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Abstract— Using a dual-task paradigm, we explore how robot
actions, performance, and the introduction of a secondary task
influence human trust and engagement. In our study, a human
supervisor simultaneously engages in a target-tracking task
while supervising a mobile manipulator performing an object
collection task. The robot can either autonomously collect the
object or ask for human assistance. The human supervisor also
has the choice to rely on or interrupt the robot. Using data
from initial experiments, we model the dynamics of human
trust and engagement using a linear dynamical system (LDS).
Furthermore, we develop a human action model to define the
probability of human reliance on the robot. Our model suggests
that participants are more likely to interrupt the robot when
their trust and engagement are low during high-complexity col-
lection tasks. Using Model Predictive Control (MPC), we design
an optimal assistance-seeking policy. Evaluation experiments
demonstrate the superior performance of the MPC policy over
the baseline policy for most participants.

I. INTRODUCTION

With ongoing technological advancements, autonomous
systems are increasingly deployed across industrial, com-
mercial, healthcare, and agricultural sectors. These systems
can handle hazardous or repetitive tasks, optimizing human
resource allocation. However, despite their efficiency, these
systems often require human supervision for complex tasks
and in uncertain environments [1]-[3].

Trust in human-robot interaction is defined as “the attitude
that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability” [4].
A lack of trust in autonomous systems can lead to their
disuse, while excessive trust can result in misuse [5], [6].
Therefore, for effective human-robot collaboration, human
trust in autonomous systems needs to be carefully calibrated.

Supervisors managing autonomous agents must balance
their own tasks with overseeing these agents. For exam-
ple, in an orchard, a human collects fruits while ensuring
the robotic co-worker functions correctly, intervening only
when necessary to avoid compromising their own tasks. The
robot should also operate with minimal interference to the
human’s tasks. In this work, using a dual-task paradigm, we
study how the robot’s assistance-seeking affects human trust
and secondary task engagement. We also investigate how
robot actions and performance impact human secondary-task
engagement and performance. We model the dynamics of
human trust and secondary-task engagement and utilize it to
design an optimal assistance-seeking policy.
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Various factors influence human trust, including robot
reliability, workload, and information transparency [1], [7]-
[11]. These works highlight that negative experiences lead
to a decrease in human trust. Additionally, a higher level
of information transparency can have a positive effect on
human trust but can increase their workload [1], [10]. Factors
affecting human trust in automation are categorized into three
main groups: robot-related, human-related, and environment-
related factors, with robot-related factors such as reliability
influencing the trust the most, followed by environment-
related factors such as task complexity [12].

Dynamic models of trust consider these factors as inputs
or states. Probabilistic trust models, such as Partially Observ-
able Markov Decision Process (POMDP)-based models, treat
the trust as a latent state and estimate its distribution within
a Bayesian framework [13]. These models have been used
for planning to minimize human interruption [11], [14], [15]
and to optimize information provided to humans, maintaining
collaboration efficiency [1].

Linear dynamical systems use trust level, cumulative trust
level, and expectation bias as system states. The inputs to
these models include factors that influence human trust,
such as robot performance and task-specific contextual in-
formation [9], [10], [13]. Process and measurement noises
have also been incorporated into linear models of human
trust [16]. We focus on a similar noisy linear trust model;
however, our measurement model is nonlinear (binary),
which in contrast to [16], necessitates nonlinear filtering
techniques, specifically the particle filter. Additionally, we
leverage our learned model to determine and experimentally
evaluate an optimal assistance-seeking policy.

In our dual-task paradigm, participants simultaneously
perform supervisory and target-tracking tasks. We explore
an assistance-seeking policy for the robot based on human
trust, tracking task engagement, and task-specific contexts.
In the initial data collection experiment, the robot uses
a randomized assistance-seeking policy with varying task
complexities. We use the collected data to model trust
dynamics and task engagement using an LDS with robot
and human actions, task outcomes, and task complexities as
inputs. Additionally, we develop a model to predict human
actions based on trust and engagement. Using MPC [17] with
the estimated models, we compute robot actions to maximize
team performance. We then evaluate the MPC-based policy
in a second set of experiments, comparing it with a baseline
policy. Our contributions include:

o Studying the effect of assistance-seeking on human trust

and secondary-task performance;

o Designing an optimal-assistance-seeking policy based



Fig. 1: Experiment interface showing the target-tracking and supervisory
task rendered on two adjacent screens.The setup uses ROS-Gazebo and
resources available in [18], [19].

on human behavior models;

o Evaluating the designed policy in experiments with

human participants; and

o Using a nonlinear filter for real-time estimation of trust

and secondary-task engagement.

