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connection between students’ covariational reasoning and how they interpret the value of a rate
of change. The findings suggest that attending to students’ quantifications of a rate of change can
provide insight into their covariational reasoning and how we might better support students in
reasoning at higher levels. Additionally, this manuscript provides an update to the Carlson et al.
(2002) Covariation Framework that includes two additional categories of student reasoning and
an additional dimension that describes students’ interpretation of a rate value at each level of the
framework.

1. Introduction

National Council of Teachers of Mathematics (1998, 2000) has consistently recommended that students develop the ability to
analyze patterns of change in various contexts. They suggest that students should understand how changes in quantities can be
mathematically represented (2000). One aspect of this involves coordinating two variables’ values as they change together, which
mathematics education researchers call covariational reasoning. Covariational reasoning as a theoretical construct has been used to
study an individual’s mental actions when conceptualizing quantities as they vary together (Confrey, 1991, 1992; Confrey & Smith,
1994, 1995; Thompson, 1993, 1994a; Carlson et al., 2002; Thompson & Carlson, 2017). While the works of Carlson and Thompson
focus on how someone reasons about quantities (Carlson et al., 2002; Thompson & Carlson, 2017), little work has been done on
exploring how students interpret the value of a rate of change and how that impacts how they reason covariationally (e.g., Johnson,
2015). Thompson & Thompson’s (1994b) (1996) study is one early example of how one student’s conception of a rate of change
affected how they conceptualized two quantities’ values as covarying. They observed that their student conceived of speed as a length
(e.g., a student would attempt to fit a number of speed-lengths into a total distance), and this conception prevented them from
imagining time and distance as continuously covarying together. However, their study did not encompass all the ways students may
reason about the value of a rate of change and the connection to their conception of two quantities’ values as varying. Therefore, one
contribution of this paper addresses this gap in the literature by extending the Carlson et al. (2002) covariation framework to unpack
how students reason about a rate value in the context of coordinating changes between two quantities’ values. The results of this study
add knowledge to the field by providing further nuance into why students engage in particular levels of covariational reasoning.
Additionally, this contribution provides insight into how to support students in reasoning at higher levels by addressing their quan-
titative understanding of rate of change.
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The research question this study investigated was: How do students interpret the derivative at a specific input value in an instantaneous
rate of change context? In this context, how do the students attend to quantities’ values changing?

2. Literature review

Whereas covariational reasoning refers to how an individual coordinates changes in two quantities’ values, a rate of change refers
to a quantification of the multiplicative relationship between two quantities’ values as they vary together. It should be clear then that
rate of change and covariational reasoning are related topics, yet few papers explicitly identify and address this connection (e.g., Kertil
et al., 2019; Johnson, 2012, 2015).

2.1. Literature review on student conceptions of rate of change

Many studies have explored university students’ ideas of rate of change (Carlson et al., 2002; Carlson, 1998; Orton, 1983; Yu, 2019;
Monk & Nemirovsky, 1994). One common finding was that many students did not conceive of rate of change as a multiplicative
comparison between changes in two quantities’ values. For example, Byerley et al. (2012) investigated calculus students’ under-
standing of division and found that students employed additive reasoning when interpreting the value of a rate. Similarly, Rasmussen
and Marrongelle (2006) observed that some students interpreted a constant rate function of 2 as “you’d be saying that you only added 2
pounds of salt for the whole time” (p. 408). These students described rates of change as additive changes in the output quantity rather
than expressing rates as a multiplicative comparison of changes in two quantities.

Studies investigating students’ conceptions of rate of change illustrate clear connections to how they reasoned covariationally
about a situation. For example, Thompson and Thompson (1994) noted that a student interpreted the value of a constant speed as
traveling that amount of distance will produce an amount of time (e.g., a speed of 50 mph means that traveling 50 miles produces 1 h of
time). In this example, the student is at the initial levels of reasoning covariationally since they noted that two quantities values have
changed; however, they have not yet associated them as varying together simultaneously. Similarly, in the studies that found students

Mental Actions of the Covariation Framework
Mental action Description of mental action

Behaviors

Mental Action 1

Coordinating the value of

* Labeling the axes with verbal indica-

(MA1) one variable with changes tions of coordinating the two variables
in the other (e.g., y changes with changes in x)
Mental Action2  Coordinating the direction ¢ Constructing an increasing straight
(MA2) of change of one variable line
with changes in the other * Verbalizing an awareness of the di-
variable rection of change of the output while
considering changes in the input
Mental Action3  Coordinating the amount * Plotting points/constructing secant
(MA3) of change of one variable lines
with changes in the other  Verbalizing an awareness of the
variable amount of change of the output
while considering changes in the
input
Mental Action4  Coordinating the average * Constructing contiguous secant lines
(MA4) rate-of-change of the func- for the domain
tion with uniform incre- * Verbalizing an awareness of the rate
ments of change in the of change of the output (with respect
input variable. to the input) while considering uni-
form increments of the input
Mental Action 5  Coordinating the instanta- ¢ Constructing a smooth curve with
(MAS) neous rate of change of the clear indications of concavity changes

function with continuous
changes in the independent
variable for the entire
domain of the function

» Verbalizing an awareness of the in-

stantaneous changes in the rate of
change for the entire domain of the
function (direction of concavities and
inflection points are correct)

Fig. 1. Carlson et al.’s Covariation Framework.
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interpreting a rate of change in an additive fashion (Byerley et al., 2012; Rasmussen & Marrongelle, 2006), these students exhibited
that they imagined two quantities varying in discrete amounts since they coordinated specific amounts of changes between the two
quantities. It should be clear then that attending to a student’s quantification of rate of change can provide insight into their cova-
riational reasoning.

2.2. Literature review on covariational reasoning

Covariational Reasoning first appeared as a theoretical construct in the works of Confrey (1991, 1992) and Thompson (1993) to
describe how an individual coordinates two quantities as varying simultaneously. The field’s understanding of students’ covariational
reasoning has continued to evolve as researchers investigated the mental actions and reasoning students employ to make sense of how
quantities change together (Carlson, 1998; Carlson et al., 2002; Jones, 2019), images of variational reasoning (Castillo-Garsow, 2010;
Thompson & Carlson, 2017), and its relation to multivariational reasoning (Jones, 2018, 2022; Jones & Kuster, 2021). Other studies
have investigated students’ conceptions of functions (Carlson et al., 2002; Oehrtman et al., 2008) and graphs (Moore & Thompson,
2015; Moore et al., 2013) using covariational reasoning as an explanatory framework for student reasoning. Further, many studies
have leveraged covariational reasoning as being central to their conception of mathematical concepts such as functional relationships
(Ellis, 2011; Paoletti & Moore, 2018), limits as dynamic motion (Jones, 2015), and exponential relationships (Castillo, 2010; Confrey
& Smith, 1995).

Covariational Reasoning is frequently discussed with the idea of “quantity” in mind (Thompson, 1994a; Ellis, 2011; Moore et al.,
2013), which refers to a measurable attribute of an object (Thompson, 2011). In the works that address the connection between
students’ understanding of rate of change and their covariational reasoning (e.g., Kertil et al., 2019; Johnson, 2012, 2015), the idea of
quantity continues to be leveraged to explain an individual’s reasoning. Johnson’s (2012, 2015) classification of students’ quantifi-
cation of ratio and rate explained why students would operate at a particular level of covariational reasoning. In particular, Johnson
focused on the quantitative operations (comparing or coordinating) a student engaged with when quantifying a rate of change. She
identified if a student compared two quantities in an additive fashion or if they coordinated the intensity of one change in conjunction
with continuing changes in the other. Kertil et al.’s (2019) work with prospective teachers indicated that their way of thinking about
quantities (variables in their paper) influenced their level of covariational reasoning. Compared to these works that focused on stu-
dents’ conceptions of quantities or the quantitative operations involved, this paper builds off these studies by providing additional
insight into how students’ quantification (assigning a numerical value to a quantity) is connected to their covariational reasoning.

