a limited number of participants constrained our analysis
of deepfake detection differences across CI device types and
CI fitting types. While this study engages participants with
different CI types, we analyze the average CI user performance
and overall group tendencies. Future research could explore a
more extensive analysis to examine the effects of implemen-
tation to deliver an accurate proxy for CI user detection.

Screening for CIs: The Prolific platform demographic
prescreening filters pose limitations due to user self-reporting
on each criterion. While we approve and compensate all
subjects for a complete submission in Prolific, we validate the
Prolific prescreening filter of using a CI in our survey. Such
a procedure allows us to remove data from subjects who, at
the time of the survey, did not have a CI or potentially mis-
understood or answered the platform question unintentionally.
However, we rely on subjects’ honesty to determine their CI
use. Future studies may seek to create a more robust filtering
mechanism to establish CI use.

Audio Delivery Method: We do not control for partic-
ipants’ audio delivery methods. Since recruitment occurred
via online platforms, participants used their own devices
for audio delivery, resulting in variability in the types of
headphones or speakers employed. This variability influenced
participants’ ability to detect deepfake audio by introducing
potential inconsistencies in audio playback quality. We did not
impose specific requirements regarding headphones or speak-
ers, as the study aimed to reflect real-world conditions where
individuals rely on their everyday audio devices. Although
the same audio was presented to all participants, the diversity
in playback devices introduces an uncontrolled variable that
could have affected the results. Future research may consider
implementing more controlled experimental conditions, such

as providing standardized audio equipment to participants, to
mitigate this variability.

A relatively small sample size of CI users can present
several statistical analysis limitations, affecting the results’
reliability and generalizability. Such a small sample size can
increase Type II errors, leading to a high incidence of false
positives. Small sample sizes often overestimate effect sizes,
producing a wider confidence interval. The relatively low
number of CI recipients, the devices’ high cost, and the need
for individual treatment further contribute to difficulties in
gathering large homogeneous samples.

C. Future Work

Audio deepfake technology is constantly evolving, so im-
proved detectors and tools will be needed to prevent at-
tacks. Including state-of-the-art tools in browser extensions
and mobile apps could allow deepfake detection to have a
practical application for potentially at-risk CI users. Education
can also be crucial in making users aware of deepfakes
and helping them recognize the potential signs of deceptive
content. Improvements in CIs, tuning, and software focusing
on improving the perception of speech prosody features would
decrease the chances of successful audio deepfake attacks.

VIII. CONCLUSION

Audio deepfakes have significantly affected our perception
and trust in the authenticity of the audio content we encounter
daily. Despite advancements in detection methods, current
research often overlooks marginalized or underrepresented
groups. We investigated the impact of audio deepfakes on
CI users and demonstrated their increased susceptibility. Our
findings reveal that while TTS deepfakes are generally easier
for CI users to detect, VC deepfakes pose a significantly more
significant threat.

By integrating ML models with insights into the audio
perception of CI users, we underscore the urgent need to
enhance deepfake detection models. Our focus on the perspec-
tives of CI users aims to highlight their unique concerns and
vulnerabilities, encouraging future research to develop more
inclusive and effective detection strategies. Addressing these
challenges is crucial for safeguarding both CI users, and the
broader population as audio deepfake technologies continue to
evolve.
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APPENDIX
APPENDIX A: ASVSPOOF2019 ATTACKS

This section presents an overview of the attack methods
employed in the ASVspoof2019 dataset, a benchmark resource
designed to assess the robustness of automatic speaker verifi-
cation (ASV) systems [66]. As described in Section IV-A, the
ASVspoof challenge incorporates various spoofing techniques
designed to simulate attacks on ASV systems and evaluate
their effectiveness against such threats. Within the Logical
Access (LA) scenario, 17 distinct attack methods were im-
plemented, spanning text-to-speech (TTS), voice conversion
(VC), and hybrid (TTS&VC) systems. Table A1 provides a
breakdown of these attack methods, detailing their system
types and the methodologies used.

Table A1: Summary of LA spoofing attack approaches in-
cluded in ASVspoof2019 dataset, along with their correspond-
ing system types and speech generation approaches.

Attack System Approach
A01 TTS neural waveform model
A02 TTS vocoder
A03 TTS vocoder
A04 TTS waveform concatenation
A05 VC vocoder
A06 VC spectral filtering
A07 TTS vocoder+GAN
A08 TTS neural waveform
A09 TTS vocoder
A10 TTS neural waveform
A11 TTS griffin lim
A12 TTS neural waveform
A13 TTS&VC waveform conc. & filt.
A14 TTS&VC vocoder
A15 TTS&VC neural waveform
A16 TTS waveform concatenation
A17 VC waveform filtering
A18 VC vocoder
A19 VC spectral filtering

APPENDIX B: DEMOGRAPHICS AND INFLUENCES ON
DEEPFAKE DETECTION

In this section, we examine how demographic factors in-
fluence the ability to detect audio deepfakes among HPs
and CI users. Figure B1 illustrates detection accuracy across
demographic categories such as gender, age, or education
level.

Our analysis indicates significant differences in detection
performance based on gender. Among CI users, male par-
ticipants achieve higher accuracy (p = 0.01687), whereas
female participants perform better among HPs (p = 0.04916).
Age is another influential factor showing a statistically sig-
nificant correlation with detection performance in both groups
(p = 0.04042). Specifically, we observe a negative correlation,
indicating that older participants demonstrate lower accuracy,
potentially due to age-related declines in auditory perception.