The paper is organized as follows. Sections II and III
describe the dual-task setup and the human behavior model,
respectively. Section IV details the computation and evalu-
ation of the optimal policy. Section V discusses our results
and their broader implications. We conclude in Section VI.

II. DUAL TASK SETUP: ROBOT SUPERVISION AND
TARGET-TRACKING TASK

In our experiment, the human participant engages in
a dual-task paradigm, simultaneously supervising an au-
tonomous mobile manipulator retrieving objects from shelves
and performing a target-tracking task. The experiment inter-
face is shown in Fig. 1.

A. Human Supervised Robotic Object Collection Task

In our supervisory task, the human supervisor collaborates
with a robot to gather items from grocery shelves. The super-
visory goal is to monitor the mobile manipulator and ensure
its safety and efficiency. The human supervisor monitors a
live feed displaying the robot’s actions and views from two
cameras placed on the end-effector (see Fig. 1; right panel).

In each trial, the mobile manipulator has the choice
of attempting autonomous collection (a**) or requesting
human assistance (a*~), wherein the human must teleoperate
the manipulator using a joystick and retrieve the item. When
the robot initiates autonomous collection of an object, the
human supervisor can either rely (a”’*) on the robot to
collect the object autonomously, or intervene (a’~) and
collect the object via teleoperation.

The complexity (C!) of each object collection task is
determined by the object’s location relative to the mobile
manipulator. Specifically, the complexity is high (C! = C'H)
if the manipulator’s direct path to the object is obstructed by
an obstacle; otherwise, the complexity is low (Cct =cth.

The outcome of each trial of the object collection task is
either a success (ET), if the object is collected successfully
and dropped into the bin; or a failure (E ™), otherwise. The
human-robot team reward for the object collection task is
defined by

+3, if (af, a0, E) = (o, o T, ET),
+1, if af* = aft,

0, if (a®,a™) = (a®t, "),

—4, if (a®, 0™, E) = (a®F, o™ E7).

Rc‘)"(aR,aH, E) —

The objective of the human-robot team for the object collec-
tion tasks is to maximize the cumulative team reward across
all trials.

B. Target-tracking Task

In addition to the supervisory task, the human participant
also performs a target-tracking task (see Fig. 1; left panel).
In each target-tracking trial, the human participant must
maintain the computer cursor inside a moving ball using the
mouse for a total duration of 5 seconds. In our experiment,
we select two possible speeds (slow and normal) for the ball
and they result in complexity C2? € {C?slow CZnom},

The human participants are instructed to track the ball
(target) for a total cumulative time of 5 seconds. Their target-
tracking performance p is determined by taking the goal time
of 5 seconds and dividing it by the total time it took to
finish the trial. The participants were instructed to achieve a
performance of at least 0.75. Then, the reward for the target-
tracking task is defined by

+0.5, if C*™™ and p > 0.75,
RUk(C? p) = { 40.25, if C*™ and p > 0.75,
0, if p < 0.75.

C. Data Collection for Modeling Human Behavior

To build a model of human supervisory behavior, we
conducted a study' with 11 human participants (4 males and
7 females), performing the above supervisory and target-
tracking tasks simultaneously. Participants were recruited
via e-mail for the in-person experiment. Participants were
first and second-year college students not in the engineering
program. An experiment’s total duration was one hour and
participants were compensated $15 for their participation.

For the supervisory object collection tasks, each partici-
pant performed 30 low-complexity and 30 high-complexity
trials, randomly distributed throughout the experiment. When
the manipulator operates autonomously, it has a success
probability of p$i¢ = 0.75 in C'M and p$*° = 0.96 in C''L.
In each trial, the robot asks for human assistance with a
probability of 0.3 in C'H trials, and with a probability of 0.1
in CL trials. After each trial, participants reported their trust
in the autonomous mobile manipulator through an interface
with an 11-point scale. For each object collection trial, the
data collected are the complexity C'!, robot action ¢, human
action a*?, outcome E, and the reported human trust yT.