While Thompson and Carlson’s (2017) updated covariational reasoning framework includes Castillo-Garsow’s (2010) chunky and
continuous ways of variational reasoning, this study focuses on the mental actions a student engages with while interpreting the value
of a rate of change instead of their image of variations in two quantities values. Therefore, I focus the discussion and leverage Carlson
et al.’s (2002) Covariational Framework. In their framework (Fig. 1), the authors provide descriptions of the mental actions that
students might evidence in coordinating how two quantities’ values vary. At the top level of this framework, Mental Action 5 (MA5)
describes someone coordinating the instantaneous rate of change of a function with continuous changes in the input variable. A student
engaging in MA5 coordinates how two quantities change together, including an awareness that the instantaneous rate of change comes
from choosing smaller and smaller intervals in calculating average rates of change around a particular input value. MAS5 also describes
how someone coordinates changes in two quantities over a function’s domain. Thus, students exhibiting MA5 thinking can reason
about inflection points and how/where the rate of change changes.

These mental actions are associated with Carlson et al.’s five developmental levels of covariational reasoning that describe the
images of covariational reasoning, e.g., a student having an image of Level 5 Covariational Reasoning would support the types of
actions consistent with MAS5 reasoning. However, the authors also point out that students can demonstrate MAS without utilizing Level
5 covariational reasoning. In this study, I highlight a similar phenomenon in that a student might have an image of Level 5 cova-
riational reasoning, yet their mental actions are limited to MA3 due to their conception of rate of change.

One part absent in the Carlson et al. framework is how students interpret the value of a rate of change in the context of coordinating
changes in two quantities’ values. It is not abundantly apparent in Carlson et al.’s framework how a student would reason about what it
means for a car’s speedometer to read 43 miles per hour at a particular time (instantaneous rate of change). In Carlson et al.’s study,
one of the tasks the researchers used was the bottle problem (Fig. 2), and a student exhibiting MA5 would reason that in the bottom-
rounded half of the bottle, the rate at which the height changes with respect to changes in the volume is decreasing. However, there
was no discussion on how a student with MA5 (or any of the other mental actions) interprets the rate at a particular volume of water in

Imagine this bottle filling with water. Sketch a graph
of the height as a function of the amount of water
that's in the bottle.

Fig. 2. The Bottle Problem.
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this task. For example, in Fig. 3, a student engaging in MA5 might reason that the rate at V; is higher than the rate at V, which is higher
than the rate at V3, but it is unclear in the framework how someone thinks about quantities changing at the instance when the volume
of the water is V;. In this paper, I address this gap in the literature and discuss how students might coordinate changes in two varying
quantities in the context of utilizing the value of a rate of change.

3. Conceptual framework

According to Thompson (1994b), understanding a rate of change involves imagining two quantities covarying such that the change
in one quantity is proportional to the change in the other quantity. How a student imagines how two quantities covary (covariational
reasoning) and how they quantify it are clearly interwoven. This aligns with Thompson and Carlson’s claim that “for students to
conceptualize rates of change requires they reason covariationally” (p.441) (along with many other ideas such as ratio, quotient,
accumulation, and proportionality). While a student’s conception of rate of change may not entirely explain how they reason cova-
riationally, I assert that examining their quantification of a rate of change can provide insight into identifying how they reason
covariationally.

For example, a student who interprets a rate of change additively might interpret ; gallons of gas per dollar” as referring to 1 gallon
of gas and 4 dollars and coordinate changes in two quantities’ values by adding 1 gallon and 4 dollars simultaneously (e.g., A student
goes from 1 gallon of gas and 4 dollars to 2 gallons of gas and 8 dollars) (Fig. 4). This type of thinking is what Johnson (2015) describes
as someone making a comparison type of quantitative operation where an individual utilizes a single extensive quantity (1 Gallon) to
quantify the change in another quantity (4 Dollars). Regarding covariational reasoning, this aligns with exhibiting MA3 reasoning
since the student coordinates discrete amounts of changes in the quantities’ values.

Comparatively, a student with reasoning at MA4 or MA5 for rate of change would interpret “} gasoline gallons per dollar” as
describing the constant ratio between the change in the number of gallons and the change in the number of dollars (the change in the
number of gallons is } times as large as the change in the number of dollars). Covariationally, a student with this conception can reason
outside of 1-unit changes in the dependent quantity and has the potential to consider continuous changes in the independent quantity
(Fig. 5). The differences in this way of thinking about a rate of change are similar to how Thompson (1994b) describes a student’s
conception of ratio as an internalized ratio versus an interiorized ratio, where the former describes a student’s conception of a ratio in a
specific situation while the latter describes a student conceiving of a whole class of situations that share a common proportion.

Table 1 describes each level of the modified covariation framework and how a student at various developmental levels will reason
about the value of a rate of change. This modified framework combines Carlson et al.’s (2012) covariation framework with Thompson’s
(1994a) notion of quantity. One addition to the framework includes an extra column to explicitly connect a student’s interpretation of
a rate of change with a particular mental action. With the example of interpreting f(3) = 6 as an instantaneous rate of change, an
individual engaging in MAS reasoning would imagine that if the independent variable were to vary a small amount from the input
value of 3 (Ax), the variation in the output quantity would essentially be 6 times as large (6 * Ax). Of importance is this awareness that
as the independent variable varies, the value of the rate of change would also likely vary (unless it is a constant rate of change), but for
small enough variations, the difference would be imperceptible.

Additionally, I modify Carlson et al.’s (2002) covariation framework by incorporating MAO, where an individual imagines variation
in only one quantity (in other words, they do not consider how two quantities vary together) when considering the value of a rate of
change. Another addition to the framework is MA3 + , where students’ intuitive understandings of quantities varying involve smooth
and continuous changes but are limited in how they coordinate variations in each quantity’s value because of their interpretation of a
rate value (more on this in Section 5.5). These additions focus on an individual’s coordination of two quantities as the covary and may
not be as productive in describing students’ multivariational reasoning (Jones, 2022).

4. A study on students’ interpretation of an instantaneous rate of change

This study employs the Radical Constructivist stance (Thompson, 2000) and assumes that it is impossible to know another’s

Vi V; V3

Fig. 3. The Bottle Problem Part 2.
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Table 1
A Modified Covariational Reasoning Framework.

Level

Description

Example of a student reasoning about f 3) =6

Mental Action 0 (MAO) - No
Coordination

Mental Action 1 (MA1) -
Coordinating Quantities

Mental Action 2 (MA2) -
Directional Coordination of
Values

Mental Action 3 (MA3) -
Coordination of Values

Mental Action 3 + (MA3 +) -
Coordination of Values+

Mental Action 4 (MA4) —
Coordinating Average Rates
of Change

Mental Action 5 (MA5) —
Coordinating Instantaneous
Rate of Change

The student focuses on the variation in the value of one
quantity only. The student has no image of quantities varying
together.

The student coordinates the value of one quantity with
changes in the other.

The student conceptualizes that one quantity varies as
another quantity varies but in a gross variation manner by
not considering specific values.

The student coordinates the amount of change of one
quantity with changes in the amount of the other quantity.

The student has an image of the value of the rate of change
varying while coordinating the amount of change of one
quantity with changes in the amount of the other quantity by
assuming a constant rate of change.

The student coordinates the average rate of change of the
function with uniform increments of change in the input
variable.

The student coordinates the instantaneous rate of change of
the function with continuous changes in the independent
variable for the entire domain of the function.

The student may interpret the “6” as the output value of f
changing or changed by 6. Alternatively, the student may
interpret the “6” as the output value of f.

In either case, there is no mention of the input quantity
varying. Instead, the student conceptualizes the “6” as an
extensive quantity (a particular amount or change in the
amount of the output value).

The student may believe that the value of the output quantity
changed by 6 and then subsequently that the value of the
input quantity changed from 3 to 4. (The student is not
describing how the input and output quantities change
together; instead, they observe that both quantities changed
additively).

The student interprets that the output value increases as the
input increases. The 6 does not necessarily measure
something; instead, it is like the reading on a speedometer.
Quantitatively speaking, a student here has not yet associated
a unit of measure with their conceptualized quantity.

A student may consider the current input and output values
(3,f(3)) and anticipate that a change in the input (usually a 1-
unit change) results in new values for the input quantity and
output quantity, e.g., (4,f(4)). For example, a student
interprets the value of 6 as the change in the output value for
a 1-unit change in the input value, e.g., f(4) = f(3) + 6. A
student interprets the “6” by engaging in additive
comparisons between the input and output quantities.