In addition to demographics, CI-related factors such as
device type, duration of CI use, and daily usage patterns
influence deepfake detection performance. Participants using
bilateral CIs show the highest detection accuracy, whereas
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Figure B1: Detection accuracy across different demographic groups for HPs and CI users. Statistically significant correlations
are observed between age and performance in both groups. Among CI users, males perform better than females (p = 0.01687),
while among HPs, females perform better than males (p = 0.04916). Additional significant correlations in the CI user group
are related to age (p = 0.04042) and education level (p = 0.04185).

those using CIs in combination with hearing aids (HA) detect
deepfakes less effectively. Longer daily CI usage and extended
duration since implantation are associated with reduced ac-
curacy. These trends may reflect the combined influence of
recipients’ age and advancements in implant technologies.
These findings provide multifaceted insights into how demo-
graphic and device-related factors shape deepfake detection
performance. However, the small sample size limited the sta-
tistical power to identify significant differences across auditory
devices and other CI-related variables (p < 0.0002).

APPENDIX C: MAJOR EMERGING THEMES EMERGING
WITHIN PARTICIPANTS’ RESPONSES

Table C1: Major categories, key emerging themes, and sub-
themes from participants’ description of audio cues used for
classifying audio as real or fake.

Categories Themes Subthemes

Speech
Prosody

Characteristics

Pronunciation
& Clarity

Accent,
Articulation

Vocal
Expression

Emotion, Tone,
Pitch

Rate & Fluency Pauses, Rhythm,
Speech Rate

Technical
Aspects

Sound Quality Background Noise,
Recording Quality

Vocal Artifacts
Breathing Sounds,

Mouth Noises
& Nasal Features

Perception
& Intuition

Perception Familiarity,
Intuition, Guess

Intuition Human, Robotic

We outline the key emerging themes from participants’
open-ended responses about the factors they relied on to
classify audio samples as real or fake. Following Braun
and Clarke [6] thematic analysis framework, as previously
detailed in Section V-D, we categorized these responses into
major categories, themes, and subthemes. Table C1 presents a
structured summary of the findings, offering insight into the
perceptual cues participants used in their deepfake evaluations.
The diversity of auditory cues identified underscores the com-
plexity of human audio deepfake detection and the challenges
in distinguishing real audio from deepfakes.

APPENDIX D: USER STUDY PROTOCOL

Figure D1 shows the web interface used in the study.
Participants were required to listen to a series of 20 audio
samples and determine whether each sample was a real human
voice (Real) or computer-generated deepfake (Fake), and rate
their confidence level on a 5-point Likert scale. They also were
asked to provide open-ended responses describing any cues or
factors that influenced their judgment.

This study aimed to assess participants’ ability to detect
audio deepfakes while collecting qualitative insights into the
auditory cues they relied on. A standardized protocol ensured
all participants had a consistent experience, allowing for
systematic analysis of their responses.

APPENDIX E: SALIENCY MASKS

In this section, we present the saliency maps derived
from the original and CI-simulated audio samples from the
ASVspoof2019 dataset for TTS- and VC-generated deepfakes.
These maps help visualize the most influential regions con-
tributing to the model’s classification decisions, providing
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Figure D1: The study interface as given to participants. They were asked to listen to an audio file, decide whether the audio
is real or fake, rate their confidence on a 5-point Liker scale, and describe what factors influenced their decision.

1

(a) A09 - TTS without CI
simulation

2

(b) A09 - TTS with CI
simulation

3

(c) A17 - VC without CI
simulation

4

(d) A17 -VC with CI
simulation

Figure E1: Mean saliency masks for original and CI-simulated
audio samples using attacks A09 (TTS) and A17 (VC) with
the most salient 30% area.

insights into how the model differentiates spoofed audio from
real audio.

Figure E1 shows the mean saliency maps for TTS attack
A09 and VC attack A17, both with and without CI simulation.
We plotted ten random audio samples for each attack method
on Mel spectrograms. Then, we applied the eXplainable AI
(XRAI) saliency method [32] to identify the mean top 30%
most influential regions for the model’s classification.

For the TTS attack (A09), the saliency maps in Figures E1a
and E1b indicate that the key prediction areas, particularly
artifacts above frequency bin 10 (areas 1 and 2), remain highly
silent, even after applying CI simulation on audio, suggesting
that the CI simulation has a small effect on the model’s ability
to detect TTS-generated deepfakes.

In contrast, the saliency maps for the VC attack (A17)
(Figures E1c and E1d) show that higher frequency bins lose
importance after CI simulation. Specifically, areas above fre-
quency bin 10 (area 3 in the original audio) lose prominence in
the CI-simulated version (area 4), indicating that CI simulation
covers features the model relies on for detecting VC attacks.

18


	Introduction
	Background & Related Work
	Speech Synthesis and Analysis
	Cochlear Implant
	CI Simulation

	Research Goals
	CI Simulation and Automated Detection
	Dataset Selection
	CI Simulators
	Model Selection
	Testing
	Deepfake Detectors Results and Analysis

	User Study
	Dataset
	Ethical Considerations
	Recruitment and Experiment
	User Data Results and Analysis

	Humans vs Deepfake Detectors
	Performance Comparison
	FastAudio and AIR-ASVspoof detectors
	BTS-E detector
	VTR detector

	Model Explainability

	Discussion
	Human Detection and System Design
	Limitations
	Future Work

	Conclusion
	References
	Appendix A: ASVspoof2019 attacks
	Appendix B: Demographics and Influences on Deepfake Detection
	Appendix C: Major emerging themes emerging within participants' responses
	Appendix D: User Study Protocol
	Appendix E: Saliency Masks