For the target-tracking task, participants performed 30
slow-speed trials and 30 normal-speed trials. To ensure that
all participants do the same number of trials per complexity,
an initial set of 60 such trials was selected and trials were
randomly permuted for each participant and independently
of the object-collection task. In each trial, the data collected
are the complexity of the trial C2, and the performance p.

D. Data Summary

For the supervisory task, after a successful autonomous
collection, the mean trust ratings of participants are 7.38

The human behavioral experiments were approved under Michigan State
University Institutional Review Board Study ID 9452.



for low complexity and 7.36 for high complexity, with an
overall mean trust rating of 7.37 across both complexities.
After a failure, the mean trust ratings were 6.36 for low
complexity and 6.68 for high complexity, with an overall
mean of 6.6 across both complexities. When the robot asked
for assistance, the mean trust ratings were 7.3 for low
complexity and 6.98 for high complexity, averaging 7.03
for both complexities combined. However, when the human
voluntarily interrupted, the mean trust rating dropped to 6.29
when they interrupted the robot in high-complexity, 5 in low-
complexity, and 6.17 across both complexities.

For the tracking task, at slow speeds, the mean perfor-
mance was 0.89 with 90% of the trials having p > 0.75. At
normal speeds, the mean performance dropped to 0.82 with
78% of the trials having p > 0.75. As expected, p < 0.75
whenever participants interrupted the robot.

III. HUMAN BEHAVIOR MODEL

In this section, we focus on a model of human super-
visory behavior, i.e., a model that predicts when the human
supervisor may intervene in the autonomous operation of the
manipulator. We assume that human action is modulated by
their trust in the mobile manipulator and their engagement
in the target tracking task.

In the following, we denote trust at the beginning of trial ¢
by T; € R, the target-tracking engagement in trial (¢t —1) by
G € [0, 1], the complexities of object collection and target-
tracking task by C} and C?, respectively, the human and
robot actions during collaborative object collection in trial ¢
by al! and af, respectively, and the outcome of the object
collection in trial ¢ by E; ;.

A. Human Trust Dynamics

The evolution of human trust in the robot is known to be
influenced by several factors such as the current trust level,
robot performance, robot actions, environmental complexity,
and human actions. Accordingly, we assume that trust 73, at
the beginning of trial £+ 1 is influenced by the previous trust
Ty, robot action af?, collection task complexity C}, human
action al?, and the outcome of the collection task E .

Consider the following events corresponding to 6 different
combinations of C!, «*, and E; and the additional case when
human interrupts the robot corresponding to (alt,al) =
(af™*, a™~). For brevity, we define events by their outcomes.

0, (CtlLv e H Et+1) 07 (CIH R*,af{*,Eal)
G | (CI.aft ol Ea) |08 | (€ a)
6} | (Cp".a ’) 07 | (a7 a)"")
6! | (/" af o' BL)

Let u!l € {0,1}7 be an indicator vector representing
one of the above 7 possible events in collaborative object
collection trial ¢. We model the trust dynamics using the
following LDS

Ty = ATT, 4+ BTul 4+ o], (1)

where AT € (0,1), BT € [-1,1]**7, and o] ~
N(0, 02),t € N, are i.i.d. realizations of zero-mean Gaus-
sian noise. The entries of B determine the influence of the
events 6% on the evolution of trust.

We assume that the trust reported by the participants after
each trial is possibly a scaled and noisy measurement of the
trust 713, i.e.,

yi = CTT, +wf, 2)

where CT € [0,1] and w{ ~ N(0, 02),t € N, are iid.
realizations of zero-mean Gaussian noise.
The trust model parameters are AT, BT C7T, 02 and
. We adopt the Expectation- Max1mlzat10n (EM) a]go—
r1thm [20] with the reported trust values y7 to obtain the
following estimates

AT =092, 07=022, CT=1.00, o] =022
BT =076 —0.38 0.26 0.78 —0.43 0.52 —0.12].