A student verbalizes that the value of a rate of change should
vary as the input quantity’s value varies. However, they
consider “6” as the additive change (or the approximated
change) in the output quantity for a 1-unit change in the input
quantity. For example: “If the rate of change stays constant,
then the output value will change by 6 as the input value
changes from 3 to 4.”

A student may consider the current values of the input and
output quantities (3,f(3)) and anticipate that for some
change in the input, Ax, the output value will vary 6 times as
much via a multiplicative comparison. However, the student
does not verbalize an awareness that the value of the rate of
change varies within this Ax interval.

A student may consider the current values of the input and
output quantities (3,f(3)) and anticipate that for some
change in the input, Ax, the output will vary 6 times as much.
The student engages in a multiplicative comparison of
changes between the input and output quantities. The student
verbalizes an awareness that the value of the rate of change
will vary in this Ax interval, but for small Ax values, the
actual change in the output will be essentially 6 times as large.
A student may consider continuous changes in the
independent variable and anticipate that the values of the
associated changes in the dependent variable will vary.

thinking. Therefore, investigating student thinking aims to build models of students’ mathematics (Steffe et al., 2000) that may explain
why students produce specific responses. In particular, this study aimed to construct these models to describe students’ meanings for
the derivative at a point. The word ‘meaning’ will be used in the way that Thompson (2013) uses it to describe a mathematical
meaning. It is the organization of an individual’s experiences with an idea that determines how the individual will act. Meanings are
personal and might be incoherent, procedural, robust, or productive. However, these meanings are used by individuals to respond to
mathematics tasks and make sense of and access mathematical ideas. For example, a person’s meaning of derivative might only be
associated with calculating the limit of the difference quotient. At the same time, another’s meaning of derivative could involve the
slope of a tangent line. Since meanings are personal, if one student writes a similar response to another student, we cannot assume they
both have the same meaning.

4.1. Methodology

To address the research question, I report on the results of conducting a single clinical interview with 27 students (Clement, 2000).
The interviews were semi-structured (Zazkis & Hazzan, 1998) in that the interview was planned in advance, but follow-up tasks would
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differ based on the interviewee’s responses. The semi-structured interviews allowed for unplanned follow-up questions and variations
on the prepared questions. Semi-structured interviews allow the interviewer to test their model of the students’ thinking by presenting
potential tasks based on how they respond during the interview. For example, if a student stated that they interpreted the derivative at
a point as the slope of the tangent line, the interviewer might follow up by asking the student to draw a graph with the tangent line they
are thinking of.

The main tasks for these interviews were as follows.

Task O (Fig. 6) aimed to elicit the students’ spontaneous meaning for derivatives. Task 1 (Fig. 7) probed students’ interpretation and
use of a derivative value in an applied context. More specifically, the clinical interview focused on investigating the following
questions:

1) Does a student associate a derivative with an “instantaneous rate of change™?

2) How does a student interpret the value of the derivative at a given input value?

3) How does a student utilize a derivative value to solve a linear approximation problem?

4) Does a student recognize that the linear approximation they performed in part b is an approximation because the value of the rate of
change would likely change within that input interval?

As a note, even if a student did not verbalize the derivative as an instantaneous rate of change, I investigated how the student
conceptualized the problem context and how they used their meaning for derivative to solve a linear approximation problem.

4.2. Participant selection

Twenty-seven student interviews were conducted over a period of 2.5 years, beginning in the Summer of 2017 and ending in the
Fall of 2019. The subjects were students enrolled in a Calculus 1 or Calculus 2 course at a large southwestern university. Fourteen
students were enrolled in Calculus 2, and thirteen were enrolled in a Calculus 1 course. There were four rounds of interviews, each
conducted at the end of the semester over the duration of the study. Even though students were interviewed at different times
throughout the study, the main tasks (Figs. 6 and 7) were the same for all 27 students.

4.3. Data analysis

Since the purpose of these clinical interviews was to generate new elements of a theoretical model in the form of mental actions and
processes, the data analysis of the interviews was conducted through the lenses of quantitative reasoning (Smith & Thompson, 2007)
and covariational reasoning. The analysis involved Open and Axial Coding (Strauss & Corbin, 1990) for moment-by-moment coding of
students’ responses and interpretations. Using the codes from each student, a thematic analysis (Clarke & Braun, 2013) was conducted
across moments within each student’s interviews and across different students’ moments. This thematic analysis aimed to identify and
analyze the patterns of student responses to model the types of thinking students were engaging in. As a clarification, the initial round
of data analysis (Yu, 2019, 2020, 2021) did not leverage previous Covariational Reasoning frameworks. Instead, it became productive
to conduct a follow-up analysis by utilizing existing constructs to explain the ways of thinking that emerged. This process is aligned
with what Braun and Clarke (2012) call a mix of inductive and deductive data coding, where the analysis is driven by what is in the
data, and then the data is brought to a series of ideas (existing theoretical constructs) used to interpret the data.

The follow-up analysis entailed comparing the codes and categories with the descriptions and Mental Actions described in the
original Covariation framework (Carlson et al., 2012). From this, I observed several nuances and ways of thinking not sufficiently
described in the original framework. These results led to extending the covariation framework by identifying a new level of reasoning
and including descriptions of how students reason about the value of a rate of change and the connections to their covariational
reasoning (Table 1). I hypothesized that attending to how students interpreted a rate’s value would reveal potential mental obstacles
preventing them from reasoning at higher covariational reasoning levels. For example, suppose students were reasoning about a rate of
change as an amount to add. In that case, students’ covariational reasoning would be limited to MA3 since they would coordinate
amounts of change even if they had an image of continuous covariational reasoning (Level 5 in the Carlson et al. Framework).

5. Results

Table 2 summarizes the covariational reasoning the 27 students consistently exhibited in Task 1. As a clarification, these are not
claims that a student only reasoned at a particular level or that they are solely that level reasoner. Further, some students may have
exhibited higher or lower reasoning in some portions of the task. Table 2 counts each student based on the reasoning they mainly
demonstrated throughout the task.

The following section provides examples of each level of covariational reasoning and examples of how students at each level

Task 0: What does the word ‘derivative’ mean to you?

Fig. 6. Task O - The Immediate Meaning.
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Given that P(t) represents the weight (in ounces) of a fish when it is t months old,
a.) Explain the meaning of P'(3) = 6

b.) If P (3) = 15and P’(3) = 6 estimate the value of P (3.05) and say what
this value represents.

Fig. 7. Task 1 - The Fish Task.

Table 2

Summary of Mental Actions Exhibited by Students (n = 27).
Mental Action MAO MA1 MA2 MA3 MA3 + MA4 MAS5
Total Count 3 4 2 8 5 3 2

interpreted the value of a rate of change. The analysis focuses on describing and comparing MA3 versus MA3 + due to a significant
portion of students reasoning at these levels.

5.1. Mental action 0 (MAO) — No Coordination

Researchers have indicated that many students confuse amount functions with rate of change functions (Flynn et al., 2018; Prince
etal., 2012; Rasmussen & King, 2000; Rasmussen & Marrongelle, 2006; Ibrahim & Robello, 2012). One potential reason for this is that
if students are not coordinating how two quantities’ values covary. The updated framework utilizes Thompson and Carlson’s (2017)
construct of No Coordination (MAO) to classify this type of reasoning. A distinctive marker of this level of reasoning is conflating the
value of a rate of change of a quantity with the amount of that quantity or how that quantity changed with no attention to the input
quantity varying. It is important to note that this does not always mean that a student reasoning at MAO does not think about the input
quantity. Instead, they might think about the input quantity’s value as a way to distinguish the instance in which the output quantity
was measured. What characterizes MAO reasoning is the lack of attention to the input quantity varying and its relation to how the
output quantity varies.