The elements of BT represent the effect of each scenario
on human trust. The estimated values for contexts associated
with a negative experience, e.g., a failed collection or human
intervention are negative. Similarly, the estimated values for
contexts associated with a positive experience, e.g., success-
ful collections or when the robot requests assistance, are
positive. Interestingly, as found in our previous study [14],
asking for assistance can help increase human trust, which
is also consistent with the estimated B”. In other words,
the estimates suggest that successful collection increases and
maintains trust; failed collections decrease it; and asking for
assistance can help repair and increase trust. Additionally,
human interruptions decrease their trust.

B. Human Target-tracking Engagement Dynamics

Similar to modeling human trust dynamics, we aim to
model how robot action af, tracking task complexity C?,
and previous experience in the supervisory task E, influence
human target-tracking engagement and performance. The
experience Iy is the outcome of the autonomous collection
trial; while, for engagement dynamics, we classify it as E~
if the human interrupts the robot, and as E7, if the robot
asks for assistance.

Consider the following events corresponding to 8 different
combinations of C?, a’?, and E. Note that for brevity, we
have defined the events with their outcomes.

¢% (CtZ,slow R— E+) ¢%5 (02 slow R+) EtJr)
¢2 (CZ,norm R— E+) ¢6 (02 norm R+ E+)
% t2,slow — t7 2, slow R+ ot
op | (C77a EY) || of | (CF Er)
4 CZ,norm Rf E7 8 02 norm R+ E
¢+ | (Cy vap By ) | ¢ | ( )

Let v € {0,1}® be an indicator vector representing
one of the above 8 possible events in the target-tracking
task during trial £. We model the human target-tracking
engagement dynamics as an LDS

Giy1 = A9Gy + BYuE +0F 3)
pe = COGy +wy, “)
where A € [0, 1], BY € [0,10]"*%,v& ~ N(0, 02),t €N

are i.i.d. realizations of zero-mean Gaussian noise, C¢ €
[0,1], and wf ~ N(0, 02),t € N, are i.id. realizations of
zero-mean Gaussian noise. The entries of BS determine the



influence of the events ¢! on the human engagement in the
tracking task.

The engagement model parameters include
A% BY,C% 0% and o2. Considering p as the tracking
task result of the human, we adopt the EM algorithm to
estimate these parameters. The estimated parameters of the
engagement dynamics model are

A% =019, of =144, C° =996, o =379,

B =[747 672 7.24 6.38 7.30 6.51 7.06 6.59].

The elements of B represent the effect of each scenario on
human tracking-task engagement and performance.

The estimated B indicates that whenever the robot asks
for assistance, for the majority of cases, the associated
estimated values are greater than the values associated with
the cases when the robot collects autonomously. This is
expected as whenever the robot asks for assistance, the
human supervisor can focus more on their tracking task and
finish it before teleoperating the robot, knowing that the robot
has stopped and will not move unless they take control of it.
In contrast, when the robot attempts to collect autonomously,
the human supervisor may switch attention from the tracking
task to the supervisory task to decide whether to rely on the
robot. The estimated parameters are higher when the target
speed is slow compared to when it is normal. Whenever the
previous experience with the robot is £~ the parameters are
lower compared to the case of E+. This is consistent with
the fact that whenever humans perceive a failure, they tend
to pay more attention to the supervisory task in the future.

C. Human Action Model

We now focus on modeling the probability of the human
relying on the robot when the robot attempts to collect
autonomously. We assume that this probability depends on
the object collection task complexity C}, human trust 7}, and
human target-tracking engagement G, which is representa-
tive of the attention they allocate to the tracking task. We
model the human action probability as a sigmoid function

1

H+ 1 _
P™IL,6,00) = 14 e—(ag T+ag G+b")

®)

The model parameters are learned with Maximum Likelihood
Estimation using the Monte Carlo simulation method, result-
ing in the following parameter values for different object
collection task complexities

agl agl ek
CHL10.09 [ 008 | 3.6
CHH 10201040 | -2.7

The probabilities of reliance for each object collection
task complexity are shown in Fig. 2. For low complexity
CUL, the probability of reliance is high and close to 1,
regardless of 7" and G. For high complexity C1-¥, there
is a lower probability of reliance in general as compared
to low complexity C1-7. It can be seen that the probability
of reliance increases with trust as well as with tracking task
engagement. The latter may be caused by the human focusing

more on the tracking task as compared to the supervisory
task, thereby increasing their probability of reliance on the
mobile manipulator.
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Fig. 2:  Human action model: Probability of reliance

P(aH+|T, G, C', a’*) conditioned on object collection task complexity
CLT, and F

IV. DESIGN OF HUMAN ASSISTANCE SEEKING POLICY

In this section, we propose an optimal assistance-seeking
policy, leveraging the estimated trust dynamics, target-
tracking dynamics, and human action model.

A. MPC-based Assistance-seeking Policy

Using the models described in Section III, we design
an optimal assistance-seeking policy using MPC. We adopt
a certainty-equivalent MPC approach [17] that considers
the expected reward and deterministic system dynamics.
Specifically, the following optimization problem is solved at
the beginning of each trial ¢ with trust 7; and target-tracking
engagement Gy.

N1
maximize Z RONT,, Gr\qr) + R™N(GT, qr)
qty---qt+N—1 —t

st. Trp1=A"T. + Blu., T, =T,
Gr+1 = AGGT + BTGUT .Gy = Gy
pe=CYGy
qr € 10,1],

(6)

fort=t,...,(t+N—1), where u, = [¢ 1— qT]T, and
q is the probability of taking action a*+.

The entries in B and B correspond to the expected in-
fluence of the autonomous collection attempt and assistance-
seeking on trust and engagement, respectively. They are
obtained by averaging entries of B” and B, respectively,
associated with these events weighted by their probabilities.
Similarly, R°"(T,, G, q,) and R"**(GT, q,) correspond to
the expected reward. The interested reader may refer to [21]
for detailed calculations.

In the MPC framework, the optimization problem (6) is
solved at the beginning of each trial ¢, the optimal sequence
of robot actions {@,...GJ+n—1} is computed and only the
first action is executed, i.e., afi is chosen as the autonomous
collection a™t with probability §,, and seeking assistance,
otherwise. The look-ahead horizon N is a tuning parameter
that is selected to balance the performance and computational
time and to account for the accuracy of the look-ahead
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model. We solved the optimization problem (6), using MAT-
LAB’s fmincon function. The assistance-seeking policy
obtained using the above MPC formulation with a look-ahead
horizon N = 5 is shown in Fig. 3.

In low-complexity object collection tasks, the optimal
action for the robot is always to collect autonomously,
regardless of other variables. This outcome is anticipated
because of the low interruption rate and high success rate
observed in low-complexity object collection tasks.

In high-complexity object collection tasks, the computed
optimal action is to seek assistance if tracking task engage-
ment falls below G; = 5, regardless of other variables. Since
low target-tracking performance may be caused by the human
paying more attention to the supervisory task, the optimal
policy seeks assistance at low target-tracking engagement;
thereby allowing the human to finish the tracking task
and then assist the manipulator. In contrast, when tracking
task engagement is high, the optimal policy depends on
human trust: it asks for assistance at low trust levels and
collects autonomously for high trust levels. The threshold
of trust for seeking assistance decreases with target-tracking
performance. Since higher target-tracking performance is
an outcome of higher engagement with the tracking task
resulting in fewer interruptions by the supervisor, the optimal
policy attempts autonomous collection of the object.

Interestingly, for high-complexity object collection and
normal speed tracking tasks, the threshold of trust for asking
assistance in the optimal policy is lower when the previous
experience is negative (£ ~) compared to when it is positive
(E™). Since the probability of interruption increases follow-
ing a failure, the policy aims to mitigate this interruption
by requesting assistance, which results in human trust repair
and enables human to improve their tracking performance.

B. Evaluation Experiment

We conducted a second set of human experiments to
evaluate the designed assistance-seeking policy and compare
it to a baseline policy that only considers object-collection
complexity and tracking speed. Using data from the ini-
tial experiment, we estimated the probability of reliance
P(af’+|C*, C?) on the robot and the probability of success
P(p > 0.75/C*,C?) in the tracking task. We computed
the expected reward for each robot action based on these
probabilities. The optimal baseline policy, referred to as the

“greedy policy”, always attempts autonomous collection.