5.1.1. Examples of MAO reasoning

Gemma was a student who interpreted P(3) = 6 in the fish task as an amount of weight (Table 3). Throughout this entire task,
Gemma only mentioned time once while explicating how she interpreted the value of 6. She appeared to have used a time value to tag a
point in time instead of mentioning how time also varied [Line 3]. Additionally, Gemma discussed 6 as “the fish weight had changed by
6" [Lines 5-6], which furthers the notion that Gemma was primarily tracking the value of the weight since she never articulated a
reference point of where she measured from. In a follow-up task on interpreting a speedometer reading of 54 mph, she explained that
54 was “how many miles the car’s distance had changed” and again, never explicitly discussed time as varying. Based on her responses,
Gemma likely engaged in MAO level reasoning because she interpreted the rate value as an amount of weight and her lack of attention
to the input quantity varying in her explanations.

Similarly, Leah was a student who interpreted P'(3) = 6 as an amount of weight gained by the fish (Table 4). While her initial
writing of “from 0 to 3 months, the fish gained 6 ounces” might indicate MA3 reasoning (Fig. 8), her explanation revealed that she used
the time values to distinguish between different measured instances of the fish’s weight. Her choice of “then at 3 months” and “by that
third month” supported the idea that she probably was not imagining time changing continuously [Lines 5&8]. She continued to
reason in this manner after being asked to clarify whether 6 was the weight of the fish or how the weight had changed. She explained
that she thought of the 6 as if she “looked at the fish at 0 months” and then “look(ed) at 3 months” [Lines 11-13]. Since Leah’s
explanation consistently used language that evidenced her thinking about two different points in time rather than over an interval, this
corroborates the claim that she was not attending to variations in time. Instead, Leah utilized specific times to refer to which instance of

Table 3
Gemma'’s Explanation for Instantaneous Rate of Change.

Gem:  Cause if I know that if derivative is like at an instance... |
don’t know, that’s just the same as P(3). The fish is 15 ounces,
but at 3 months it’s growing at 6 ounces.

Int: Can you say a little more about what you mean by that?

Gem:  Yeah, like growing at 6 ounces is like the fish weight had
changed by 6...umm... like I know that the fish is 15 ounces
but like the 6 is like how the weight has changed.

NN DN R W
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Table 4
Leah’s Explanation for Instantaneous Rate of Change.

1 Int: So can you explain what you wrote and what that means to

2 you?

3 Leah:  Yeah, like at 3 months the fish weighs 6 ounces, and that

4 would be like at I’'m guessing when the fish was born so like 0
5 ounces and then at 3 months the fish gained 6 ounces.

6 Int: So 6 here is the fish’s weight at 3 months?

7 Leah:  Umm yeah? Like it is also what the fish gained... the weight

8 increased by 6 by that third month.

9 Int: Wait so is 6 what the fish weighs at 3 months or how much

10 weight the fish gained by then?

11 Leah: I guess both? Like well if we looked at the fish at 0 months...
12 the fish weighs 0? But like I now look at 3 months the fish
13 weighs 6 ounces so the fish gained 6 ounces by the 3™ month.

Q. LBy~ 3months old Whighs (002
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Fig. 8. Leah’s Interpretation of P'(3) = 6.

weight she had in mind but never demonstrated that she was coordinating both weight and time as varying together.

5.2. Mental action 1 (MA1) — Coordinating Quantities

A student reasoning at MA1 notices variations in the values of two quantities but may not realize that these variations happen
simultaneously. When a student engaging in MA1 considers the value of a rate of change, they will likely interpret the value as an
amount of change in the output quantity and a subsequent change in the input quantity. Thompson and Thompson’s (1994) construct
of a speed-length is a prime example of MA1 reasoning where a student considered the value of a speed as an amount of distance for a
given amount of time or that “traveling a distance at some constant speed will produce an amount of time” (p. 5).

5.2.1. Example of MA1 reasoning

Keenan initially wrote P(3) = 6 as the “instantaneous weight at 3 months is 6 ounces” (Fig. 9), and while this may look similar to
the MAOQ examples, Keenan’s explanation revealed that he noticed time passing (Table 5). However, as Keenan explained his inter-
pretation, time did not seem to be the central focus of what a rate of change entailed to him. When discussing two measurements of the
fish’s weight, Keenan mentioned two different points in time: “Ilooked at the fish at 2 months then at 3 months the fish’s weight gained
6 ounces” [Lines 5-6]. Keenan’s language indicated that he primarily focused on the fish’s weight changing since it “gained 6 ounces”
and “changed by 6 ounces”, and it was not until he paused for a moment (as indicated by the ‘..." in the transcript) that he noticed that
time had changed as well [Lines 5-7]. Keenan primarily associated the value of a rate of change with the output quantity due to his
consistent response of discussing the 6 as a number of ounces [Lines 2-3, 6, 10]. Even though Keenan eventually associated a month
with the 6 ounces, he mainly coordinated the value of the fish’s weight and later noticed time as elapsing; therefore, I classify his
explanation as engaging in MA1.

5.3. Mental action 2 (MA2) - Directional Coordination of Values
MA2 marks the beginning of simultaneously coordinating the variations in two quantities’ values. A student reasoning at MA2

recognizes that two quantities vary together, yet they will likely talk about non-specific amounts of change. They will probably
interpret the value of a rate like a reading on a speedometer. This would mean that the value of the rate, for example, 6 ounces per

e tostraraacons weisht wd Sunaths ol is § sunces

Fig. 9. Keenan’s Interpretation of P(3) = 6.
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Table 5
Keenan’s Explanation for Instantaneous Rate of Change.

Int: So can you explain what you wrote down?

Kee: Yes, so the instantaneous weight being 6 ounces is the
instantaneous change at 3 months is like 6 ounces.

Int: So what are you imagining when you say this?

Kee: Uh. Like if T looked at the fish at 2 months then the fish at 3
months the fish’s weight gained 6 ounces, uh yeah changed by
6 ounces... like in that one month of time.
Int: Okay so like the difference between the fish’s weight at 2
months versus at 3 months would be 6 ounces?
0 Kee: Yeah, like you know P(2) would be 6 less than P(3).

— O 00 1N LN K Wi~

month, does not entail 6 of something; instead, the student utilizes the value to compare to other rates (e.g., 6 ounces per month is
slower than 8 ounces per month). In terms of quantitative reasoning, a student engaging in MA2 may not have quantitatively developed
a meaning for rate of change since they are not associating a rate of change with a unit of measure. In other words, they have yet to
consider a quality of the situation to which they can measure and make sense of assigning a numerical value.

5.3.1. Examples of MA2 reasoning

Bob initially explained that he interpreted a rate as the weight increase over the third month (Fig. 10). As he continued to explain,
he attended to both weight and time as varying, but his description lacked the specificity of what the 6 represented (Table 6). Bob
coordinated both time and weight as changing as he verbalized that it would not be “like at between 2 and 3 months he’s adding 6
pounds”; instead, he saw the 6 as “a number to throw out there” [Lines 3-5]. Later, when the interviewer probed him about his choice
of units, Bob said that he chose ‘ounces’ because that was how the fish’s weight was changing, but he also verbalized that when he
“usually read these (rates), I kind of think of a unitless number.” Throughout his explanation, Bob demonstrated that he attended to
time and weight changing simultaneously and coordinated the variations in a unitless manner. Later in the interview, Bob was pre-
sented with a supplemental task (Fig. 11), where Bob was asked to explain the difference between three cars traveling at different
speeds. Bob explained that one of the cars would travel faster, which meant that the car would travel further as time passed. Bob stated
that “that car would obviously go farther than the other two cars, but like I can’t really say exactly how much further it would travel.”
His statement revealed that he did not attribute the value of a speed as quantifying something. Instead, Bob only used the value to
compare the distance traveled between each car in a gross variation manner. Bob’s explanation of a rate as being unitless, and yet still
as entailing how two quantities’ values vary simultaneously, is consistent with MA2 reasoning.

5.4. Mental action 3 (MA3) — Coordination of Values

A student exhibiting MA3 coordinates specific amounts of variation between the values in two quantities. Students engaging at
MA3 will likely interpret 6 ounces per month as the weight change for a 1-unit change in time. When approximating a future output
value, students employing MA3 reasoning will likely refer to 6 as an amount of change and determine a corresponding amount
proportional to the change in the input quantity. To use Johnson’s (2012, 2015) words, students engaging in MA3 have likely asso-
ciated a rate of change with a quantitative operation of comparing two quantities changes in an additive fashion. In this way of
thinking, an individual has quantitatively considered a rate of change as describing a specific situation regarding 1 unit of change in the
independent quantity and an associated change in the dependent quantity.

5.4.1. Examples of MA3 reasoning

Will was a student who interpreted P (3) = 6 as “the instant rate of change of the fish’s weight when it is 3 months old is 6 ounces”
(Fig. 12). He explained that P'(3) = 6 as the change in weight for a 1-unit change in time (Table 7). Will described that “it’s growing by
6 ounces” meant that “in that entire third month it gained 6 ounces” [Lines 3-4]. He later clarified his imagery by drawing a picture of a
calendar and drawing an arrow through the dates (Fig. 13) to demonstrate his awareness of time passing and his coordination of the
overall change in the weight of the fish [Line 6]. Will interpreted the rate value of 6 in an additive fashion since he coordinated discrete
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Fig. 10. Bob’s Interpretation of P(3) = 6.
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Table 6
Bob’s Explanation for Instantaneous Rate of Change.

Bob: It would be like at the exact moment it is changing by 6. So I
guess | mean I was thinking about this the other day. I mean I
guess it wouldn’t really just be like at between 2 and 3 months
he’s adding 6 pounds, I don’t know how I think about that
actually. I just kind of see it as a number to throw out there.

DN AW

Supplemental Task — The Car Task

Suppose at 9:30am there are 3 cars and each speedometer reads a different
number. Can you describe what is different about each car?

G 30 av
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Fig. 11. Supplemental Task — The Car Task.

amounts of variations between weight and time (1 entire month and 6 ounces of weight); therefore, I classified Will as engaging in MA3
reasoning in this excerpt.

Lucy was another student who exhibited MA3 reasoning during the interview (Tables 8 and 9). Lucy wrote that P'(3) = 6 was “the
instantaneous rate of the weight of a fish is 6 ounces when it is 3 months old” (Fig. 14) and initially explained it as the amount of change
in weight over 3 months (Table 8). She eventually adjusted her explanation to say that it was a change in the weight for the next month
[Lines 6, 10-11]. In both cases, her language indicated that she interpreted the 6 as an amount of weight to add since she used phrases
such as “go up,” “would be 6 more,” and “go up 6 ounces” [Lines 3,5-6,10-11]. Lucy’s explanation suggested that she was coordinating
discrete amounts of change between time and weight together since she explained that it was “a certain rate over a period of time”
[Lines 2-3], and she continually associated the change in the input value with a corresponding change in the output value [Lines 3,
5-6, 10-11]. Her explanation indicates that she considered a rate of change as entailing the quantitative operation of comparing two
quantities’ values (this is in contrast to a meaning that involves the relative size of one variation with the other) or what Johnson
(2015) calls the association of extensive quantities.

In part b of the Fish Task, Lucy continued to reason that the value of a rate was an amount of change for a 1-unit change in the input
quantity (Table 9). Lucy explained that she was trying to find “the 0.05 rate of change to add” to the initial value of 15 ounces [Line 7].
She then articulated that if the change in the number of months were one, she would add 6 and then deduced that since she had 0.05 of
1, the fish would gain 0.05 of 6 [Lines 7-9]. While Lucy employed proportionality in her explanation, it is important to highlight that to

. Given that P(¥) represents the welght (in ounces) of a fish when it is # months old,
a. Interpret the statement P'(3) =

hM’.-*&- MWA' ke 0{’ C\m,w of lve Fida s \Neuqlu Whaa
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Fig. 12. Will’s Interpretation of P(3) = 6.
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Table 7
Will’s Explanation for Instantaneous Rate of Change.

Int: So what does it mean to you that “the instant rate of change of the
fish’s weight when it is 3 months old is 6 ounces?”
Will: So it’s at 3 months and to say that’s it’s growing by 6 ounces. So
like in that entire third month it gained 6 ounces.
Int: Like that happened at the end of the month or something else?
Will:  No, that change was over the entire month. *Draws calendar*
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Fig. 13. Will’s drawing of 6 ounces over the entire 3rd month.

Table 8
Lucy’s Explanation for Instantaneous Rate of Change.

1 Int: Can you explain what the means to you?
2 Lucy:  So the instantaneous rate is there’s a certain rate over a period
3 of time so every like 3 months it is going to go up 6 ounces.
4 Int: Like every 3 months the fish will gain 6 ounces?
5 Lucy:  Yeah like since P(3) = 15, then P(6) would be 6 more, 21.
6 Oh wait, no it should be that P(4) would be 6 more.
7 Int: Oh? And why do you say that?
8 Lucy: I like mixed it up with the time we are at.
9 Int: Okay, so can you restate what you wrote down means?
10 Lucy:  Yeah, like the instantaneous rate here tells us that in one month
11 the fish’s weight will go up 6 ounces.
Table 9

Lucy’s Explanation for her calculation in part b.

Int: So how did you get 15.25?
Lucy: I was estimating because 3 would be 15 and you with that have
to divide and it is probably wrong.
Int: So what did you want to do?
Lucy:  You would do 6 divided by 0.05 *writes it down in green*
Int: And so why did you do that?
Lucy:  To get the 0.05 rate of change to add to this *points to 15%*, like
if this like 4 it would be one more than this so it would be plus
6, but because it is 0.05 of 1, we want 0.05 of 6.

O 01O\ LN A~ Wi —
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Fig. 14. Lucy’s Interpretation of P(3) = 6.

Lucy, 6 was not describing the multiplicative relationship between how the age and weight of the fish would covary. Instead, it was the
change in weight for 1 month of time, and she wanted to find 0.05 of that 6-ounce change. Additionally, Lucy struggled to mathe-
matically represent what she explained since she initially did not write a calculation and instead estimated it [Lines 2-3]. When
prompted, she tried several incorrect calculations, which indicated a lack of procedural fluency in using the value of a rate of change
(Work written in green in Fig. 15).

Other students also engaged in proportional correspondence in part b of the Fish Task by using 6 as the reference amount for a 1-
month change in time and then setting up equivalent ratios to find a proportional amount of change. One student, April, explained how
she solved part b by thinking of 6 as “how much it will change in a month” (Table 10). She later described that her calculation involved
finding “0.05 of that” because she wanted 5% of 6 [Lines 7&10] (Fig. 16). While April appeared to have employed multiplicative
reasoning, her explanation indicated that she interpreted a rate of change as a discrete amount of change and likely envisioned the two
quantities as varying in completed amounts (Lines 6-7, 9-10).

Similarly, other students who explicated 6 as an amount of change in weight in a month also set up equivalent fractions (Fig. 16)
because they looked for a proportional amount of change. For example, a student named Anu described her calculation as “like if I split
the rate up into little pieces like 20ths.” Anu’s description revealed that she thought of 6 as an amount of change in the fish’s weight
and that she could subdivide the 6 into 20 equal pieces and could find the corresponding amount of change in the fish’s weight for a
0.05 change in the fish’s age. Many other students also described that 6 was an amount of change for a 1-month change in time and that
their calculation found a portion of that change (Fig. 17). Similar to Anu, these students engaged in proportional correspondence by
finding the corresponding amount of change in the weight that would maintain the ratio of 6 ounces to 1 month.

These students’ actions and explanations for estimating the change in the fish’s weight for a 0.05 change in the amount of time
suggested that they imagined variations between weight and time using chunky reasoning (Castillo-Garsow, 2010). In other words,
they imagined 6 as a discrete amount of change in the weight of the fish and took actions to find a smaller-sized chunk of change that
maintained the 6:1 ratio. What was absent in the interpretations from all the students who exhibited MA3 reasoning was that the
quantities of the fish’s weight and the fish’s age would vary continuously and smoothly. This is supported by the students’ inter-
pretation that 6 was a completed change in the number of ounces after some elapsed amount of time instead of a value that quantified
the relative size of a varying amount of time and a varying fish weight (in ounces) since the fish hatched.