We recruited 5 participants (3 females and 2 males) who
completed two experiment blocks where the robot followed
the MPC and greedy policies, in a randomized order. Each
block included 15 trials each of low- and high-complexity
object collection tasks. To match a realistic scenario where
participants might not report their trust after each trial,
we estimated trust and task engagement based on their
actions (rely a* or intervene o' ~) and measured tracking
performance (p;) instead of using reported trust values. To
this end, we adopted a particle filter with trust dynamics (1),
engagement dynamics (3), action model (5) and target-
tracking performance output (4) to estimate 7341 and G;.

The cumulative reward for all participants under both the
greedy and the MPC policy is illustrated in Fig. 4. The score
of a trial is calculated as the sum of rewards in tracking
and collection tasks. The median scores are 65.75 and 57
for the MPC and the greedy policy, respectively. The MPC
policy outperforms the greedy policy for most participants.
The cumulative number of interruptions in our MPC policy,
16, is also less than the greedy policy, 23.
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Fig. 4: Cumulative reward (sum of collection and tracking rewards) statistics
for both policies

V. DISCUSSION

When humans encounter a multitasking scenario, they
must optimize their resources to achieve acceptable per-
formance in every task. In the context of a human-robot
team, human trust in the robot and their engagement in their
own responsibilities play a key role in their multi-tasking
performance. To understand and leverage human trust and
engagement dynamics toward designing better policies for
the robot, we developed a model and estimated it using
human participant experiment data.

In our prior study [14], we investigated the supervisory
object collection task without any secondary task. In contrast
to the dual-task paradigm, we observed a higher interruption
rate in our prior study (0.173 vs. 0.095). This is possibly due
to the division of engagement across two tasks. Addition-
ally, the optimal assistance-seeking policy in the single-task
paradigm, as described by [14], seeks assistance only in cases
of high task complexity and low human trust. In this paper,
the robot’s actions are guided by both the level of human trust
and engagement in a secondary task. When engagement with
the secondary task is low, resembling a single-task paradigm,
the optimal policy consistently seeks assistance. The optimal



policy considers the secondary task performance, which
tends to decline at low engagement levels, and seeking
assistance allowing humans to satisfactorily complete the
secondary task before assisting.

Our model parameters indicate that failures decrease trust,
aligning with the literature that negative experiences nega-
tively affect trust [8], [10]. Similarly, when humans interrupt
and intervene, their trust in the robot tends to decrease [11].
Our human action model suggests that humans are unlikely
to rely on robots in scenarios associated with high complexity
and low trust. This is consistent with the observations in the
literature that at a higher risk, a higher trust is required for
humans to rely on the robot [1], [11].

In a dual-task setup, when trust in the robot is low,
they tend to interrupt the robot, reducing their attention to
the other task and thereby diminishing their performance.
When a human supervises an autonomous robot, it has been
established that as human trust towards the robot increases,
their rate of monitoring and interruption decreases [15].
When performing a dual task, if performance on one task
diminishes, it is due to the other task consuming most of
the operator’s resources [22]. Therefore, we can consider
their engagement in the tracking task as a secondary measure
of their trust. When their trust in the robot is low, they
tend to supervise it more closely, diverting attention from
their tracking task, thus decreasing their engagement and
diminishing their performance.

VI. CONCLUSIONS

We focused on a scenario in which a human supervises
object collection by a robot while performing a secondary
target-tracking task. We studied the impact of robot per-
formance on the primary task and human performance on
the secondary task on the evolution of trust and secondary
task engagement. We modeled the trust and secondary task
performance dynamics using linear dynamical systems with
Gaussian noise and human action selection probability as a
static function of their trust and secondary task engagement.
A data-collection experiment with human participants was
conducted and the collected data was used to estimate these
models. We formulated an optimal assistance-seeking prob-
lem for the robot that seeks to optimize team performance
while accounting for human trust and secondary task engage-
ment and solved it using MPC. We showed that the optimal
assistance-seeking policy is to never seek assistance in low-
complexity object-collection trials and to seek assistance in
high-complexity object-collection trials only when the trust
is below a secondary-task-engagement-dependent threshold.
Specifically, this threshold decreases with the engagement.
We compared this proposed policy with a greedy baseline
policy and conducted experiments with human participants
to evaluate the MPC policy. The results showed that the MPC
policy outperformed the greedy policy.
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