5.5. Mental action 3 + (MA3 +) — Coordination of Values+

MAS3 + is similar to MA3, except that a student is cognizant that the value of the rate of change also varies. While verbalizing an
awareness of how a function’s instantaneous rate of change continually varies as the input variable varies is an indication of MA5
reasoning, MA3 + is different in that a student is limited to coordinating discrete amounts of changes between quantities instead of
varying continuously and smoothly. I argue here that a student’s meaning for the value of a rate of change is one of the potential
obstacles that hinder them from reasoning at MAS5. Suppose a student interprets the value of a rate of change additively. In that case,
they will likely reason about variation happening in discrete chunks, which may be an obstacle to understanding what it means for a
rate of change to vary. One explanation for this is that these students’ conception of ratio is what Thompson (1994b) calls an inter-
nalized ratio, where the student associates the value of a ratio with particular amounts of two quantities (e.g., 23 miles per hour refers
to 23 miles and 1 h). The idea of ratio is relevant to rate of change since, according to Thompson, a rate is a “reflectively abstracted
constant ratio” (p. 192). So if a student quantifies a ratio/rate in this manner, their actions in coordinating two quantities values as they
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Fig. 15. Lucy’s written work for part b of the Fish Task.
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Table 10
April’s Explanation for Instantaneous Rate of Change.

1 Int: Can you tell me what this ‘15° represents to you?

2 Apr:  Uhh, yeah that was how much the fish weighed at 3 months.

3 Int: Okay, so what does this ‘0.05 * 6” mean?

4 Apr: That was the change in the fish’s weight

5 Int: So why does ‘0.05 * 6’ represent that?

6 Apr: Well like... 6 is how much it will change in a month and I

7 wanted to find like 0.05 of that.

8 Int: Sorry, can you say again what 0.05 meant to you?

9 Apr: Yeah, like 0.05 was like how much of the change in 6 ounces I
10 wanted to find, like...ummm like I wanted 5% of 6
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Fig. 16. Examples of MA3 reasoning.
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Fig. 17. Additional Example of MA3 Reasoning.

vary will be limited to MA3/3 + even if their image of quantities covarying is smooth and continuous.

A student reasoning at MA3 + experiences a dissonance between their intuitive understanding that quantities vary smoothly and
continuously versus their interpretation that a rate refers to a fixed amount of change. This new classification of MA3 + is necessary
since some students will demonstrate an awareness of how the instantaneous rate of change of a function continually varies as the input
variable varies. However, their behaviors are limited to MA3 due to their conception of rate of change.

5.5.1. Examples of MA3 + reasoning

Max displayed MA3 + reasoning as he explained his interpretation of P(3) = 6 as an amount of change in the fish’s weight
(Table 11). Similar to students who exhibited MA3 reasoning, Max also articulated that 6 was the amount the fish was “projected to
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grow” and that “in that month he should gain 6 ounces” [Lines 9-10]. Max coordinated an amount of change in the fish’s weight with
an amount of change in time; however, he also consistently qualified his language to indicate his awareness that the value of the rate of
change would likely vary. Even though the interviewer asked if Max meant that “in the third month it gained 6 ounces”, Max quickly
denied that because he did “not have enough information” [Line 8]. His explanation included words such as “projected” and “should”
to indicate that the 6 was not the exact amount of change in a month. Instead, it meant that if the rate stayed the same, the fish’s weight
would gain 6 ounces [Lines 6-11]. Although Max was cognizant that the rate at which the fish was growing was varying, it seemed that
his meaning for rate of change as a “change in ounces” and being measured in ounces [Lines 14-15] prevented him from fully engaging
in MAS reasoning and instead limited him to coordinating amounts of variations between the two quantities (MA3).

Throughout the excerpt, we can see evidence that Max likely had an internalized ratio conception since he associated the value of
the rate of change with specific amounts of change between time and weight [Lines 1,10-11, 14-15]. However, unlike the examples
from MA3, Max also articulated that the value of the rate of change would also vary [Lines 8-11], which is indicative of MA5 reasoning.
What likely is one primary source of this discrepancy between his coordination of two quantities varying and his image of two
quantities varying is how he quantified the rate of change as describing the “change in ounces” with respect to 1 month of time [Lines
10-11, 14-15], and thus is distinctly different from MA3 reasoning.

Fred was another example of an MA3 + reasoner when he explained how he used the derivative value to estimate P(3.05)
(Table 12). Fred explained that 6 was the number of ounces the fish would grow “until the third month finishes” and repeated this later
as “the entire third month [the fish] is going to grow 6 ounces” [Lines 3-4 & 9-10]. Like Max, Fred consistently justified his estimation
with language such as “assuming the rate at which it grows is the same” and that he was “under the assumption that over the span of the
third month they’re growing at 6 ounces” [Lines 1-3 & 9-10]. His word choice demonstrated that he was aware that the value of the
rate of change might not be constant, but using the value of an instantaneous rate of change involved making that assumption. Again,
like Max, Fred’s meaning for a rate of change entailed a change in the fish’s weight of 6 ounces [Lines 4 &10], which led him to engage
in coordinating specific amounts of variations since he wanted to find a “portion” of the 6 ounces for the “associated change for that
time” [Lines 4-5 &10-11].

Other students exhibiting MA3 + reasoning explained their responses to Task 1 similarly to Max and Fred. The commonality be-
tween these students was their association of a rate of change with specific amounts of change (6 ounces and 1 month) and an
awareness that the value of the rate of change would likely vary in this one month. For example, one student named Andrew explained
P(3) = 6 as “like when it has 3 months of age, the rate at which it is gaining weight is 6 ounces” and “if it stays at that rate of change,
then yes it will gain 6 ounces, like that interval is like a month but the rate of change could change”. These students all qualified their
explanations with hypothetical language (e.g., “If the rate stays the same”). They interpreted the value of the instantaneous rate of
change as a projected amount of change in the dependent quantity. Comparatively, the students employing MA3 reasoning utilized
more definitive language, such as “the fish will grow 6 ounces in a month”. This indicates a significant difference between how these
students imagined two quantities as covarying. For the MA3 students, they were likely imagining quantities changing in discrete,
additive chunks (consistent with Level 3 Covariational Reasoning). In contrast, the MA3 + students likely imagined these quantities
changing continuously, but their conception of rate of change did not yet support them in articulating their Level 4/5 image of
covariation. I claim that if these MA3 + students conceptualized rate of change as a multiplicative relationship between two varying
quantities instead of a specific amount of variation, they would likely exhibit MA4 or MAS5 covariational reasoning.

Table 11
Max’s Explanation for P'(3) = 6.

1 Max: It gained 6 ounces in weight when it was 3 months old

2 Int: So are you saying that after 3 months, the change in weight is 6
3 ounces. So like from 0 months to 3 months the fish gained 6

4 ounces?

5 Max:  No... not really

6 Int: So what are you trying to describe? Are you saying in the third
7 month it gained 6 ounces?

8 Max:  No because...I do not have enough information to give that

9 number. At 3 months he is in a sense projected to grow at that
10 rate that he is growing at. Like in that month he should gain 6
11 ounces.

12 Int: Okay, so what are the units on this derivative? You wrote that
13 the units of P(t) is ounces, what are the units for P'(t)?

14 Max:  Change in ounces?... Yeah cause change in ounces is still an
15 ounce so the unit is ounces.
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Table 12
Fred’s Explanation for his solution to part b.

1 Fred: At P(3.05)... uh 15+0.3 ounces... assuming the rate at which
2 it grows is the same or very close to the same oh okay... so
3 this is under the assumption that over the span of the third

4 month they’re growing at 6 ounces so I just took a small

5 portion of that.

6 Int: Over the entire third month you said?

7 Fred: = Yeah until the third month finishes.

8 Int: So the entire month finishes it’s growing at a rate of 6?

9 Fred:  Yeah so I took a portion of that, like assuming the entire 3™
10 month is going to grow 6 ounces I took a portion of that like
11 0.05 and found the associated change for that time.

5.6. Mental action 4 (MA4) — Coordination of Average Rates of Change

Engaging in MA4 and higher requires recognizing that a rate of change entails a multiplicative relationship between the variations
in the values of two quantities. In contrast to MA3, a student at MA4 would not utilize equivalent ratios or resize a one-unit change;
instead, they conceptualize the value of a rate of change as describing how many times as large the variation in one quantity will be
with respect to another.

5.6.1. Examples of MA4 reasoning

Randy’s explanation of instantaneous rate of change was consistent with MA4 reasoning (Table 13). Randy described instantaneous
rate of change as “how much it’s (the fish’s weight) changing by over a process of time,” and as he said this, he slid his right hand away
from his other hand to indicate the motion that went with his verbal description [Lines 1-3]. As Randy continued to explain, he ar-
ticulated that the 6 described how the weight would change “from there to there it would keep changing by like 6 ounces per month”
[Lines 2 & 6-7] and that they vary together because “it (the weight) is not changing if time isn’t changing” [Lines 12-13]. Due to his
gestures and how he attempted to describe weight and time changing together, Randy evidenced that he thought of a rate of change as
describing how the quantities vary together smoothly and continuously.

Although Randy never explicitly described 6 as representing the relative size of the change in weight compared to the change in
time, his actions suggested that this rate of change entailed the simultaneity of weight and time covarying together. Additionally, he
verbalized that he was thinking about average rates of change over small intervals and that the weight would be changing at a rate of 6
[Lines 5-7 & 10-13]. His choice in picking differently sized time intervals suggested that he was not engaging in MA3 by thinking of 6
as a change in weight; instead, he attempted to articulate that the 6 described how fast the weight would change throughout those
intervals. Randy never demonstrated an awareness that the rate of change would vary. In fact, he used more definitive language, such
as “that’s how much it is changing by” and “it would keep changing,” which implied that he thought about the value of the rate as being
constant over those small intervals [Lines 1-2 & 6-7]. Therefore, his interpretation and explanations are consistent with MA4
reasoning.

Another student, Winnie, exhibited MA4 reasoning as she explained her solution to part b of the Fish Task (Table 14). Winnie
initially struggled to articulate why she multiplied 6 by 0.05, and only in the latter portion of the interview does she describe the 6 as
being related to time: “the time only progresses after the interval...and the weight changes with it, so I multiplied those...” [Lines
13-15]. Similar to Randy, Winnie never demonstrated that she interpreted 6 as an amount of weight; instead, she explained that the 6
had something to do with how weight and time varied together [Lines 12-15]. Additionally, she utilized a hand gesture similar to
Randy’s when explaining her calculation. She slid one of her hands from her other stationary hand (Fig. 18) to describe what she
imagined [Lines 8-10]. Her explanation for her calculation and gestures suggested that she imagined weight and time varying
smoothly and continuously. Winnie’s actions suggested that she interpreted a rate of change as entailing how two quantities would
vary together. However, she did not communicate that she interpreted the 6 as a relative size measurement between variations in the
fish’s weight and the age of the fish. Lastly, Winnie never explicated an awareness that the value of the rate of change would vary,
which would preclude her from being classified as MAS5; therefore, I classify her as engaging in MA4 reasoning.

5.7. Mental action 5 (MA5) — Coordination of Instantaneous Rates of Change

MAS includes all of MA4 with the added distinction of recognizing that the value of the rate of change varies as the input quantity
varies. A student engaging at MAS will consistently qualify the amount of change in a quantity with “if the rate stays the same...”. This
is further evidenced when a student anticipates that for some input, a, and for some change from the input, Ax, the output value will
vary f'(a) times as much; in other words f (a) * Ax ~ f(a+Ax) — f(a). The student also verbalizes an awareness that the rate of change
will vary in this Ax interval, but for small Ax values, the change in the output will essentially be 6 times as large.
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Randy’s Explanation for Instantaneous Rate of Change.
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Ran:

Int:

Ran:

Int:

Ran:

Like the instantaneous rate of change, so like... that’s how
much it is changing by over a process of time. *Slides his
hands to motion*

So like over the first three months it gained 6 ounces?

No like...let’s say like from.... like 2.9 to 3.1, like the average
rate of change is like 6, like from there to there it would keep
changing by like 6 ounces per month

So why did you pick 2.9 and 3.1? Does it have to be those
numbers?

Nah like that was just something close to 3, we could have
picked like from 2.85 to 3.15 that average rate would be 6, I
mean I’m just trying to explain it cause it (the weight) is not
changing if time isn’t changing.

Table 14

Winnie’s Explanation for her solution to part b.
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Win:

Int:

Win:

Int:

Win:

Int:

Win:

So I multiplied 6 by 0.05 for some reason

And what were you trying to represent?

I think it would represent the amount that it is changing in that
small interval that it’s defined up to 3.05... so we’re using the
fish’s instantaneous rate of change from 3, yeah that’s what |
did.

So how did you get 0.05?

Because you know that P(3) is 15... so I multiplied by 0.05
since that’s what the amount that’s after that. *Slides her right
hand as she describes this* [Figure 18]

So why does 0.05 times 6 get a change in weight?

Uhh... because like the instantaneous rate of change is 6 and
we know that the time only progresses after the interval for
0.05, and the weight changes with it so I multiplied those to get
out the change.

e
/’N/

Fig. 18. Depiction of Winnie’s gesture as she explained her interpretation of P'(3) = 6.

5.7.1. Examples of MA5 reasoning

Leo interpreted P (3) = 6 as “the weight of the fish is increasing at a rate of 6 ounces per month at 3 months” (Table 15). When asked
what he meant by this, Leo initially described an average rate but qualified his statement with “it’s not what it’s always going to be,”
indicating an awareness that the average rates of change were not a constant value of 6 [Lines 3-5]. He then discussed an example by
picking the interval 2.9-3.1 and that the average would be “about 6 per month.” [Lines 7-8]. Later in the interview, Leo clarified that
he was thinking of small intervals around 3 and drew a picture of a number line where he described that he could choose any interval
close to 3 and that the average rate of change would still be around 6 (Fig. 19). He also noted that as he chose intervals closer to 3 (he
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Table 15
Leo’s explanation for Instantaneous Rate of Change.

1 Int: So in this context what does that mean? What does it mean to be
2 “increasing at a rate of 6 ounces per month at 3 months?”

3 Leo:  So when the fish is 3 months old it would be like the average

4 rate would be 6 ounces per month at that time, like it’s not what
5 it’s always going to be but if you took it at 3 it would be 6.

6 Int: So what average are you looking at?

7 Leo:  Like the averages around 3, like at 2.9 and then 3.1 and how big
8 it is, the fish then you could average out about 6 per month.

9 Int: So are you looking at all the weights around 3 and the average of
10 those weights would be 6?

11 Leo:  Not the averages of the weight, but how big of a difference it is
12 increasing through time. And if you could expand it over a

13 month it would be about 6.

drew in the tick marks in Fig. 19), the average rates of change would get “more precisely closer to 6.” His description demonstrated that
his understanding of rate of change did not entail 1-unit changes in the input quantity. Instead, he evidenced that a rate of change could
involve any size change in the input quantity, even arbitrarily small ones.

Leo also explained that his interpretation of the average rate of change encompassed “how big of a difference it (the weight of the
fish) is increasing through time” [Lines 11-12]. Leo’s explanation exhibited his understanding that a rate of change involved “dif-
ferences” or changes in the dependent quantity “through time.” While his statement of “if you could expand it over a month it would be
about 6" could be interpreted as MA3 reasoning, it should be noted that he came up with this description after he explained his meaning
for P(3) = 6 [Lines 12-13]. His qualification of “if you could expand” evidenced that he went from considering the average rate in a
small interval [Lines 7-8] and then imagined that if the fish grew at that rate for a month, then the change in the weight “would be
about 6" [Lines 12-13]. Compared to MA3 and MA3 + reasoners, Leo did not first indicate that he interpreted 6 as how much weight
the fish would gain in a month. Instead, he thought about coordinating changes between the independent and dependent quantities
around 3 by anticipating how the weight might change if he assumed a constant rate of change over an entire month. In this account,
Leo never verbally stated that 6 represented multiplicative relationship between the change in the weight of the fish with respect to the
change in the age of the fish. However, his actions and description of instantaneous rate of change indicated that he was engaging in
MADS reasoning. Leo’s explanation for instantaneous rate of change entailed changes between two quantities’ values [Lines 11-12] and
that as he chose different-sized intervals, the (average) rate of change would also continually change in value (Fig. 19).

Cyrus also demonstrated MAS reasoning as he explained his solution to part b of the Fish Task (Table 16). Throughout the entire
interview, Cyrus never indicated that he interpreted 6 as an amount of change; instead, he always employed examples where he would
use the 6 and multiply it by some amount of time. While Cyrus never explicitly stated he interpreted a rate as a ratio between changes in
two quantities, he only utilized the 6 to employ multiplication to discuss how time and the fish’s weight varied together [Lines 2 &
11-13]. Cyrus described the 6 as the fish was “changing at 6 ounces per month” and explained that as how the fish’s weight was
“changing” and not as an amount of change [Lines 6-9]. As Cyrus explained his calculation, he consistently verbalized that he assumed
a constant rate since “it probably is not going to be changing very much faster or very much less” and that his estimation was
“somewhere close, but I know that’s not the correct value” [Lines 3&7-10]. This evidenced his awareness that the rate of change would
vary even in the small interval between 3 and 3.05 and that even if the rate did vary, it would not change drastically unless it “hit a
growth spurt right before or after,” which meant that his estimation was close enough [Lines 7-10]. Altogether, Cyrus demonstrated
that he was coordinating how time and the fish’s weight covaried together smoothly and continuously as well as coordinating the
instantaneous rate of change of the function with continuous changes in the independent variable.

6. Discussion

Based on the results of these clinical interviews, each student’s explanation of the value of an instantaneous rate of change revealed
how they might have conceptualized how two quantities’ values covaried. In previous studies (Byerley et al., 2012; Castillo-Garsow,

Fig. 19. Leo’s Written Work.
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Table 16
Cyrus’ explanation for his solution to part b.

1 Int: So what did you try doing here?

2 Cyr: 0.05 * 6 and got 0.3, so I estimated 15.3. I know it’s

3 somewhere close, but I know that’s not the correct value.

4 Int: So why did you do this part over here 0.05 * 6?

5 Cyr: So that was the estimation, it was 3 and 0.05 months, at 3

6 months it was changing at 6 ounces per month, and at 3.05

7 months it probably is not going to be changing very much

8 faster or very much less but that’s an estimation you could

9 have hit a growth spurt right before or after, that’s why I did it,
10 the rate of change probably won’t change much between 3 and
11 3.05. So I multiplied the rate of change which was 6, times the
12 value added on to 3 when the rate of change was 6 and I

13 multiplied those two numbers together.

2010; Thompson & Thompson, 1994; Yu, 2020), researchers observed students’ ideas about rate of change as being additive and the
obstacles students with this conception may encounter in future mathematical learning (Flynn et al., 2018; Prince et al., 2012; Ras-
mussen & King, 2000; Rasmussen & Marrongelle, 2006). The findings of this study further this area of research by describing various
nuances in how students coordinate changes in two quantities’ values with their additive or multiplicative conception of a rate of
change. For example, in the updated Covariational Reasoning Framework (Table 1), students at MAO-MA4 may all exhibit additive
reasoning when utilizing the value of a rate of change, however, how these students conceive of a situation differs between each level.

The findings also extend what is known about students’ covariational reasoning. In Carlson et al.’s (2002) study, students could
exhibit MA5 reasoning with the bottle problem if they coordinated that equal changes in water would result in decreasing (then
increasing) changes in height. I hypothesize that some of these students leveraged their intuitive understanding but may have struggled
to demonstrate MA5 reasoning if they had to attend to the values of a rate of change at a given volume. In this study, some of the
students demonstrated an awareness that the instantaneous rate of change of the fish’s weight varies as the age of the fish varies.
However, it was apparent that their interpretation of a value of a rate of change limited them to coordinating specific amounts of
change, which was demonstrative of MA3 reasoning.

To recap, I highlight two major insights from the results of this study.

1) Attending to how a student interprets the value of a rate of change can provide insight into how they reason covariationally.
Further, it is likely that a student’s meaning for rate of change impacts how and why they reason at a particular level of cova-
riational reasoning.

2) New categories of MAO and MA3 + , and an updated description of MA4 and MAS to further describe several nuances in student
thinking regarding covariational reasoning that was not originally described in the original Covariational Reasoning Framework as
proposed by Carlson et al. (2002).

6.1. Conclusion

As the field continues to research and understand students’ covariational reasoning, this study expands our understanding by
examining how students quantify a rate of change. Compared to the works of Johnson (2012, 2015) and Kertil et al. (2019), whose
contributions focused on the quantitative operations for the former and the identification of quantities for the latter, this study
complements these works by examining how students assign and attribute meaning to the value of a rate of change. Many of the
students in this study reasoned at MA3/3 + due to their conception of a rate of change as an amount to add to the function’s output
value for a one-unit change in the input. Students with an additive conception of rate of change took actions to suggest they were
thinking about completed changes instead of quantities varying smoothly and continuously. Therefore, it stands to reason that sup-
porting students in constructing a productive understanding of rate of change can benefit their understanding of derivative as
instantaneous rate of change (Yu, 2023).

In the task, students engaging in additive reasoning could utilize proportional correspondence (Fig. 16) to answer linear
approximation problems. However, this additive conception of rate of change will likely be an obstacle when trying to understand
other key ideas of Calculus. For example, suppose a student conceives of rate of change as considering changes in one-unit chunks; how
will they make sense of the limit definition of derivative or seeing a sliding secant line converge to a tangent line whose slope rep-
resents a quantity we call “instantaneous rate of change?” This perhaps explains why some students form disconnected or compart-
mentalized meanings for derivatives (Zandieh, 2000) because their meaning for rate of change is incompatible with the depictions of
instantaneous rate of change in Calculus. Not only would supporting students in engaging in multiplicative reasoning benefit students’
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understanding of derivatives, but also in future mathematical learning, such as accumulation. Jones (2013), Sealey (2014), and
Thompson and Harel (2021) all indicate that students will experience difficulties conceptualizing integrals when they do not conceive
of quantities varying smoothly and covariationally. Thompson and Harel argue that to understand integrals as accumulation, a student
“needs to envision variations happening within bits—at least smoothly and at best smoothly and continuously” (pg. 512). However, if a
student only has the means of engaging in proportional correspondence (due to their additive conception), they can only consider
chunks of variations instead of smooth variations.

While Thompson and Carlson (2017) state that conceptualizations of rate of change require understandings that go beyond
covariational reasoning, such as ratio, quotient, accumulation, and proportionality (and therefore, we should not equate their un-
derstanding of rate of change with their covariational reasoning), this study provides an example on the reciprocal relationship be-
tween an individual’s covariational reasoning and quantification of rate of change. The new category of MA3 + highlights the
usefulness of examining a student’s rate of change conceptualizations since these types of reasoners likely have an image of what
Thompson and Carlson call Smooth Continuous Covariation, yet how they quantified a rate of change limits them to exhibiting a Co-
ordination of Values level. Further, even the students who evidenced MA4 or MA5 reasoning could not articulate the underlying reason
for employing multiplication when using the value of a rate of change. It stands to reason that supporting students in developing a
multiplicative meaning for rate of change can help them engage in higher levels of covariational reasoning. While developing a robust
understanding of rate of change should be seeded early on (e.g., Thompson & Thompson, 1994), the findings of this study suggest that
instructors at the undergraduate level can support students in furthering their covariational reasoning by refining students meaning for
rate of change into a multiplicative one.

Overall, this study extends what we know about the connection between covariational reasoning and rate of change reasoning.
While reasoning about rate of change involves ideas beyond just covariational reasoning, this does not mean that the relationship
between them goes solely in one direction. Instead, the findings of this study and the works of Johnson (2012, 2015) and Kertil et al.
(2019) demonstrate a reciprocity between an individual’s quantification of rate of change and how they coordinate two quantities as
covarying. Therefore, further studies can continue to investigate this relationship and how developing one aspect can support the
other.

6.2. Limitations

In considering the results of this study, it is important to keep in mind that the results are known to be true for the 27 students
involved and may not necessarily explain all other thinking. Additionally, one limitation of the study is the usage of a context involving
derivatives and instantaneous rate of change where we know that students have a variety of conceptions about the derivative concept
(Zandieh, 2000). It is recommended that future studies examine a large sample of students using a variety of contexts, such as situ-
ations involving more than 2 variables that involve their quantification of rate of change. Despite these limitations, the study’s findings
support the idea that exploring a student’s conception of rate of change can provide insight yet may not fully explicate or reveal the
complete picture on how they reason covariationally.
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